### Ensembles de définition

Déterminer les ensembles de définition des fonctions suivantes :

**1)** 
$$f(x) = \frac{1}{x-1}$$

**2)** 
$$f(x) = \frac{1}{x^2 - 4}$$

3) 
$$f(x) = \frac{x+1}{x^2+x-6}$$

**4)** 
$$f(x) = \sqrt{x^2 + 3x - 4}$$

1) 
$$f(x) = \frac{1}{x-1}$$
 2)  $f(x) = \frac{1}{x^2 - 4}$  3)  $f(x) = \frac{x+1}{x^2 + x - 6}$  4)  $f(x) = \sqrt{x^2 + 3x - 4}$  5)  $f(x) = \frac{1}{\cos x - \sin x}$  6)  $f(x) = \ln(1-x)$  7)  $f(x) = \ln\left(2x^2 + 3x - 2\right)$  8)  $f(x) = \frac{\sin(x)}{x}$ 

**6)** 
$$f(x) = \ln(1 - x)$$

7) 
$$f(x) = \ln(2x^2 + 3x - 2)$$

8) 
$$f(x) = \frac{\sin(x)}{x}$$

### 2 Parité et symétries

2.1 Etudier la parité des fonctions suivantes :

**1)** 
$$f(x) = |x|$$

**2)** 
$$f(x) = x^2$$

3) 
$$f(x) = x^3$$

**4)** 
$$f(x) = \sqrt{x}$$

**5)** 
$$f(x) = x^{3/2}$$

**6)** 
$$f(x) = 2x + 1$$

7) 
$$f(x) = 2x^2 + 1$$

Extracter to particle desirance survantes:

1) 
$$f(x) = |x|$$
2)  $f(x) = x^2$ 
3)  $f(x) = x^3$ 
4)  $f(x) = \sqrt{x}$ 
5)  $f(x) = x^{3/2}$ 
6)  $f(x) = 2x + 1$ 
7)  $f(x) = 2x^2 + 1$ 
8)  $f(x) = \frac{x}{x^2 + 1}$ 

9) 
$$f(x) = \frac{x^2}{x^2 + 1}$$

9) 
$$f(x) = \frac{x^2}{x^2 + 1}$$
 10)  $f(x) = \frac{2x + 1}{x^2 + 1}$  11)  $f(x) = \sin(2x)$  12)  $f(x) = \sin(x^2)$  13)  $f(x) = \cos(3x)$  14)  $f(x) = \cos(x^3)$  15)  $f(x) = \tan(x)$  16)  $f(x) = \tan(x^2)$ 

**11)** 
$$f(x) = \sin(2x)$$

**12)** 
$$f(x) = \sin(x^2)$$

**13)** 
$$f(x) = \cos(3x)$$

**14)** 
$$f(x) = \cos(x^3)$$

**15)** 
$$f(x) = \tan(x)$$

**16)** 
$$f(x) = \tan(x^2 + 1)$$

**17)** 
$$f(x) = \ln(x)$$

$$18) \ f(x) = \sin \circ \ln(x)$$

$$19) \ f(x) = \ln \circ \sin(x)$$

**20)** 
$$f(x) = \exp(x)$$

**21)** 
$$f(x) = \sin \circ \exp(x)$$
 **22)**  $f(x) = \exp \circ \cos(x)$ 

**22)** 
$$f(x) = \exp \circ \cos(x)$$

- 2.2 Quelles règles peut-on énoncer concernant la parité de fonctions composées?
- 2.3 À l'aide du cercle trigonométrique, étudier la parité des fonctions

2.4 On considère les fonctions  $f(x) = x^2 - 2x + 3$  et  $g(x) = x^3 - x + 2$  de graphes respectifs  $C_1$  et  $C_2$ . Étudier les éventuels axes ou centres de symétrie de  $C_1$  et  $C_2$ .

## Périodicité et transformations de graphes

3.1 Étudier la parité et la périodicité des fonctions ci-après et déterminer l'ensemble d'étude restreint.

