
Introduction to Neural Networks

Jean-Michel Marin

Faculty of Sciences, Montpellier

October 2024

1 / 34

Course Overview

▶ Perceptron and its limitations

▶ Multilayer Networks

▶ Backpropagation Algorithm

▶ Key Applications

2 / 34

Perceptron

▶ Simplest type of artificial neuron

▶ Input vector x = [x1, x2, . . . , xn]

▶ Weight vector w = [w1,w2, . . . ,wn]

▶ Activation: y = f (
∑n

i=1 wixi + b)

▶ Step function for binary classification

f (z) =

{
1 if z ≥ 0

0 if z < 0

Limitations
Perceptron can only solve linearly separable problems ; for more
complex problems, we need multilayer networks

3 / 34

Multilayer Networks and Activation Functions

▶ Multilayer Perceptron (MLP): A network of neurons organized
in layers

▶ Hidden layers allow for the learning of complex patterns

▶ Activation functions introduce non-linearity

Common Activation Functions:

▶ Sigmoid: f (z) = 1
1+e−z

▶ Hyperbolic Tangent (tanh): f (z) = 2
1+e−2z − 1

▶ Rectified Linear Unit (ReLU): f (z) = max(0, z)

Why Non-linear Activation?

Non-linear activation functions allow the model to capture more
complex relationships in the data

4 / 34

Neural Network Structure Example

▶ Example of a fully connected neural network with one hidden
layer

Input 1

Input 2

Input 3

Output

Hidden
layerInput

layer

Output
layer

5 / 34

Example with 2 hidden layers

▶ Example of a fully connected neural network with two hidden
layers

First
Hidden
layer

Second
Hidden
layer

Input
layer

Output
layer

6 / 34

Example with 2 hidden layers

y ∈ R response dimension 1, x1, x2, x3 ∈ R 3 predictors
2 hidden layers: first layer with 3 neurons,
second layers with 2 neurons,
g , h,m 3 activation functions

n1,k = g

[
α0,k +

3∑
l=1

αl ,kxl

]
, k = 1, 2, 3

n2,j = h

[
β0,j +

3∑
l=1

βl ,kn1,j

]
, j = 1, 2

ŷ = m

γ0 + 2∑
j=1

γjn2,j

7 / 34

Forward Propagation

▶ Inputs are passed through the network layer by layer

▶ At each layer, the input is multiplied by weights, and the
activation function is applied

▶ Output layer produces final predictions

8 / 34

Example with 2 hidden layers

α is a 4× 3 matrix (weights matrix associated with the first
hidden layer including the bias terms)
β is a 4× 2 matrix (weights matrix associated with the second
hidden layer including the bias terms)
γ is a 3× 1 matrix (weights vector associated with the output
layer including the bias term)

23 parameters

ŷx(α,β,γ) = m

γ0 + 2∑
j=1

γjh

[
β0,j +

3∑
k=1

βk,jg

[
α0,k +

3∑
l=1

αl ,kxl

]]

9 / 34

Backpropagation Algorithm

▶ Objective: Minimize the error between predicted and actual
outputs by adjusting weights

▶ Backpropagation is the algorithm used to compute the
gradient of the loss function with respect to weights

▶ Gradient Descent is then used to update the weights

10 / 34

Example with 2 hidden layers

Loss function

l(α,β,γ; y , x) = [ŷx(α,β,γ)− y]2

We observe an N-sample

(y , x)(1), . . . , (y , x)(N)

Objective: find

(α̂, β̂, γ̂) ∈ argmin
(α,β,γ)

n∑
i=1

l(α,β,γ; x (i), y (i))

11 / 34

Key Steps in Backpropagation

1. Forward Pass: Compute the predicted output through the
network.

2. Compute the Loss: Calculate the error or loss (e.g., Mean
Squared Error for regression, Cross-Entropy for classification).

