Nicolas Sutton-Charani

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Plan

1. Introduction

- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

What is a decision tree?

What is a decision tree?

What is a decision tree? \rightarrow supervised learning

A little history

 \triangle machine learning (or data mining) decision trees \neq decision theory decision trees

Types of decision trees

type of class label

- ▶ numerical → **regression** tree

type of algorithm (\rightarrow structure)

- CART : statistics, binary tree
- C4.5 : computer science, small tree

Plan

1. Introduction

- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Prediction

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Prediction

Classification trees

Will the badminton match take place?

Prediction

Classification trees

What fruit is it?

Prediction

Classification trees

What he/she come to my party?

Prediction

Classification trees Will they wait?

Prediction

Classification trees

Who will win the US presidential election?

Prediction

Regression trees

What grade will a student get (given his homework average grade)?

Use of decision trees

Interpretability : Descriptive data analysis

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Interpretability : Descriptive data analysis

Data analysis tool

Trees are very interpretable : attributes spaces partitioning

- \rightarrow a tree can be resumed by its leaves which define a law mixture
- \rightarrow wonderful collaboration tool with experts

\triangle **INSTABILITY** \leftarrow overfitting

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Formalism

Learning dataset (supervised learning) $\left(\begin{array}{c} x_1, y_1\\ \vdots\\ x_{NL}, y_N\end{array}\right) = \left(\begin{array}{c} x_1^{\perp} & \dots & x_1^{\perp} & y_1\\ \vdots & & \vdots & \vdots\\ x_1^{\perp} & \dots & x_N^{\perp} & y_N\end{array}\right)$ samples are assumed to be i.i.d • Attributes $X = (X^1, \dots, X^J) \in \mathcal{X} = \mathcal{X}^1 \times \dots \times \mathcal{X}^J$ Spaces \mathcal{X}^{j} can be categorical or numerical • Class label $Y \in \Omega = \{\omega_1, \dots, \omega_K\}$ ($\in \mathbb{R}^K$ for regression)

Tree

$$\mathcal{P}_H = ig\{t_1,\ldots,t_Hig\}$$
 and $\pi_h = P(t_h) pprox rac{|t_h|}{N}$ with $|t_h| = \#\{i: x_i \in t_h\}$

Recursive partitioning

Recursive partitioning

Recursive partitioning

Each decision divides the area in sections

IF. income > 6000**THEN** accept IF. income < 6000 and marital status = widowed or marital status = divorced THEN reject IF income < 4000 and marital status = single or marital status = married **THEN** accept IF. income > 4000 and income < 6000 and marital status = married THEN accept IF. income > 4000 and income < 6000 and marital status = single THEN reject

Recursive partitioning

Learning principle

- Start with all the dataset in the initial node
- Chose the best splits (on attributes) in order to get pure leaves

Classification trees

• **CART**
$$\rightarrow$$
 Gini impurity : $i(t_h) = \sum_{k=1}^{K} p_k(1-p_k)$ whith

► ID3, C4.5 → Shanon entropy :
$$i(t_h) = -\sum_{k=1}^{K} p_k \log_2(p_k)$$
 $p_k = P(Y = \omega_k)$

Regression trees

$$\rightarrow i(t_h) = \widehat{Var}(Y|t_h) = \frac{1}{|t_h|} \sum_{x_i \in t_h} (y_i - \widehat{E}(Y|t_h))^2 \text{ with } \widehat{E}(Y|t_h) = \frac{1}{|t_h|} \sum_{x_i \in t_h} y_i$$

 $|t_h)$

Impurity measures

Figure Comparison among the impurity measures for binary classification problems.

Purity criteria

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

-Learning of decision trees

Purity criteria

Purity criteria

Impurity measure + tree structure \rightarrow criteria

CART, ID3 : purity gain **C4.5** : information gain ratio

Regression trees

CART : Variance minimisation

-Learning of decision trees

Purity criteria

Impurity measure + tree structure \rightarrow criteria

CART, ID3 : purity gain $\rightarrow \Delta i = i(t_h) - \pi_L i(t_L) - \pi_R i(t_R)$ **C4.5** : information gain ratio $\rightarrow IGR = \frac{\Delta i}{H(\pi_L, \pi_R)}$

Regression trees

CART : Variance minimisation $\rightarrow \Delta i = i(t_h) - \pi_L i(t_L) - \pi_R i(t_R)$

Learning of decision trees

└─ Stopping criteria

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

└─ Stopping criteria

Stopping criteria (pre-pruning)

For all leaves $\{t_h\}_{h=1,...,H}$ and their potential children :

- leaves purity : $\exists k \in \{1, \dots, K\}$: $p_k = 1$
- leaves and children sizes : $|t_h| \leq minLeafSize$
- ▶ leaves and children weights : $\pi_h = \frac{|t_h|}{t_0} \le minLeafProba$
- ▶ leaves **number** : *H* ≥ *ma*×*NumberLeaves*
- tree **depth** : $depth(\mathcal{P}_H) \geq maxDepth$
- purity gain : $\Delta i \leq minPurityGain$

Learning of decision trees

Learning algorithm

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Learning algorithm

Learning algorithm

Result: Learnt tree

Start with all the learning data in an initial node (single leaf);

while Stopping criteria not verified for all leaves do
for each splitable leaf do
 compute the purity gains obtained from all possible
 split;

end

SPLIT : select the split achieving the maximum purity gain;

end

prune the obtained tree;