$$1) \ f(x) = \cos\left(\frac{3\pi x}{4}\right)$$

1) 
$$f(x) = \cos\left(\frac{3\pi x}{4}\right)$$
 2)  $f(x) = \cos(3x) + 4\sin(2x)$  3)  $f(x) = \sin^2(x)$  4)  $f(x) = \tan\left(\frac{x}{4}\right)$ 

$$3) f(x) = \sin^2(x)$$

**4)** 
$$f(x) = \tan\left(\frac{x}{4}\right)$$

5) 
$$f(x) = 1 + \cos^2(2x)$$
 6)  $f(x) = \frac{\cos(x)}{\sin(x)}$ 

$$6) f(x) = \frac{\cos(x)}{\sin(x)}$$

7) 
$$f(x) = \cos(x) \cdot \sin(x)$$
 8)  $f(x) = x + \sin(x)$ 

$$8) f(x) = x + \sin(x)$$

3.2 Tracer sur [-2; 6] la courbe représentative de la fonction f suivante :

$$f \text{ est 4-p\'eriodique et } \begin{cases} f(x) = x \text{ si } 0 \le x < 1 \\ f(x) = 1 \text{ si } 1 \le x < 3 \\ f(x) = 4 - x \text{ si } 3 \le x < 4 \end{cases}$$

et en déduire les graphes des courbes de

(a) 
$$f_1(x) = 1 + f(x)$$
 et  $f_2(x) = -2f(x)$ ;

(b) 
$$g_1(x) = f(x-2)$$
 et  $g_2(x) = f(2x)$ .

(c) Conclure enfin sur la nature des transformations du graphe  $C_f$  associées aux opérations  $\lambda \cdot f(x)$ ,  $\lambda + f(x)$ ,  $f(\lambda \cdot x)$  et  $f(x - \lambda)$ , avec  $\lambda \in \mathbb{R}$ .

# 4 Fonctions particulières

4.1 Soit la fonction de Heaviside  $\theta(x)$  définie par

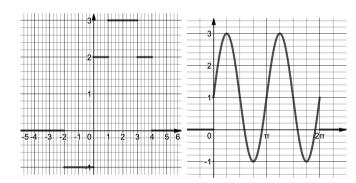
$$\theta(x) = \begin{cases} 0 \text{ si } x < 0\\ 1 \text{ si } x \ge 0 \end{cases}$$

Tracer les fonctions:

(a) 
$$f(x) = \theta(x) - 2\theta(x-1) + \theta(x-2)$$
;

(b) et 
$$g(x) = \theta(x+3) + \theta(x-1) - 2\theta(x+2) + \theta(x-3) + 3\theta(x+1) - 4\theta(x-4)$$
.

- 4.2 On souhaite créer une fonction causale g(x) qui soit :
  - nulle pour  $x < \pi$ ;
  - sinusoïdale,  $2\pi$ -périodique, de valeur moyenne nulle et d'amplitude 2 pour  $x \ge \pi$ ;
  - et telle que  $g(\pi) = 2$ .
    - (a) Tracer le graphe de g(x).
  - (b) Déterminer g(x) à l'aide de la fonction de Heaviside.
- 4.3 Exprimer la fonction f ayant les caractéristiques suivantes :
  - g est sinusoïdale, de valeur moyenne 2, d'amplitude 3, et de période  $4\pi/3$  pour  $x \in [-\pi/4; 2\pi]$ ;
  - en dehors de ces valeurs de x, g est nulle;
  - et g est maximale en  $x = 2\pi/9$ .
- 4.4 Donner les équations des courbes représentées sur les figures ci-dessous.



#### Ensembles de définition

Déterminer les ensembles de définition des fonctions suivantes

1) 
$$f(x) = \frac{1}{x-1}$$

2) 
$$f(x) = \frac{1}{x^2 - 4}$$

3) 
$$f(x) = \frac{x+1}{x^2+x-6}$$

**4)** 
$$f(x) = \sqrt{x^2 + 3x - 4}$$

1) 
$$f(x) = \frac{1}{x-1}$$
 2)  $f(x) = \frac{1}{x^2-4}$  3)  $f(x) = \frac{x+1}{x^2+x-6}$  4)  $f(x) = \sqrt{x^2+3x-4}$  5)  $f(x) = \frac{1}{\cos x - \sin x}$  6)  $f(x) = \ln(1-x)$  7)  $f(x) = \ln(2x^2+3x-2)$  8)  $f(x) = \frac{\sin(x)}{x}$ 

**6)** 
$$f(x) = \ln(1 - x)$$

7) 
$$f(x) = \ln(2x^2 + 3x - 2)$$

8) 
$$f(x) = \frac{\sin(x)}{x}$$

7) 
$$2x^2 + 7x - 2 > 0 \Rightarrow x < -2 ; x > 1 = 0 = 1 - 0 ; -2 [u] = 1 + 0 = 0$$

8)  $0 = \mathbb{R}^*$   $\frac{17ais}{x-10}$   $(in)$   $(x) = 0$  can  $n(x) = x - 2 [u] = 1 + 0 = 0$ 

Go défini  $q(x) = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$   $1 = 1$ 

