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TD 11-12 : Perturbations dépendantes du temps. Interactions
atome-rayonnement

Exercice 22 : Collision de deux spins
On étudie deux particules de spin 1

2 entrant en collision. les spins sont notés
S1, S2 et l’on considère que durant la collision l’interaction entre les deux spins
prend la forme :

V = aS1.S2,

où a est constant et est non nul uniquement durant la collision qui a lieu
dans l’intervalle de temps [0, τ ].

Au temps t = −∞ le système est considéré être dans l’état |+,−⟩ état propre
de S1z (S2z) avec la valeur propre + h̄

2 (− h̄
2 ).

1) En utilisant la théorie des perturbations dépendant du temps au premier
ordre, calculer la probabilité P (|+,−⟩ → |−,+⟩) de trouver à t = +∞ le système
dans l’état |−,+⟩. Il est précisé que l’hamiltonien d’interaction V n’est pas
diagonal dans la base {|±,±⟩} et qu’il convient d’exprimer le vecteur |+,−⟩
dans la base |S,MS⟩ avec S = S1 + S2 le spin total.

2) Vérifier que l’on retrouve le résultat donné par la théorie des perturbations
dépendant du temps au premier ordre pour une perturbation constante branchée
à t = 0. On rappelle que dans un tel cas la probabilité de transition P (|i⟩ →
|f⟩)(t) d’un état initial |i⟩, d’énergie Ei, vers un état final |f⟩, d’énergie Ef ,
vaut :

P (|i⟩ → |f⟩) = 4|⟨f |V |i⟩|2

∆E2
sin2

∆Et

2h̄
,

avec ∆E = Ef − Ei.
3) Comparer le résultat en perturbation au résultat sans approximation.

Donner la condition de validité de la solution en perturbation.

Exercice 23 : Rapport gyromagnétique d’une particule neutre de
spin 1

2
On considère un neutron de spin 1

2 se déplaçant à la vitesse v dans la di-
rection Ox. Cette particule est soumise à un champ magnétique constant B0

dirigé selon Oz et dans une région limitée de l’espace à un champ oscillant
B(x, t) = B1e

− |x|
a (cos(ωt)ex + sin(ωt)ey), avec B1 << B0. Les états propres

de la projection Sz du spin dans la direction Oz seront notés |±⟩. L’hamil-
tonien d’interaction vaut −geS.B/2mc, avec e la charge élémentaire, g et m
respectivement le facteur gyromagnétique et la masse du proton. On posera
ωi = −geBi/2mc.

1) En traitant B1 comme une perturbation et en limitant le développement
en perturbation au premier ordre, calculer l’amplitude de probabilité d’une tran-
sition vers l’état |+⟩ à t = +∞ pour une particule dans l’état |−⟩ à t = −∞.

2) On mesure la probabilité P (|−⟩ → |+⟩) d’une telle transition. Tracer cette
probabilité en fonction de ω − ω0. Exprimer la largeur de la courbe en fonction
de v et a et donner une interprétation de cette largeur.

On rajoute une seconde zone de champ oscillant décallée de b telle que
B′(x, t) = B(x− b, t).

3) Montrer que la nouvelle probabilité présente des oscillations.
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4) Discuter en quoi utiliser deux zones de champs oscillants augmente la
precision sur la détermination de ω0. Donner une expression de la précision avec
laquelle est mesurée le facteur gyromagnétique de la particule.

5) Appliquer à un neutron de vitesse v = 102m.s−1, dans un champ de 104G.
Sachant que la mesure donne g = −3.8260840 ± 0.0000018 quel est l’ordre de
grandeur de b ?

Exercice 24 : Temps de vie du niveau 2p de l’atome d’hydrogène
Des mesures expérimentales indiquent que le temps de vie de la transition

dipolaire électrique 2p → 1s (transition Lyman α, 121.5nm) vaut (1.600 ±
0.004)× 10−9s (Bickel and Goodman, Phys. Rev., 148 (1966) 1).

Le taux d’émission spontanée wi→n dans une transition dipolaire électrique
|i⟩ → |n⟩ vaut

wi→n = 2α
ω3

c2
| ⟨n|ϵ.x|i⟩ |2,

avec α = e2/h̄c, ω la "fréquence" de la transition, ϵ la direction de polarisation.
On veut calculer le temps de vie de la transition 2p → 1s. On considère que

l’état initial est non polarisé, ce qui signifie que l’état atomique initial est un
mélange équiprobable des états m = 0,±1.

a) Il est indiqué que la transition est dipolaire électrique. Pourquoi ne peut-
elle pas être dipolaire magnétique (HDM ∝ ⟨n|L+ 2S|i⟩ .B) ou quadrupolaire
électrique (HQE ∝ k. ⟨n|xx|i⟩ .E) ? (Les fonctions d’ondes utiles sont données
dans l’exercice 8). Justifier l’approximation dipolaire électrique pour cette tran-
sition.

b) Ecrire l’opérateur dipolaire ϵ.x en termes de polarisations circulaires et
linéaires. puis en termes d’harmoniques sphériques. On rappelle : Y 0

1 (θ, ϕ) =√
3
4π cos θ, Y ±1

1 (θ, ϕ) = ∓
√

3
8π sin θe±iϕ.

c) Réalisez qu’il n’y a que trois éléments de matrice à calculer. Ces éléments
de matrice sont tous identiques. En déduire ⟨1s|ϵ.x|2p,m⟩.

d) Donner une expression tu temps de vie τ2p→1s. Pour tenir compte du fait
que le rayonnement est émis dans toutes les directions de l’espace et des deux
directions de polarisations orthogonales il faut introduire un facteur 2/3.

e) Comparer l’application numérique aux mesures expérimentales. Conclu-
sion ?

Exercice 25 : Règle de somme de Thomas-Reiche-Kuhn
La règle de somme de Thomas-Reiche-Kuhn est une conséquence fondamen-

tale de la relation de commutation position-impulsion pour un électron ato-
mique, elle implique une contrainte importante sur les éléments de matrice des
transitions atomiques de laquelle découle la relation

∑
n fni = 1 sur les forces

d’oscillateur des transitions.
En physique atomique on défini la force d’oscillateur d’une transition, fni,

comme
fni =

2mωni

h̄
|⟨n|X|i⟩|2

En supposant un hamiltonien non perturbé H = P2

2m +V (|X|) et après avoir
calculé [X, [X,H]] montrer que

∑
n fni = 1.
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