3. Backward Pass: Propagate the error backward through the
network, calculating gradients for each weight.

4. Weight Update: Use Gradient Descent to adjust weights:

12 / 34

Intuition Behind Backpropagation

▶ The error at the output is backpropagated layer by layer

▶ Each neuron’s contribution to the final error is computed,
allowing targeted weight adjustments

▶ This allows the network to “learn” the optimal weights that
reduce overall error

Chain Rule of Calculus
The partial derivatives in backpropagation rely on the chain rule to
propagate errors backward through the layers

13 / 34

Overfitting and Regularization

▶ Overfitting: When a model learns not only the underlying
patterns but also the noise in the training data

▶ Regularization: Techniques used to prevent overfitting by
penalizing complex models

Common Regularization Techniques:

▶ L2 Regularization (Ridge): Adds a penalty proportional to the
square of the weights

▶ Dropout: Randomly sets a fraction of the neurons to zero
during training to prevent co-adaptation

▶ Early Stopping: Stop training when the validation error starts
increasing

14 / 34

Tools

▶ Deep Learning: A subset of machine learning involving neural
networks

▶ Two of the most popular frameworks:

▶ PyTorch (by Meta AI)

▶ TensorFlow (by Google AI)

15 / 34

PyTorch Code Example

import torch

import torch.nn as nn

import torch.optim as optim

Define the model using nn.Sequential

model = nn.Sequential(

nn.Linear(2, 5), # First layer: 2 input features , 5

neurons

nn.ReLU(), # ReLU activation after first layer

nn.Linear(5, 1), # Second layer: 5 neurons to 1

output

nn.Sigmoid () # Sigmoid activation for binary

classification

16 / 34

PyTorch Code Example

Initialize the model , loss function and optimizer

criterion = nn.BCELoss () # Binary cross entropy for binary

classification

optimizer = optim.SGD(model.parameters (), lr =0.01)

data = torch.tensor ([

[25, 120], # Age 25, Blood pressure 120

[45, 140], # Age 45, Blood pressure 140

[35, 130], # Age 35, Blood pressure 130

[50, 160], # Age 50, Blood pressure 160

[60, 170], # Age 60, Blood pressure 170

[30, 115], # Age 30, Blood pressure 115

[55, 155], # Age 55, Blood pressure 155

[40, 135], # Age 40, Blood pressure 135

[65, 180], # Age 65, Blood pressure 180

[70, 190], # Age 70, Blood pressure 190

[32, 125], # Age 32, Blood pressure 125

[48, 150], # Age 48, Blood pressure 150

[58, 165], # Age 58, Blood pressure 165

[42, 145], # Age 42, Blood pressure 145

[38, 132] # Age 38, Blood pressure 132

], dtype=torch.float32)

17 / 34

PyTorch Code Example

Labels: 0 (no disease), 1 (disease)

labels = torch.tensor ([

[0], [1], [0], [1], [1],

[0], [1], [0], [1], [1],

[0], [1], [1], [1], [0]

], dtype=torch.float32)

Training loop

for epoch in range (1000):

optimizer.zero_grad () # Zero gradients

outputs = model(data) # Forward pass

loss = criterion(outputs , labels) # Compute loss

loss.backward () # Backward pass

optimizer.step() # Update weights

if epoch % 100 == 0:

print(f’Epoch {epoch}, Loss: {loss.item()}’)

18 / 34

PyTorch Code Example

Testing the model

test_data = torch.tensor ([

[40, 145], # New test data: Age 40, Blood pressure 145

[30, 110], # Age 30, Blood pressure 110

[50, 170], # Age 50, Blood pressure 170

[60, 160], # Age 60, Blood pressure 160

], dtype=torch.float32)

with torch.no_grad ():

predictions = model(test_data)

print("\nPredictions (probabilities):")

print(predictions)

Convert probabilities to binary predictions (threshold at

0.5)

binary_predictions = (predictions >= 0.5).float()

print("\nBinary Predictions (0: No disease , 1: Disease):")

print(binary_predictions)

