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Series Preface 

Mathematics is playing an ever more important role in the physical and biological 
sciences, provoking a blurring of boundaries between scientific disciplines and a 
resurgence of interest in the modern as well as the classical techniques of applied 
mathematics. This renewal of interest, both in research and teaching, has led to 
the establishment of the series: Texts in Applied Mathematics ( TAM). 

The development of new courses is a natural consequence of a high level 
of excitement on the research frontier as newer techniques, such as numerical 
and symbolic computer systems, dynamical systems, and chaos, mix with and 
reinforce the traditional methods of applied mathematics. Thus, the purpose of 
this textbook series is to meet the current and future needs of these advances and 
encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathematical 
Sciences (AMS) series, which will focus on advanced textbooks and research level 
monographs. 
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Preface 

This book is about dynamics-the mathematics of how things change in time. 
The universe around us presents a kaleidoscope of quantities that vary with time, 
ranging from the extragalactic pulsation of quasars to the fluctuations in sunspot 
activity on our sun; from the changing outdoor temperature associated with 
the four seasons to the daily temperature fluctuations in our bodies; from the 
incidence of infectious diseases such as measles to the tumultuous trend of stock 
prices. 

Since 1984, some of the vocabulary of dynamics-such as chaos, fractals, 
and nonlinear-has evolved from abstruse terminology to a part of common lan-
guage. In addition to a large technical scientific literature, the subjects these terms 
cover are the focus of many popular articles, books, and even novels. These pop-
ularizations have presented "chaos theory" as a scientific revolution. While this 
may be journalistic hyperbole, there is little question that many of the important 
concepts involved in modem dynamics-global multistability, local stability, sen-
sitive dependence on initial conditions, attractors-are highly relevant to many 
areas of study including biology, engineering, medicine, ecology, economics, and 
astronomy. 
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This book presents the main concepts and applications of nonlinear dy-
namics at an elementary level. The text is based on a one-semester undergraduate 
course that has been offered since 1975 at McGill University and that has been 
constantly updated to keep up with current developments. Most of the students 
enrolled in the course are studying biological sciences and have completed a 
year of calculus with no intention to study further mathematics. Since the main 
concepts of nonlinear dynamics are largely accessible using only elementary ar-
guments, students are able to understand the mathematics and successfully carry 
out computations. The exciting nature and modernity of the concepts and the 
graphics are further stimuli that motivate students. 

Mathematical developments since the mid 1970's have shown that many 
interesting phenomena can arise in simple finite-difference equations. These are 
introduced in Chapter 1, where the student is initiated into three important 
mathematical themes of the course: local stability analysis, global multistability, 
and problem solving using both an algebraic and a geometric approach. The 
graphical iteration of one-dimensional, finite-difference equations, combined 
with the analysis of the local stability of steady states, provides two complementary 
views of the same problem. The concept of chaos is introduced as soon as possible, 
after the student is able graphically to iterate a one-dimensional, finite-difference 
equation, and understands the concept of stability. For most students, this is the 
first exposure to mathematics from the twentieth century! 

From the instructor's point of view, this topic offers the opportunity to 
refresh students' memory and skills in differential calculus. Since some students 
take this course several years after studying geometry and calculus, some skills 
have become rusty. Appendix A reviews important functions such as the Hill 
function, the Gaussian distribution, and the conic sections. Many exercises that 
can help in solidifying geometry and calculus skills are included in Appendix A. 

Chapters 2 and 3 continue the study of discrete-time systems. Networks and 
cellular automata (Chapter 2) are important both from a conceptual and technical 
perspective, and because of their relevance to computers. The recent interest in 
neural and gene networks makes this an important area for applications and 
current research. 

Many students are familiar with fractal images from the myriad populariza-
tions of that topic. While the images provide a compelling motivation for studying 
nonlinear dynamics, the concepts of self-similarity and fractional dimension are 
important from a mathematical perspective. Chapter 3 discusses self-similarity 
and fractals in a way that is closely linked to the dynamics discussed in Chap-
ter 1. Fractals arise from dynamics in many unexpected ways. The concept of 
a fractional dimension is unfamiliar initially but can be appreciated by those 
without advanced technical abilities. Recognizing the importance of computers 
in studying fractals, we use a computer-based notation in presenting some of the 
material. 



PREFACE xi 

Dependencies among the chapters. 

The study of continuous-time systems forms much of the second half of 
the book. Chapter 4 deals with one-dimensional differential equations. Because 
of the importance of exponential growth and decay in applications, we believe 
that every science student should be exposed to the linear one-dimensional dif-
ferential equation, learning what it means and how to solve it. In addition, it is 
essential that those interested in science appreciate the limitations that nonlin-
earities impose on exponential ("Malthusian") growth. In Chapter 4, algebraic 
analysis of the linear stability of steady states of nonlinear equations is combined 
with the graphical analysis of the asymptotic dynamics of nonlinear equations to 
provide another exposure to the complementary use of algebraic and geometric 
methods of analysis. 

Chapter 5 deals with differential equations with two variables. Such equa-
tions often appear in the context of compartmental models, which have been 
proposed in diverse fields including ion channel kinetics, pharmacokinetics, and 
ecological systems. The analysis of the stability of steady states in two-dimensional 
nonlinear equations and the geometric sketching of the trajectories in the phase 
plane provide the most challenging aspect of the course. However, the same ba-
sic conceptual approach is used here as is used in the linear stability analyses in 
Chapter 1 and Chapter 4, and the material can be presented using elementary 
methods only. 

In most students' mathematical education, a chasm exists between the con-
cepts they learn and the applications in which they are interested. To help bridge 
this gap, Chapter 6 discusses methods of data analysis including classical methods 
(mean, standard deviation, the autocorrelation function) and modern methods 
derived from nonlinear dynamics (time-lag embeddings, dimension and related 
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topics). This chapter may be of particular interest to researchers interested in 
applying some of the concepts from nonlinear dynamics to their work. 

In order to illustrate the practical use of concepts from dynamics in ap-
plications, we have punctuated the text with short essays called "Dynamics in 
Action:' These cover a wide diversity of subjects, ranging from the random drift 
of molecules to the deterministic patterns underlying global climate changes. 

Following each chapter is supplementary material. The notes and refer-
ences provide a guide to additional references that may be fun to read and are 
accessible to beginning students. A set of exercises reviewing concepts and math-
ematical skills is also provided for each chapter. Solutions to selected exercises are 
provided at the end of the book. For each chapter, we also give a set of computer 
exercises. The computer exercises introduce students to some of the ways com-
puters can be used in nonlinear dynamics. The computer exercises can provide 
many opportunities for a term project for students. 

The appropriate use of this book in a course depends on the student 
clientele and the orientation of the instructors. In our instruction of biolog-
ical science students at McGill, emphasis has been on developing analytical 
and geometrical skills to carry out stability analysis and analysis of asymptotic 
dynamics in one-dimensional finite-difference equations and in one- and two-
dimensional differential equations. We also include several lectures on neural and 
gene networks, cellular automata, and fractals. 

Although this text is written at a level appropriate to first- and second-year 
undergraduates, most of the material dealing with nonlinear finite-difference 
and differential equations and time-series analysis is not presented in standard 
undergraduate or graduate curricula in the physical sciences or mathematics. This 
book might well be used as a source for supplementary material for traditional 
courses in advanced calculus, differential equations, and mathematical methods 
in physical sciences. The link between dynamics and time series analysis can 
make this book useful to statisticians or signal processing engineers interested 
in a new perspective on their subject and in an introduction to the research 
literature. 

Over the years, a number of teaching assistants have contributed to the 
development of this material and the education of the students. Particular thanks 
go to Carl Graves, David Larocque, Wanzhen Zeng, Marc Courtemanche, Hi-
royuki Ito, and Gil Bub. We also thank Michael Broide, Scott Greenwald, Frank 
Witkowski, Bob Devaney, Michael Shlesinger, Jim Crutchfield, Melanie Mitchell, 
Michael Frame, Jerry Marsden, and the students of McGill University Biology 309 
for their many corrections and suggestions. We thank Andre Duchastel for his 
careful redrawing of many of the figures reproduced from other sources. Finally, 
we thank Jerry Lyons, Liesl Gibson, Karen Kosztolnyik, and Kristen Cassereau for 
their excellent editorial assistance and help in the final stages of preparation of 
this book. 
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ways. We would like to thank in particular, J. Milic-Emili, K. Krjnevic, D. Goltz-
man, A. Shrier, M. R. Guevara, and M. C. Mackey. The financial support of the 
Natural Sciences Engineering and Research Council (Canada), the Medical Re-
search Council (Canada), the Canadian Heart and Stroke Association has enabled 
us to carry out research that is reflected in the text. Finally, Leon Glass thanks the 
John Simon Guggenheim Memorial Foundation for Fellowship support during 
the final stages of the preparation of this text. 

We are making available various electronic extensions to this book, includ-
ing additional exercises, solutions, and computer materials. For information, 
please contact understandingClcnd. mcgill. ca. 
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dannyClcnd. mcgill. ca and glassClcnd. mcgill. ca. 

February 1995 Daniel Kaplan 
Leon Glass 



Contents 

SERIES PREFACE vii 

ABOUT THE AUTHORS viii 

PREFACE ix 

1 FINITE-DIFFERENCE EQUATIONS 1 

1.1 A Mythical Field 1 
1.2 The Linear Finite-Difference Equation 2 
1.3 Methods of Iteration 6 
1.4 Nonlinear Finite-Difference Equations 8 
1.5 Steady States and Their Stability 12 



xvi CONTENTS 

1.6 Cycles and Their Stability 20 
1.7 Chaos 27 
1.8 Quasiperiodicity 33 

r-
1 Chaos in Periodically Stimulated Heart ` É ä ú = 37 

Sources and Notes 41 
Exercises 42 
Computer Projects 51 

2 BOOLEAN NETWORKS AND CELLULAR 
AUTOMATA 55 

2.1 Elements and Networks 56 
2.2 Boolean Variables, Functions, and Networks 58 

ú =A Lambda Bacteriophage j ç Ç ú = 64 

r-
3 Locomotion in p ~ ä ~ ã ~ å Ç É ú = 70 

2.3 Boolean Functions and Biochemistry 73 
2.4 Random Boolean Networks 77 
2.5 Cellular Automata 79 

r-
4 Spiral Waves in Chemistry and BiologL 88 

2.6 Advanced Topic: Evolution and Computation 91 
Sources and Notes 94 
Exercises 96 
Computer Projects 101 

3 SELF-SIMILARITY AND FRACTAL GEOMETRY 105 

3.1 Describing a Tree 106 
3.2 Fractals 109 
3.3 Dimension 111 

r-
5 The Box-Counting a á ã É å ë á ç ú = 115 

3.4 Statistical Self-Similarity 116 

r"(; Self-Similarity in q á ã ú = 117 

3.5 Fractals and Dynamics 12l 

r-; Random Walks and Levy Walk!J 126 

r0-
B Fractal d ê ç ï í ú = l37 

Sources and Notes 141 



CONTENTS xvii 

Exercises 142 
Computer Projects 143 

4 ONE-DIMENSIONAL DIFFERENTIAL 
EQUATIONS 147 

4.1 Basic Definitions 148 
4.2 Growth and Decay 149 

r;' Traffic on the f å í É ê å É ú = 156 

ú =0 Open Time Histograms in Patch Clamp b ñ é É ê á ã É å ú = 158 

r-
11 Gompertz Growth of Tumo'!.. 163 

4.3 Multiple Fixed Points 164 
4.4 Geometrical Analysis of One-Dimensional Nonlinear Ordinary 

Differential Equations 166 
4.5 Algebraic Analysis of Fixed Points 168 
4.6 Differential Equations versus Finite-Difference Equations 172 
4.7 Differential Equations with Inputs 174 

