

Cours de codes 1 sur 3

Eleonora Guerrini

A code: What for?

- Recover faulty transmitted data
- o Distributed Data Storage
- Conceive Fault Tolerant Algorithms

A code: what is it?

Definition

Un code correcteur est un ensemble de vecteurs (mots) et un couple d'algorithmes (Enc,Dec) qui gèrent la trasmission des mots sur un canal bruité.

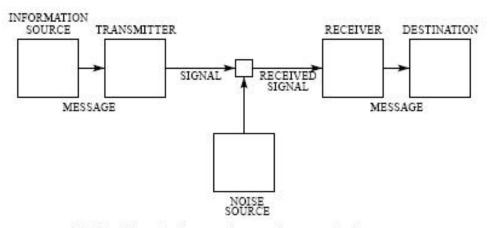
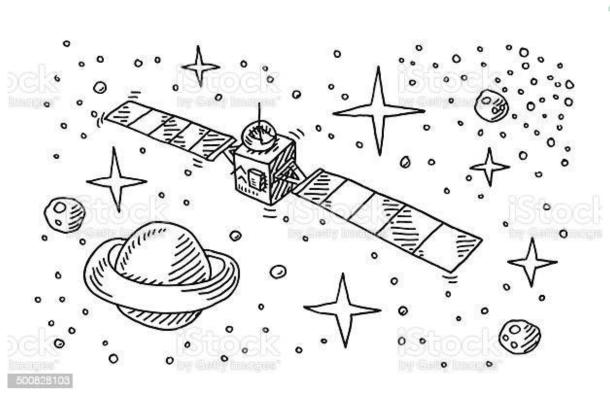
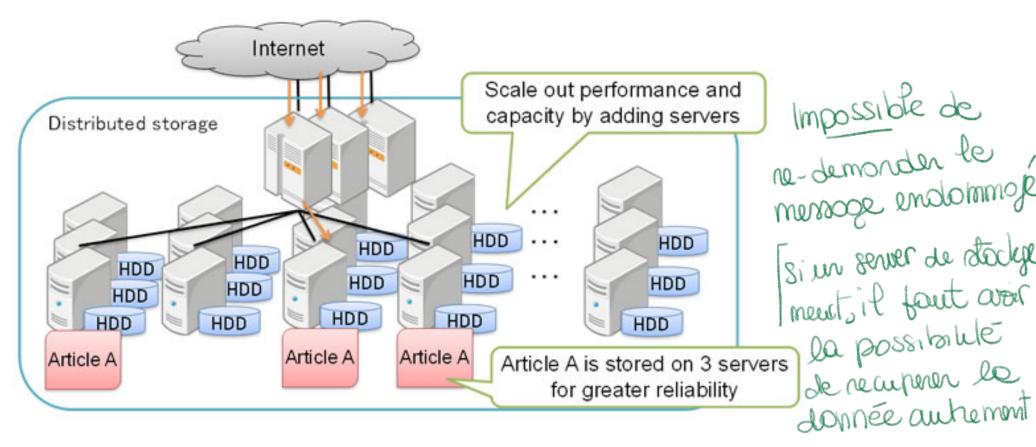



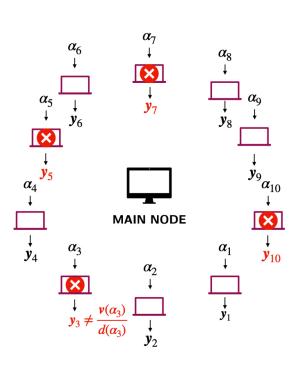
Fig. 1—Schematic diagram of a general communication system.

Codes correcteurs pour les transmissions



Dono los cos des Tramomissions contenses, il n'est pas possible de ne-tronomentre le mensage en cos de penturiostron (ex. Satelliles)

Di Besoin de corriger même si couleux



Codes correcteurs dans le stockage d'information

Codes correcteurs pour les algorithmes tolerants aux fautes

- cos algo destribuée

- nœud defectueux

- nœud molveillont

[ex: Produit matriciel]

en parallel

Les questions fondamentales du cours 1

- o Modèle: le code, le canal, le bruit
- Algorithmes: Encoder et decoder
- o Parametres :Distance d'un code et Theorème de Shannon
- Exemples :code d'Hamming et decodage

4= c+e

Modèle de Shannon: le code, le canal, le bruit

Enc : Encodige me(#2) x Dec: Decodope Homming 4 Dec(y) = Enc(m) Bruit: Additif NFORMATION DESTINATION TRANSMITTER yregu Jeeffe)" ta m MESSAGE MESSAGE ex (=(0,0,0,0,0,0,0) Enc (m)

4=(1,0,0,0,0,0,0,0) e= (1,0,0,0,0,0) Fig. 1—Schematic diagram of a general communication system

-BSC (Binary Symmetric Channel) - Sours memoire P. (yi + Ci) estinder de Pr (yi-1 + Ci-1) autrement Pr(yi/Ci) estindep de Pr(y; +Ci-1) -P: Probaque il y a en flèp de bit 0<P<1/2 (Sinon on énverse)