2.1 Etudier la parité des fonctions suivantes :

1) 
$$f(x) = |x|$$
 **?**

2) 
$$f(x) = x^2$$

3) 
$$f(x) = x^3$$

4) 
$$f(x) = \sqrt{x} dx$$

**5)** 
$$f(x) = x^{3/2}$$

**6)** 
$$f(x) = 2x + 1$$

7) 
$$f(x) = 2x^2 + 1$$

1) 
$$f(x) = |x|$$
 ? 2)  $f(x) = x^2$  ? 3)  $f(x) = x^3$  4)  $f(x) = \sqrt{x}$  4)  $f(x) = \sqrt{x}$  4)  $f(x) = \sqrt{x}$  5)  $f(x) = x^{3/2}$  6)  $f(x) = 2x + 1$  6)  $f(x) = 2x^2 + 1$  7)  $f(x) = 2x^2 + 1$  8)  $f(x) = \frac{x}{x^2 + 1}$  7

9) 
$$f(x) = \frac{x^2}{x^2 + 1}$$

9) 
$$f(x) = \frac{x^2}{x^2 + 1}$$
 10)  $f(x) = \frac{2x + 1}{x^2 + 1}$ 

**11)** 
$$f(x) = \sin(2x)$$
**J**

**11)** 
$$f(x) = \sin(2x)\mathbf{I}$$
 **12)**  $f(x) = \sin(x^2)\mathbf{P}$ 

**13)** 
$$f(x) = \cos(3x) \mathbf{P}$$

**14)** 
$$f(x) = \cos(x^3)$$

**15)** 
$$f(x) = \tan(x)$$
 **2**

**15)** 
$$f(x) = \tan(x) \mathbf{1}$$
 **16)**  $f(x) = \tan(x^2 + 1) \mathbf{7}$ 

**17)** 
$$f(x) = \ln(x)$$
 **d**

13) 
$$f(x) = \cos(3x) \mathbf{P}$$
 14)  $f(x) = \cos(x^3) \mathbf{P}$  15)  $f(x) = \tan(x) \mathbf{I}$  16)  $f(x) = \tan(x^2 + 1)$  17)  $f(x) = \ln(x)$  4 18)  $f(x) = \sin \circ \ln(x)$  4 19)  $f(x) = \ln \circ \sin(x)$  6 20)  $f(x) = \exp(x)$  4

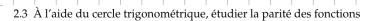
**19)** 
$$f(x) = \ln \circ \sin(x)$$

**20)** 
$$f(x) = \exp(x)$$

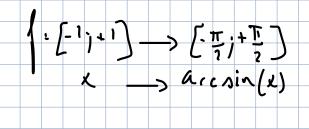
**21)** 
$$f(x) = \sin \circ \exp(x)$$
 **22)**  $f(x) = \exp \circ \cos(x)$  **7**

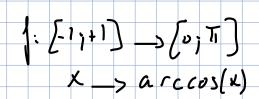
$$f(x) = \exp \circ \cos(x) \mathbf{7}$$

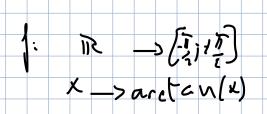
sien de tout o Pair -> Pair , l'inverse n'est pas viai