ú =2 Heart Rate Response to Sinusoid f å é ì ú = 182 

4.8 Advanced Topic: Time Delays and Chaos 183 

ú =3 Nicholson's _ ä ç ï Ñ ä á É ú = 186 

Sources and Notes 188 
Exercises 189 
Computer Projects 205 

5 TWO-DIMENSIONAL DIFFERENTIAL 
EQUATIONS 209 

5.1 The Harmonic Oscillator 209 
5.2 Solutions, Trajectories, and Flows 211 
5.3 The Two-Dimensional Linear Ordinary Differential Equation 213 
5.4 Coupled First-Order Linear Equations 219 

ú =4 Metastasis of Malignant Tumo'!.. 221 

5.5 The Phase Plane 226 
5.6 Local Stability Analysis of Two-Dimensional, Nonlinear 

Differential Equations 230 
5.7 Limit Cycles and the van der Pol Oscillator 240 
5.8 Finding Solutions to Nonlinear Differential Equations 244 



xviii CONTENTS 

ú =5 Action Potentials in Nerve ` É ä ú = 245 

5.9 Advanced Topic: Dynamics in Three or More Dimensions 248 
5.10 Advanced Topic: Poincare Index Theorem 253 

Sources and Notes 260 
Exercises 260 
Computer Projects 275 

6 TIME-SERIES ANALYSIS 279 

6.1 Starting with Data 279 
6.2 Dynamics, Measurements, and Noise 280 

ú =6 Fluctuations in Marine mç é ì ä ~ í á ç å ú = 281 

6.3 The Mean and Standard Deviation 286 
6.4 Linear Correlations 291 
6.5 Power Spectrum Analysis 298 

r-
17 Daily Oscillations in Zooplankt0!!.a 300 

6.6 Nonlinear Dynamics and Data Analysis 303 
r-
18 Reconstructing Nerve Cell a ó å ~ ã á ú = 304 

6.7 Characterizing Chaos 314 

ú =9 Predicting the Next Ice ^ Ö ú = 330 

6.8 Detecting Chaos and Nonlinearity 338 
6.9 Algorithms and Answers 347 

Sources and Notes 348 
Exercises 349 
Computer Projects 353 

APPENDIX A A MULTI-FUNCTIONAL APPENDIX 359 

A.l The Straight Line 361 
A.2 The Quadratic Function 362 
A.3 The Cubic and Higher-Order Polynomials 362 
A.4 The Exponential Function 363 
A.5 Sigmoidal Functions 364 
A.6 The Sine and Cosine Functions 367 
A.7 The Gaussian (or "Normal") Distribution 368 
A.8 The Ellipse 370 
A.9 The Hyperbola 371 

Exercises 371 



APPENDIX B A NOTE ON COMPUTER 
NOTATION 

SOLUTIONS TO SELECTED EXERCISES 

BIBLIOGRAPHY 

INDEX 

CONTENTS xix 

381 

385 

401 

409 



CHAPTER 1 



Finite-Difference 
Equations 

1.1 A MYTHICAL FIELD 

Imagine that a graduate student goes to a meadow on the first day of May, 
walks through the meadow waving a fly net, and counts the number of flies 
caught in the net. She repeats this ritual for several years, following up on the 
work of previous graduate students. The resulting measurements might look like 
the graph shown in Figure 1.1. The graduate student notes the variability in her 
measurements and wants to find out if they contain any important biological 
information. 

Several different approaches could be taken to study the data. The student 
could do statistical analyses of the data to calculate the mean value or to detect 
long-term trends. She could also try to develop a detailed and realistic model of 
the ecosystem, taking into account such factors as weather, predators, and the 
fly populations in previous years. Or she could construct a simplified theoretical 
model for fly population density. 

Sticking to what she knows, the student decides to model the population 
variability in terms of actual measurements. The number of flies in one summer 
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:1: :: 'I 
1970 1975 1980 1985 1990 1995 

Figure 1.1 The number of flies caught during the annual fly survey. 

depends on the number of eggs laid the previous year. The number of eggs laid 
depends on the number of flies alive during that summer. Thus, the number of 
flies in one summer depends on the number of flies in the previous summer. In 
mathematical terms, this is a relationship, or function, 

(1.1) 

This equation says simply that the number of flies in the t + 1 summer is de-
termined by (or is a function of) the number of flies in summer t, which is the 
previous summer. Equations of this form, which relate values at discrete times 
( e.g., each May), are called finite-difference equations. Nt is called the state of the 
system at time t. We are interested in how the state changes in time: the dynamics 
of the system. 

Since the real-world ecosystem is complicated and since the measurements 
are imperfect, we do not expect a model like Eq. 1.1 to be able to duplicate 
exactly the actual fly population measurements. For example, birds eat flies, so 
the population of flies is influenced by the bird population, which itself depends 
on a complicated array of factors. The assumption behind Eq. 1.1 is that the 
number of flies in year t + 1 depends solely on the number of flies in year t. While 
this is not strictly true, it may serve as a working approximation. The problem now 
is to figure out an appropriate form for this dependence that is consistent with 
the data and that encapsulates the important aspects of fly population biology. 

1.2 THE LINEAR FINITE-DIFFERENCE EQUATION 

Let us start by making a simple assumption about the propagation of 
flies: For each fly in generation t there will be R flies in generation t + 1. The 
corresponding finite-difference equation is 

(l.2) 
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Equation 1.2 is called a linear equation because a graph of Nt+1 versus Nt 
is a straight line, with a slope of R. 

The solution to Eq. 1.2 is a sequence of states, Nt> N2 , N3 , ••• , that satisfy 
Eq. 1.2 for each value of t. That is, the solution satisfies N2 = RNt> and N3 = 
RN2, and N4 = RN3, and so on. 

One way to find a solution to the equation is by the process of iteration. 
Given the number of flies No in the initial generation, we can calculate the number 
of flies in the next generation, N I. Then, having calculated N1, we can apply Eq. 1.2 
to find N2. We can repeat the process for as long as we care to. The state No is 
called the initial condition. 

For the linear equation, it is possible to carry out the iteration process using 
simple algebra. By iterating Eq. 1.2 we can find Nt> N2 , N3 , and so forth. 

NI = RNo• 

N2 = RNI = R2No• 

N3 = RN2 = R2N1 = R3No• 

There is a simple pattern here: It suggests that the solution to the equation might 
be written as 

(1.3) 

We can verify that Eq. 1.3 is indeed the solution to Eq. 1.2 by substitution. 
Since Eq. 1.3 is valid for all values of time t, it is also valid for time t + 1. By 
replacing the variable t in Eq. 1.3 with t + 1, we can see that Nt+1 = Rt+1 No. 
Expanding this, we get 

which shows that the solution implies the finite-difference equation in Eq. 1.2. 

BEHAVIOR OF THE LINEAR EQUATION 

Equation 1.3 can produce several different types of solution, depending on 
the value of the parameter R: 

Decay When 0 < R < 1, the number of flies in each generation is 
smaller than that in the previous generation. Eventually, the number falls 
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Nt 
100 • 

• • • 
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Figure 1.2 
The solution to 
NH! = O.90N,. 

Figure 1.3 
The solution to 
N,+! = l.08N,. 

to zero and the flies become extinct (see Figure l.2). Since the solution is 
an exponential function of time (see Appendix A), this behavior is called 
exponential decay. 

Growth When R > 1, the population of flies increases from generation 
to generation without bound. The solution is said to "explode" to 00 (see 
Figure l.3). Again the solution is an exponential function, and this behavior 
is thus called exponential growth. 

Steady-state behavior When R is exactly 1, the population stays at the 
same level (see Figure 1.4). This is clearly an extraordinary solution, because 
it only happens for a single, exact value of R, whereas the other types of 
solutions occur for a range of R values. 

The behaviors in the fly population study involve R > O. It doesn't make 
biological sense to consider cases where R < 0 in Eq. l.2. After all, how can flies 

Nt 
200 

100 

{\ 

o 

•••••••••••••••••••• 

5 10 15 20 

Figure 1.4 
The solution to 
N,+! = l.OON,. 
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Figure 1.5 
The solution to 
N'+l = -O.90N,. 

Figure 1.6 
The solution to 
N'+l = -l.08N,. 

lay negative eggs? Later, in Section 1.5, we shall see cases where it makes sense to 
talk about R < o. Such cases produce different types of behavior: 

Alternating decay When -1 < R < 0, the solution to Eq. 1.2 alter-
nates between positive and negative values. At the same time, the amplitude 
of the solution decays to zero in the same exponential fashion seen for 
o < R < 1 (see Figure 1.5). 

Alternating growth When R < -1, the solution still alternates between 
positive and negative values. However, the amplitude of the solution grows 
exponentially and explodes to ±oo (see Figure 1.6). 

Periodic cycle When R is exactly -1, the solution alternates between 
No and - No and neither grows nor decays in amplitude. A periodic cycle 
occurs when the solution repeats itself. In this case, the solution repeats 
every two time steps, ... , No, - No, No, -No, ... , and so the duration of 
the period is two time steps (see Figure 1.7). 

100 • • • • • • • • • • 
l J ê J J J J J J J J J J ú J J J J J J J J ú =

-100 ••••• 10 ••••• 20 
Figure 1.7 
The solution to 
N'+l = -l.OON,. 
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1.3 METHODS OF ITERATION 

We have seen how the solution to Eq. 1.2 could be found using algebra. 
Later we will encounter finite-difference equations in which an algebraic solution 
cannot be found. Here, we introduce two other methods for iterating finite-
difference equations, the cobweb method and the method of numerical iteration. 

THE COBWEB METHOD 

The cobweb method is a graphical method for iterating a finite-difference 
equation like Eq. 1.1. No algebra is required in order to perform the iteration; 
one only needs to graph the function f (Nt) on a piece of paper. 

To illustrate the cobweb method, we will start with the linear system of 
Eq. 1.2. To perform the iteration using the cobweb method, we do the following: 

1. Graph the function. In this case, f(Nt } = RNt • In order to make a 
plot of the function RNt , we need to pick a specific value for R. (Note 
that the algebraic method for finding solutions did not require this.) As 
an example, we will set R = 1.9 so that the finite-difference equation 
is Nt+ 1 = 1. 9 Nt. The resulting function is shown by the dark line in 
Figure 1.8. 

Figure 1.8 
The cobweb method applied to 
the linear dynamical system 
Nt+! = 1.9Nt with initial 
condition No = 0.7. 
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2. Pick a numerical value for the initial condition. In this case, as an ex-
ample, we will select No = 0.7, shown as the gray dot on the x-axis in 
Figure I.S. (In the algebraic method, we did not need to select a specific 
numerical value. Instead we were able to use the symbol No to stand for 
any initial condition.) 

3. Draw a vertical line from No on the x-axis up to the function. The 
position where this vertical line hits the function (shown as a solid dot 
at the end of the arrow) tells us the value of N I. 

4. Take this value of N I, plot it again on the x -axis, and again draw a vertical 
line to find the value of N2 • There is a simple shortcut in order to avoid 
plotting NI on the x-axis: Draw a horizontal line to the Nt+1 = Nt line 
(shown in gray-it's the 4S-degree line on the plot). The place where 
the horizontal line intersects the 4S-degree line is the point from which 
to draw the next vertical line to find N2 • 

S. In order to find N3 , N4 , and so on, repeat the process of drawing vertical 
lines to the function and horizontal lines to the line of NHI = Nt. 

As Figure I.S shows, the result of iterating Nt+1 = 1.9Nt is growth toward 
00. This is consistent with the algebraic solution we found in Eq. 1.3 for R > 1. 

NUMERICAL ITERATION 

Since the cobweb method is a graphical method, it may not be very precise. 
In order to acheive more precision, we can use numerical iteration. This is a 
simple procedure, easily implemented on a computer or even a hand calculator. 
To illustrate, suppose we want to find a numerical solution to Nt+1 = RNt with 
R = 0.9 and No = 100. 