Recursive partitioning

Learning of decision trees

Learning algorithm

ID3 - Training Examples – [9+,5-]

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning algorithm

ID3 - Selecting Next Attribute

Entropy([9+,5-] = $-(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.940$

Gain(S,Humidity) = 0.940-(7/14)*0.985-(7/14)*0.592 = **0.151** Gain(S,Wind) = 0.940-(8/14)*0.811-(6/14)*1.0 = **0.048**

Learning algorithm

ID3 - Selecting Next Attribute

Gain(S,Outlook) = 0.940-(5/14)*0.971 -(4/14)*0.0 -(5/14)*0.0971 = **0.247**

Learning algorithm

ID3 - Selecting Next Attribute

Gain(S,Outlook) = 0.940-(4/14)*1.0 - (6/14)*0.911 - (4/14)*0.811 = **0.029**

Learning algorithm

ID3 - Best Attribute - Outlook

Learning of decision trees

Learning algorithm

ID3 - S_{sunny}

Gain(S_{sunny}, Humidity) = $0.970 \cdot (3/5)0.0 - 2/5(0.0) = 0.970$ Gain(S_{sunny}, Temp.) = $0.970 \cdot (2/5)0.0 - 2/5(1.0) \cdot (1/5)0.0 = 0.570$ Gain(S_{sunny}, Wind) = 0.970 = -(2/5)1.0 - 3/5(0.918) = 0.019

So, Hummudity will be selected

Learning of decision trees

Learning algorithm

ID3 - Results

└─ Variables importance weights

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

└─ Variables importance weights

Variables importance weights

during a tree learning :

- all potential split ightarrow 1 variable ightarrow

- purity gain
- accuracy decrease

- these gains, decreases \rightarrow \sum

- $\rightarrow \sum_{\rightarrow [0,1]-normalisation}$
- \rightarrow importance weights

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Pruning of decision trees

Overfitting

Pruning of decision trees

Overfitting

Expected Error

Remark : decision trees do not need variable selection or dimension reduction (in term of accuracy).

Cost-complexity trade-off

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis

3. Learning of decision trees

- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Cost-complexity trade-off

Cost-Complexity Pruning

The idea

- trade-off between predictive efficiency and complexity
- find a subtree that fulfills this trade-off

Metrics

- ► 'Err' ← misclassification rate or MSE
- **Criterion** : $R_{\alpha} = Err + \alpha H$

Steps

- Find a useful sequence of nested subtrees
- Choose the right subtree

Cost-complexity trade-off

Cost-Complexity Pruning

Sequence of subtrees creation

Result: sequence of trees that are all sub-trees of T_0 : $T0 \gg T1 \gg T2 \gg T3 \gg ... \gg Tk \gg \mathcal{P}_1(initialnode)$ Learn the biggest tree $T_s = T_0 := \mathcal{P}_{H_{max}}$ obtained for $\alpha_0 = 0$ (s=0); while $T_s \neq \mathcal{P}_1$ do $T_{s+1} = \underset{t \in subtrees(T_s)}{\operatorname{argmin}} [R_{\alpha_s}(t) - R_{\alpha_s}(T_s)];$ $\alpha_{s+1} = R_{\alpha_s}(T_{s+1}) - R_{\alpha_s}(T_s);$ end

We get 2 bijective sets : $\{T_0, \ldots, T_S\}$ and $\{\alpha_0, \ldots, \alpha_S\}$ (with $T_S = \mathcal{P}_1$)

Selection : $T_{s^*} = \underset{T_s \in \{T_0, ..., T_s\}}{\operatorname{argmin}} Err(T_s) \leftarrow pruning set or cross validation$

Cost-complexity trade-off

Cost-Complexity Pruning

 $\ensuremath{\operatorname{Figure}}$ – Sequence of nested subtrees

Here, $\alpha_2 < \alpha_1 \Longrightarrow T - T_1 \subset T - T_2$

Plan

- 1. Introduction
- 2. Use of decision trees
- 2.1 Prediction
- 2.2 Interpretability : Descriptive data analysis
- 3. Learning of decision trees
- 3.1 Purity criteria
- 3.2 Stopping criteria
- 3.3 Learning algorithm
- 3.4 Variables importance weights
- 4. Pruning of decision trees
- 4.1 Cost-complexity trade-off
- 5. Extension : random forest

Random forest

Motivation

- trees instability
- bias-variance trade-off

Averaging reduces variance :

$$Var(\overline{X}) = \frac{Var(X)}{N}$$
 (for independant predictions)

 \rightarrow Average models to reduce model variance

One problem :

- only one training set
- where do multiple models come from?

Bagging : Bootstrap Aggregation

- ▶ Tin Kam Ho (1995) \rightarrow Leo Breiman (2001)
- Take repeated bootstrap samples from the training set
- Bootstrap sampling : Given a training set D containing N examples, draw N examples at random with replacement from D.

Bagging :

- create B bootstrap samples D_1, \ldots, D_B
- train distinct classifier on each D_b
- classify new instance by majority vote / averaging / aggregating predictions

Régression : moyenne des valeurs prédites par les B arbres

References

- * L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification And Regression Trees, 1984.
- * J. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, pp. 81–106, Oct. 1986
- * L. Breiman. Random forests. Statistics, pages 1–33, 2001.
- * G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res., 9 :2015–2033, jun 2008.