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QFT, SOLUTIONS TO PROBLEM SHEET 9

Problem 1: Decay of a scalar particle

Consider the following Lagrangian, involving two real scalar fields ¢ and x:

1 1 1 1 1
L= =0,p0" —0, 0" — =m*¢p? — = M*}* — = 2,
5000”0 + SO0 X — om ¢" — SMX" — Spxo
Suppose that M > 2m, so that the decay x — ¢¢ is kinematically possible. Calculate
the lifetime of x to leading order in the coupling p.

The only Feynman diagram contributing to the 3-point function
(0| Tx(x1)p(x2)d(23)|0) at leading order in p is the one given in the exercise.
According to the LSZ formalism, we should amputate the external propagators
and Fourier transform. This gives the transition amplitude, for a y particle of
momentum p; to decay into two ¢ particles of momenta ps 3:
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In the decay width, a factor % must be included to account for the two identical

particles in the final state. Hence, in the y rest frame (where p; = (M, 0,0,0))
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Remembering the § function transformation rule

here we have, for f(p) = M —2+/p?> + m?,
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and therefore

or




This expression satisfies a number of obvious consistency checks, e.g. it tends to
infinity if the coupling approaches zero, or if the decay becomes kinematically for-
bidden (m — M/2).

Problem 2: Compton scattering

Consider an ey — ey scattering process. The four-momenta in the initial state are
p1 for the electron and ps for the photon, while in the final state they are p/, for the
photon and p} = p; + ps — p), for the electron. A tree-level calculation in quantum
electrodynamics gives the squared matrix element
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Here a is the fine-structure constant, m is the electron mass, and the bar in M
indicates that we have averaged over initial spin and polarization states and summed
over final ones.

Starting from this expression, derive the Klein-Nishina formula
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where w and W’ are the initial and final photon energies, and 6 is the scattering angle
between the two photons, in a frame where the initial electron is at rest.

According to the lecture, the differential cross-section for 2 — 2 scattering is given
by
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= (2m) 0™ (p1 + p2 — i — ph) M.

We begin by choosing a coordinate system: Initially the electron is at rest at the
origin, the incoming photon is aligned with the z-direction, and the two photons lie
in the (y, z)-plane. This gives
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where E] = /p1’? + m?; here we have used that all particles are on shell and that
the photon is massless. In this frame, |0} — | = 1, and therefore
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= (2m)* 69 (py + p2 — Py — ph) M.

Splitting the four-dimensional delta function into an energy-conserving part and a
3-momentum conserving part,
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we notice that the latter enforces
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and therefore
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where FEf is now a function of w, w’ and 6 given in (1). Transforming to polar
coordinates and integrating over the angle ¢ gives
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and hence
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We should now transform the energy-conserving delta function, because its argument
is a nontrivial function of the integration variable w’. In general,
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Here, with f(w') = m +w — Ej(w') — ', we have
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where the last equality holds only under the delta function. Therefore
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In this expression, w’ is constrained by energy conservation to be a function of w
and 6. In fact,
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which gives
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Finally using the expression for [M|? gives
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