No = 100, 

NI = f(No) = 0.9 x 100 = 90, 

N2 = f(N1) = 0.9 x 90 = SI, 

N3 = f(N2) = 0.9 x SI = 72.9, 

(lA) 

When applied to the linear finite-difference equation in Eq. 1.2, the cobweb 
method and the method of numerical iteration merely allow us to confirm the 
existence of the types of behavior we found algebraically. Since the cobweb and 
numerical iteration methods require that specific numerical values be specified for 
the parameter R and the initial condition No, it might seem that they are inferior to 
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the algebraic method. However, when we consider nonlinear equations, algebraic 
methods are often impossible and numerical iteration and the cobweb method 
may provide the only means to find solutions. 

1.4 NONLINEAR FINITE-DIFFERENCE EQUATIONS 

The measurements of the fly population shown in Figure 1.1 don't suggest 
explosion or extinction, nor do they remain steady. This suggests that the model 
ofEq. 1.2 is not good. It does not take much of an ecologist to see where a mistake 
was made in formulating Eq. 1.2. Although it is all right to have rapid growth in 
populations for low densities, when the fly population is high, competition for 
food limits growth and starvation may cause a decrease in fertility. The larger 
population may also increase predation, as predators focus their attention on an 
abundant food supply. 

A simple way to modify the model is to add a new term that lowers the 
number of surviving offspring when the population is large. In the linear equation, 
R was the number of offspring of each fly in generation t. In order to make the 
number of offspring per fly decrease as Nt gets larger, we can make the growth 
rate a function of Nt. For simplicity, we will chose the function (R - bNt ). The 
positive number b governs how the growth rate decreases as the population gets 
bigger. R is the growth rate when the population is very, very small. 

This assumption that the number of offspring per fly is (R - b Nt) gives us 
a new finite-difference equation, 

(1.5) 

Equation 1.5 is a nonlinear equation since the rightmost side is not the equation 
of a straight line. Nonlinear equations arise commonly in mathematical models 
of biological systems, and the study of such equations is the focus of this book. 

In Eq. 1.5 there are two parameters, Rand b, that can vary independently. 
However, a simple change of variables shows that there is only one parameter that 
affects the dynamics. We define a new variable Xt = b;" which is just a way of 
scaling the number of flies by the number i. Substituting Xt and Xt+l in Eq. 1.5, 
we find the equation 

(1.6) 

Although Eq. 1.6 (called the quadratic map) may not seem much more 
complicated than Eq. 1.2, the solution cannot generally be found using algebra. 
Numerical iteration and the cobweb method, however, can be used to find so-
lutions. In order to apply the cobweb method to Eq. 1.6, we first must draw a 
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0.8 

0.6 

Figure 1.9 
Cobweb iteration of 
X,+l = 1.5(1 - x,)x,. 

graph of the function. (Anyone who has not practiced calculus recently may find 
sketching the graph of an equation intimidating. If you are in this category, go 
over the material in Appendix A and pay particular attention to the section on 
quadratic functions since this is what we have here.) In this case, the graph is a 
parabola, with intercepts at Xt = 0 and X t = 1, as Figure 1.9 shows. 

Next, we need to pick specific values for the parameter R in Eq. 1.6. Since 
we don't yet know what the behavior of this equation will be, we will have to study 
a range of parameter values. Doing so reveals a number of different behaviors: 

Steady state The nonlinear equation can have a solution that ap-
proaches a certain state and remains fixed there. This is shown in 
Figure 1.10 for R = 1.5, where the solution creeps up on the steady state 
from one side; this is called a monotonic approach. 
As shown for R = 2.9 in Figure 1.11, the approach to a steady state can 
also alternate from one side to the other. 

Xt 
1 

• 
••••••••••••••••••• 

OL---------------------o 5 10 15 20 

Figure 1.10 
The solution to 
X,+l = 1.5(1 - x,)x,. 
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••••••••••••••••••• 
• 

OL-----------------------o 5 10 15 20 

0.2 0.4 0.6 0.8 Xt 1 

Figure 1.11 
The solution to 
Xt+l = 2.9(1 - X,)Xt • 

Figure 1.12 
Cobweb iteration of 
Xt+l = 3.3(1 - xt)xt • 

Periodic cycles The solution to the nonlinear equation can have cycles. 
This is shown for R = 3.3 in Figures 1.12 and 1.13, where the cycle has 
duration 2. When carrying out the cobweb iteration, a cycle of period two 
looks like a square that is repeatedly traced out (see Figure 1.12). The cycle 
in this case follows the sequence XI = 0.48, XI+l = 0.82, XI+2 = 0.48, and 
soon. 

For R = b = 3.52 (see Figure 1.14), the cycle has duration 4 and 
follows the sequence XI = 0.88, XI+! = 0.37, XI+2 = 0.82, x t +3 = 0.51, 
XtH = 0.88, and so forth. 

Xt 

1 

• 

••••••••••••• 
• • • • • • 

OL-____________________ __ 
o 5 10 15 20 

Figure 1.13 
The solution to 
Xt+l = 3.3(1 - xt)xt • 
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20 

• 
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Figure 1.14 
The solution to 
Xt+l = 3.52(1 - x,)x,. 

Figure 1.15 
The solution to 
X,+l = 4(1 - x,)x,. 

Aperiodic behavior The solution to the nonlinear equation mayoscil-
late, but not in a periodic manner. Setting R = 4, we find the behavior 
shown in Figures 1.15 and 1.I6-a kind of irregular oscillation that is nei-
ther exponential growth or decay, nor a steady state. The cobweb iteration 
shows how the irregular iteration arises from the shape of the function (see 
Figure 1.15). This behavior is called chaos, and we will investigate it in 
greater detail in later sections in the book. 

Figure 1.16 

0.2 0.4 0.6 0.8 Cobweb iteration of 
Xt X'+ l = 4(1 - x,)x,. 
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1.5 STEADY STATES AND THEIR STABILITY 

A simple, but important, type of dynamical behavior is when the system 
stays at a steady state. A steady state is a state of the system that remains fixed, 
that is, where 

Xt+l = Xt. 

Steady states in finite-difference equations are associated with the math-
ematical concept of a fixed point. A fixed point of a function f (Xt) is a value 
x; that satisfies x; = f (x;). Later on, we shall see how fixed points can also be 
associated with periodic cycles. 

There are three important questions to ask about fixed points in a finite-
difference equation: 

• Are there any fixed points-in other words, are there any values of x; 
that satisfy x; = f(x;)? 

• If the initial condition happens to be near a fixed point, will the subse-
quent iterates approach the fixed point? If subsequent iterates approach 
the fixed point, we say the fixed point is locally stable. (Mathematicians 
call this "locally asymptotic stability.") 

• Will the system approach a given fixed point regardless of the initial 
condition? If the fixed point is approached for all initial conditions, we 
say that the fixed point is globally stable. 

FINDING FIXED POINTS 

From the graph of Xt+ 1 = f (Xt) it is easy to locate fixed points: They are 
simply those points where the graph intersects the line Xt+ 1 = Xt. Or, we can use 
algebra to solve the equation Xt = f (Xt). 

For the linear finite-difference equation, x; is a fixed point if it satisfies the 
equation x; = Rx;. One solution to this equation is always x; = o. This means 
that the origin is a fixed point for a linear system. This has an obvious biological 
interpretation: If there are no flies in one year, there can't be any the next year 
(unless, of course, they migrate from distant parts or evolve again, both of which 
are beyond the scope of our simple model). 

The solution Xt = 0 is the only fixed point, unless R = 1. If R is exactly 
I, then all points are fixed points. Clearly, this is an exceptional case, because any 
change in R, no matter how small, will eliminate all of the fixed points except the 
one at the origin. 

Nonlinear finite-difference equations can have more than one fixed point. 
Figures 1.17 and 1.18 showthelocation of the fixed points for Eq. 1.6 for R = 2.9 
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0.2 0.4 0.6 0.8 Xc 1 
Figure 1.17 
Xt+l = 2.9(1 - x,)x, 

and R = 3.52, respectively. For the quadratic map of Eq. 1.6, the fixed points 
can also be found using algebra from the roots of the quadratic equation 

Xt = RXt{l - Xt) or, xt(R - RXt - 1) = o. 

The roots of this equation are 

Xt = 0 

XC+l Fixed Points 

0.2 0.4 0.6 

R -1 
and Xt = 

R 

0.8 
Xc 

Figure 1.18 
X,+l = 3.52(1 - x,)x, 
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Again, in our model the biological meaning of the root xr = 0 is that flies 
don't appear from nowhere. The biological interpretation of the fixed point at 
xr = R;l is that this is a self-sustaining level of the population, with neither a 
decrease nor an increase. 

Clearly, it is impossible for the fly population to be at both these fixed points 
at the same time. So now we have to address the question of which of these fixed 
points will be reached by iterating from the initial condition, if indeed either of 
them will be. 

LOCAL STABILITY OF FIXED POINTS 

Figures 1.17 and 1.18 both have two fixed points, but in Figure 1.17 the 
iterates approach the nonzero fixed point while in Figure 1.18 the iterates do not. 
The difference between these cases is the local stability of the fixed points. 

We say that a fixed point is locally stable if, given an initial condition 
sufficiently close to the fixed point, subsequent iterates eventually approach the 
fixed point. 

How do we tell if a fixed point is locally stable? For a linear finite-difference 
equation, Xt+! = Rx" we already know the answer: The stability of the fixed 
point at the origin depends on the slope R of the line. If I R I < 1, future iterates 
are successively closer to the fixed point at the origin-this is exponential decay 
to zero. If IRI > 1, future iterates are successively farther away from the fixed 
point at the origin. 

How does one determine the stability of a fixed point in a nonlinear finite-
difference equation? In calculus classes, one discusses the notion that over limited 
regions a curve can be approximated by a straight line of the appropriate slope. 
In the neighborhood of the intersection of the straight line Xr+l = Xr with the 
curve Xr+ 1 = f (Xr), it is therefore possible to approximate the curve by a straight 
line. 

Figures 1.19 through 1.22 illustrate four separate cases that show the region 
of intersection. Let x * be a fixed point of f (.), that is a state for which X* = f (x*). 

The slope of the curve at the fixed point, * Ix" establishes the stability of the 
fixed point. We will designate this slope by m. Figures 1.19 through 1.22 plot Yr+ 1 

versus Yr, where Yr = Xr - x*. This means that in the figures the fixed point 
appears at the origin, whereas in the original variable, x" the fixed point is at x*. 
Observe that 

• If Iml < 1, the fixed point is stable so that nearby points approach the 
fixed point under iteration. 

• Iflm I > 1, the fixed point is unstable and points leave the neighborhood 
of the fixed point. 

Also, note that 
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Yt+l 
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Figure 1.19 
The dynamics of y,+l = my, . 
m > 1 produces monotonic 
growth as shown here with 
m = 1.9. 

Figure 1.20 
The dynamics 
of y,+l = my,. 
o < m < 1 produces 
monotonic decay to 
y, = O. Here, m = 0.5. 
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2 
Yr., 

-2 

Figure 1.21 
The dynamics of Y'+l = my,. 
-1 < m < 0 produces 
alternating decay as shown here 
with m = -0.5. 

• If m > 0, the points approach or leave the fixed point in a monotonic 
fashion. 

• If m < 0, the points approach or leave the fixed point in an oscillatory 
fashion. 

From the above considerations, a general method can be given for determin-
ing the stability of a fixed point in finite-difference equations with one variable. 
The steps are as follows: 

1. Solve for the fixed points. This involves solving the equation 

XI = !(xI ). 

Figure 1.22 
ThedynamicsofY'+l = my,. 
m < -1 produces alternating 
growth. Here, m = -1.9. 
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Linear equations always have only one fixed point-the one at x, = o. 
Nonlinear equations may have more than one fixed point. Steps 2 and 
3 can be applied to each of the fixed points, one at a time. Call the fixed 
point we are studying x*. Like all fixed points, this satisfies x* = f (x*). 