19 / 34

TensorFlow Code Example

import tensorflow as tf

import numpy as np

Define the model using tf.keras.Sequential

model = tf.keras.Sequential ([

tf.keras.Input(shape =(2,)), # Explicit Input

layer with input shape (2,)

tf.keras.layers.Dense(5, activation=’relu’), # First

hidden layer with 5 neurons

tf.keras.layers.Dense(1, activation=’sigmoid ’) # Output

layer with 1 neuron , sigmoid activation

])

20 / 34

TensorFlow Code Example
Compile the model with binary cross -entropy loss and Adam

optimizer

model.compile(optimizer=tf.keras.optimizers.Adam(

learning_rate =0.01) ,

loss=’binary_crossentropy ’)

Expanded simulated dataset: [age , blood pressure] -> label

(disease or not)

data = np.array ([

[25, 120], # Age 25, Blood pressure 120

[45, 140], # Age 45, Blood pressure 140

[35, 130], # Age 35, Blood pressure 130

[50, 160], # Age 50, Blood pressure 160

[60, 170], # Age 60, Blood pressure 170

[30, 115], # Age 30, Blood pressure 115

[55, 155], # Age 55, Blood pressure 155

[40, 135], # Age 40, Blood pressure 135

[65, 180], # Age 65, Blood pressure 180

[70, 190], # Age 70, Blood pressure 190

[32, 125], # Age 32, Blood pressure 125

[48, 150], # Age 48, Blood pressure 150

[58, 165], # Age 58, Blood pressure 165

[42, 145], # Age 42, Blood pressure 145

[38, 132] # Age 38, Blood pressure 132

], dtype=np.float32)

21 / 34

TensorFlow Code Example

Labels: 0 (no disease), 1 (disease)

labels = np.array([

[0], [1], [0], [1], [1],

[0], [1], [0], [1], [1],

[0], [1], [1], [1], [0]

], dtype=np.float32)

Training the model

epochs = 1000

model.fit(data , labels , epochs=epochs , verbose =0) # verbose

=0 suppresses output during training

Display loss every 100 epochs

for epoch in range (100, epochs+1, 100):

loss = model.evaluate(data , labels , verbose =0)

print(f’Epoch [{ epoch }/{ epochs}], Loss: {loss :.4f}’)

22 / 34

TensorFlow Code Example

Testing the model

test_data = np.array([

[40, 145], # New test data: Age 40, Blood pressure 145

[30, 110], # Age 30, Blood pressure 110

[50, 170], # Age 50, Blood pressure 170

[60, 160], # Age 60, Blood pressure 160

], dtype=np.float32)

Make predictions

predictions = model.predict(test_data)

print("\nPredictions (probabilities):")

print(predictions)

Convert probabilities to binary predictions (threshold at

0.5)

binary_predictions = (predictions >= 0.5).astype(np.float32)

print("\nBinary Predictions (0: No disease , 1: Disease):")

print(binary_predictions)

23 / 34

Code Comparison: PyTorch vs TensorFlow

▶ PyTorch:
▶ More Pythonic, natural control flow
▶ Dynamic graph allows flexibility
▶ Easy to debug with standard Python tools (e.g., pdb).

▶ TensorFlow:
▶ Eager execution available, but TensorFlow traditionally uses

static graphs
▶ Strong deployment tools for production use (e.g., TensorFlow

Serving, TensorFlow Lite)
▶ Integrated with Keras for simplified model building

24 / 34

When to Use PyTorch

▶ Ideal for research and experimentation

▶ Preferred for projects that require fast prototyping

▶ Dynamic networks and tasks with high flexibility

25 / 34

When to Use TensorFlow

▶ Ideal for production environments

▶ Preferred for mobile and embedded applications (TensorFlow
Lite)

▶ Suitable for large-scale models and distributed computing

26 / 34

The need of GPU

A GPU (Graphics Processing Unit) is a specialized processor
designed primarily to accelerate the rendering of images, videos,
and animations.

