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QUANTUM FIELD THEORY, PROBLEM SHEET &

Solutions to be discussed on 26/11/2024.

Problem 1: Feynman parameters

Prove the following identities (A # 0 and B # 0 are real constants):
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Problem 2: The path integral and the semiclassical limit

We reinstate A for this exercise and work with the Wick-rotated Euclidean generating
functional

ZplJ)= N / D¢ e 755107
where N is a normalisation constant, Sg is the Euclidean action
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and the path integral measure is normalised as D¢ = [

1. State the classical equation of motion for ¢ in the presence of a source J.

2. Let f: R — R, with a minimum at z,. Assume that f(x) increases suffi-
ciently steeply at x+ — 4o00. Demonstrate the saddle point approximation:
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3. Let f: R" — R, with a minimum at z,. Assume that f(z) increases suffi-
ciently steeply at |x| — oo. Use the result of Ex. 4.2.3 to show that
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where Hy is the Hessian matrix of f, (Hy);; = %.
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4. Apply this approximation to the generating functional Zg[.J]. By boldly gen-
eralising your previous result to functional calculus in infinitely many dimen-
sions, prove the formal identity

Zp[J] = N exp <—% (SE[¢O> J]+ gTr log (—0g +m? + Vi (¢0)) + O(hQ))>

where ¢g obeys the classical equation of motion (and therefore implicitly de-
pends on J), Op = 9? + V2, and the trace Tr of an operator with a continous
spectrum is defined to be the integral over its eigenvalues (which is generally
divergent and requires some regularisation, hence “formal identity”).

We now specialise to the case Viy (@) = 26"
5. Expanding ¢ in powers of A,
g0 =0 + 20V + O(N)

show that
60 (2) = / d'y D(x — y)J(y)

where D(x—y) is a Green function of the Wick-rotated Klein-Gordon operator,
(=Be+m?*)D(z —y) = 5*(z —y).

6. Use this result to show that
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7. Show that \ .
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Thus, using the results of 5. and 6., calculate the connected part of the four-

point function (0|T¢(z1)p(z2)P(x3)d(x4)]0), to leading order in A. Finally,
calculate its Fourier transform
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and read off the leading contribution to the ¢¢p — ¢¢ scattering amplitude,
using the LSZ formula.



