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In this chapter, we discuss the integration of Partial Differential Equations (PDEs).
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The topic of numerical integration of partial differential equations is very broad and it is impossible to cover
all possible methods in these lectures notes. We focus here on one class of methods to solve PDEs, namely,
the Finite-Difference (FD) methods. For a very detailed presentation of finite-difference methods, look at
J. W. Thomas, Numerical Partial Differential Equations. Finite Difference Methods. More involved methods,
e.g., finite-element methods or spectral methods will be briefly mentioned in a closing section.

Most of the algorithmic schemes we introduce in these notes will be exemplified by model linear PDEs in one or
two dimensions of space, e.g., the heat equation, the wave equation or the Poisson equation. For more complex
or non-linear PDEs, you will have to adapt the methods presented in these notes.

We assume that the reader knows what a PDE is. However, no mathematical knowledge about PDEs is required
to follow these lecture notes.

I. From a Partial Differential Equation to a Finite-Difference scheme

1. Introduction

In these lecture notes, we mostly discuss three archetypal equations:

▶ the heat equation 
∂ϕ

∂t
= D∆ϕ,

ϕ(x, y, 0) = ϕi(x, y),

(1)

with ∆ϕ =

D∑
k=1

∂2ϕ

∂x2k
the Laplacian in D dimensions of space;
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▶ the wave equation 

∂2ϕ

∂t2
− c2∆ϕ = 0,

ϕ(x, y, 0) = ϕi(x, y),

∂ϕ

∂t
(x, y, 0) = ψi(x, y),

(2)

with ∆ϕ the Laplacian in D dimensions;

▶ the Poisson equation
∆ϕ = f, (3)

for a source term f .

All these PDEs must be supplemented with boundary conditions for the problem to be well posed (see the
section about Boundary Conditions). They are thus all Boundary Value Problems (BVPs). The first two
equations are also Initial Value Problems (IVPs) because they explicitly involve time and an initial condition must
be provided in order for the problem to be well-posed.

PDEs are usually classified according to the structure of their higher-order derivatives. The heat equation is an
example of parabolic PDEs, the wave equation an example of hyperbolic PDEs, and the Poisson equation an example
of elliptic PDEs. For our discussion, this partition is not important.

2. Discretizing time and space

In a similar way as ODEs, we aim to solve these PDEs by discretizing space and time. We first present the idea
in the case of Cartesian coordinates, and we discuss then the case of polar coordinates.

a. Cartesian coordinates

xi xf
yi

yf

δx

δy

x

y

Mx = 10

My = 5

Figure 1: Illustration of the spatial discretization in order to solve a PDE with a Finite-Difference
method. The rectangle [xi, xf ]× [xi, yf ] is decomposed into (Mx+1)× (My+1) nodes. The distance between
two consecutive nodes is δx in the x-direction, and δy in the y-direction.

Imagine that you want to solve a PDE in 2 dimensions of space (x, y) ∈ [xi, xf ] × [yi, yf ]. To discretize space
you define nodes arranged in a lattice. On these nodes, you want to approximate the PDE solution (see Fig. 1).
The nodes have coordinates (xj , yk), where xj = xi+jδx and yk = yi+kδy, with j ∈ J0, MxK and k ∈ J0, MyK.
The numbers of nodes Mx +1 and My +1 in each direction are such that xf = xi +Mxδx and yf = yi +Myδy.
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Similarly, if time is involved in the problem you discretize the time interval [ti, tf ] with a time step h, and you
define instants tn = ti + nh, with n ∈ J0, NK where you want to approximate the PDE solution. The estimate
of the numerical solution at (xj , yk, tn) is denoted ϕnjk. Based on this spatio-temporal discretization, we now
approximate spatial and temporal derivatives.

Time derivatives. For the time derivative, only the first-order derivative is relevant. Indeed, for higher-order
time derivatives, we can always transform the PDE into a system of coupled PDEs which only involve first-order
time derivatives, as we did for ODEs. This is illustrated in the example below.

