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Problem 1: Decay of a scalar particle

Consider the following Lagrangian, involving two real scalar fields φ and χ:

L =
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ− 1

2
m2φ2 − 1

2
M2χ2 − 1

2
µ χφ2.

Suppose thatM > 2m, so that the decay χ→ φφ is kinematically possible. Calculate
the lifetime of χ to leading order in the coupling µ.

The only Feynman diagram contributing to the 3-point function
〈0|Tχ(x1)φ(x2)φ(x3)|0〉 at leading order in µ is the one given in the exercise.
According to the LSZ formalism, we should amputate the external propagators
and Fourier transform. This gives the transition amplitude, for a χ particle of
momentum p1 to decay into two φ particles of momenta p2,3:

〈f |i〉 = −iµ (2π)4 δ(4)(p1 − p2 − p3) ⇔ Mfi = −µ .

In the decay width, a factor 1
2

must be included to account for the two identical
particles in the final state. Hence, in the χ rest frame (where p1 = (M, 0, 0, 0))

dΓ =
µ2

4M
d̃p2d̃p3 (2π)4 δ(4)(p1 − p2 − p3)

The total decay width is

Γ =
µ2

4M

∫
d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

(2π)4 δ(M − E2 − E3) δ(3)(~p2 + ~p3)

=
µ2

64π2M

∫
d3p2

1

E2
2

δ(M − 2E2)

=
µ2

16πM

∫ ∞
0

dp
p2

p2 +m2
δ(M − 2

√
p2 +m2)

Remembering the δ function transformation rule

δ(f(x)) =
∑

xi : f(xi)=0

1

|f ′(xi)|
δ(x− xi)

here we have, for f(p) = M − 2
√
p2 +m2,

f ′(p) = − 2 p√
p2 +m2

, f(p) = 0 ⇔ p2 +m2 =
M2

4

and therefore

Γ =
µ2

16πM

M2

4
−m2

M2

4

M

2
√
M2 − 4m2

=
µ2

32πM

√
1− 4

m2

M2

or

τ =
1

Γ
=

32πM

µ2

(
1− 4

m2

M2

)−1/2

.



This expression satisfies a number of obvious consistency checks, e.g. it tends to
infinity if the coupling approaches zero, or if the decay becomes kinematically for-
bidden (m → M/2).

Problem 2: Compton scattering

Consider an eγ → eγ scattering process. The four-momenta in the initial state are
p1 for the electron and p2 for the photon, while in the final state they are p′2 for the
photon and p′1 = p1 + p2 − p′2 for the electron. A tree-level calculation in quantum
electrodynamics gives the squared matrix element

|M|2 = 32π2 α2

(
p1p
′
2

p1p2

+
p1p2

p1p′2
+ 2m2

(
1

p1p2

− 1

p1p′2

)
+m4

(
1

p1p2

− 1

p1p′2

)2
)
.

Here α is the fine-structure constant, m is the electron mass, and the bar in M
indicates that we have averaged over initial spin and polarization states and summed
over final ones.

Starting from this expression, derive the Klein-Nishina formula

dσ

d cos θ
=
πα2

m2

ω′2

ω2

(
ω′

ω
+
ω

ω′
− sin2 θ

)
,

where ω and ω′ are the initial and final photon energies, and θ is the scattering angle
between the two photons, in a frame where the initial electron is at rest.

According to the lecture, the differential cross-section for 2 → 2 scattering is given
by

dσ =
1

4E1E2

1

|~v1 − ~v2|
d3p′1

2E ′1 (2π)3

d3p′2
2E ′2 (2π)3

(2π)4 δ(4) (p1 + p2 − p′1 − p′2) |M|2 .

We begin by choosing a coordinate system: Initially the electron is at rest at the
origin, the incoming photon is aligned with the z-direction, and the two photons lie
in the (y, z)-plane. This gives

p1 = (m, ~0) , p2 = (ω, ω~ez) , p′1 = (E ′1, ~p1
′) , p′2 = (ω′, ω′ sin θ~ey + ω′ cos θ~ez)

where E ′1 =
√
~p1
′2 +m2; here we have used that all particles are on shell and that

the photon is massless. In this frame, |~v1 − ~v2| = 1, and therefore

dσ =
1

4ωm

d3p′1
2E ′1 (2π)3

d3p′2
2ω′ (2π)3

(2π)4 δ(4) (p1 + p2 − p′1 − p′2) |M|2 .

Splitting the four-dimensional delta function into an energy-conserving part and a
3-momentum conserving part,

(2π)4 δ(4)(p1 + p2 − p′1 − p′2)

= (2π) δ (m+ ω − E ′1 − ω′) (2π)3δ(3) (ω~ez − ~p1
′ − ω′ sin θ~ey − ω′ cos θ~ez)

we notice that the latter enforces

~p1
′ = (ω − ω′ cos θ)~ez − ω′ sin θ~ey , E ′1 =

√
ω2 + ω′2 +m2 − 2ωω′ cos θ (1)



and therefore

dσ =
1

8mωE ′1

d3p′2
2ω′ (2π)3

(2π) δ (m+ ω − E ′1 − ω′) |M|2

where E ′1 is now a function of ω, ω′ and θ given in (1). Transforming to polar
coordinates and integrating over the angle φ gives

d3p′2 = 2π ω′2dω′ d cos θ

and hence

dσ =
1

32π

ω′

mωE ′1
dω′ d cos θ δ (m+ ω − E ′1 − ω′) |M|2 .

We should now transform the energy-conserving delta function, because its argument
is a nontrivial function of the integration variable ω′. In general,

δ(f(ω′)) =
∑

{ω′0 : f(ω′0)=0}

1

| ∂f
∂ω′

(ω′0)|
δ(ω′ − ω′0) .

Here, with f(ω′) = m+ ω − E ′1(ω′)− ω′, we have∣∣∣∣ ∂∂ω′ (m+ ω − E ′1 − ω′)
∣∣∣∣ =

∣∣∣∣−1− ω′ − ω cos θ

E ′1

∣∣∣∣ =

∣∣∣∣E ′1 + ω′ − ω cos θ

E ′1

∣∣∣∣ =
m+ ω(1− cos θ)

E ′1

where the last equality holds only under the delta function. Therefore

dσ =
1

32π

ω′

mω(m+ ω(1− cos θ))
d cos θ |M|2 .

In this expression, ω′ is constrained by energy conservation to be a function of ω
and θ. In fact,

E ′1
2 = (m+ ω − ω′)2

⇔ ω2 + ω′2 +m2 − 2ωω′ cos θ = m2 + ω2 + ω′2 + 2mω − 2ωω′ − 2mω′

⇔ ω′(m+ ω(1− cos θ)) = mω

which gives

dσ =
1

32π

ω′2

m2ω2
d cos θ |M|2 .

Finally using the expression for |M|2 gives
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