- Symmetrique P. (c; flip de 0 >1) = Pr (c; flap de 1 >0)

Encoding and Decoding

Enc (m): $(H_2)^k \longrightarrow (H_2)^n$ for N > k redendence -insective $0 e (H_2)^n$

Bec (m) et tracem) on le choisit linéaire pour efficaclés "

Enc (m) lineoure => Algo d'algébre lineaux pour euroder m

D C est un sous-esp. vect. de (#25) de dim K

"GRAAL de la Codes correction Theorème de Shannon P loide prode H(p) = - plog_2(p) - (1-p)log_2(1-p) (binaire) Formulation "simple" du theore CAPACITÉ C'mox inform qu'on peut trau smettre de focon tout could est bruite Galsle) · Co= 1- Hap (correction)

· R taux de transmission (redordence) dimer > (K) rendement du code lemperer code (nate) conige serr. _Shommon Cofixé = 1-HCP), Provoba d'erreur du conact Pour convoyé et y recu. 1. 35 >0 (Em, Bec) OCPC1/2 7 Pour NDO Si k = ((1- HCP))+E). n] alors - Pr (Dec (1/2 real) +0) < 2-50 E = 1/2-P

10/46

Definition Code et Parametres Jacobong to Proce (Grac Cy+c) >1/2

• Soit
$$\Sigma$$
 un alphabet, $(\Sigma)^k$ l'espace des messages et k et n des entiers naturels tels que $k \leq n$.

$$k \leq n.$$

$$C \subset (\Sigma)^n: \qquad \text{fn(m) (ff_2)}^k \longrightarrow (ff_2)^n$$

o
$$C \subset (\Sigma)^n$$
:
o Linearité: $Enc(O) = O$. $Enc(m_1 + m_2) = Enc(m_1) + Enc(m_2)$
o On appelle k la dimension du code $\rightarrow Enc(\#_2)^k$) est esp. vect de $(\#_2)^n$

o Rate:
$$k/n$$
 $x = (x_1, x_2)$ $y = (y_1, y_2)$ $-Repr. are the boxe, General to a construction of the distance (?) Hamming: $d_H(x_1, x_2) = 0$$

o Distance (?) Hamming:
$$d_{H}(x_{1}, x_{2}) = 0$$
 $-d_{H}(x_{1}, y_{2}) = d_{H}(y_{1}, y_{2}) - d_{H}(x_{1}, y_{2}) + d_{H}(y_{1}, y_{2}) + d_{H}(y_{1},$

Quantifions les erreurs avec la distance et la définition du code

Detection et Correction: Modèle déhamming

Philosophie de décodope MLD Haximun Likehood Decoding (moximum de vraisembare)

Problematique et Algorithmes: Rôle de la distance Si y recu , en veut (2004) = C

Algorithme de decodage naif : MLD Algorithme

> (1-P). (P) plus grand possible = P

dfyic) plus petite possible

MLD decoder : bons et mauvais cotés

MLD Problème NP-hord In: ye#z^, e code (le (#z) de dim k)

Out: celtq d(y,c) = min{d(y,c) | cel}

Comemesiconellin)

On se restraint à un cos pleus precès ore on met une borne sur ce qu'on peut corriger

Modèles de Décodage

ex si == (1001/100) y= (0101100)

y= c+e e: vecteur err-E: mot envage

BDD Decoder Bounded Decoding Distonce In: y near, Cade, t boure sur les erreurs qu'on veut (paut 2)

Out: e ta du (e,y) st

Si Cest Code Hamming

BMD Decoder t est le "bon"

possible en Output

Le de cooleur nous donnéra un e tq du (c,y) <2

cad que le existe tors ! mais par forcement c= c envoye un seil met de code

- FIN CORSI-

Code de repetition et Code de parité Honning R = 4 corr = 1err

Codes de parité :

 $m \in (\mathbb{T}_2)^k \longrightarrow e = (m, \bigoplus m_i) \in (\mathbb{T}_2)^k$

ex: (100) - e= (1001)

Repet: = corr=serr. (00100100) Code de repetition :/ Peut delecteur 2 erreurs

 $m \in (\overline{H_2})^{\kappa} \xrightarrow{\text{Enc}(m)} C = (m_1 m_1 m)$ $C \in (\overline{H_2})^{3\kappa}$ Rendement R = K =

ici je peux delecteur 2 eneurs et dons ce

cos spealique aussi les corriger par vote de majorité mois on génerale on me put pars corriger 2 err.