Consider the wave equation (2). If we define

ψ(x, y, t) =
∂ϕ

∂t
(x, y, t),

then Eq. (2) is equivalent to the coupled system of first-order PDEs:

∂ϕ

∂t
= ψ,

∂ψ

∂t
= c2∆ϕ,

ϕ(x, y, 0) = ϕi(x, y)

ψ(x, y, 0) = ψi(x, y).

Just like for the time integration of ODEs, we can distinguish forward time derivatives and backward time
derivatives.

Finite-Difference representation of time derivatives
The Forward Time (FT) representation of the time derivative is

∂ϕ

∂t

∣∣∣∣n
jk

=
ϕn+1
jk − ϕnjk

h
+O(h). (4)

This FD approximation is forward because we use the value of the function at the current time tn and at
the next time tn+1 to compute the slope at time tn.

The Backward Time (BT) representation of the time derivative is

∂ϕ

∂t

∣∣∣∣n+1

jk

=
ϕn+1
jk − ϕnjk

h
+O(h). (5)

This FD approximation is backward because we use the value of the function at the current time tn+1 and
at the previous time tn to compute the slope at time tn+1.

For both Finite-Difference (FD) representations, the truncated terms are of order O(h).

Spatial derivatives. We similarly approximate spatial derivatives via different FD formulas.

Finite-Difference representation of first-order spatial derivatives
The Forward Space (FS) representation of the first-order spatial derivative is

∂ϕ

∂x

∣∣∣∣n
jk

=
ϕnj+1,k − ϕnjk

δx
+O(δx),

∂ϕ

∂y

∣∣∣∣n
jk

=
ϕnj,k+1 − ϕnjk

δy
+O(δy).

(6)
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This FD approximation is forward because we use the value of the function at the current x-position xj
(respectively y-position yk) and at the right x-position xj+1 (respectively y-position yk+1) to compute the
slope at x-position xj (respectively y-position yk).

The Backward Space (BS) representation of the first-order spatial derivative is
∂ϕ

∂x

∣∣∣∣n
jk

=
ϕnjk − ϕnj−1,k

δx
+O(δx),

∂ϕ

∂y

∣∣∣∣n
jk

=
ϕnjk − ϕnj,k−1

δy
+O(δy).

(7)

This FD approximation is backward because we use the value of the function at the current x-position xj
(respectively y-position yk) and at the left x-position xj−1 (respectively y-position yk−1) to compute the
slope at x-position xj (respectively y-position yk).

The Centered Space (CS) representation of the first-order spatial derivative is
∂ϕ

∂x

∣∣∣∣n
jk

=
ϕnj+1,k − ϕnj−1,k

2δx
+O(δ2x),

∂ϕ

∂y

∣∣∣∣n
jk

=
ϕnj,k+1 − ϕnj,k−1

2δy
+O(δ2y).

(8)

This FD approximation is centered because we use the value of the function at the right x-position xj+1

(respectively y-position yk+1) and at the left x-position xj−1 (respectively y-position yk−1) to compute the
slope at the current x-position xj (respectively y-position yk).

For both FS and BS representations, the truncated terms are of order O(δx, δy). For the CS representation,
the truncated terms are instead of order O(δ2x, δ

2
y).

The verification of the above formulas is a good exercise (do it before looking at the correction in the example
below!).

For the FS representation, we do a Taylor expansion of ϕ at (xj+1, yk, tn):

ϕ(xj + δx, yk, tn) = ϕ(xj , yk, tn) + δx
∂ϕ

∂x
(xj , yk, tn) +

δ2x
2

∂2ϕ

∂x2
(xj , yk, tn) +O(δ3x),

ϕnj+1,k = ϕnjk + δx
∂ϕ

∂x

∣∣∣∣n
jk

+
δ2x
2

∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ3x),

leading to
ϕnj+1,k − ϕnjk

δx
=
∂ϕ

∂x

∣∣∣∣n
jk

+
δx
2

∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ2x) =
∂ϕ

∂x

∣∣∣∣n
jk

+O(δx).

