UE361.3A S6-2024

TICE - ANGLAIS Tutor: Mr. Brioche

THE EFECTS OF PLOMETRIC TRAING UPON CHANGE-OF-DREATON PERFORMANCE FOR

Allan Firminhac Eva Garin **Rachel Goujon** Samuel Hardy

1. INTRODUCTION

- In 3 sets : *
- * In 5 sets :

TEMPORAL CHARACTERISTICS OF A TENNIS MATCH

≈ 1h30

+2h

1. INTRODUCTION

1. INTRODUCTION

TOTAL DURATION ~ 1h30

~ 70% **REST PERIODS**

INCIDENCE ON PHYSYOLOGICAL ASPECTS

1. INTRODUCTION

during the points

AEROBIC

during rest time

Excess Post-exercice Oxygen Consumption

1. INTRODUCTION TYPE OF DEPLACEMENT

DISTANCE TO REACH THE BALL

14,45 m : maximum

Explosivity in the first steps

change of direction ability

to react when the opponent hit the ball

1. INTRODUCTION CHANGE-OF-DIRECTION ABILITY

React with explosiveness on the field

Let more time to do precise gesture

Increase performance in tennis

*COD RSI

1. INTRODUCTION PLYOMETRICS

• Pliometric training = + + + 2 Eccentric-concentric muscle contraction

Coupled with exercise

>>> Muscle power >>> Proprioception

2. INTRODUCTION

PLYOMETRICS (Michael G. Miller, 2006) and (Hâvard Guldteig Rædergârd, 2020)

>>> 6 wk

>>>> Plyometric

>>> Pre-season competition

Individualization

2. PROBLEMATIC

HOW PLYOMETRIC TRAINING CAN IMPROVE CHANGE OF DIRECTION ABILITY FOR TENNIS PLAYERS ?

HOW PLYOMETRIC TRAINING CAN IMPROVE **CHANGE OF DIRECTION ABILITY FOR TENNIS PLAYERS**?

2. PROBLEMATIC

HYPOTHESIS • The plyometric training COD Seactive strength index Contact +

PROCEDURES

1 SESSION : PRE-TEST

8 SESSIONS : TRAINING

1 SESSION : POST-TEST

	Allan	Eva	Rachel	Samuel	Mean	SD
Age (years)	22	21	20	21	21	0,82
Height (cm)	186	171	180	183	180	6,48
Body Mass (kg)	68	74	63	69	68,5	4,51

TEST PROGRAM

Change of direction test

Evaluate plyometric performance

speed of lower body stretch-shortening cycle

3. MATERIALS AND METHODS

TEST PROGRAM REACTIVE STRENGTH INDEX TEST

My jump lab app –

ground contact time flight time \longrightarrow jump height

3. MATERIALS AND METHODS TEST PROGRAM COOKE TEST

TRAINING PROGRAM

• Tuesdey and Friday = 72h of rest

Link to the video of of the training program :

>>> Unilateral CMJ >>> Drop jump >>> Unilateral >>> Hurdle jump >>> Bilateral Hurdle jump >>> Skate jump

Plyometric exercises

- >>> Unilateral CMJ
- >>> Dropjump
- >>> Unilateral
- >>> Hurdle jump
- >>> Bilateral Hurdle jump
- ា Skate jump

The training

Unilateral hurdle jump

the manufactory

MONITORING TRAINING LOAD

RSI Test

Optimal jump height

METHODS GLOAD

Standard deviation

3. MATERIALS AND METHODS MONITORING TRAINING LOAD

STATISTICAL ANALYSIS <u>RSI AT 30 CM</u> (PRE- AND POST- TEST)

For all the participants

Absolute change : 7,88%

small effect size

Hedges' g = 0,249878

	Ν	Mean pre (SD)	Median pre	Mean post (SD)	Median post	Absolute Change (%)	Qualitative
RSI (30 cm)	3	2,03 (0,67)	1,76	2,19 (0,61)	2,05	+ 7,88	⊿ small

Median pre	Mean po (SD)	st	Mediar post	Abso Cha (۴)	olute inge 6)	Qualita	ative
1,69	1,89 (0,5	6)	1,76	- 5	,13	ve צ sma	ry ill
	data	1.1.4					
= ₁₀ = 0.597 = ₀₁ = 1.675	data		95	N % CI: [-(ledian 0.594,	: 0.281 1.352]	
		2.8 -	<u> </u>				
		2.6 -				- 0.75	
		2.4 -				- 0.50	
	0	2.2 -				- 0.25	0
	value	2.0 -				- 0.00 - D	hedge
		1.8 -			-	0.25	
dian: 0.281		1.6 -				0.50	
594, 1.352]		1.4 -			4	0.75	
			pre N = 3	post N = 3	post minus	-	
Median post	Absolute Change (%)	Qua	litative		pre		
1,55	- 6,60	ע s	very mall			2	23

STATISTICAL ANALYSIS COD PLANNED <u>(PRE- AND POST- TEST)</u>

For all the participants

Absolute change : -6,96 %

Hedges' g = 0,711795

Medium effect size

	N	Mean pre (SD)	Median pre	Mean post (SD)	Median post	Absolute Change (%)	Qualitative
COD p	3	7,00 (0,86)	6,69	6,52 (0,42)	6,3	- 6,96	⊿ medium

STATISTICAL ANALYSIS COD REACTIVE (PRE- AND POST- TEST)

Most of the participants

Absolute change : -2,37 %

Hedges' g = 0,188090

 \rightarrow Very small effect size

	N	Mean pre (SD)	Median pre	Mean post (SD)	Median post	Absolute Change (%)	Qualitative
COD r	3	7,50 (0,97)	7,23	7,33 (0,76)	7,13	- 2.37	⊿very small

4. RESULT SUMMARY TABLE OF THE RESULTS

	N	Mean pre (SD)	Mean post (SD)	Absolute Change (%)	Qualitative
RSI (30 cm)	3	2,03 (0,67)	2,19 (0,61)	+ 7,88	⊿ small
RSI (50 cm)	3	1,99 (0,75)	1,89 (0,56)	- 5,13	∖ very small
RSI (60 cm)	3	1,97 (0,73)	1,84 (0,71)	- 6,60	∖ very small
COD p	3	7,00 (0,86)	6,52 (0,42)	- 6,96	⊿ medium
COD r	3	7,50 (0,97)	7,33 (0,76)	- 2,37	

(RSI = Reactive Strength Index; COD p = change of direction planned; COD r = change of direction *reactive;* SD = *standard deviation;* ∧ or ∖ = performance's augmentation or diminution)

The cognitive abilities are important too in tennis performance

A protocol without a lot of equipement can be effective