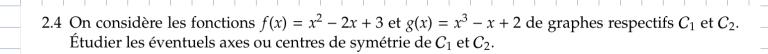


ni paix ni impaire

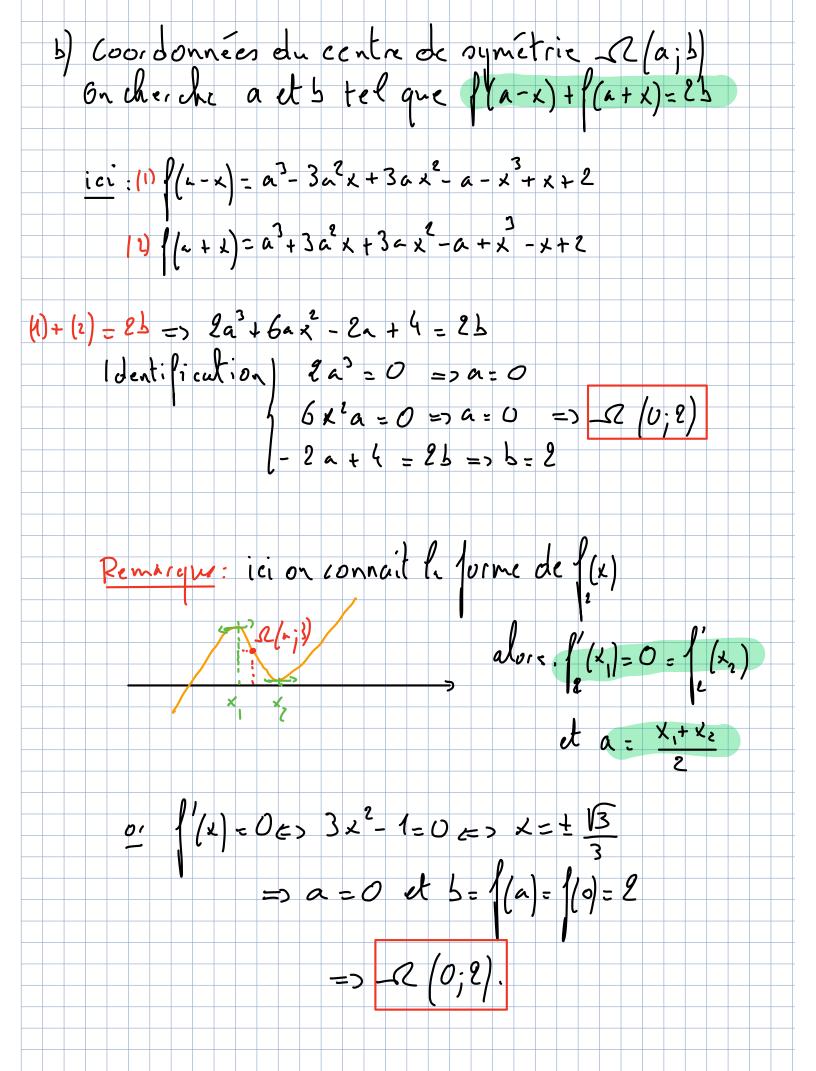


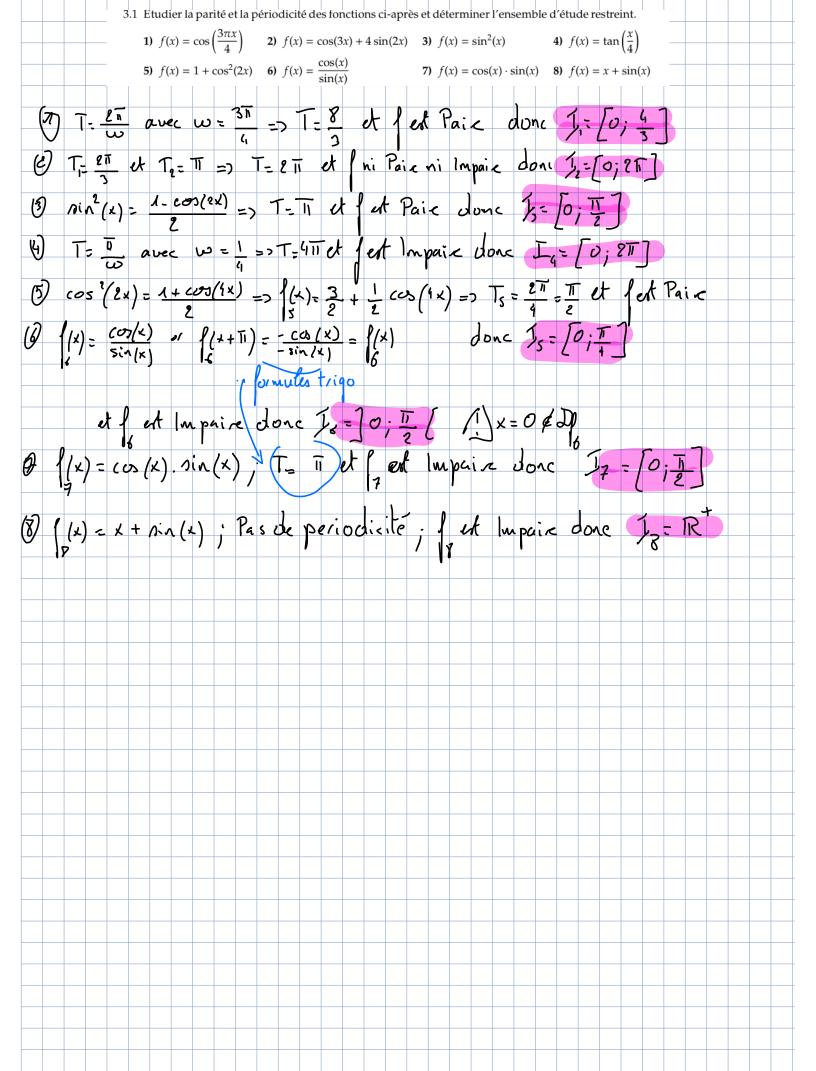






a) Axe de symétric: Ga cherche x=a tel que 
$$f(a+x) = f(a-x)$$
  
ici |1)  $f(a+x) = (a+x) - 2(a+x) + 3 = a^2 + x^2 + 2ax - 2a - 2x + 3$   
(1)  $f(a-x) = (a-x)^2 - 2(a-x) + 3 = a^2 + x^2 - 2ax - 2a + 12x + 3$   
(1)  $-(2) = 0$  =>  $4ax - 4x = 0 = 54x(a-1) = 0 = 5x = a = 1$ 