2. Calculate the slope m of f(xt), evaluatingxt at the fixed point x*. That 
is, compute 

df I m= - . 
dXt x t =* 

3. The slope m at the fixed point determines its stability. 
1 < m Unstable, exponential growth. 

o < m < 1 Stable, monotonic approach to y, = 0 (i.e., approach to 
Xt = x*). 

-1 < m < 0 Stable, oscillatory approach to Yt = 0 (i.e., approach to 
Xt = x*). 

m < -1 Unstable, oscillatory exponential growth. 

TRANSIENT AND ASYMPTOTIC BEHAVIOR 

If a fixed point is locally stable, then once the state is very near to the fixed 
point, it will stay near throughout the future. Before the state reaches the fixed 
point, it may show different behavior. For example, in Figure 1.10, the state is far 
enough away from the fixed point for the first five or six iterations that we can see 
it change from iteration to iteration. After that, the state appears to have reached 
the fixed point. In Figure 1.11, the movement toward the fixed point is visible 
for approximately twenty iterations. The term asymptotic dynamics refers to the 
dynamics as time goes to infinity. Behavior before the asymptotic dynamics is 
called transient. 

STABILITY AND NUMERICAL ITERATION 

Suppose that we want to use numerical iteration to find fixed points. One 
strategy would be to pick a large number of initial conditions and iterate numer-
ically each of these initial conditions. If the iterates converge to a fixed value; then 
we have identified a fixed point at that value. (Figure 1.10 shows an example of 
this.) 

If a fixed point is locally stable, then this strategy may well succeed, since 
the fixed point will eventually be approached if any of the initial conditions is 
close to the fixed point. Once the state is close to the fixed point, it will remain 
near the fixed point. 
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If a fixed point is unstable, however, then we will find it only if one of the 
iterates happens to land on the fixed point exactly, and this is extremely unlikely. 
In general, we can use numerical iteration only to find stable fixed points. If we 
want to find unstable fixed points, another approach is needed, namely solving 
the equation Xt = f (Xt). 

o ExAMPLE 1.1 

Cells reproduce by division; the process by which the cell nucleus divides is 
called mitosis. One way to regulate the rate of reproduction of cells is by regulating 
mitosis. There is (controversial!) biochemical evidence that there are compounds, 
called chalones, that are tissue-specific inhibitors of mitosis (see Bullough and 
Laurence, 1968). 

For simplicity, assume that the generations of cells are distinct and that the 
number of cells in each generation is given by Nt. Following the same logic as in 
Eq. 1.2, assume that for each cell in generation t, there are R cells in generation 
t + 1. (If every cell divided in half every time step, then R would equal 2. ) The finite-
difference equation describing this situation is the linear equation Nt+1 = RNt , 

which leads either to exponential growth or to decay to zero. 
A possible role of chalones is to make R depend on the number of cells. 

Assume that the amount of chalone produced is proportional to the number of 
cells. The more chalone there is, the greater the inhibitory effect on mitosis. 

The biochemical action of chalones is to bind to a protein involved in 
mitosis, rendering the protein inactive. Binding of molecules to proteins is often 
modeled by a Hill function (see Section A.5), which suggests that an appropriate 
equation for the hypothetical chalone control mechanism is 

where (J and n are parameters. We will assume that n ú =2. Figure 1.23 shows this 
finite difference equation when R = 2, (J = 5, and n = 3. 

Find the fixed points of this system and determine their stability. 

1. To determine the fixed points we solve the equation 

RN* 
N* = 1 + E ú K =r . 

I 
There are two real solutions: N* = 0 and N* = (J(R - 1) ;; . These 
are the only fixed points. There are also imaginary solutions that can 
be ignored in this case because we are only concerned with biologically 
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6 

2 4 6 8 10 12 14 

Figure 1.23 A cobweb analysis of chalone production for the parameters R = 2, 
(J = 5, n = 3. 

meaningful solutions, and the number of cells in each generation must 
be a real number. 

2. To determine the stability of the fixed points it is necessary to compute 
the slope at the fixed points. Differentiating the right-hand side of the 
finite-difference equation, we find 

df 

dN, 
= 

R + R( ú =)\1 - n) 

E N H E ú ê ê =

3. From the above equation we find that the slope at the fixed point x, = 0 
is just R. If R > 1, the fixed point at the origin is always unstable. (To be 
a plausible model of the regulation of cell reproduction, we must have 
R > 1. Otherwise, the population would always fall to zero even in the 
complete absence of the mitosis-inhibiting chalones.) 

The slope at the fixed point N* = O(R - 1) ú = is 

df I = 1 + n E ú = - 1) . 
dN, N' R 
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For R = 2, the fixed point will be unstable when n > 4 and stable 
otherwise. o 

GLOBAL STABILITY OF FIXED POINTS 

In this section we've studied local stability. Local stability tells us whether 
the fixed point is approached if the initial condition is sufficiently close to the 
fixed point. The local stability can be assessed simply by looking at the slope of 
the function at the fixed point. 

A slightly different-and often much more difficult-question is whether 
a locally stable fixed point is globally stable. 

For linear finite-difference equations, the answer is straightforward. A lo-
cally stable fixed point is also globally stable: Regardless of the initial condition, 
the iterates will eventually reach the locally stable point (i.e., the origin) from any 
initial condition. 

For nonlinear finite-difference equations, there can be more than one fixed 
point. When multiple fixed points are present, none of the fixed points can be 
globally stable. 

The set of initial conditions that eventually leads to a fixed point is called 
the basin of attraction of the fixed point. Often, the basin of attraction for fixed 
points in nonlinear systems can have a very complicated geometry (see Chapter 3). 
If multiple fixed are locally stable we say there is multistability. 

1.6 CYCLES AND THEIR STABILITY 

In Figures 1.7, 1.13, and 1.14 we can see that periodic cycles are one form of 
behavior for finite-difference equations. In everyday language, a cycle is a pattern 
that repeats itself, and the period of the cycle is the length of time between 
repetitions. In finite-difference equations like Eq. 1.1, a cycle arises when 

Xt+n = x" but Xt+i i= Xt for j = 1, 2, ... , n - 1. (1.7) 

There is a useful correspondence between fixed points and periodic cycles 
which helps in understanding how to find cycles and assess their stability. A simple 
case is a cycle of period 2. Consider the finite-difference equation 

Xt+l = !(Xt) = 3.3(1 - Xt)Xt. (1.8) 
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As shown in Figure 1.13, the solution is a cycle of period 2. The definition of a 
cycle of period 2 is that 

Xt+2 = Xt while XHI f. Xt· (1.9) 

By substitution into Xt+ 1 = I (Xt), we can write the value of Xt+2 as 

(1.10) 

If there is a cycle of period 2, thenXt = 1(f(Xt)). For the quadratic map (Eq.1.6), 
we can find I (f (Xt)) with a bit of algebra: 

1(f(Xt)) = I(Xt+l) = RXHI - o u ú ä =
= R(RXt - o ñ ú F = - R(Rxt - o ñ ú F O = (Lll) 

= R2Xt - (R2 + o P F u ú =+ O o P u ú = - R3Xi. 
The equation may seem a little formidable, but the M-shaped graph, shown in 
the lower graph in Figure 1.24, is quite simple. 

We can see from Eq. 1.10 that there is an analogy between fixed points 
and cycles: If a system Xt+ 1 = I (Xt) has a cycle of period 2, then the function 
I (f (Xt )) has at least two fixed points. Thus, we can find the cycles of period 2 by 
solving the equation Xt = l(f(xt)). This can be done graphically, algebraically, 
or numerically. 

One trivial type of solution to Xt = I (f (Xt)) is a solution to Xt = I (Xt). 
These solutions correspond to the fixed points of I (Xt) and hence are not cycles 
of period 2-they are "cycles of period 1:' that is, steady states. In the graph of 
Eq.LlI shown in Figure 1.24, we can see four fixed points of l(f(xt)): atxt = 0, 
at Xt = 0.479, at Xt = 0.697, and at Xt = 0.823. Two of these values are also 
fixed points of I(xt) and therefore correspond to cycles of period 1. 

Longer cycles can be found in the same way. A cycle of period n is found 
by solving the equation 

Xt = l(f('" I(xt)), 
ú =

n times 

avoiding solutions that correspond to periods less than n. In practice, this problem 
can be very hard to solve algebraically. 

STABILITY OF CYCLES 

Just as a fixed point can be locally stable or unstable, a cycle can be stable or 
unstable. We say that a cycle is locally stable if, given that the initial condition is 
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Figure 1.24 A cycle of period 2 in the system Xt+l = R(l - Xt)Xt = !(xt ) for 
R = 3.3. The graph of Xt+l versus Xt has two fixed points, marked as gray dots, 
but neither of them is stable. When plotted as Xt+2 versus Xt , the cycle of period 
two looks like 2 fixed points in the finite-difference equation Xt+2 = !(f(xt )). 

Altogether, this system has four fixed points-the two corresponding to the cycle of 
period 2 (marked as small gray squares) and the two fixed points from the system 
Xt+l = !(xt ) . 
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close to a point on the cycle, subsequent iterates approach the cycle. (Again, this 
is what mathematicans call "local asymptotic stability"). 

We can now consider the computation of the stability of the fixed point of the 
finite-difference equation Xt+2 = f (f (Xt)). We will use x* to denote a solution to 
the equation Xt = f (f (Xt)) that is not also a fixed point of Xt = f (Xt). Referring 
to Section 1.5, we can see that the stability of the fixed point of Xt+2 = f (f (Xt)) 
depends on the value of 

df(f(Xt» I . 
dXt x, 

Using the chain rule for derivatives, we have 

Thus, the stability of a fixed point of period 2 depends on the slope of the function 
f(xt) at both of the two points X* and f(x*). 

A method for finding cycles by numerical iteration is quite easy in principle: 
Start at some initial condition and at each iteration, see if the value has been 
produced previously. Once the same value is encountered twice, the intervening 
values will cycle over and over again. 

When cycles are found by numerical iteration, it is important to realize that 
unstable cycles will tend not to be found. This is exactly analogous to the situation 
when using numerical iteration to look for fixed points. When a cycle is stable, 
any initial condition in the cycle's basin of attraction will eventually lead to the 
cycle. For unstable cycles, the cycle will not be approached unless some iterate of 
the initial condition lands exactly on a point on the cycle. 

o ExAMPLE 1.2 

Consider the finite-difference equation 

1 - Xt 
Xt+l = 

3xt + 1 

a. Sketch Xt+! as a function of Xt. 

b. Determine the fixed point(s), if any, and test algebraically for stability. 

c. Algebraically determine Xt+2 as a function of Xt and determine if there 
are any cycles of period 2. If so, are they stable? Based on the analysis 
above, determine the dynamics starting from any initial condition. 



24 FINITE-DIFFERENCE EQUATIONS 

-4 -2 

Xt 

-2 

-4 

Solution: 

Figure 1.25 
The graph of Xt+! = i-xI 

3xt+! • 

a. This is the graph of a hyperbola, see Figure 1.25. There are no local 
maxima or minima, but there are asymptotes at Xt = - ú = and at Xt+ 1 = 

1 
-3"' 

b. The fixed points are determined by setting Xt+l = Xt to give the 
quadratic equation 

3x; + 2xt - 1 = O. 

This equation can be factored to yield two solutions, Xt = ú = and Xt = 
-1. To determine stability, we compute 

dXt+l 

dXt 

-4 
( 3Xt + 1)2 . 

