QFT, SOLUTIONS TO PROBLEM SHEET 13

Problem 1: Schwinger-Dyson equations and Ward-Takahashi identities

1. As warm-up in finitely many dimensions, show that

$$\int d^d x \ e^{-s(x)-j\cdot x} \left(\nabla s(x) + j\right) = 0$$

where $j \in \mathbb{R}^d$ is a constant vector and s(x) is any real function (assumed to tend to infinity at $|x| \to \infty$ sufficiently quickly for the integral to converge).

A constant shift of the integration variable $x \to x' = x + z$ gives a trivial Jacobian, so the integration measure is invariant:

$$\int d^{d}x \ e^{-s(x)-j\cdot x} = \int d^{d}x' \ e^{-s(x'-z)-(x'-z)\cdot j}$$

$$= \int d^{d}x' \ e^{-s(x')-x'\cdot j+\nabla s(x')\cdot z+j\cdot z} + \mathcal{O}(|z|^{2})$$

$$= \int d^{d}x' \ e^{-s(x')-j\cdot x'} (1 + (\nabla s(x') + j) \cdot z + \mathcal{O}(|z|^{2}))$$

Subtracting $\int d^dx \, e^{-s(x)-j\cdot x}$ on both sides, one obtains the desired relation.

2. Derive the corresponding formal functional identity by replacing $\phi \to \phi'$ in the generating functional Z[J]:

$$\int \mathcal{D}\phi \, \int \mathrm{d}^4 y \left(\frac{\delta S}{\delta \phi(y)} + J(y) \right) \zeta(y) \; e^{i(S[\phi] + \int J\phi)} = 0 \, .$$

We have

$$Z[J] = \int \mathcal{D}\phi' \ e^{i(S[\phi'] + \int J\phi')} = \int \mathcal{D}\phi \ e^{i(S[\phi] + \int J\phi + \alpha \int (\frac{\delta S}{\delta \phi} + J)\zeta) + \mathcal{O}(|\alpha|^2)}$$
$$= \int \mathcal{D}\phi \ e^{i(S[\phi] + \int J\phi)} \left(1 + i\alpha \int d^4y \left(\frac{\delta S}{\delta \phi(y)} + J(y) \right) \zeta(y) + \mathcal{O}(|\alpha|^2) \right)$$

and subtracting Z[J] on both sides gives the result.

3. By setting $\zeta(y) = \delta^{(4)}(y-x)$ for some fixed x, conclude that

$$\Box_{x}\langle 0| \operatorname{T} \phi(x)\phi(x_{1})\dots\phi(x_{n})|0\rangle + \langle 0| \operatorname{T} \mathcal{V}'(\phi(x))\phi(x_{1})\dots\phi(x_{n})|0\rangle$$

$$= -i \sum_{k=1}^{n} \langle 0| \operatorname{T} \phi(x_{1})\dots\phi(x_{k-1})\delta^{(4)}(x-x_{k})\phi(x_{k+1})\dots\phi(x_{n})|0\rangle.$$

Starting from

$$\int \mathcal{D}\phi \left(\frac{\delta S}{\delta \phi(x)} + J(x)\right) e^{i(S[\phi] + \int J\phi)} = 0$$

and taking n functional derivatives $\frac{1}{i} \frac{\delta}{\delta J(x_k)}$ $(k = 1 \dots n)$, the derivatives can either all act on the exponential (which brings down n factors of ϕ) or one of them can act on the J(x) in front of the exponential (which gives $\frac{1}{i} \delta^{(4)}(x - x_k)$, and only n-1 factors of ϕ from the others acting on the exponential). Setting J=0 after differentiation, we get

$$0 = \int \mathcal{D}\phi \frac{\delta S}{\delta \phi(x)} \left(\prod_{j=1}^{n} \phi(x_{j}) \right) e^{iS[\phi]} + \frac{1}{i} \sum_{k=1}^{n} \int \mathcal{D}\phi \, \delta^{(4)}(x - x_{k}) \left(\prod_{j \neq k} \phi(x_{j}) \right) e^{iS[\phi]}$$

$$= \int \mathcal{D}\phi \, \left(-\Box \phi(x) - \mathcal{V}'(\phi(x)) \right) \left(\prod_{j=1}^{n} \phi(x_{j}) \right) e^{iS[\phi]}$$

$$- i \sum_{k=1}^{n} \int \mathcal{D}\phi \, \delta^{(4)}(x - x_{k}) \left(\prod_{j \neq k} \phi(x_{j}) \right) e^{iS[\phi]}$$

$$= - \Box_{x} \int \mathcal{D}\phi \, \phi(x) \left(\prod_{j=1}^{n} \phi(x_{j}) \right) e^{iS[\phi]} - \int \mathcal{D}\phi \, \mathcal{V}'(\phi(x)) \left(\prod_{j=1}^{n} \phi(x_{j}) \right) e^{iS[\phi]}$$

$$- i \sum_{k=1}^{n} \int \mathcal{D}\phi \, \delta^{(4)}(x - x_{k}) \left(\prod_{j \neq k} \phi(x_{j}) \right) e^{iS[\phi]}$$

Dividing by Z[0] gives the desired result.