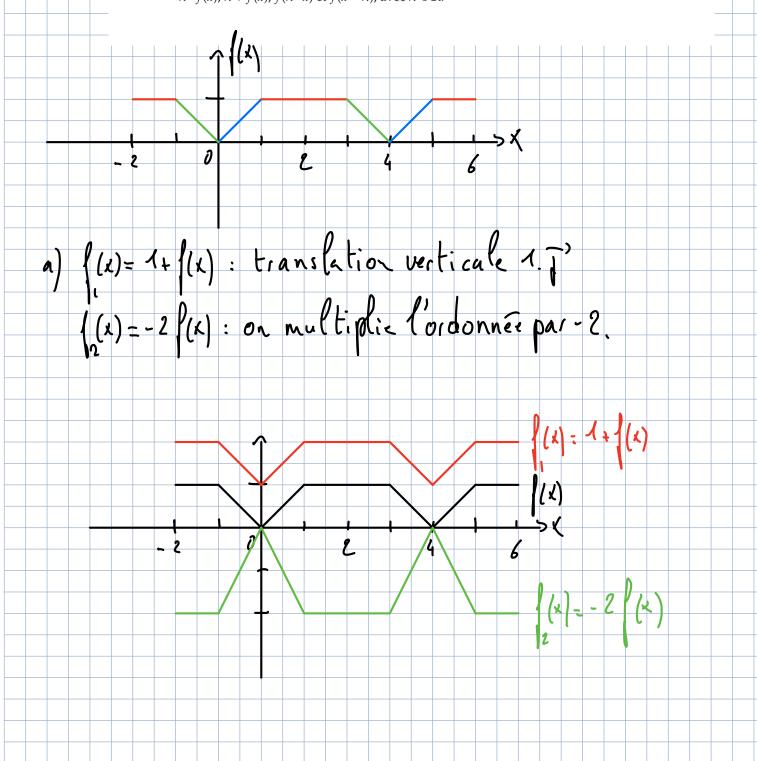


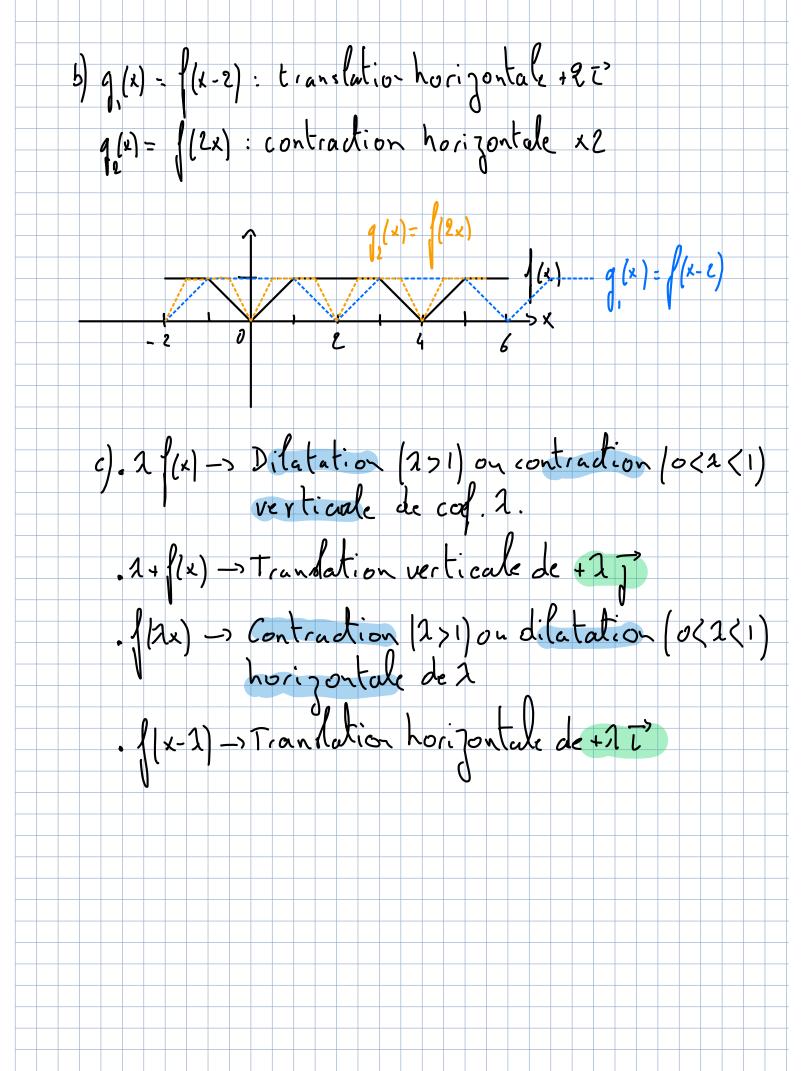
3.2 Tracer sur [-2; 6] la courbe représentative de la fonction f suivante :

