Python for Data Science: A very short introduction for beginners

Jean-Michel Marin

September 19, 2024

Contents

[1 Key differences between Python and R)

[1.1 Primary Purpose| e
1.2 FEase of Learning|
1.3 Libraries and Ecosystem| o
1.4 Statistical and Data Analysis| oo
(L5 Data Visualizationl
[1.6 Machine Learning and Al| oo
[1.7 Community and Support|.
[L8 Performancel. e
[1.9 Usage in Industry vs. Academial
[1.10 Integration and Deployment|. oL
[L11 Conclusionl o e e e

2 Core Libraries for Data Science in Python|

[3 Numerical Computing with NumPy|

3.1 Array Creation|
[3.2 Array Shape and Reshaping| Lo
[3.3 Basic Mathematical Operations|
[3.4 Element-wise Operations|.
3.5 Matrix Operations| e
3.6 Statistical Operations| e

3.7 Indexing and Slicing]

3.8 Boolean Indexing|

[4 Loops in Python|

4.1 or Loop| e

4.2 While Loop| e

[5 Functions in Python|

6.1 lLoad the CSV Filel o o o
6.2 Basic Data Exploration| oo o
6.3 Filtering Datal.
6.4 Creating New Columns|
6.5 Grouping and Aggregating Datal 0oL
6.6 Sorting Datal
6.7 Handling Missing Datal.
6.8 Calculating Descriptive Statistics| o oL

[7 Data Visualization with Matplotlib and Seaborn|

[8 Machine Learning with Scikit-learn|

[9 Data Preprocessing]

(10 Deep Learning with TensorFlow or PyTorch|

10
10
11

11
11
11
12
12

12
12
13
13
13
13
14
14
14

15

15

16

16

Python has become the go-to language for data science due to its simple syntax, extensive li-
braries, and large community support. This makes it easier for data scientists to clean, manipulate,
visualize, and model data with minimal code.

1 Key differences between Python and R

Python and R are two of the most popular programming languages used in data science, statistics,
and machine learning. While both are powerful and versatile, they have distinct differences in
terms of syntax, ecosystem, performance, and usage. Below is a comparison of the two languages:

1.1 Primary Purpose

e Python is a general-purpose programming language with a wide range of applications beyond
data science, such as web development, automation, and software engineering. It is widely known
for its readability and ease of use.

e R was specifically designed for statistical computing and data visualization. It is favored by
statisticians, data analysts, and researchers for tasks that involve heavy statistical analysis and
visualizing data.

1.2 Ease of Learning

e Python is known for its simple and clear syntax, making it easier for beginners to learn. Its
readability and similarity to natural language often make Python a preferred choice for those new
to programming.

e R has a steeper learning curve compared to Python, especially for users without a programming
background. It requires a better understanding of statistical concepts and has a less intuitive syntax
compared to Python.

1.3 Libraries and Ecosystem

e Python has a vast ecosystem of libraries for data science, such as:

e Pandas for data manipulation,

e NumPy for numerical computing,

Matplotlib and Seaborn for data visualization,

Scikit-learn for machine learning, and

TensorFlow and PyTorch for deep learning.

Python is also widely used in web development (with Django, Flask), automation, and artificial
intelligence, making it highly versatile.

e R has a rich ecosystem of packages for statistical computing and data visualization, including;:

ggplot2 for data visualization,

dplyr for data manipulation,

shiny for building interactive web applications,

caret for machine learning.

R’s packages are generally more specialized in statistics and data visualization.

1.4 Statistical and Data Analysis

e Python is capable of performing statistical analysis, but R has traditionally been the go-to
language for complex statistical modeling. Python’s statistical libraries (like SciPy and statsmodels)
are improving rapidly and are suitable for most tasks, but R still has a deeper range of statistical
functions out of the box.

e R is specifically designed for statistical analysis and has a large collection of built-in functions
for complex statistical modeling. It is often preferred in academia and research for this reason.

1.5 Data Visualization

e Python offers libraries like Matplotlib, Seaborn, and Plotly for data visualization, which are
powerful but can sometimes require more effort to create complex plots.

e R excels in data visualization, particularly with its ggplot2 library, which provides an intuitive
and highly customizable approach to creating complex and beautiful visualizations with minimal
code. R is often favored by data analysts who prioritize visual representation.