When this is evaluated at the fixed points, the slope is -1. Note that 
a slope of -1 does not fall into the classification scheme presented in 
Section 1.5-ifthe slope were slightly steeper than -1, the fixed point 
would be unstable; if the slope were slightly less steep than -1, the 
fixed point would be stable. We cannot determine the stability of the 
steady states from this computation: The steady state is neither stable 
nor unstable. 

c. Iterating directly we find that 

1 - Xt+l 
Xt+2 = 

3Xt+l + 1 
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3(..!.::!!..) +1 3Xt+1 

=Xt· 

Amazingly, all initial conditions are on a cycle of period 2. The cycles 
are neither locally stable nor unstable, since initial conditions neither 
approach nor diverge from any given cycle. o 

The preceding discussion shows that if there are stable cycles, then an exam-
ination of the graph of Xt+n as a function of Xt will show certain definite features. 
If there is a stable cycle of period n, there must be at least n fixed points associated 
with the stable cycle, where the slope at each of the fixed points is equal and the 
absolute value of the slope at each of the fixed points is less than 1. 

Now let's consider a specific situation, the quadratic map 

(1.12) 

This now-familiar parabola is plotted again in Figure 1.26. We can see that 
there are two fixed points, both of which are unstable because the slope of the 
function at these fixed points is steeper than 1. 

To look for cycles of period 2, we can plot Xt+2 versus Xt as shown in 
Figure 1.27. The four places where this graph intersects the line Xt+2 = Xt (i.e., 
the 45-degree line) are the possible points on the cycle of period 2-recall that 
two of the intersection points correspond to cycles of period 1. Since the slope of 

0.8 

0.6 

0.2 0.4 0.6 0.8 Xt 1 
Figure 1.26 
XI+l versus XI for Eq. 1.12. 
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0.2 0.4 0.6 0.8 Xt 1 
Figure 1.27 
Xt+2 versus X t for Eq. 1.12. 

the function at all these points is steeper than I, we can conclude that there are 
no stable cycles of period 2 in Eq. 1.12. 

We can continue looking for longer cycles. Figure 1.28 shows the graph of 
Xt+3 = f (f (f (Xt))). This graph intersects the line Xt+3 = Xt in eight places. (Of 
these, two correspond to cycles of period 1.) At all of these places the slope of the 
function is steeper than 1, so all of the possible cycles of period 3 are unstable. 
Similarly, Figure 1.29 shows that the cycles of period four are also unstable. 

In fact, there are no stable cycles of any length, no matter how long, in 
Eq. 1.12, although we will not prove this here. What are the dynamics in Eq. 1.12? 
The next section will explore the answer to this question. 

0.2 0.4 0.6 0.8 Xt 1 
Figure 1.28 
Xt+3 versus Xt for Eq. 1.12. 
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1.7 CHAOS 

DEFINITION OF CHAOS 

Let's do a numerical experiment to investigate the properties ofEq. 1.12. 
Pick an initial condition, say Xo = 0.523423, and iterate. Now start over, but 
change the initial condition by just a little bit, to Xo = 0.523424. The results are 
shown in Figure 1.29. 

There are several important features of the dynamics illustrated in Fig-
ure 1.29. In fact, based on the figure we have strong evidence that this equation 
displays chaos-which is defined to be aperiodic bounded dynamics in a 
deterministic system with sensitive dependence on initial conditions. 

Each of these terms has a specific meaning. We define the terms and explain 
why each of these properties appears to be satisfied by the dynamics in Figure 1.29. 

Aperiodic means that the same state is never repeated twice. Examina-
tion of the numerical values used in this graph shows this to be the case. 
However, in practice, by either graphically iterating or using a computer 
with finite precision, we eventually may return to the same value. Although 
a computer simulation or graphical iteration always leaves some doubt 
about whether behavior is periodic, the presence of very long cycles or of 
aperiodic dynamics in computer simulations is partial evidence for chaos. 

Bounded means that on successive iterations the state stays in a finite 
range and does not approach ±oo. In the present case, as long as the initial 
condition Xo is in the range 0 ::: Xo ::: 1, then all future iterates will also 
fall in this range. This is because for 0 ::: Xt ::: 1, the minimum value 
of 4(1 - Xt )Xt is 0 and the maximum value is 1. Recall that in the linear 
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Figure 1.30 Two solutions to Xt+! = (4 - 4xt )xt • The solution marked with a dot 
has the initial condition Xo = 0.523423, while the solution marked with a circle 
has Xo = 0.523424. The solutions are almost exactly the same for the first seven 
iterations, and then move apart. 

finite-difference equation, Eq. 1.2, we have already seen a system where the 
dynamics are not bounded and there is explosive growth. 

Deterministic means that there is a definite rule with no random terms 
governing the dynamics. The finite-difference equation 1.12 is an example 
of a deterministic system. For one-dimensional, finite-difference equations, 
"deterministic" means that for each possible value of Xt, there is only a single 
possible value for Xt+ 1 = f (Xt). In principal, for a deterministic system Xo 
can be used to calculate all future values of Xt. 

Sensitive dependence on initial conditions means that two points 
that are initially close will drift apart as time proceeds. This is an essential 
aspect of chaos. It means that we may be able to predict what happens for 
short times, but that over long times prediction will be impossible since 
we can never be certain of the exact value of the initial condition in any 
realistic system. In contrast, for finite-difference equations with stable fixed 
points or cycles, two slightly different initial conditions may often lead to 
the same fixed point or cycle. (But this is not always the case; see Chapter 
3.) 

Although the possibility for chaos in dynamical systems was already known 
to the French mathematician Henri Poincare in the nineteenth century, the con-
cept did not gain broad recognition amongst scientists until T.-Y. Li and J. Yorke 
introduced the term "chaos" in 1975 in their analysis of the quadratic map, 
Eq. 1.12. The search for chaotic dynamics in diverse physical and biological fields, 
and the mathematical analysis of chaotic dynamics in nonlinear equations, have 
sparked research in recent years. 
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THE PERIOD-DOUBLING ROUTE TO CHAOS 

We have seen that the simple finite-difference equation 

can display various qualitative types of behavior for different values of R: steady 
states, periodic cycles of different lengths, and chaos. The change from one form 
of qualitative behavior to another as a parameter is changed is called a bifurca-
tion. An important goal in studying nonlinear finite-difference equations is to 
understand the bifurcations that can occur as a parameter is changed. 

There are many different types of bifurcations. For example, in the linear 
finite-difference equation Xt+ 1 = RXt, there is decay to zero when -1 < R < 1. 
For R > 1, however, the behavior changes to exponential growth. The bifurcation 
point, or the point at which a change in R causes the behavior to change, is 
at R = 1. Nonlinear systems can show many other types of bifurcations. For 
example, changing a parameter can cause a stable fixed point to become unstable 
and can lead to a change of behavior from a steady state to a periodic cycle. 

The finite-difference equation in Eq. 1.6 and many other nonlinear systems 
displays a sequence of bifurcations in which the period of the oscillation doubles as 
a parameter is changed slightly. This type of behavior is called a period-doubling 
bifurcation. 

We can derive an algebraic criterion for a period-doubling bifurcation. In 
a nonlinear finite-difference equation there are n fixed points of the function 

Xt = f(f(·· . f(Xt)) 
'-,-' 

n times 

that are associated with a period-n cycle. The slope at each of these fixed points 
is the same. As a parameter is changed in the system, the slope at each of these 
fixed points also changes. When the slope for some parameter value is equal to 
-1, it is typical to find that at that parameter value the periodic cycle of period 
n loses stability and a periodic cycle of period 2n gains stability. In other words, 
there is a period-doubling bifurcation. Unfortunately, application of this algebraic 
criterion can be very difficult in nonlinear equations since iteration of nonlinear 
equations such as Eq. 1.6 can lead to complex algebraic expressions that are not 
handled easily. Consequently, people have turned to numerical studies. 

Using a programmable pocket calculator in a numerical investigation of 
period-doubling bifurcations in Eq. 1.6 led Mitchell J. Feigenbaum to one of 
the major discoveries in nonlinear dynamics. Feigenbaum observed that as the 
parameter R varies in Eq. 1.6, there are successive doublings of the period of 
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oscillation. Numerical estimation of the values of R at the successive bifurcations 
lead to the following approximate values: 

• For 3.0000 < R < 3.4495, there is a stable cycle of period 2. 

• For 3.4495 < R < 3.5441, there is a stable cycle of period 4. 

• For 3.5441 < R < 3.5644, there is a stable cycle of period 8. 

• For 3.5644 < R < 3.5688, there is a stable cycle of period 16. 

• As R is increased closer to 3.570, there are stable cycles of period 2n, 
where the period of the cycles increases as 3.570 is approached. 

• For values of R > 3.570, there are narrow ranges of periodic solutions 
as well as aperiodic behavior. 

These results illustrate a sequence of period-doubling bifurcations at R = 3.0000, 
R = 3.4495, R = 3.5441, R = 3.5644, with additional period-doubling bifur-
cations as R increases. This transition from the stable periodic cycles to the chaotic 
behavior at R = 3.570 is called the period-doubling route to chaos. 

Notice that the range of values for each successive periodic cycle gets nar-
rower and narrower. Call !l.n the range of R values that give a period-n cycle. 
For example, since 3.4495 < R < 3.5441 gives a period-4 cycle, we have 
!l.4 = 3.5441 - 3.4495 = 0.0946. Similarly, !l.s = 3.5644 - 3.5441 = 0.0203. 

The ratio t is ú Wú ú ú ú = = 4.6601. By considering successive period 
doublings, Feigenbaum discovered that 

I. !l.n 
1m - = 4.6692 .... 

n ..... oo !l.2n 

The constant, 4.6692 ... is now called Feigenbaum's number. This number ap-
pears not only in the simple theoretical model that we have discussed here but 
also in other theoretical models and in experimental systems in which there is a 
period-doubling route to chaos. 

One way to represent graphically complex bifurcations in finite-difference 
equations is to plot the asymptotic values of the variable as a function of a pa-
rameter that varies. This type of plot is called a bifurcation diagram. Figure 1.31 
shows a bifurcation diagram of Eq. 1.6. This figure is constructed by scanning 
manyvaluesofRintherange3:::: R :::: 4. For each value ofR, 1.6 is iterated many 
times. After allowing enough time for transients to decay, several of the values 
Xt, Xt+l, Xt+2, and so on are plotted. For example, when R = 3.2, Eq. 1.6 ap-
proaches a cycle of period 2, so there are two values plotted. The period-doubling 
bifurcations appear as "forks" in this diagram. 

A summary of the dynamic behaviors discussed in Eq. 1.6 is contained in 
Figure 1.32. As the parameter R changes, different behaviors are observed. If you 
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Figure 1.31 A bifurcation diagram of Eq. 1.6. The asymptotic values of x, are 
plotted as a function of R using the method described in the text. 
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Figure 1.32 The various types of qualitative dynamics seen in x,+! = Rx, (1 - x,) 
for different values of the parameter R. 
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understand the origin of each of these behaviors, you have mastered the material 
in this chapter! 

o ExAMPLE 1.3 

The following equation, called the tent map, is often used as a very simple 
equation that gives chaotic dynamics. 

Consider the finite-difference equation 

where f(x/} is given as 

o ú =XI ú =1, 

1 
forO < XI < -, - - 2 

1 
for - < XI < 1. 2 - -

(1.13) 

Draw a graph of XHI as a function of XI. Graphically iterate this equation and 
determine if the dynamics are chaotic. 

Solution: The graph of this equation looks like an old-fashioned pup tent 
(see Figure 1.33). Starting at two points chosen randomly near to each other we 
find that both points lead to aperiodic dynamics, where the distance between 
subsequent iterates of the points initially increases on subsequent iterations. 
Therefore, this system gives chaotic dynamics. This problem is tricky, however, 
since many people will start at a point such as 0.1, find that the subsequent iterates 
are 0.2, 0.4, 0.8, 0.4, 0.8, ... , and then conclude that since they have found a cycle 

Figure 1.33 
The graph ofEq. 1.13. 
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the dynamics in this equation are not chaotic. However, although there are many 
other such cycles in this equation, "almost all" values between 0 and 1 give rise 
to aperiodic chaotic dynamics. This is because the cycles are all unstable, as was 
defined in Section 1.6. Most equations that display chaotic dynamics also exhibit 
unstable cycles for some initial conditions, and thus this example is typical of 
what is found in other circumstances. 

