

Contrôle Continu "Algèbre 1 - HAX708X"

23 OCTOBRE 2024

Il sera tenu compte de la clarté et de la précision de la rédaction. Tout document ou calculatrice est interdit.

Durée: 1h30

Questions isolées (10 points)

a. Soit $j = e^{\frac{2i\pi}{3}}$. Déterminez les éléments inversibles de l'anneau $\mathbb{Z}[j]$.

b. Soit I le noyau de l'homomorphisme d'anneaux de $\mathbb{C}[X,Y]$ dans \mathbb{C} donné par $P(X,Y)\mapsto P(1,2)$. Montrer que I n'est pas un idéal principal.

- c. À isomorphisme près, combien y a-t-il de groupes abéliens de cardinal 600? En donner la liste.
- **d.** Déterminer une base du \mathbb{Z} -module $M := \{(x, y, z) \in \mathbb{Z}^3, 10x + 15y 8z \in 4\mathbb{Z}\}.$

Exercice 1 (4 points)

Soit A un anneau commutatif intègre et soit M un A-module. Soit M_{tor} l'ensemble des éléments de torsion de M, c'est-à-dire l'ensemble des $m \in M$ tels qu'il existe $a \in A - \{0\}$ tel que am = 0.

- (1) Montrer que M_{tor} est un sous-module de M.
- (2) Montrer que le module quotient M/M_{tor} est sans torsion (i.e. 0 est le seul élément de torsion).

Exercice 2 (6 points)

Soit $p \ge 2$ un nombre premier. On note $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ le corps à p élément et $\pi_p : \mathbb{Z}[X] \to \mathbb{F}_p[X]$ le morphisme associé à la projection canonique $\mathbb{Z} \to \mathbb{F}_p$. Soit $\Phi_p := \sum_{k=0}^{p-1} X^k \in \mathbb{Z}[X]$.

- (1) Montrer que pour tout 1 < k < p, le coefficient binomial C_k^p est divisible par p.
- (2) Montrer que pour tout $P, Q \in \mathbb{F}_p[X]$, on a $(P Q)^p = P^p Q^p$.
- (3) Montrer que $\pi_p(\Phi_p) = (X-1)^{p-1}$. On calculera $(X-1)\Phi_p$.
- (4) Montrer que Φ_p est irréductible dans $\mathbb{Z}[X]$.