1.6 Machine Learning and Al

e Python is the dominant language for machine learning and AI, thanks to its comprehensive
libraries such as Scikit-learn, TensorFlow, Keras, and PyTorch. Python is preferred in the industry
for building machine learning pipelines and deploying models into production environments.

e R has machine learning libraries like caret and randomForest, but it is less widely used for
production machine learning systems. R is more focused on exploratory data analysis and statistical
modeling.

1.7 Community and Support

e Python has an incredibly large and diverse community due to its versatility across different
domains (data science, web development, software engineering). As a result, finding tutorials,
forums, and open-source projects in Python is relatively easy.

e R also has a strong community, particularly among statisticians and academic researchers. Its
community is smaller compared to Python, but highly focused on statistical analysis and data
visualization.

1.8 Performance

e Python is an interpreted language, which can sometimes make it slower compared to compiled
languages. However, Python’s libraries (like NumPy, which is implemented in C) ensure that
data-intensive tasks can still be performed efficiently.

e R can be slower than Python for large-scale tasks, especially when handling large datasets in
memory. However, R has libraries like data.table that can speed up operations on large datasets.

1.9 Usage in Industry vs. Academia

e Python is widely used in both industry and academia. In industry, Python dominates in fields
such as machine learning, Al, data engineering, and software development. Python’s ability to
integrate into production environments makes it ideal for deployment and scalability.

e R is more commonly used in academia and research, particularly for statistical analysis. It’s also
widely used in industries like bioinformatics, healthcare, and economics where statistical analysis
is the primary task.

1.10 Integration and Deployment

e Python integrates easily with other systems and platforms, making it suitable for deploying
machine learning models, building APIs, and creating end-to-end data pipelines. Python is often
preferred for full-stack data science work (from data analysis to model deployment).

e R is more focused on data analysis and reporting. While it has tools like Shiny for creating
interactive dashboards, it’s not as commonly used for deployment into production systems compared
to Python.

1.11 Conclusion

e Choose Python if you are looking for a general-purpose language that excels in machine learning,
Al and production environments. It’s great for tasks that involve data engineering, automation,
and deploying models.

e Choose R if you are focused on statistical analysis, data visualization, or academic research. R’s
ecosystem is built around statistical methods, making it easier for statisticians and data analysts
to work with complex datasets.

2 Core Libraries for Data Science in Python

To get started with Python for data science, you’ll need to work with some core libraries:

e NumPy: Supports large multi-dimensional arrays and matrices, along with a collection of
mathematical functions to operate on these arrays.

e Pandas: Built on top of NumPy, it’s the key library for data manipulation and analysis.

e Matplotlib and Seaborn: These are visualization libraries that make it easy to create a
wide range of plots.

e Scikit-learn: A comprehensive machine learning library.

e TensorFlow and PyTorch: Libraries for deep learning, although they are more advanced.

3 Numerical Computing with NumPy

NumPy is essential for numerical operations, particularly for working with large arrays and matrices.

3.1 Array Creation

def square(number): return number**2

Call the function and print the result
result = square(5)

print (f’The square of 5 is {result}’)

import numpy as np

Create a 1D array

arr_1d = np.array([1l, 2, 3, 4, 5])
print(arr_1d)

Create a 2D array (matriz)
arr_2d = np.array([[1l, 2, 3], [4, 5, 6]1])
print(arr_2d)

Create an array of zeros

zeros = np.zeros((3, 3))
print(zeros)

Create an array of ones

ones = np.ones((2, 4))

print (ones)

Create an array with a range of wvalues
range_array = np.arange(®, 10, 2)
print(range_array)

Create an array with equally spaced values (linspace)
linspace_array = np.linspace(®, 1, 5)
print(linspace_array)

Create a random array

random_array = np.random.rand(3, 3)
print (random_array)

Create an identity matrix
identity_matrix = np.eye(3)
print(identity_matrix)

3.2 Array Shape and Reshaping

Check the shape of an array
print(arr_2d.shape) # Output: (2, 3)
Reshape an array

reshaped_array = arr_1ld.reshape((5, 1))
print(reshaped_array)

