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QUANTUM FIELD THEORY, PROBLEM SHEET 5

Problem 1: The interaction picture

In this exercise we will derive a method for calculating n-point functions for the real
scalar field purely based on canonical quantisation, without using the path integral.
We split the Hamiltonian of an interacting real scalar field into a free part Hy and
an interaction part Hj,, hence H = Hy + H;y with

1

Hy = /d?’x <%7T2 + %(V¢)2 + §m2q§2> ,

Hiy = /d3$ Vint (9) -

Denote by |0) the ground state of H and by |()) the ground state of Hy. We add a
constant to H such that Hy|()) = 0. The Heisenberg-picture field operator and its
canonical momentum are

o(t, %) = ¢'e(0,D)e M w(t,7) = eMa(0, )M,

and as usual they satisfy [¢(t, %), 7(t, 7')] = i6®)(Z — &'). We define the interaction-
picture operators by

¢r(t, ) = M0G0, D)e ot my(t,7) = M0 (0, F)e ot
1. Show that ¢;(t, Z) = m;(t, ©).

2. Starting from an expression for 67, show that ¢; obeys the Klein-Gordon
equation, and hence is a free field.
Hint: Differential operators are defined to act on distributions (such as the
Dirac delta) by integration by parts: [ dx f(a:)a%é(x) =—[dz %5(@.

3. Show that U(t) = etfole=t is unitary, and that ¢(z) = UT(t)é;(2)U(t).

4. We would like to express U(t) entirely in terms of ¢;. To this end, start by
showing that U(t) obeys the Schrédinger equation

d

i—U(t) = H;(t)U(t)

dt

where Hj is the interaction Hamiltonian in the interaction picture, H(t) =
et H e 0t wwith the boundary condition U(0) = 1. Then show that, for

t>0,
U(t) =T exp (_Z-/Ot A Hl(t,>>

also solves this Schrodinger equation and satisfies the same boundary condi-
tion. Therefore both expressions must be equal.

5. Define U(ty,t1) = U(t2)U'(t1). By a similar argument as used in 4., show that,
for to > 11,

Ultaty) = T exp (—i / v H,(t')) |

t1



6. Show that U(ty,t3) = U(t1,t2)U(t2,t3), and that UT(ty,ts) = Ul(ts, t1).

7. We would like to find a relation between the free vacuum |@)) and the interacting
vacuum |0). Let Ey be the vacuum energy of the interacting theory, H|0) =
Ey|0), and assume that (0|0) # 0. By inserting a complete set {|n)} of energy
eigenstates of the interacting theory,

eszTW) szTZ ‘n nw)

show that

o My U0,=T)|0)
0) = T%ng(qfie) e~ T (0|0) T~>1>o(1 ie) € ’E0T<0|®>

Similarly, show that

0|U(T,0)

<0| Tﬁoo(l i€) € ZEOT<®|O>

Hint: Split the sum over energy eigenstates into the ground state and the
excited states, then use the fact that E, > Ej for n # 0.

8. Finally, use the results of 5., 6. and 7. to show that

| oIT —i [T dt Hy( ®1
(0T ¢(x)8(y)|0) —T%{g{;_igf | i]@ﬁT)e—Ef) deHI (0| gy =

It is straightforward to demonstrate that higher correlation functions are given by
the obvious generalisation of this formula (more factors of ¢ on the left and of ¢;
on the right), the Gell-Mann-Low formula. It can be evaluated perturbatively by
expanding the exponentials on the right-hand side, and using the fact that ¢; is a
free field and therefore enjoys a free Fourier mode expansion.

Remark: When trying to define interacting quantum field theory in a mathemati-
cally rigorous way, one comes across a problem known as Haag’s theorem: It can be
shown that the interaction picture does not actually exist. There is strictly no uni-
tary transformation U which maps operators on the free-theory Hilbert space onto
operators on the Hilbert space of the interacting theory. Therefore, the approach
you just derived heuristically cannot be made mathematically exact.

However, this caveat mostly bothers axiomatic field theorists; practitioners of quan-
tum field theory tend to ignore it because it does lead to an accurate description
of experimentally observed phenomena. In fact, finding soundly defined interacting
quantum field theories in four dimensions continues to be an active research topic
in mathematical physics, even though the working rules for QFT were established
many decades ago.