The calculation is similar for the BS representation.

For the CS representation, we also do a Taylor expansion of ϕ at (xj−1, yk, tn):

ϕ(xj − δx, yk, tn) = ϕ(xj , yk, tn)− δx
∂ϕ

∂x
(xj , yk, tn) +

δ2x
2

∂2ϕ

∂x2
(xj , yk, tn) +O(δ3x),

ϕnj−1,k = ϕnjk − δx
∂ϕ

∂x

∣∣∣∣n
jk

+
δ2x
2

∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ3x),

leading to
ϕnj+1,k − ϕnj−1,k

2δx
=
∂ϕ

∂x

∣∣∣∣n
jk

+O(δ2x).

Contrary to time derivatives, you might need to approximate higher-order spatial derivatives.
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Finite-Difference representation of higher-order spatial derivatives
The Centered Space (CS) representation of the second-order spatial derivative is

∂2ϕ

∂x2

∣∣∣∣n
jk

=
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

δ2x
+O(δ2x),

∂2ϕ

∂y2

∣∣∣∣n
jk

=
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

δ2y
+O(δ2y).

(9)

The verification of the above formulas is a good exercise (do it before looking at the correction in the example
below!).

We do a Taylor expansion of ϕ at (xj±1, yk, tn):

ϕ(xj ± δx, yk, tn) = ϕ(xj , yk, tn)± δx
∂ϕ

∂x
(xj , yk, tn) +

δ2x
2

∂2ϕ

∂x2
(xj , yk, tn)±

δ3x
6

∂3ϕ

∂x3
(xj , yk, tn) +O(δ4x),

ϕnj±1,k = ϕnjk ± δx
∂ϕ

∂x

∣∣∣∣n
jk

+
δ2x
2

∂2ϕ

∂x2

∣∣∣∣n
jk

± δ3x
6

∂3ϕ

∂x3

∣∣∣∣n
jk

+O(δ4x),

leading to

ϕnj+1,k + ϕnj−1,k = 2ϕnjk + δ2x
∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ4x).

From this last equation, you easily get the result presented above.

If you need other higher-order spatial derivatives, you just have to combine several Taylor expansions, as it is
done in the example above.

You can construct FD representations of spatial derivatives which are more refined than the above estimates. For that
we need to use more nodes. We illustrate this with the example of a more accurate FS representation of first-order
spatial derivatives. We do a Taylor expansion of ϕ at (xj+1, yk, tn) and at (xj+2, yk, tn):

ϕ(xj + δx, yk, tn) = ϕ(xj , yk, tn) + δx
∂ϕ

∂x
(xj , yk, tn) +

δ2x
2

∂2ϕ

∂x2
(xj , yk, tn) +O(δ3x),

ϕnj+1,k = ϕnjk + δx
∂ϕ

∂x

∣∣∣∣n
jk

+
δ2x
2

∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ3x),

and

ϕ(xj + 2δx, yk, tn) = ϕ(xj , yk, tn) + 2δx
∂ϕ

∂x
(xj , yk, tn) + 2δ2x

∂2ϕ

∂x2
(xj , yk, tn) +O(δ3x),

ϕnj+2,k = ϕnjk + 2δx
∂ϕ

∂x

∣∣∣∣n
jk

+ 2δ2x
∂2ϕ

∂x2

∣∣∣∣n
jk

+O(δ3x).