4. Write down the Schwinger-Dyson equation explicitly for the case of n = 1 and a free field. Does this look familiar?

It should: Using $\frac{\delta S}{\delta \phi} = -(\Box + m^2)\phi$, one recovers the familiar statement that the Feynman propagator is a Green function for the Klein-Gordon operator, $(\Box_x + m^2)D_F(x - x_1) = -i\delta^{(4)}(x - x_1)$.

5. Using the LSZ reduction formula, convince yourself that contact terms can never contribute to the invariant matrix elements $\mathcal{M}_{\mathrm{fi}}$.

According to LSZ, the connected transition amplitudes $\langle f|i\rangle$ are given by the residues at the poles of the on-shell correlation functions in momentum space, i.e. for an n-point function

$$\langle f|i\rangle = (-i)^n (p_1^2 - m^2) \dots (p_n^2 - m^2) G(p_1, \dots, p_n)$$
 at $p_i^2 = m^2$
 $G(p_1, \dots, p_n) = \int d^4 x_1 \dots d^4 x_n e^{\pm i p_1 x_1 \dots \pm i p_n x_n} \langle 0| T \phi(x_1) \dots \phi(x_n) |0\rangle$.

Any term in G which is missing a pole at $p_k^2 = m^2$ for some k will not contribute to $\langle f|i\rangle$, since it comes with a zero prefactor $p_k^2 - m^2$ without a corresponding $p_k^2 - m^2$ in the denominator. For a contact term,

$$\int d^4x_1 \dots d^4x_n e^{\pm ip_1x_1\dots \pm ip_nx_n} \langle 0|T \phi(x_1) \dots \phi(x_{k-1})\phi(x_{k+1}) \dots \phi(x_n)|0\rangle \delta^{(4)}(x_k - x)$$

$$= e^{ip_kx} \times \text{(some function independent of } p_k).$$

This obviously doesn't have the right pole structure to contribute.

6. By setting $\zeta(y) = \delta\phi(x) \, \delta^{(4)}(x-y)$ in the result of 2., show that

$$\int \mathcal{D}\phi \left(\partial_{\mu}j^{\mu}(x) - J(x) \delta\phi(x)\right) e^{i(S[\phi] + \int J\phi)} = 0$$

and deduce that

$$\frac{\partial}{\partial x^{\mu}} \langle 0 | T j^{\mu}(x) \phi(x_1) \dots \phi(x_n) | 0 \rangle$$

$$= i \sum_{k=1}^{n} \langle 0 | T \phi(x_1) \dots \phi(x_{k-1}) \delta \phi(x_k) \delta^{(4)}(x - x_k) \phi(x_{k+1}) \dots \phi(x_n) | 0 \rangle.$$

This is easily shown by following the same steps as in 3.

7. Use the Schwinger-Dyson equation for $A_{\mu}(x)$ and the result of part 5. to show that

$$\langle f|i\rangle = -i\varepsilon^{\mu}(k) \int d^4x \ e^{-ikx} \dots \langle 0|T \ j_{\mu}(x) \dots |0\rangle.$$

The equation of motion for A_{μ} in Lorenz gauge is

$$\frac{\delta S}{\delta A^{\mu}} = \Box A_{\mu} + j_{\mu}$$

hence the Schwinger-Dyson equation reads

$$i\varepsilon^{\mu}(k) \int d^4x \ e^{-ikx} \Box_x \dots \langle 0|T \ A_{\mu}(x) \dots |0\rangle$$
$$= -i\varepsilon^{\mu}(k) \int d^4x \ e^{-ikx} \dots \langle 0|T \ j_{\mu}(x) \dots |0\rangle + \text{ contact terms.}$$

8. Use the Ward-Takahashi identities to prove the Ward identity of QED: If \mathcal{M}_{fi} is the corresponding invariant matrix element and $\mathcal{M}_{\mu}(k)$ is defined by $\mathcal{M}_{fi} = \varepsilon^{\mu}(k)\mathcal{M}_{\mu}(k)$, then

$$k^{\mu}\mathcal{M}_{\mu}(k)=0$$
.

We have

$$k^{\mu} \int d^4x \ e^{-ikx} \Box_x \dots \langle 0|T \ A_{\mu}(x) \dots |0\rangle$$

$$= \int d^4x \ e^{-ikx} \dots k^{\mu} (\langle 0|T \ j_{\mu}(x) \dots |0\rangle + \text{ contact terms})$$

$$= -i \int d^4x \ e^{-ikx} \dots (\partial^{\mu} \langle 0|T \ j_{\mu}(x) \dots |0\rangle + \text{ contact terms})$$

$$= -i \int d^4x \ e^{-ikx} \dots (\text{ contact terms only})$$

$$= 0.$$