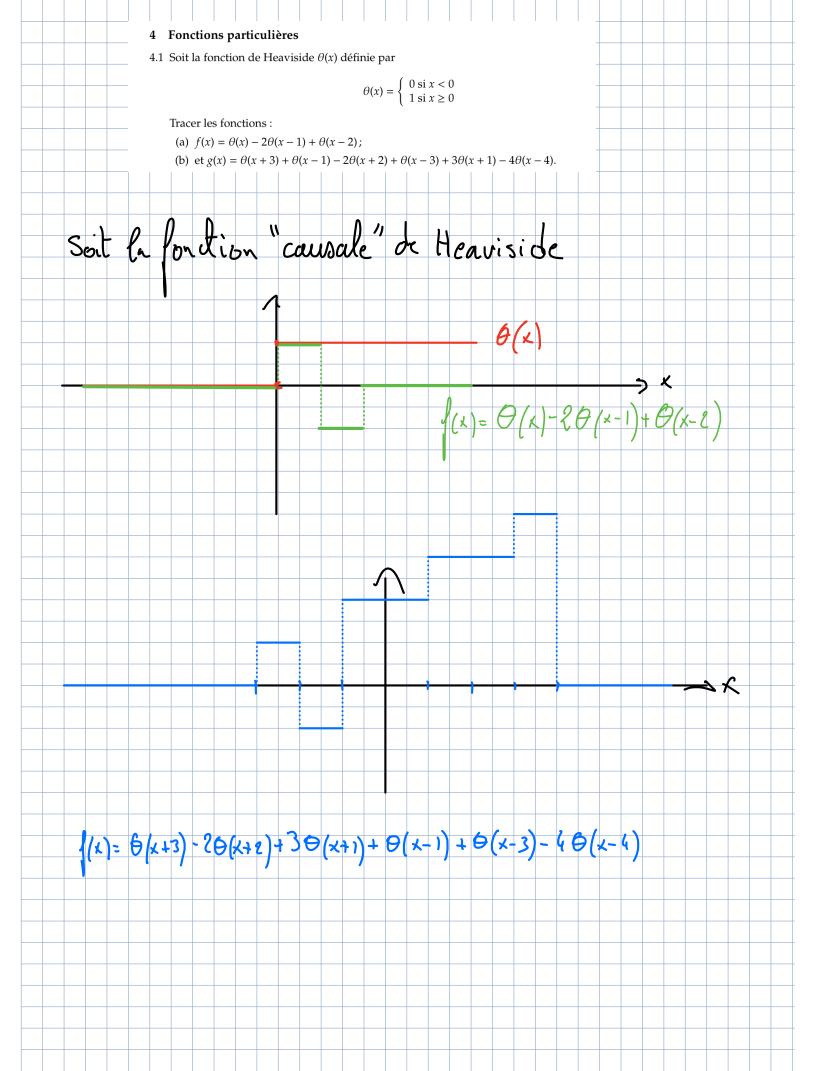
$$f \text{ est 4-p\'eriodique et } \begin{cases} f(x) = x \text{ si } 0 \le x < 1 \\ f(x) = 1 \text{ si } 1 \le x < 3 \\ f(x) = 4 - x \text{ si } 3 \le x < 4 \end{cases}$$