Originally developed for graphics tasks in video games, GPUs have
evolved to handle parallel processing tasks, making them ideal for
workloads like machine learning, AI, and scientific simulations.

Unlike CPUs, which are optimized for sequential tasks, GPUs excel
at processing large amounts of data simultaneously. Modern GPUs
are crucial for deep learning, data science, and high-performance
computing applications.

27 / 34

The need of GPU

To train a network like ChatGPT, which is based on transformer
models and deep learning, you would need an extensive setup of
high-performance GPUs. The number of GPUs required depends
on the model size, dataset, and training time.

For example, GPT-3 used around 285,000 GPU hours, and systems
like this often leverage clusters of thousands of GPUs (e.g.,
NVIDIA A100s).

A realistic estimation for such large models could be hundreds to
thousands of GPUs depending on the training goals and available
infrastructure.

28 / 34

The need of GPU

The cost to train models like GPT-3 is extremely high due to the
massive computational resources required.

Estimates place the training cost for GPT-3 at around 4.6 million
for the complete training process of the model, from start to finish.
This means the entire process of feeding data into the model and
adjusting its parameters (weights and biases) to minimize the error
and improve accuracy.

This includes the use of thousands of GPUs for weeks or months,
massive electricity consumption, and the need for a robust
infrastructure to handle both storage and computation. The final
cost can vary depending on factors like hardware efficiency, energy
prices, and research optimizations.

29 / 34

The need of GPU

The NVIDIA A100 is a high-performance graphics card designed
specifically for data centers and AI workloads.

It’s built on NVIDIA’s Ampere architecture and offers up to 80 GB
of high-bandwidth memory (HBM2e), enabling it to handle
massive datasets.

It excels in tasks such as AI model training, deep learning, and
high-performance computing (HPC). The A100 is often used in
large-scale AI research, including training models like GPT, due to
its ability to scale efficiently across multiple GPUs in a cluster.

30 / 34

The need of GPU

import torch

import time

Choose device: "cuda" for NVIDIA , "mps" for Apple , or

default to "cpu"

device = "cuda" if torch.cuda.is_available () else "mps" if

torch.backends.mps.is_available () else "cpu"

print(f"Using device: {device}")

GPU matrix multiplication

start_time = time.time()

a = torch.randn (10000 , 10000, device=device)

b = torch.randn (10000 , 10000, device=device)

torch.matmul(a, b)

torch.cuda.synchronize () if device == "cuda" else torch.mps.

synchronize ()

elapsed_time = time.time() - start_time

print(f"GPU ({ device.upper()}) Time: {elapsed_time}")

31 / 34

The need of GPU

In the context of Apple’s Metal API, MPS (Metal Performance
Shaders) is a framework designed to optimize performance for
GPU-accelerated compute and machine learning tasks.

The synchronize() function ensures that all operations on the GPU
are completed before the next step of the code proceeds.

In frameworks like PyTorch, GPU operations are asynchronous by
default to improve performance, meaning they are queued and
executed without blocking the CPU.

When you want to measure the execution time of GPU operations
accurately or need to ensure that computations are completed
before moving forward, synchronize() forces the program to wait
until all GPU tasks are finished.

32 / 34

The need of GPU

CPU matrix multiplication for comparison

start_time = time.time()

a = torch.randn (10000 , 10000)

b = torch.randn (10000 , 10000)

torch.matmul(a, b)

elapsed_time = time.time() - start_time

print(f"CPU Time: {elapsed_time}")

33 / 34

Some applications of Neural Networks

▶ Fraud detection

▶ Customer service

▶ Financial services

▶ Natural language processing (chatbots, language
translators...)

▶ Facial recognition

▶ Self-driving vehicles

▶ Predictive analytics (forecasting revenue, product
development, decision-making, manufacturing...)

▶ Recommender systems (streaming services, e-commerce,
social media...)

▶ Health care

▶ Industrial

34 / 34