Flatten a 2D array into a 1D array
flattened_array = arr_2d.flatten()
print(flattened_array)

3.3 Basic Mathematical Operations

arr = np.array([10, 20, 30, 40])
Add 5 to each element

arr_add = arr + 5

print(arr_add)

Subtract 5 from each element
arr_sub = arr — 5

print(arr_sub)

Multiply each element by 2
arr_mul = arr x 2

print(Carr_mul)

Divide each element by 2
arr_div = arr / 2

print(arr_div)

FEzponentiation (square each element)
arr_square = np.square(arr)
print(arr_square)

Square root of each element
arr_sqrt = np.sqrt(arr)
print(arr_sqrt)

3.4 Element-wise Operations

arr_a np.array([1, 2, 3])

arr_b np.array([4, 5, 6])

FElement—wise addition

result_add = arr_a + arr.b

print(result_add)

FElement—wise multiplication

result mul = arr_a * arr.b

print(result_mul)

FElement—wise comparison

result_comp = arr_a > arr_b

print(result_comp)

Sum of all elements in an array

total_sum = np.sum(arr_a)

print(total_sum)

Sum along an axis (rows or columns)

matrix = np.array([[1l, 2, 3], [4, 5, 6]11)

sum_rows = np.sum(matrix, axis=0) # Sum along columns
sum_cols = np.sum(matrix, axis=1) # Sum along rows
print (sum_rows, sum_cols)

3.5 Matrix Operations

matrix_a np.array([[1, 2], [3, 4]]1)
matrix_b np.array([[5, 6], [7, 811)
Matrix multiplication
matrix_product = np.dot(matrix_a, matrix_b)
print(matrix_product)

Transpose of a matric

transpose_a = matrix_a.T
print(transpose_a)

Inverse of a matrix

inverse_a = np.linalg.inv(matrix_a)
print(inverse_a)

Determinant of a matriz

det_a = np.linalg.det(matrix_a)
print(det_a)

3.6 Statistical Operations

data = np.array([1l, 2, 3, 4, 5, 6, 7, 8, 9])
Mean

mean = np.mean(data)

print (mean)

Median

median = np.median(data)

print (median)

Standard deviation

std_dev = np.std(data)

print(std_dev)

Varitance

variance = np.var(data)

print(variance)

Min and Mazx

min_val = np.min(data)

max_val = np.max(data)

print(min_val, max_val)

Percentile

percentile_50 = np.percentile(data, 50)
print(percentile_50)

3.7 Indexing and Slicing

arr = np.array([10, 20, 30, 40, 50])
Access the first element
print(Carr[0])

Access the last element
print(Carr[-1])

Slice the array (from index 1 to 3)
print(arr[1:4])

Reverse the array
print(arr([::-1])

Modify elements

arr[1:3] = [25, 35]

print(arr)

3.8 Boolean Indexing

arr = np.array([10, 15, 20, 25, 30])
Create a boolean array where elements are
bool_idx = arr > 20

greater than 20

print(bool_idx)

Filter elements based on the boolean array
filtered_arr = arr[bool_idx]
print(filtered_arr)

Set elements greater than 20 to 100
arr[arr > 20] = 100

print(arr)

3.9 Random Numbers

Generate random mnumbers between 0 and 1
random_nums = np.random.rand(5)

print (random_nums)

Generate random integers between a range
random_ints = np.random.randint(l, 10, size=5)
print(random_ints)

Generate random mnumbers from a normal distribution
random_normal = np.random.randn(5)

print (random_normal)

Seed the random number generator for reproducibility
np.random.seed (42)

random_seeded = np.random.rand(3)
print(random_seeded)

4 Loops in Python

4.1 For Loop

A for loop is used to iterate over a sequence (list, tuple, string, or range).

Iterate over a list
my_list = [1, 2, 3, 4, 5]
for item in my_list:
print(item)
Iterate over a range of numbers
for i in range(5):
print(f'Value: {i}")

In the above example, the for loop iterates over the elements in my_list and prints each value.
The second example shows how to use the range () function to loop through numbers 0 to 4.

