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TD 11-12 : Perturbations dépendantes du temps. Interactions
atome-rayonnement

Exercice 22 : Collision de deux spins
On étudie deux particules de spin % entrant en collision. les spins sont notés
S1, Sy et 'on considére que durant la collision 'interaction entre les deux spins

prend la forme :

V= CLSl.SQ,

oll a est constant et est non nul uniquement durant la collision qui a lieu
dans l'intervalle de temps [0, 7].

Au temps t = —oo le systéme est considéré étre dans I’état |+, —) état propre
de S1. (Sa2.) avec la valeur propre +4 (—4).

1) En utilisant la théorie des perturbations dépendant du temps au premier
ordre, calculer la probabilité P(|+, —) — |—, +)) de trouver a ¢ = 400 le systéme
dans l'état |—,+). Il est précisé que 'hamiltonien d’interaction V n’est pas
diagonal dans la base {|+,+)} et qu’il convient d’exprimer le vecteur |+, —)
dans la base |S, Mg) avec S = Sy + Ss le spin total.

2) Vérifier que ’on retrouve le résultat donné par la théorie des perturbations
dépendant du temps au premier ordre pour une perturbation constante branchée
a t = 0. On rappelle que dans un tel cas la probabilité de transition P(|i) —
|f))(t) d’un état initial |i), d’énergie E;, vers un état final |f), d’énergie Ey,
vaut :

ASVID1® . 5 AB

P(li) = 1) = L sin? 2,

avec AE = Ey — E;.
3) Comparer le résultat en perturbation au résultat sans approximation.
Donner la condition de validité de la solution en perturbation.

Exercice 23 : Rapport gyromagnétique d’une particule neutre de
1

spin =

On2 considére un neutron de spin % se déplacant a la vitesse v dans la di-
rection Ox. Cette particule est soumise & un champ magnétique constant By
dirigé selon Oz et dans une région limitée de ’espace & un champ oscillant
B(z,t) = Ble*%(cos(wt)ex + sin(wt)e,), avec By << By. Les états propres
de la projection S, du spin dans la direction Oz seront notés |£). L’hamil-
tonien d’interaction vaut —geS.B/2mc, avec e la charge élémentaire, g et m
respectivement le facteur gyromagnétique et la masse du proton. On posera
w; = —geB;/2mec.

1) En traitant By comme une perturbation et en limitant le développement
en perturbation au premier ordre, calculer I’amplitude de probabilité d’une tran-
sition vers 'état |[4+) & t = 400 pour une particule dans l’état |—) a t = —c0.

2) On mesure la probabilité P(|—) — |4)) d’une telle transition. Tracer cette
probabilité en fonction de w — wy. Exprimer la largeur de la courbe en fonction
de v et a et donner une interprétation de cette largeur.

On rajoute une seconde zone de champ oscillant décallée de b telle que
B'(z,t) = B(z — b, 1).

3) Montrer que la nouvelle probabilité présente des oscillations.
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4) Discuter en quoi utiliser deux zones de champs oscillants augmente la
precision sur la détermination de wg. Donner une expression de la précision avec
laquelle est mesurée le facteur gyromagnétique de la particule.

5) Appliquer & un neutron de vitesse v = 10%m.s~!, dans un champ de 10*G.
Sachant que la mesure donne g = —3.8260840 £ 0.0000018 quel est ’ordre de
grandeur de b?

Exercice 24 : Temps de vie du niveau 2p de ’atome d’hydrogéne

Des mesures expérimentales indiquent que le temps de vie de la transition
dipolaire électrique 2p — 1s (transition Lyman «, 121.5nm) vaut (1.600 £
0.004) x 10725 (Bickel and Goodman, Phys. Rev., 148 (1966) 1).

Le taux d’émission spontanée w;_,, dans une transition dipolaire électrique

|i) — |n) vaut
w3 \ 12
Wiy = 2ac—2| (nlex|7) |7,

avec a = €2 /he, w la "fréquence" de la transition, € la direction de polarisation.

On veut calculer le temps de vie de la transition 2p — 1s. On considére que
I’état initial est non polarisé, ce qui signifie que I’état atomique initial est un
mélange équiprobable des états m = 0, 1.

a) Il est indiqué que la transition est dipolaire électrique. Pourquoi ne peut-
elle pas étre dipolaire magnétique (Hpys x (n|L 4 2S|i) .B) ou quadrupolaire
électrique (Hgp o k. (n|xx|i) .E)? (Les fonctions d’ondes utiles sont données
dans l'exercice 8). Justifier 'approximation dipolaire électrique pour cette tran-
sition.

b) Ecrire 'opérateur dipolaire e.x en termes de polarisations circulaires et
linéaires. puis en termes d’harmoniques sphériques. On rappelle : Y (0, ¢) =

\/gcos 0, YEN(6, 9) = :F\/gsin fetid.

¢) Reéalisez qu’il n’y a que trois éléments de matrice & calculer. Ces éléments
de matrice sont tous identiques. En déduire (1s|e.x|2p, m).

d) Donner une expression tu temps de vie 73,_15. Pour tenir compte du fait
que le rayonnement est émis dans toutes les directions de I’espace et des deux
directions de polarisations orthogonales il faut introduire un facteur 2/3.

e) Comparer I'application numérique aux mesures expérimentales. Conclu-
sion ?

Exercice 25 : Régle de somme de Thomas-Reiche-Kuhn

La régle de somme de Thomas-Reiche-Kuhn est une conséquence fondamen-
tale de la relation de commutation position-impulsion pour un électron ato-
mique, elle implique une contrainte importante sur les éléments de matrice des
transitions atomiques de laquelle découle la relation ) f,; = 1 sur les forces
d’oscillateur des transitions.

En physique atomique on défini la force d’oscillateur d’une transition, f;,

comme
2MWn;

En supposant un hamiltonien non perturbé H = % + V(X]) et aprés avoir
calculé [X, [X, H]] montrer que ) fn; = 1.
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