If you use a computer to iterate this map, watch out! You will probably 
find that the map rapidly converges to the fixed point at Xt = 0, even though 
this is an unstable fixed point. The reason involves the fact that numbers are 
represented in computers in base 2-all of the numbers that a computer can 
store in finite precision will be attracted to X t = O. To eliminate this problem, 
you can approximate the 2 in Eq. 1.13 by 1.9999999. 

D 

1.8 QUASI PERIODICITY 

In chaotic dynamics there is an aperiodic behavior in which two points 
that are initially close will diverge over time. There is another type of aperiodic 
behavior in which two points that are initially close will remain close over time. 
This type of behavior is called quasiperiodicity. In quasiperiodic dynamics there 
are no fixed points, cycles, or chaos. 

To see how this type of dynamics can arise, consider the equation 

Xt+l = !(Xt) = Xl + b (mod 1), (1.14) 

where (mod 1) is the "modulus" operator that takes the fractional part of a num-
ber (e.g., 3.67 (mod 1) = 0.67). To iterate this equation, we calculate Xt + band 
then take the fractional remainder. For example, if Xt = 0.9 and the parameter 
b = 0.3, then Xt + b = l.2 and Xt + b(mod 1) = 0.2. Now consider the second 
iterate. We can do the iteration algebraically: 

Xt+2 = Xt+l + b (mod 1) = (Xt + b (mod 1) + b) (mod 1) 

= Xt + 2b (mod 1). 

In similar fashion, we can find that 

Consequently, if nb(mod 1) = 0, then all values are on a cycle of period n; 
otherwise no values will be. 
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One way to think of this is by analogy to the odometer of a car, that shows 
the total mileage driven. Imagine that the odometer has a decimal point in front 
of it so that it shows a number between zero and one, for instance .07325. Every 
day the car goes b miles. After reaching .99999 the odometer resets to zero. XI is 
the odometer value at the end of the trip on day t. 

An example illustrates these ideas. In Figure 1.34 we show a graph ofEq. 1.14 
for the particular case where b = ú K =This graph shows that the function has no 
fixed points, because there are no intersections of the function with the line 
XI+I = XI' The cobweb diagram for several iterations shows that there does not 
appear to be a cycle but that nearby points stay close together under subsequent 
iterations. Therefore, the dynamics appear to be quasiperiodic. 

Can we know that there are never any periodic points no matter how many 
iterations we take? Here's where a bit of advanced mathematics can help. Recall 
the definition of a rational number: A number that can be written as the ratio of 
two integers ú K =Irrational numbers cannot be written as a ratio of two integers. 
7r is an irrational number and ú = is therefore also an irrational number. It follows 
immediately that i (mod 1) can never be equal to 0 for any integer n. Therefore, 
there can never be any periodic cycles for Eq. 1.14 with b = ú K =Also, from the 
algebraic iteration, we see that the iterates of two initial conditions that are very 
close will remain very close. Therefore, the dynamics are quasiperiodic. 

Though the concept of quasiperiodicity depends on abstract concepts in 
number theory, quasiperiodic dynamics can be observed in a large number of 
different settings. Consider the following odd sleep habits exhibited by one of our 
colleagues when he was in graduate school. The first day of graduate school the 
graduate student fell asleep exactly at midnight. Each day thereafter, the graduate 
student got up, worked, and went to sleep. However, this graduate student did 

0.2 0.4 0.6 0.8 

Figure 1.34 
Iteration of 
Xt+l = X, + ú =(mod 1). The 
dynamics are an example of 
quasiperiodicity. 
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not do this at the regular rhythms but rather with a rhythm of about 25 hours. 
The graduate student came into work about an hour later each day. Eventually, 
after 24 days, the graduate student goes to sleep again at about midnight. If 
the student's sleep cycle were exactly 25 hours, then there would be a cycle: 25 
calendar days would equal 24 graduate student days exactly. However, it would 
be very unlikely that the graduate student's day would be exactly 25 hours. For 
example, suppose the graduate student days were 25 + O.OOlJr hours. Then, 
using the same arguments above, the graduate student would never again go to 
sleep exactly at midnight (independent of the length of time needed to complete 
graduate school!). 

Another area in which quasiperiodic dynamics are often observed is in car-
diology. There can be several different pacemakers in one heart. Normally one 
is in charge and sets the rhythm of the entire heart by interactions with other 
pacemakers (we will turn to this just ahead). However, in some pathological 
circumstances, pacemakers carryon their own rhythm-they are not directly 
coupled to each other. Typically one sees variable time intervals between the fir-
ing times of one pacemaker and the other. Cardiologists generally invent esoteric 
names to describe reasonably simple dynamic phenomena and have classifica-
tion schemes for naming rhythms that are not based on nonlinear dynamics. 
Thus, two different rhythms that can be considered as quasiperiodic (to a first 
approximation) are parasystole and third-degree atrioventricular heart block. The 
analysis of these cardiac arrhythmias leads naturally into problems in number 
theory. 

o ExAMPLE 1.4 

The finite-difference equation, sometimes called the sine map, 

where 0 ::: XI ::: 1, has been considered as a mathematical model for the in-
teraction of two nonlinear oscillators (Glass and Perez, 1982). See Dynamics in 
Action 1 for a typical experiment. 

This system displays period-doubling bifurcations as the parameter b is 
varied. 

a. Find the fixed points of this equation. 

b. Algebraically determine the stability of all fixed points for 0 < b ::: 1. 

What are the dynamics in the neighborhood of each fixed point? 
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Figure 1.35 (left) The graph of XI+l = XI + b sin(21f XI) for b = 0.4; (right) Xt+2 

versus XI, showing the cycle of period 2 when b = 0.4. 

Solution: 

a. There are fixed points when 

Xt+l = XI + b sin 21fxt . 

Thiswillbetruewhenb sin 2rrxt = o which occurs whenxt = 0, ú I =1. 

b. To evaluate the stability we must first determine the slope at the steady 
states. The slope evaluated at the steady state is given by 

dXt+l ---- = 1 + 2rrb cos 21fxt. 
dXt 

Therefore, when Xt = 0 or Xt = 1, the slope at the steady state is 
1 + 21fb > 1, which indicates that the steady state is unstable. For 
Xt = ú = the slope at the steady state is 1 - 2rrb. For 0 < b < ú = this is 
a stable steady state, which is approached in an oscillatory fashion; and 
for b > ú = this is an unstable steady state, which is left in an oscillatory 
fashion (see Figure 1.35). The slope is -1 at b = ú I =so this value of b 
gives a period-doubling bifurcation. o 
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DYNAMICS IN ACTION 

1 CHAOS IN PERIODICALLY STIMULATED HEART CELLS 

We are all familiar with bodily functions such as sleep, breathing, locomotion, 
heartbeat, and reproduction, which depend in a fundamental way on rhythmic 
behaviors. Such rhythmic behaviors occur throughout the animal kingdom, and a 
vast literature analyzes the mechanisms of the oscillations and how they interact 
with one another and the extemal environment. Anyone interested in obtaining an 
idea of the scope of the inquiry should consult the classic book by A. T. Winfree, 
The Geometry of Biological Time (1980). 

A 

5 5 5' 5' 5' 

Phase resetting in the human heart. The wavey black line is an electrocardio-
grarn--each sharp A-shaped spike corresponds to one beat. Those labeled 5 
originate in the sinus node as normal. The beat labeled A originates elsewhere 
in the atria. In the absence of beat A, beats would have occurred at the times 
labeled 5', however A resets the phase of the sinus node. Adapted from Chou 
(1991). 

It tums out that the mathematical formulation of finite-difference equations has direct 
applications to the study of the effects of periodic stimulation on biological oscilla-
tors. The examination of periodic stimulation of biological oscillators involves many 
difficult issues, both in the biological and mathematical domains, and scientific 
investigation of these matters is still a research question under active investigation. 
However, compelling examples of chaotic dynamics in biological systems are found 
in the periodic stimulation of biological oscillations. AppreCiation of the origin of 
the chaotic dynamics is possible using the material presented so far inthis chapter. 

Understanding the basics of the periodic stimulation of biological oscillators in-
volves two related concepts: phase and phase resetting. The phase of an 
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oscillation is a measure of the stage of the oscillation cycle. Because of the cyclicity 
of oscillations, it is common to represent the phases of the cycle as a point on the 
circle. For example a phase of 1200 can represent a time that is one third of the Wcfi 
through a cycle. Altematively, we can also represent a phase of 1200 as .333 .... 

o 

ú =

500 msec 

Recording of transmembrane voltage from spontaneously beating aggregates of 
embryonic chick heart cells. The intrinsic cycle length is To. A stimulus delivered 
at a time 8 following the start of the third action potential leads to a phase 
resetting so that the subsequent action potential occurs after time T. After this, 
the aggregate retums to its intrinsic cycle length. Adapted from Guevara et al. 
e 1981). Copyright 1981 by the MAS. 

The term ·phase resetting" refers to a change of phase that is induced by a stimulus. 
One example of phase resetting that many people experience is a consequence of 
jet travel. If you think about travel through different time zones, you will realize that 
the phenomenon of jet lag is associated with a discordance between the phase of 
your sleep-wake oscillator and the current local time. 5tcrting in the new time zone 
for several days will lead to a phase resetting of your sleep-wake cycle. In this case 
the phase resetting takes place in a gradual fashion due to the different light-dark 
cycles and social stimuli in the new environment. 

M.ore abrupt phase resetting can be induced in many biological systems by ap-
propriately chosen stimuli. For example, the rhythm of the human heart is normally 
set by a specialized region of the atria called the sinus node. However, in some 
people's hearts there are extra beats that can interfere with the normal sinus rhythm. 
Sometimes these extra beats can reset the rhythm. The figure on page 37 shows 
an example of an electrocardiographic (ECG) record. The normal sinus beats are 
labeled 5 and an atrial premature contraction is labeled A. If the atrial premature 
contraction had not occurred, the following sinus beat would have been expected 
at times labeled 5'. However, the sinus firing is reset by the atrial premature stimulus, 
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leading to a sinus beat at a different time than would presumably have occurred 
without the atrial premature contraction. 

1.0 sec 

o 
Jmv 
-50 

Periodic stimulation of spontaneously beating chick heart cell aggregates at a 
period slightly longer than the intrinsic period. The interaction of the intrinsic 
cycle and the periodic stimulation results in chaotic dynamics. Adapted from 
Guevara et al. (1981). Copyright 1981 by the MAS. 

Since it is difficult to study the effects that electrical stimuli have on the heart, exper-
imental preparations have been developed that enable detailed analysis (Guevara 
et aI., 1981; Glass et aI., 1984). The figure on page 38 shows phase resetting of 
spontaneously oscillating cardiac tissue derived from embryonic chick hearts. The 
upward deflections are called action potentials and are associated with the con-
traction cycle of the chick heart cells. The intrinsic length of the heart cycle is To. The 
sharp spike delivered after a time interval of 8 after the onset of an action potential 
is an electrical stimulus delivered to the aggregate. The stimulus phase resets the 
rhythm so that following the stimulus the new cycle length is T (rather than To). 
Experimental studies show that the magnitude of phase resetting depends on both 
the amplitude of the stimulus and the phase of the cycle at which the stimulus is 
delivered. 