16/46

Delecte 1 erreus? oui corsi lerreur seulement la

(3 pars possib. si unemen par bloc)

Ex : Code de repetition et parity check

- o dimension du code
- o longueur du code
- \circ rendement du code : ratio k/n

Décodeurs

- Code de repetition peut corriger 1 erreur
- o Code de parité peut detecter un nombre impair d'erreurs (donc ou pare con 1)

3-repet corrige 1 erreur
$$R = \frac{1}{3}$$
 defeate 2 errours

Distance et Correction: Exo

Given a code C de longueur n et dimension k, les assertions suivantes sont équivalents 1. C a distance minimale $d \geq 2$,

- 2. si d est impair, C peut corriger $\frac{(d-1)}{2}$ errors.
- 3. C peut detecter d-1 errors.
- 4. C peut corriger d 1 effacements

 (1) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

 (2) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

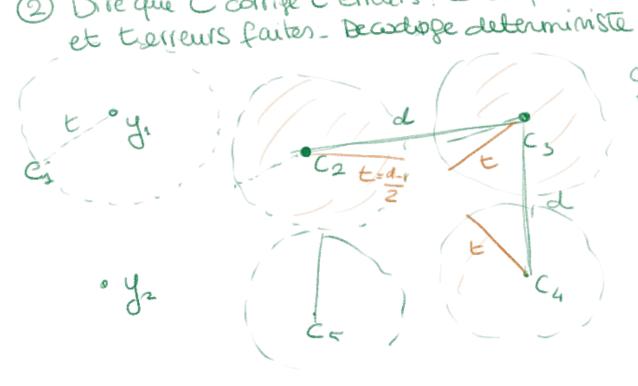
 (2) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

 (2) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

 (2) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

 (3) = D(3) Si y = C+è où dy((,y) = d, comme d(C) = d ie peut exister

Sid-1 errour (.2.d d(y)c) \(\int \alpha \) donc y par dons le code _


Sid-1 errour (.2.d d(y)c) \(\int \alpha \)-1 donc y par dons le code _

D=D(4) Sid-1 ellocements ou plus \(\int \alpha \) Unicité de c qui complete y = \(\int \colon \); put y avoir 2 mots

de code qui corresp- 20/46

2) Dirèque Corrige t erreurs: 3 unique ce (to du (y,c) < t pour y reas

comme d(C) = d alorc tout couple de mots de code c1, C2 est to dy (cos, co) ? d Jehndn(Ey)st =D Jictaye B(c)

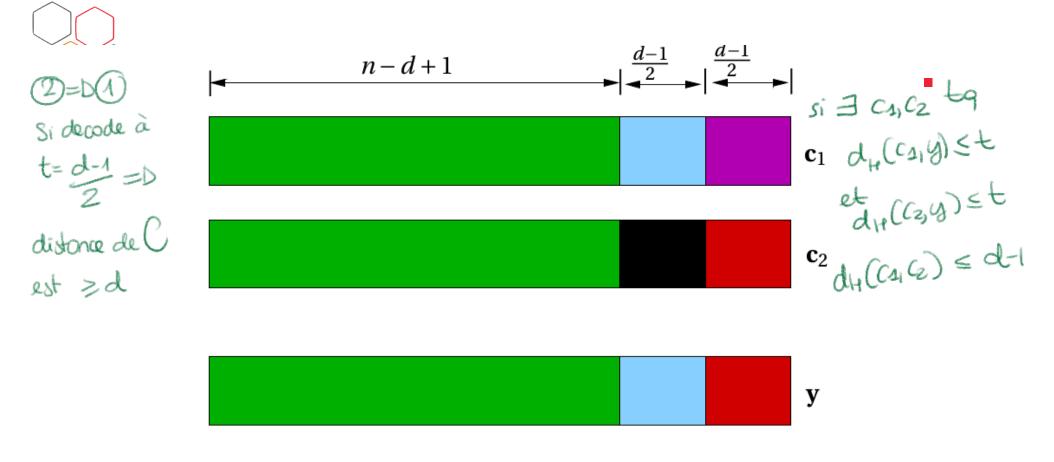


Figure 1.3: Bad example for unique decoding.

Qu'est-ce qu'on peut esperer comme rate et distonce

- @ rate (rendement): 1 plus grand passible
- B) t plus apond possible
- O Corriger et detecter efficacement
- D'abailer la destonce ellicacement

Qu'est-ce que dest un bon code?

A+B+C mais Aus Bus C

Hornming A et @ mais pas du tout B code Repet B et @ mais pas du tout A

colui qui a les meilleurs
parametres possible
Convient les param
pewent se comporter.

Boue de empirement de ophère

Pour in code C= (n) k) d) pinaire 2 = 0 (i) < 2

Si B_(c) = {ye#2" | d_(c,y) < t?, in

Becan Becal = \$ 4 casce C

Donc $\bigcup_{c \in C} \mathcal{B}_{t}^{(c)} = \bigsqcup_{c \in C} \mathcal{B}_{t}^{(c)}$ (# cad toutes les intercection ϕ)

mots possible 1 D B_(c) = nb. boules × Volume deve boule (te,

invancante par a cheisisolona ici e= 0 nb mots de codes

n=7 0 K=40 t=1 Pour Homming on a excluse

Les codes qui atteignent la boue d'euxil-de fihères (c.2d=) s'appellent PARFAIT. (Homoing est denc un code porteit) -D Consequence: + y rear > toujours un unique c tog dH(4,10)=1 on 0

Comment colculer of "efficacement"? le distorce d'en code.

demne si Clinéaire alors d(C)=min w(c)

où WCD = | dilci+031, on appelle was le Poids de c

WCc) = 3 € (10011):xe

Matrice generatrice et de parité

Décodage d'un code d'Hamming

Exemple de Décodage

