QUANTUM FIELD THEORY, PROBLEM SHEET 10

Problem 1: Compton scattering

Consider an $e\gamma \to e\gamma$ scattering process. The four-momenta in the initial state are p_1 for the electron and p_2 for the photon, while in the final state they are p_2' for the photon and $p_1' = p_1 + p_2 - p_2'$ for the electron. A tree-level calculation in quantum electrodynamics gives the squared matrix element

$$|\overline{\mathcal{M}}|^2 = 32\pi^2 \alpha^2 \left(\frac{p_1 p_2'}{p_1 p_2} + \frac{p_1 p_2}{p_1 p_2'} + 2m^2 \left(\frac{1}{p_1 p_2} - \frac{1}{p_1 p_2'} \right) + m^4 \left(\frac{1}{p_1 p_2} - \frac{1}{p_1 p_2'} \right)^2 \right).$$

Here α is the fine-structure constant, m is the electron mass, and the bar in $\overline{\mathcal{M}}$ indicates that we have averaged over initial spin and polarization states and summed over final ones.

Starting from this expression, derive the Klein-Nishina formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2}{m^2}\frac{\omega'^2}{\omega^2}\left(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta\right)\,,$$

where ω and ω' are the initial and final photon energies, and θ is the scattering angle between the two photons, in a frame where the initial electron is at rest.

Hints: Show that $\omega' = \frac{\omega}{1 + \frac{\omega}{m}(1 - \cos \theta)}$, and thus

$$\widetilde{d^3 p'_1} \ \widetilde{d^3 p'_2} \ (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p'_1 - p'_2) = \frac{1}{8\pi} d\cos\theta \frac{(\omega')^2}{\omega m}.$$

If you get stuck, see Peskin & Schroeder p. 162f.

Problem 2: The Clifford algebra

1. Given a set of four matrices γ^{μ} which satisfy the Clifford algebra

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2 q^{\mu\nu}$$

show that the matrices $\gamma^{\mu\nu} \equiv \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$ satisfy the Lorentz algebra:

$$[\gamma^{\kappa\lambda}, \gamma^{\rho\sigma}] = i \left(g^{\lambda\rho} \gamma^{\kappa\sigma} - g^{\kappa\rho} \gamma^{\lambda\sigma} - g^{\lambda\sigma} \gamma^{\kappa\rho} + g^{\kappa\sigma} \gamma^{\lambda\rho} \right).$$

2. Verify that the Clifford algebra is satisfied by both the Weyl representation of γ matrices

$$\gamma^0 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \qquad \vec{\gamma} = \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix}.$$

and the Dirac-Pauli representation

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \vec{\gamma} = \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix}$$

and find the unitary transformation that takes one into the other.

3. Defining $\gamma^5=i\,\gamma^0\gamma^1\gamma^2\gamma^3,$ calculate

$$\{\gamma^5, \gamma^{\mu}\}$$
 and $[\gamma^5, \gamma^{\mu\nu}]$.

Problem 2: The Dirac field

1. Show that

$$\left(\mathbb{1} + \frac{i}{2}\omega_{\rho\sigma}\gamma^{\rho\sigma}\right)\gamma^{\mu}\left(\mathbb{1} - \frac{i}{2}\omega_{\rho\sigma}\gamma^{\rho\sigma}\right) = \left(\mathbb{1} - \frac{i}{2}\omega_{\rho\sigma}M^{\rho\sigma}\right)^{\mu}{}_{\nu}\gamma^{\nu} + \mathcal{O}(||\omega||^2),$$

where the $M^{\rho\sigma}$ generate the vector representation of $\mathfrak{so}(1,3)$,

$$(M^{\kappa\lambda})_{\mu\nu} = i \left(\delta^{\kappa}_{\ \mu} \delta^{\lambda}_{\ \nu} - \delta^{\kappa}_{\ \nu} \delta^{\lambda}_{\ \mu} \right) .$$

Use this result to conclude that the Dirac Lagrangian

$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi$$

is invariant under proper orthochronous Lorentz transformations.

2. Find the Euler-Lagrange equations obtained from the Dirac Lagrangian.