What happens when periodic stimulation is delivered to the oscillating heart cells? 
Each stimulus phase resets the rhythm. In fact, to a first approximation the amount of 
phase resetting during periodic stimulation depends on the phase of the stimulus 
in the cycle. The consequence of this is that the effects of periodic stimulation can 
be approximated by the finite-difference equation 

tPi+1 = g(tPi) + 1: (mod 1), (1.15) 

where tPi is the phase of the oscillation when the ith stimulus is delivered, g(tPi) is the 
new phase resulting from the ith stimulus, and 1: is the time interval between stimuli 
(measured in units of the intrinsic cycle length). Here we take tP to lie between 0 
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and 1. As explained before, the expression (mod 1) means take the fractional part 
of the number. 

1.0 

CPi+1 
0.5 

." 
( 

o 0.5 1.0 

Each stimulus in the preceding figure occurs at a specific phase of the intrinsic 
cycle. Here, we plot the phase of each stimulus as a function of the phase of 
the preceeding stimulus, calculated for the experiment shown in the previous 
figure. The points suggest a function similar to the quadratic map. Adapted from 
Glass et al. (1984). Reprinted with permission from Glass (1984). Copyright 1984 
by the American Physical Society. 

Does the theory work? M. R. Guevara, L. Glass, and A. Shrier (1981) measured 
g(cp) by carrying out phase resetting experiments. They used the resulting finite-
difference equation to predict the dynamics. For a moderate stimulation strength, 
they computed that chaotic dynamics should result, provided that the stimulation 
period was 15 percent larger ('l' = 1.15) than the intrinsic cycle length. The effects 
of periodic stimulation with 'l' = 1.15 are shown in the figure on page 39. Note the 
irregular rhythm. On this record, the phase of each stimulus can be measured and 
successive phases can be plotted as a function of the preceding phase; see the 
figure on this page. The phases fall on a one-dimensional curve that is very similar 
to functions that give chaotic dynamics, as we have seen earlier. This observation, 
combined with the more extensive analyses of Glass et al. (1984), gives convincing 
evidence for chaotic dynamics in this experimental system. 
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SOURCES AND NOTES 

There are now a number of elementary texts on chaos. A fine introduction to 
these topics from a noncalculus perspective is in Peak and Frame (1994). Those 
who have a good background in calculus and are interested in a presentation 
from a mathematical perspective should consult Devaney (1992). Elementary 
texts from the perspectives of physics (Baker and Gollub, 1990) and engineer-
ing (Moon, 1992) have also appeared. The application of chaos and nonlinear 
dynamics to physiology and human disease is discussed by Glass and Mackey 
(1988). 

Edward N. Lorenz realized the practical implications of the sensitive de-
pendence to initial conditions in his famous essay on deducing the climate from 
the governing fluid-dynamical equations (Lorenz, 1964a). Another influential 
paper (May, 1976) introduced many to the concept of chaos, with an ecological 
twist, and contained extensive references to early experimental and mathematical 
work. Descriptions of the occurrence of chaos in many different contexts can be 
found in assorted collections of papers (Hao, 1984; Holden, 1986; Cvitanovic, 
1989). The popularization by James Gleick (1987) provides a enjoyable account 
of some of the recent discoveries concerning chaos and description of many of the 
scientists, such as Mitchell Feigenbaum, who have played a role. Another good 
read, by Thomas Bass, recounts how a group of physics graduate students in Santa 
Cruz (dubbed the "Santa Cruz collective" by Gleick) in the late 1970s tried to use 
their knowledge of nonlinear dynamics and physics to make a fortune playing 
roulette (Bass, 1985). Curiously, some of the same people are trying to predict the 
fluctuations of the currency market and have started a company, The Prediction 
Company in Santa Fe, New Mexico. The Santa Cruz collective presents a brief 
introduction to chaos in Crutchfield et al. (1986). Feigenbaum (1980) gives a 
memorable description of how he discovered his number. 

Those scholars interested in the history of chaos will want to look through 
the many volumes of Poincare's (1954) collected works trying to find the earliest 
reference to the concept of chaos-most cite "New Methods of Celestial Mechan-
ics" as the earliest source, but we have not tried to check out if there are earlier 
citations. Li and Yorke (1975) first used "chaos" in its current meaning, but their 
paper is not for the faint-hearted. 
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ú = EXERCISES 

ú = 1.1 Assume that the density of flies in a swamp is described by the equation 

R 2 
Xt+l = RXt - --x 2000 t· 

Consider three values of R, where one value of R comes from each of the 
following ranges: 

a. 1 :::: R < 3.00 

b. 3.00 :::: R :::: 3.449 

c. 3.570 :::: R :::: 4.00. 

For each value of R graph Xt+ 1 as a function of Xt. Using the cobweb method follow 
Xt for several generations. Describe the qualitative behavior found for each case. 

ú = 1.2 Not every finite-difference equation has fixed points that can be found 
algebraically. For example, the system 

Xt+l = cos(Xt) 

involves a transcendental function and cannot be solved algebraically. Use a graph 
to find the approximate location and number of the fixed points. If you enter an 
initial condition into a pocket calculator and press the cosine key repeatedly, you 
are in effect iterating the finite-difference equation. Does the calculator approach 
a fixed point? Does the existence, location, or stability of the fixed point depend 
on whether Xt is measured in radians or in degrees? 

ú = 1.3 Find a function for a nonlinear finite-difference equation with four 
fixed points, all of which are unstable. Find a function with eleven fixed points, 
three of which are stable. Find a function with no fixed points, stable or unstable. 
(HINT: Just give a graph of the function without worrying about specifying the 
algebraic form.) 

ú = 1.4 In a remote region in the Northwest Territories of Canada, the dynamics 
of fly populations have been studied. The population satisfies the finite-difference 
equation 

Xt+l = 11 - O.Olx;, 

where Xt is the population density (Xt must be positive). 
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a. Sketch Xt+l as a function of Xt. 

b. Determine the fixed-point population densities and determine the 
stability of every fixed point algebraically. 

c. Assume thatthe initial density is less than (11 00) ! . Discuss the dynamics 
ast ú =00. 

(f!? 1.5 A population of flies in a mangrove swamp is described by the finite-
difference equation 

{
O.OIX;, 

Xt+l = 
0.01K2 exp[-r(xt - K)], 

for Xt < K; 

for Xt ú =K. 

Assume that K = 103 and r = l. 75 X 104• 

a. Draw a graph of Xt+! as a function of Xt. 

b. From this graph determine the fixed points of the fly population. 

c. Determine the local stability of the fly population at each fixed point. 

d. Determine the dynamics for future times if the initial population of fly 
is (i) 60; (ii) 600; (iii) 6000; (iv) 60,000. For each case graphically iterate 
the equation for several generations and guess the dynamics as t ú =00. 

(f!? 1.6 Consider the finite-difference equation 

2 
Xt+l = Xt + c, -00 < X t < 00, 

where c is a real number that can be positive or negative. 

a. Sketch this function for c = o. Be sure to show any maxima, minima, 
and inflection points (these should be determined algebraically). Show 
the location of all steady states. 

b. For what value(s) of c are there zero steady states? one steady state? two 
steady states? 

c. For what value of c is there a period-doubling bifurcation? 

d. Considerthesequencexo, Xl, X2 • •••• X n • For what range ofcwillxn be 
finite given the initial condition Xo = O? 

(f!? 1.7 The following equation plays a role in the analysis of nonlinear models 
of gene and neural networks (Glass and Pasternack, 1978): 

aXt 
X -

t+l - 1 + f3 Xt • 

where a and f3 are positive numbers and Xt ú =o. 
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a. Algebraically determine the fixed points. For each fixed point give the 
range of a and fJ for which it exists, indicate whether the fixed point is 
stable or unstable, and state whether the dynamics in the neighborhood 
of the fixed point are monotonic or oscillatory. 

For parts b and c assume a = 1, fJ = 1. 

b. Sketch the graph of X,+l as a function of x,. Graphically iterate the 
equation starting from the initial condition Xo = 10. What happens as 
the number of iterates approaches oo? 

c. Algebraically determine X,+2 as a function of XI> and Xt+3 as a function 
of X,. Based on these computations what is the algebraic expression for 
X,+n as a function of x,? What is the behavior of Xt+n as n ú =oo? This 
should agree with what you found in part b. 

(If? 1.8 In cardiac electrophysiology, many phenomena occur in which two 
behaviors alternate on a beat-to-beat basis. For example, there may be an alterna-
tion in the conduction time of excitation from one region of the heart to another, 
or there may be an alternation of the morphology of the electrical complexes 
associated with each beat. A natural hypothesis is that these phenomena in elec-
trophysiology are associated with period-doubling bifurcations in appropriate 
mathematical models of these phenomena. Both this problem and Problem 1.9 
are motivated by possible connections between period-doubling bifurcations and 
cardiac electrophysiology. 

During rapid electrical stimulation of cardiac tissues there is sometimes a 
beat-to-beat alternation of the action-potential duration. 

Consider the equation 

X'+l = !(x,), 

where x, is the duration of the action potential of beat t and 

!(X,) = 200 - 20 exp(x,j62) for 0 ::: x, < 128; 

!(X,) = 40 for 128 < x, ::: 200. 

All quantities are measured in milliseconds (msec). 

a. State the conditions (using calculus) for maxima, minima, and inflection 
points and say if any such points satisfy these conditions for the function 
defined above. 
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b. Sketch f (Xt) for 0 ::: Xt ::: 200. 

c. Determine the fixed points (an approximation is adequate). 

d. In the neighborhood of each fixed point determine the stability of the 
dynamics and indicate if the dynamics are oscillatory or monotonic. 

e. Starting from a point near the fixed point, graphically iterate the equation 
and say what the behavior will be in the limit t -+ 00. A rough picture 
is adequate. 

ú = 1.9 In the heart, excitation generated by the normal pacemaker in the atria 
travels to the ventricles, causing contraction of the heart and the pumping of 
blood to the body and the lungs. The excitation must pass through the atri-
oventricular node, which electrically connects the atria and the ventricles. The 
following problem is based on a mathematical model for atrioventricular (AV) 
conduction in mammals (Simson et al., 1981). 

Assume that subsequent values of AV conduction time, designated Xt, are 
given by the finite-difference equation 

375 
Xt+l = + 100, 

Xt - 90 
Xt ú =90. 

The units of all quantities are msec. 

a. Sketch Xt+l as a function of Xt. Indicate whether there are any maxima, 
minima, and inflection points. 

b. Determine the fixed point(s) of this equation in the range Xt ú =90 msec. 

c. Determine the stability of the fixed point( s} found in part b. 

d. Based on your analysis, how will the dynamics evolve starting from an 
initial condition of Xo = 200 msec? 

ú = 1.10 The following equation was proposed as a model for population 
densities of insects in successive years: 

where a and fJ are positive numbers and Xt ú =o. 
a. Sketch the graph of Xt+l as a function of Xt. Determine any maxima or 

minima, but it is not necessary to compute the values of any inflection 
points. 

b. Fora = 2.72andfJ = 0.33, determine the fixedpoint(s) and determine 
their stability. (HINT: The natural logarithm, designated as ln, is the 



46 FINITE-DIFFERENCE EQUATIONS 

logarithm to the base e. Since e ú =2.72, you can assume that In ex ú =1, 
to simplify the algebra.) 

c. Starting from an initial value of Xo = 137, what are the possible 
dynamics in the limit t -+ oo? 

