QUANTUM FIELD THEORY, PROBLEM SHEET 7

Problem 1: Feynman diagrams

For ϕ^4 theory:

- 1. Draw all connected Feynman diagrams contributing to the four-point function at $\mathcal{O}(\lambda^2)$ and determine their symmetry factors.
- 2. Repeat this exercice for the six-point function at $\mathcal{O}(\lambda^2)$.
- 3. State the algebraic expression in momentum space which corresponds to the following Feynman diagram (without evaluating the integrals)

Problem 2: The path integral and the semiclassical limit

We reinstate \hbar for this exercise and work with the Wick-rotated Euclidean generating functional for an interacting real scalar field:

$$Z_E[J] = N \int \mathcal{D}\phi \ e^{-\frac{1}{\hbar}S_E[\phi,J]}$$
.

Here N is a normalisation constant, S_E is the Euclidean action

$$S_E[\phi, J] = \int d^4x \left(\frac{1}{2} \dot{\phi}^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \mathcal{V}_{int}(\phi) - J\phi \right),$$

and the path integral measure is normalised as $\mathcal{D}\phi = \prod_i \frac{\mathrm{d}\phi_i}{\sqrt{2\pi\hbar}}$

- 1. State the classical equation of motion for ϕ in the presence of a source J.
- 2. Let $f: \mathbb{R} \to \mathbb{R}_+$ with a minimum at x_0 . Assume that f(x) increases sufficiently steeply at $x \to \pm \infty$. Demonstrate the saddle point approximation:

$$\int_{-\infty}^{\infty} \mathrm{d}x \, e^{-f(x)} \approx e^{-f(x_0)} \sqrt{\frac{2\pi}{f''(x_0)}}.$$

3. Let $f: \mathbb{R}^n \to \mathbb{R}_+$ with a minimum at x_0 . Assume that f(x) increases sufficiently steeply at $|x| \to \infty$. Use the result of Ex. 4.2.3 to show that

$$\int d^n x \, e^{-f(x)} \approx e^{-f(x_0)} \sqrt{\frac{(2\pi)^n}{\det H_f(x_0)}}$$

where H_f is the Hessian matrix of f, $(H_f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.

4. Apply this approximation to the generating functional $Z_E[J]$. By boldly generalising your previous result to functional calculus in infinitely many dimensions, prove the formal identity

$$Z_E[J] = N \exp\left(-\frac{1}{\hbar} \left(S_E[\phi_0, J] + \frac{\hbar}{2} \operatorname{Tr} \log\left(-\Box_E + m^2 + \mathcal{V}_{\mathrm{int}}''(\phi_0)\right) + \mathcal{O}(\hbar^2)\right)\right)$$

where ϕ_0 obeys the classical equation of motion (and therefore implicitly depends on J), $\Box_E \equiv \partial_t^2 + \nabla^2$, and the trace Tr of an operator with a continous spectrum is defined to be the integral over its eigenvalues (which is generally divergent and requires some regularisation, hence "formal identity").

We now specialise to the case $V_{\rm int}(\phi) = \frac{\lambda}{24}\phi^4$ and limit ourselves to the leading order in \hbar , so the Tr log term and higher-order corrections can be ignored.

5. Expanding ϕ_0 in powers of λ ,

$$\phi_0 = \phi^{(0)} + \lambda \phi^{(1)} + \mathcal{O}(\lambda^2)$$

show that

$$\phi^{(0)}(x) = \int d^4y \ D(x-y)J(y)$$

where D(x-y) is a Green function of the Wick-rotated Klein-Gordon operator, $(-\Box_E + m^2)D(x-y) = \delta^4(x-y)$.

6. Use this result to show that

$$\phi^{(1)}(x) = -\frac{1}{6} \int d^4y \, d^4u \, d^4v \, d^4w \, D(x-y)D(y-u)D(y-v)D(y-w) \, J(u)J(v)J(w) \, .$$

7. Show that

$$S_E[\phi_0, J] = \int d^4x \left(-\frac{\lambda}{24} \phi_0^4 - \frac{1}{2} J \phi_0 \right) .$$

Thus, using the results of 5. and 6., calculate the connected part of the fourpoint function $\langle 0| T \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)|0\rangle_c$ to leading order in \hbar . Finally, calculate its Fourier transform

$$G_E(p_1, p_2, p_3, p_4) = \int dx_1 dx_2 dx_3 dx_4 e^{-i\sum_{k=1}^4 x_k p_k} \langle 0 | T \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) | 0 \rangle_c$$

and read off the first-order contribution to the $\phi\phi \to \phi\phi$ scattering amplitude, using the LSZ formula.