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Decision trees

Introduction

What is a decision tree ? → supervised learning
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Decision trees

Introduction

A little history

!4machine learning (or data mining) decision trees
6= decision theory decision trees
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Decision trees

Introduction

Types of decision trees

type of class label

I numerical → regression tree

I nominal → classification tree

type of algorithm (→ structure)

I CART : statistics, binary tree

I C4.5 : computer science, small tree
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Decision trees

Use of decision trees

Prediction

Classification trees
Will the badminton match take place ?
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Decision trees

Use of decision trees

Prediction

Classification trees
What fruit is it ?
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Decision trees

Use of decision trees

Prediction

Classification trees
What he/she come to my party ?
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Decision trees

Use of decision trees

Prediction

Classification trees
Will they wait ?
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Decision trees

Use of decision trees

Prediction

Classification trees
Who will win the US presidential election ?
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Decision trees

Use of decision trees

Prediction

Regression trees
What grade will a student get (given his homework average
grade) ?
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Decision trees

Use of decision trees

Interpretability : Descriptive data analysis

Data analysis tool

Trees are very interpretable : attributes spaces partitioning

→ a tree can be resumed by its leaves which define a law mixture

→ wonderful collaboration tool with experts

!4 INSTABILITY ← overfitting
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Decision trees

Learning of decision trees

Formalism

Learning dataset (supervised learning) x1, y1
...

xN , yN

 =

 x1
1 . . . xJ1 y1
...

...
...

x1
N . . . xJN yN

 samples are assu-
med to be i.i.d

I Attributes X = (X 1, . . . ,X J) ∈ X = X 1 × · · · × X J

I Spaces X j can be categorical or numerical

I Class label Y ∈ Ω = {ω1, . . . , ωK} (∈ RK for regression)

Tree

PH = {t1, . . . , tH} and πh = P(th) ≈ |th|
N

with |th| = #{i : xi ∈ th}
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Decision trees

Learning of decision trees

Recursive partitioning
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Decision trees

Learning of decision trees

Learning principle
I Start with all the dataset in the initial node
I Chose the best splits (on attributes) in order to get pure

leaves

Classification trees

purity = homogeneity in term of class labels

I CART → Gini impurity : i(th) =
K∑

k=1
pk (1− pk )

I ID3, C4.5 → Shanon entropy : i(th) = −
K∑

k=1
pk log2(pk )

whith

pk = P(Y = ωk |th)

Regression trees

purity = low variance of class labels

→ i(th) = V̂ar(Y |th) = 1
|th|

∑
xi∈th

(yi − Ê(Y |th))2 with Ê(Y |th) = 1
|th|

∑
xi∈th

yi
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Decision trees

Learning of decision trees

Impurity measures
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Decision trees

Learning of decision trees

Purity criteria

Purity criteria

leaf
to split

th

Impurity measure + tree structure → criteria

CART, ID3 : purity gain

C4.5 : information gain ratio

Regression trees

CART : Variance minimisation
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Decision trees

Learning of decision trees

Purity criteria

Purity criteria

attribute ?

prediction ?

values ?

prediction ?

values ?th

tL tR

Impurity measure + tree structure → criteria

CART, ID3 : purity gain → ∆i = i(th)− πLi(tL)− πR i(tR)
C4.5 : information gain ratio → IGR = ∆i

H(πL,πR)

Regression trees

CART : Variance minimisation → ∆i = i(th)− πLi(tL)− πR i(tR)
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Decision trees

Learning of decision trees

Stopping criteria

Stopping criteria (pre-pruning)

For all leaves {th}h=1,...,H and their potential children :

I leaves purity : ∃k ∈ {1, . . . ,K} : pk = 1

I leaves and children sizes : |th| ≤ minLeafSize

I leaves and children weights : πh = |th|
t0
≤ minLeafProba

I leaves number : H ≥ maxNumberLeaves

I tree depth : depth(PH) ≥ maxDepth

I purity gain : ∆i ≤ minPurityGain
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Decision trees

Learning of decision trees

Learning algorithm

Learning algorithm

Result: Learnt tree

Start with all the learning data in an initial node (single leaf);

while Stopping criteria not verified for all leaves do
for each splitable leaf do

compute the purity gains obtained from all possible
split;

end
SPLIT : select the split achieving the maximum purity gain;

end
prune the obtained tree;

Recursive partitioning
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Decision trees

Learning of decision trees

Learning algorithm

ID3 - Training Examples – [9+,5-]
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Decision trees

Learning of decision trees

Learning algorithm

ID3 - Selecting Next Attribute
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Learning algorithm

ID3 - Selecting Next Attribute
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Decision trees

Learning of decision trees

Learning algorithm

ID3 - Best Attribute - Outlook
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Decision trees

Learning of decision trees

Learning algorithm

ID3 - Ssunny
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Decision trees

Learning of decision trees

Learning algorithm

ID3 - Results
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Decision trees

Learning of decision trees

Variables importance weights

Variables importance weights

I during a tree learning :

- all potential split → 1 variable→
- purity gain

- accuracy decrease

I after learning :

- these gains, decreases →
∑

→ [0,1]-normalisation

→ importance weights
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Decision trees

Pruning of decision trees

Overfitting
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Decision trees

Pruning of decision trees

Overfitting

Remark : decision trees do not need variable selection or
dimension reduction (in term of accuracy).
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Decision trees

Pruning of decision trees

Cost-complexity trade-off

Cost-Complexity Pruning

The idea
I trade-off between predictive efficiency and complexity

I find a subtree that fulfills this trade-off

Metrics
I ’Err’ ← misclassification rate or MSE

I Criterion : Rα = Err + αH

Steps

I Find a useful sequence of nested subtrees

I Choose the right subtree
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Decision trees

Pruning of decision trees

Cost-complexity trade-off

Cost-Complexity Pruning

Sequence of subtrees creation

Result: sequence of trees that are all sub-trees of T0 :
T0� T1� T2� T3� . . . � Tk � P1(initialnode)
Learn the biggest tree Ts = T0 := PHmax obtained for α0 = 0

(s=0);
while Ts 6= P1 do

Ts+1 = argmin
t∈subtrees(Ts)

[Rαs (t)− Rαs (Ts)];

αs+1 = Rαs (Ts+1)− Rαs (Ts);

end

We get 2 bijective sets : {T0, . . . ,TS} and {α0, . . . , αS} (with TS = P1)

Selection : Ts∗ = argmin
Ts∈{T0,...,TS}

Err(Ts) ← pruning set or cross validation
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Decision trees

Pruning of decision trees

Cost-complexity trade-off

Cost-Complexity Pruning

Figure – Sequence of nested subtrees

Here, α2 < α1 =⇒ T − T1 ⊂ T − T2
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Decision trees

Extension : random forest

Random forest

Motivation
I trees instability

I bias-variance trade-off

Averaging reduces variance :

Var(X ) =
Var(X )

N
(for independant predictions)

→ Average models to reduce model variance

One problem :

- only one training set

- where do multiple models come from ?
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Decision trees

Extension : random forest

Bagging : Bootstrap Aggregation

I Tin Kam Ho (1995) → Leo Breiman (2001)

I Take repeated bootstrap samples from the training set

I Bootstrap sampling : Given a training set D containing N
examples, draw N examples at random with replacement from
D.

I Bagging :

- create B bootstrap samples D1, . . . ,DB

- train distinct classifier on each Db

- classify new instance by majority vote / averaging /
aggregating predictions
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Decision trees

Extension : random forest

Random forest
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Decision trees

Extension : random forest
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