10

4.2 While Loop

A while loop runs as long as the condition is true.

Initialize a variable
counter = 0
Run the loop while the condition 1s true
while counter < 5:
print (f'Counter is: {counter}')
counter += 1

In this example, the loop continues to run while the variable counter is less than 5. On each
iteration, counter is incremented by 1 until the condition is no longer true.

5 Functions in Python

5.1 Defining and Calling Functions

Functions allow you to define reusable blocks of code. You define a function using the def keyword.

Define a simple function

def greet(name):
print (f 'Hello, {name}!"')

Call the function

greet('Alice ')

greet('Bob ")

In the above example, greet() is a function that takes a parameter name and prints a greeting
message. The function is called with different arguments.

5.2 Functions with Return Values

You can also define functions that return values.

def square(number): return numberxx2

Call the function and print the result
result = square(5)

print (f 'The square of 5 is {result}')

Here, the square () function returns the square of the input value. The result of the function call
is stored in the variable result and printed.

11

5.3 Functions with Multiple Parameters

Functions can take multiple parameters.

Define a function with multiple parameters
def add_numbers(a, b):
return a + b
Call the function
sum_result = add_numbers (10, 20)
print (£ 'The sum of 10 and 20 is {sum_result}')

In this example, the add numbers() function takes two arguments, adds them, and returns the
result.

5.4 Default Parameters in Functions

You can specify default values for function parameters.

Define a function with a default parameter
def greet(name="Guest"):

print (f 'Hello, {name}!")
Call the function without passing an argument
greet ()
Call the function with an argument
greet('Alice')

In the above code, the function greet () has a default parameter value of "Guest". If no argument
is passed when calling the function, the default value is used.

6 Data Manipulation with Pandas

Pandas is used for handling and analyzing structured data. It provides two main data structures:
Series (1D data) and DataFrame (2D data, similar to an Excel sheet or SQL table).

6.1 Load the CSV File

import pandas as pd

Load the csv file

df = pd.read_csv('data.csv')
Display the DataFrame
print (df)

12

6.2 Basic Data Exploration

Get the first few rows of the dataset

print (df.head ()

Get the data types of each column

print (df.dtypes)

Get a summary of the numerical columns

print (df.describe())

Get the number of missing values for each column

print(df.isnull () .sum())

6.3 Filtering Data

Filter rows where Columnl > 200
filtered_data = df[df['Columnl'] > 200]
print(filtered_data)

Filter rows where CategoricalColumn is 'A'
category_A = df[df['CategoricalColumn'] == 'A']
print(category_A)

6.4 Creating New Columns

Create a new column that is the product of

Columnl and Column2

df['Column3'] = df['Columnl'] * df['Column2']

print (df)

Create a mew column that categorizes based on Columnl values
df['Columnl_Category'] = df['Columnl'].

apply(lambda x: 'High' if x > 250 else 'Low')

print (df)

6.5 Grouping and Aggregating Data

Group by CategoricalColumn and calculate

the mean of Columnl for each group

grouped = df.groupby('CategoricalColumn')['Columnl'].mean()
print (grouped)

Group by CategoricalColumn and

get multiple aggregations for Columnli

aggregated = df.groupby('CategoricalColumn')['Columnl'].
agg(['mean', 'sum', 'max', 'min'])

print (aggregated)

13

6.6 Sorting Data

Sort the DataFrame by Columnl in descending order

sorted_df = df.sort_values(by='Columnl', ascending=False)
print(sorted._df)

Sort by multiple columns: first by CategoricalColumn ,

then by Columnli

sorted.multi = df.sort_values(by=['CategoricalColumn', 'Columnl'],
ascending=[True, False])

print(sorted_multi)

6.7 Handling Missing Data

Replace missing values in Columnl with the mean of the column
df['Columnl'].fillna(df['Columnl'].mean(), inplace=True)

Drop rows with missing values

df.dropna(inplace=True)

6.8 Calculating Descriptive Statistics

Create a sample DataFrame

data = {
"Age': [25, 30, 35, 40, 45],
'Height': [165, 170, 175, 180, 185],
'Weight': [65, 70, 75, 80, 85]

