Licence 2 - HAC310X Mathématiques pour la Chimie S3

Devoir Encadré No 2

(4/12/2024) Durée : 2 h 00

Calculatrices, documents et portables interdits

(Justifier toutes les réponses)

Problème 1. Déterminer, pour chacune des fonctions suivantes, le domaine de définition D_f . Pour chacune des fonctions, calculer ensuite les dérivées partielles en chaque point du domaine de définition lorsqu'elles existent

- a) $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$
- b) $f(x, y) = \sin^2 x + \cos^2 y$,
- c) $f(x, y, z) = x^2 y^2 \sqrt{z}$.

Problème 2. Soit $f(x,y) = y - \cos x$ et soit S_f la surface-graphe (représentation graphique) de f dans l'espace.

- a) La surface S_f contient-elle l'origine? Qu'en est-il du point (0,0,-1)?
- b) Déterminer les courbes de niveau z = k où k est une constante (on tracera ces courbes dans le plan).
 - c) Donner une représentation de S_f .

Problème 3. Déterminer les extrema locaux de $f(x; y) = x^3 + y^2 - 3x - 4y + 2$.

Problème 4. Trouver les points critiques de la fonction f suivante et déterminer si ce sont des minima locaux, des maxima locaux ou des points selle.

$$f(x,y) = \sin x + y^2 - 2y + 1$$

Problème 5. Déterminer si la forme différentielle w = (4x + 3y)dx + (3x + 8y)dy est exacte et, dans les cas il est, chercher f tel que df = w.

Problème 6. Calculer $\int_0^2 \int_x^{2x} (x^2 + y^2) dy dx$. Quelle est la région d'intégration?