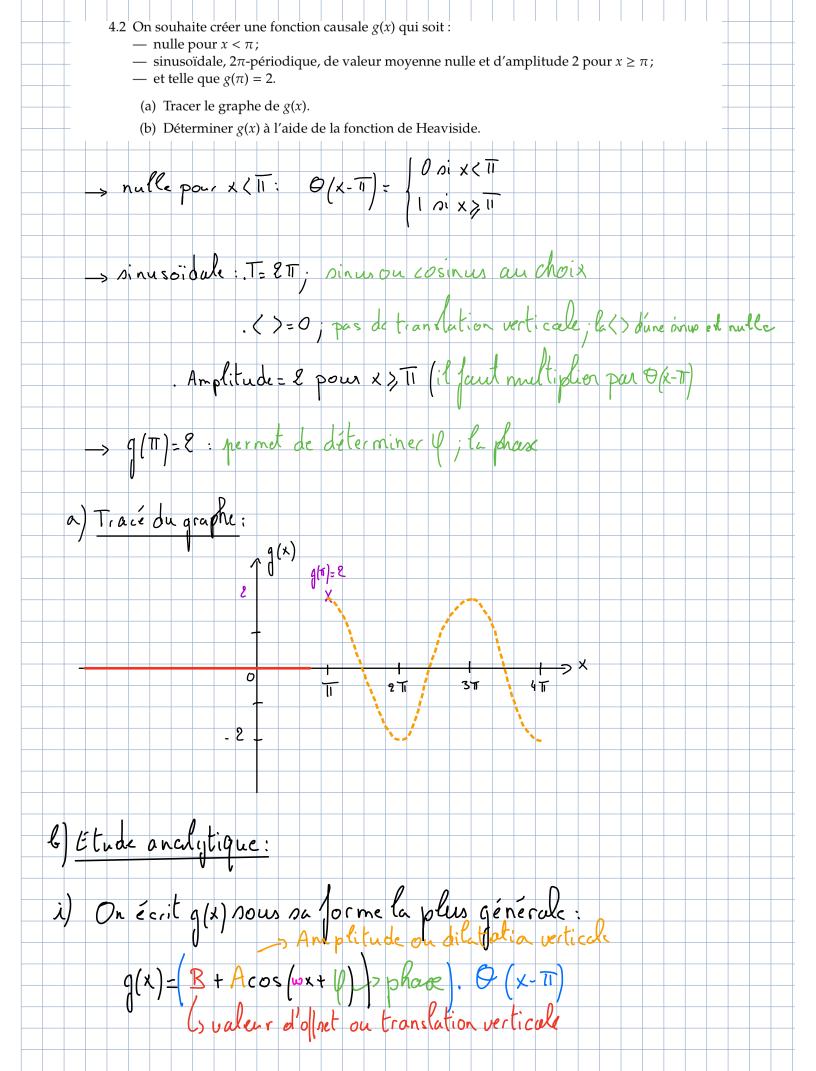
et en déduire les graphes des courbes de

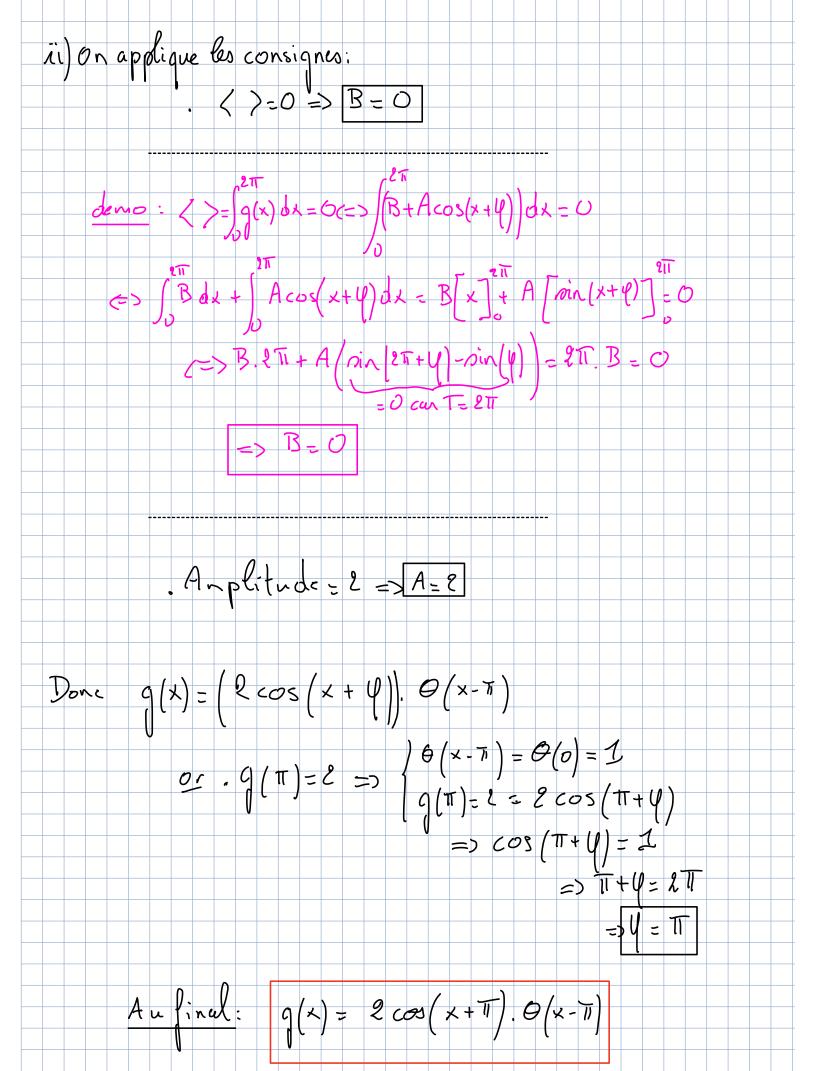
- (a)  $f_1(x) = 1 + f(x)$  et  $f_2(x) = -2f(x)$ ;
- (b)  $g_1(x) = f(x-2)$  et  $g_2(x) = f(2x)$ .
- (c) Conclure enfin sur la nature des transformations du graphe  $C_f$  associées aux opérations  $\lambda \cdot f(x)$ ,  $\lambda + f(x)$ ,  $f(\lambda \cdot x)$  et  $f(x \lambda)$ , avec  $\lambda \in \mathbb{R}$ .