¥

df = pd.DataFrame(data)

Display the DataFrame

print (df)

Calculate the mean of each column
mean_values = df.mean()

print ("Mean Values:")

print (mean_values)

Calculate the median of each column
median_values = df.median()

print ("Median Values:")

print (median_values)

Calculate the standard deviation of each column

std_dev_values = df.std()
print("Standard Deviation Values:")

14

print(std_dev_values)

Calculate the wariance of each column
variance_values = df.var()
print("Variance Values:")
print(variance_values)

Calculate the correlation between columns
correlation_matrix = df.corr(Q)
print("Correlation Matrix:")
print(correlation_matrix)

Generate a summary of descriptive statistics
summary_stats = df.describe()

print ("Summary Statistics:")

print (summary_stats)

7 Data Visualization with Matplotlib and Seaborn

Visualization is key in data science to understand trends, patterns, and correlations. Matplotlib
and Seaborn are the two most commonly used libraries for data visualization.

import matplotlib.pyplot as plt
import seaborn as sns

plt.plot([1, 2, 3, 4], [1, 4, 9, 16]1)
plt.xlabel ('X Axis')

plt.ylabel ('Y Axis')
plt.title('Simple Line Plot')
plt.show()
sns.histplot(df['Columnl'], kde=True)
plt.title('Distribution of Columnl')
plt.show()

corr_matrix = df.corr(Q)

sns.heatmap (corr_matrix, annot=True)
plt.title('Correlation Matrix Heatmap ')
plt.show()

8 Machine Learning with Scikit-learn

Scikit-learn is the go-to library for machine learning in Python. It provides easy-to-use tools for
data pre-processing, building models, and evaluating them.

15

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

X = df[['Columnl', 'Column2']]

y = df['Target ']

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2, random_state=42)

model = LinearRegression()

model . fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
print (f 'Mean Squared Error: {mse}')

9 Data Preprocessing

Before building a machine learning model, data preprocessing is essential. Scikit-learn provides a
variety of preprocessing tools:

from sklearn.preprocessing import StandardScaler, LabelEncoder
scaler = StandardScaler ()

X_scaled = scaler.fit_transform(X)

label _encoder = LabelEncoder ()

df['CategoricalColumn'] = label_encoder.
fit_transform(df['CategoricalColumn'])

10 Deep Learning with TensorFlow or PyTorch

For deep learning tasks, such as image recognition or natural language processing, you’ll often use
TensorFlow or PyTorch. These libraries allow you to build neural networks and train models on
large datasets. Here’s an example with TensorFlow:

import tensorflow as tf

model = tf.keras.Sequential ([
tf.keras.layers.Dense(64, activation='relu',
input_shape=(X_train.shape[1l],)),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense (1)

D

model .compile(optimizer="'adam', loss='mean_squared_error ')

model . fit(X_train, y_train, epochs=10, batch_size=32)

loss = model.evaluate(X_test, y_test)

print(f'Loss: {loss}')

16

	Key differences between Python and R
	Primary Purpose
	Ease of Learning
	Libraries and Ecosystem
	Statistical and Data Analysis
	Data Visualization
	Machine Learning and AI
	Community and Support
	Performance
	Usage in Industry vs. Academia
	Integration and Deployment
	Conclusion

	Core Libraries for Data Science in Python
	Numerical Computing with NumPy
	Array Creation
	Array Shape and Reshaping
	Basic Mathematical Operations
	Element-wise Operations
	Matrix Operations
	Statistical Operations
	Indexing and Slicing
	Boolean Indexing
	Random Numbers

	Loops in Python
	For Loop
	While Loop

	Functions in Python
	Defining and Calling Functions
	Functions with Return Values
	Functions with Multiple Parameters
	 Default Parameters in Functions

	Data Manipulation with Pandas
	Load the CSV File
	Basic Data Exploration
	Filtering Data
	Creating New Columns
	Grouping and Aggregating Data
	Sorting Data
	Handling Missing Data
	Calculating Descriptive Statistics

	Data Visualization with Matplotlib and Seaborn
	Machine Learning with Scikit-learn
	Data Preprocessing
	Deep Learning with TensorFlow or PyTorch