ú = 1.11 The following equation has been proposed to describe the population 
dynamics of flies: 

Nt+! = g(Nt}, Nt:::: 0, 

where the fly density in generation t is Nt and 

g(Nt} = Nt exp [r (1 - 1 Wk ú I ò F z D =
where r > 0 and p > 1. 

a. For 0 < Nt « 1, Nt+! is approximately given by 

Nt+! = Nter • 

In this case will N! be greater than, less than, or equal to No? 

b. For Nt » 1 show that Nt+! can be approximately computed from the 
formula 

N t+! = KNt , 

where K does not depend on Nt. Compute K for No » 1; will N! be 
greater than, less than, or equal to No? 

c. Determine all fixed-point values of Nt (Nt :::: O). (HINT: If A = B, then 
log A = log B.) 

dg(Nt } 
d. Compute ---. 

dNt 

e. Assume that p = 2 and r = 1.2. Use the result from part d to com-
pute all values of Nt, Nt > 0 for which g(Nt} is either a maximum or 
minimum. (HINT: Let z = N/.) 

f. Assume that p = 2 and r = 1.2. Use the result from part d to compute 
the stability of all fixed points found in part c. 

g. Sketch the graph of Nt+! versus Nt for p = 2, r = 1.2. 
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t!? 1.12 Assume an ecological system is described by the finite-difference 
equation 

Xt+! = CX;(2 - Xt), o ::: Xt ::: 2, 

where Xt is the population density in year t and C is a positive constant that we 
assume is equal to ú K =

a. Sketch the graph of the right-hand side of this equation. Indicate the 
maxima, minima, and inflection points. 

b. Determine the fixed points of this system. 

c. Determine the stability at each fixed point and describe the dynamics in 
the neighborhood of the fixed points. 

d. In a brief sentence or two describe the expected dynamics starting from 
initial values of Xo = ú = and also Xo = 1 in the limit as t -+ 00. In 
particular, comment on the possibility that the population may go to 
extinction or to chaotic dynamics in the limit t -+ 00. 

t!? 1.13 In this problem Pt represents the fraction of neurons of a large neural 
network that fire at time t. As a simple model of epilepsy, the dynamics of the 
network can be described by the finite-difference equation 

Pt+1 = 4CP/ - 6CP/ + (1 + 2C)Pt , 

where C is a positive number, and 0 ::: Pt ::: 1. 

a. Compute the fixed points. 

b. Determine the stability at each fixed point and describe the dynamics in 
the neighborhood of the fixed points as a function of C. 

c. Sketch Pt+! as a function of Pt for C = 4. Show all maxima, minima, 
and inflection points. 

d. On the basis of the preceding work discuss the dynamics as t -+ 00 

starting from an initial condition of Po = 0.45 with C = 4. Try to do 
this graphically and, if possible, on a computer. 

t!? 1.14 This problem deals with the equation 

Xt+l = !(Xt) = 3.3xt - 3.3x;. 

a. Determine the fixed points of Xt+2 = ! (f (Xt)). Which ofthese points 
are also fixed points of Xt+l = !(Xt)? 
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b. Are there any cycles of period 3? 

ú = 1.15 Show that if there is one solution to Xt = g(g(xt)),wherext #- g(Xt), 
then there must also be another, different solution. 

ú = 1.16 The dependence of the stability of a fixed point on the derivative 
can be shown algebraically using Taylor series. The Taylor series gives a polyno-
mial expansion of a function in the neighborhood of a point. The Taylor series 
expansion of f (x) at a point a is 

df I (x - a)2 d2 f I + .... f(x) = f(a) + (x - a) - + ---
dx a 2! dx 2 a 

(1.16) 

This problem is aimed at using the Taylor series to derive analytically the local 
stability criteria for a fixed point in the finite-difference equation 

Assume that there is a fixed point defined by Xt = f(Xt) = x*. Define 

df I m- -
- dx x' 

Derive the stability criteria for the fixed point at X* using the Taylor se-
ries. (HINT: Define Yt = Xt - x* and consider the linear terms in the resulting 
equation.) 

ú = 1.17 Periodically stimulated oscillators can often be described by one-
dimensional finite-difference equations (see the Dynamics in Action 1 box). The 
variable <Pt refers to the phase of stimulus t during the cycle. The phase of the 
subsequent stimulus <PH! is a function of <Pt. The next three problems are all mo-
tivated by theoretical models that have been proposed for periodically stimulated 
oscillators. 

The following finite-difference equation has been considered as a mathe-
matical model for a periodically stimulated biological oscillator (Belair and Glass, 
1983): 

{ 
6<Pt - 12<p;, 

<Pt+! = 2 
12<Pt - 18<pt + 7, 

o :::: <Pt < 0.5; 

0.5 :::: <Pt :::: 1. 

a. Sketch <Pt+! as a function of <Pt for 0 :::: <Pt :::: 1. Be sure to show all 
maxima and minima and to compute the values of <Pt+! at these extremal 
points. 
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b. Compute all fixed points. What are the qualitative dynamics in the 
neighborhood of each fixed point? 

c. If you have done part (a) correctly, you should be able to find a cycle of 
period 2. What is this cycle? Show it on your sketch. 

iff? 1.18 The finite-difference equation 

ifJt+l = 0.5 + ex sin 2nifJt, o ú =<Pt < 1, 

where 0 ú = ex < 0.5, has been used as a mathematical model for periodic 
stimulation of biological oscillators. 

a. There is one steady state. Determine this steady state and its stability as 
a function of ex • 

b. For what value of ex is there a period-doubling bifurcation? 

c. Sketch ifJt+l as a function of ifJt for ex = 0.25. Be sure to indicate all 
maxima, minima, and inflection points. 

d. For ex = 0.25 there is a stable period-2 orbit. What is it? 

iff? 1.19 The following equation arose in the study of two independent oscilla-
tors competing for control of the heart. The resulting cardiac arrhythmia is called 
parasystole. Theoretical analysis of parasystole shows interesting rhythms obey-
ing rules derived from number theory. The following example illustrates typical 
dynamics found when the ratio between the two frequencies is a rational number. 
For more details on the mathematical modeling of this cardiac arrhythmia, see 
Glass et al. (1986). 

A mathematical model for a periodically forced biological oscillator can be 
written as 

{ 

ifJt + 0.4, for 0 ú = ifJi < 0.6; 

ifJt+l = ifJt - 0.2, for 0.6 ú = ifJi < 0.7; 

ifJt - 0.6, for 0.7 ú = ifJt < 1.0, 

where ifJt is the phase in the cycle of the forced oscillator at which the tth periodic 
stimulus falls, 0 < ifJt < 1. 

a. Accurately plot on graph paper ifJt+l as a function of ifJt. 

b. Determine the fixed points, if any, and determine their stability. 

c. Take an initial condition ifJo = 0.65 and determine the dynamics (both 
algebraically and graphically) until a periodic orbit is reached. Do the 
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same for an initial condition of <Po = 0.95. An accurate graph is essential 
here. 

d. Are the periodic orbits in part c stable? 

(/? 1.20 The population of a species is described by the finite-difference 
equation 

Xt+l = aXt exp(-xt), Xt 2: 0, 

where a is a positive constant. 

a. Determine the fixed points. 

b. Evaluate the stability of the fixed points. 

c. For what value of a is there a period-doubling bifurcation? 

d. For what values of a will the population go extinct starting from any 
initial condition? 

e. On a computer, generate the bifurcation diagram as a function of a. Even 
though you might not be able to do this computation, do you expect 
that the bifurcation diagram will display the period-doubling route to 
chaos similar to that shown in Figure 1.31? 

(/? 1.21 If you are tired about problems concerning flies, consider the fol-
lowing model about bird populations. Birds eat flies. Milton and Belair (1990) 
proposed this equation as a model for bird densities in successive years: 

13.22Xt 

Xt+l = 
0.5xt 

for 0 S Xt S 1 
(1.17) 

for 1 < Xt. 

Draw a graph of Xt+l as a function of Xt. Graphically iterate this equation 
and determine if the dynamics are chaotic. 

(/? 1.22 Print your last name. Count the number of letters and multiply the 
number by 0.1. Your magic number, m, is 1 plus the number that you just 
computed. If your last name has nine or more letters, assume that m = 1.9. 

Consider the finite-difference equation given by the following equations: 

1 
Xt+ 1 = mxto for 0 S Xt S -

m 
1 

Xt+l = mXt - 1, for - < Xt S 1. 
m 

a. Draw a graph of Xt+l as a function of Xt. 
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b. Determine the fixed point(s) and determine their stability. 

c. Graphically iterate this equation. 

d. Are the dynamics chaotic? 

tfJJl 1.23 In Example 1.4 in the text, we looked for period-doubling bifurcations 
in the finite-difference equation: 

We found that fixed points became unstable when b = ú K =At these bifurcation 
points, a stable period-2 cycle emerges. Here, we are interested in studying the 
stability of these cycles of period 2. In particular, we want to know when the cycles 
are "superstable;' meaning that a nearby point is immediately moved onto the 
cycle rather than approaching it exponentially. Such superstability occurs when 
the graph has slope zero at the fixed points of the cycle, which will occur when 
the graph is at a maximum or a minimum on the cycle. 

a. Sketch the graph of the equation for b = ú K =Determine the values of 
all maxima, minima, and inflection points. 

b. For a particular value of b the maximum and minimum of f (Xt) are on 
a cycle of period 2. Sketch the function for this case showing the cycle 
of period 2. It is not necessary to determine the value of b that leads to 
this behavior. However, will b be greater than or less than ú \ =

ú = COMPUTER PROJECTS 

Consider the two following one-dimensional finite-difference equations. 

Equation A 

Xt+l = Asinrrxt. Equation B 

where 0 :::: Xt :::: 1. 0:::: A :::: 1. 
For both Equation A and Equation B carry out Projects 1-5. 

Project 1 Write a computer program that can be used to iterate these 
equations. 

Project 2 Compute a bifurcation diagram such as shown in Fig. 1.31. To 
compute this first set a value for A. Then iterate the equation equation 200 times, 
but only save the values of the last 100 iterates. Plot these 100 values on a graph 
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above the corresponding value of A. Increment A in small steps. In doing this you 
may wish to experiment with the step size in A, the length of the transient and 
the number of plotted points. Getting a nice looking picture depends on taking 
fine steps in A, taking a sufficiently long transient, and plotting a sufficiently large 
number of points. 

Project 3 Write a program that can determine if a sequence of values gener-
ated from iteration of the equations is periodic. If it is periodic, what is the period 
of the cycle? In doing this, it is best for you to set a specific value for convergence 
to a periodic orbit. This means that if the distance between 2 points is closer than 
some value, for example E = 10-5, you would declare that a periodic orbit had 
been found. 

The next two projects make use of the techniques developed above. Carrying 
them out successfully requires some skill and careful numerical work. If you get 
stuck you might wish to look back at original sources. Project 4 is based on 
Metropolis et al. (1973), and Project 5 is based on Feigenbaum (1980). 

Project 4 Determine the sequence of periodic orbits that are encountered 
as a function of A. In doing this there are 3 parameters that you will have to 
adjust: the number of iterates, the increment in A, and the convergence criterion. 
Although it probably seems like it should be trivial to decide what the period 
is for any value of A you may surprised to find that different sets of the 3 pa-
rameters will give different answers. The situation can be particularly delicate 
when you are near values of A that lead to bifurcations in the dynamics. The 
sequences of periodic orbits for the 2 different maps should be the same. Are 
they? 

Project 5 Locate sequences of period doubling bifurcations. Write a pro-
gram that can compute automatically the value of Feigenbaum's number for the 
two functions given above. Do you obtain the same value that has been found 
by Feigenbaum? Is the value the same for both of the functions? Is the value the 
same for the sequences of periodic orbits 2, 4, 8, ... and 3, 6, 12, ... ? 

Project 6 Now that you have mastered functions with one parameter you 
are ready to explore functions with 2 parameters. Consider the function (often 
called the sine circle map) 

Xt+l = Xt + a + b sin(2JTxt) (mod 1), 

where 0 ::: a ::: 1, 0 ::: Xt ::: 1, and b ú = O. Your task is to study the periodic 
orbits as a function of a and b. Since there are 2 parameters now, you will make 
a plot of the behavior with a on the horizontal axis and b on the vertical. At each 
value of a and b, plot a dot whose color depends on the length of the period 
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found. You will have to consider what to do if you do not find any period. An 
additional complication comes from the fact that the cycle that you find in some 
regions of parameter space will depend on the initial condition. 