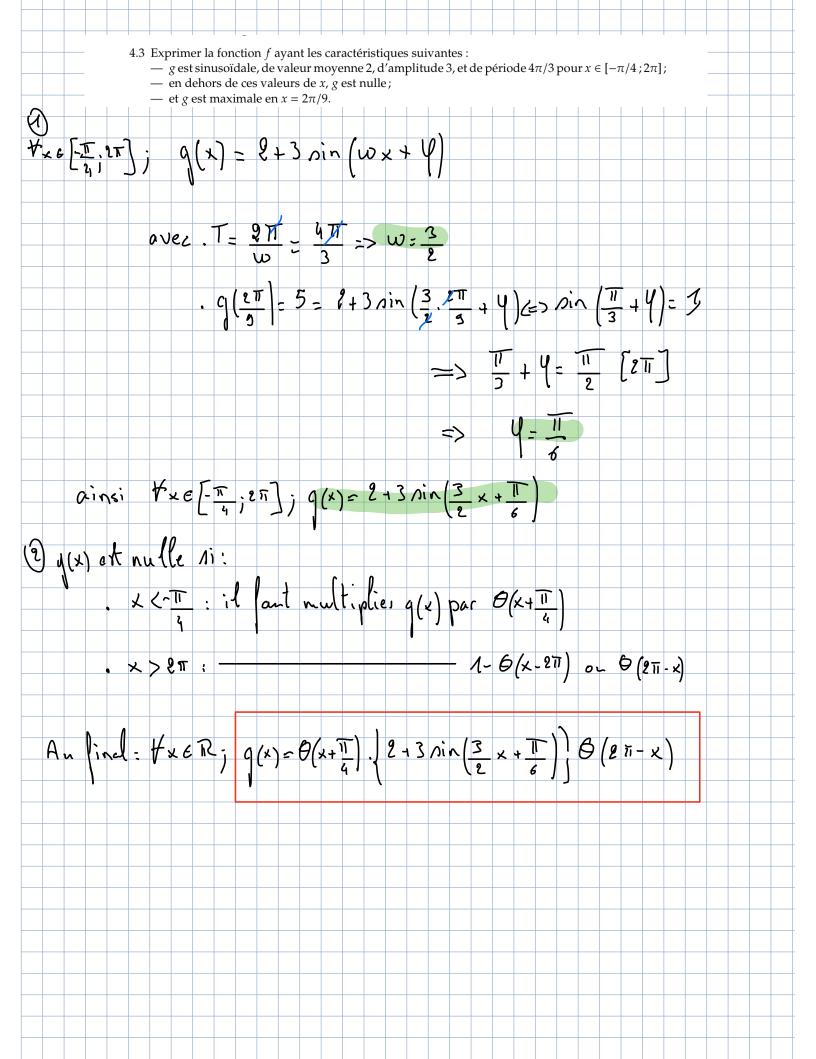




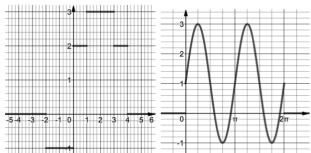












a) 
$$f(x) = -\theta(x+2) + 3\theta(x) + \theta(x-1) - \theta(x-3) - 2\theta(x-4)$$
b)  $g(x) = \theta(x) \cdot (B + A\cos(2x + 4)) \cdot (1 - \theta(x - 2\pi))$ 

$$f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$$

\_\_ valeur moyenne: B = 1]
\_\_ amplitude: A = 2]

Au final:

$$g(x) = \theta(x) \cdot \left(\frac{1}{z} + 2\cos\left(2x - \frac{3\pi}{z}\right)\right) \cdot \theta(2\pi - x)$$