We can then get rid of the second-order derivative with the combination:

4ϕnj+1,k − ϕnj+2,k = 3ϕnjk + 2δx
∂ϕ

∂x

∣∣∣∣n
jk

+O(δ3x),

leading to
∂ϕ

∂x

∣∣∣∣n
jk

=
4ϕnj+1,k − ϕnj+2,k − 3ϕnjk

2δx
+O(δ2x).

b. Polar coordinates

So far we have discussed Cartesian coordinates, but sometimes boundary conditions make other coordinate
systems (polar, cylindrical, spherical, etc.) more suitable. We show how to find the FD representation of spatial
derivatives in other coordinate systems, taking the example of the Laplacian in polar coordinates:

∆ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
.
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We see that there are two differences with respect to the Laplacian in Cartesian coordinates. First, for the term
involving derivatives with respect to θ, there is a prefactor which varies in space. Second, for the term involving
derivatives with respect to r, this is not the function ϕ which is derived.

To derive a FD representation of the Laplacian, we first discretize space as for Cartesian coordinates. The nodes
have polar coordinates (rj , θk), where rj = jδr and θk = kδθ, with j ∈ J0, MrK and k ∈ J0, MθK. The nodes
are regularly spaced in radius (with a step size δr) and in angle (with a step size δθ). The number of nodes in
each direction are such that rf = Mrδr and 2π = Mθδθ. The estimate of the numerical solution at (rj , θk, tn)
is denoted ϕnjk. We stress that all ϕn0k are equal because they all correspond to the same point in space, namely,
the origin: we simply note it ϕn0 .

To approximate the term involving derivatives with respect to θ, we can simply use the FD representation derived
for Cartesian coordinates:

1

r2
∂2ϕ

∂θ2

∣∣∣∣n
jk

=
1

r2j

[
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

δ2θ

]
+O(δ2θ).

However, you can see that this term diverges for j = 0, which is problematic! We discuss this problem be-
low.

Note that the recipe we used here to obtain the FD representation can be generalized to terms like a(x)∂ϕ/∂x in
Cartesian coordinates.

For the term involving derivates with respect with r, we have to be more cautious. We first use a CS representation
of the exterior derivative:

1

r

∂

∂r

(
r
∂ϕ

∂r

)∣∣∣∣n
jk

=
1

rj


(
r
∂ϕ

∂r

)∣∣∣∣n
j+1/2,k

−
(
r
∂ϕ

∂r

)∣∣∣∣n
j−1/2,k

δr

+O(δ2r )

Note that we have considered imaginary nodes of index j±1/2 between node j and node j±1 in the r-direction.
We then apply a second CS representation for the remaining derivatives:(

r
∂ϕ

∂r

)n

j+1/2,k

= rj+1/2

(
ϕnj+1,k − ϕnjk

δr

)
+O(δ2r ),

where rj+1/2 = (j + 1/2)δr. Similarly,(
r
∂ϕ

∂r

)n

j−1/2,k

= rj−1/2

(
ϕnjk − ϕnj−1,k

δr

)
+O(δ2r ),

where rj−1/2 = (j − 1/2)δr. We finally end up with

1

r

∂

∂r

(
r
∂ϕ

∂r

)∣∣∣∣n
jk

=
1

rj

rj+1/2

(
ϕnj+1,k − ϕnjk

)
− rj−1/2

(
ϕnjk − ϕnj−1,k

)
δ2r

+O(δ2r ).

You can note that, finally, the FD representation only involves the values of the function at real nodes j−1, j, j+1.
However, the formula is again problematic when j = 0.

Finite-Difference representation of the Laplacian in polar coordinates
The CS representation of the Laplacian in polar coordinates is

∆ϕ|njk =
1

rj

rj+1/2

(
ϕnj+1,k − ϕnjk

)
− rj−1/2

(
ϕnjk − ϕnj−1,k

)
δ2r

+ 1

r2j

[
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

δ2θ

]
+O(δ2r , δ

2
θ).

(10)
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If the integration domain includes the origin (r0 = 0) then the above formula is not valid there.

To cure the problem for j = 0 (around the origin), you usually need to integrate the PDE in a small disk around
the origin and use approximations of the integrals involved. This is illustrated in the remark/example below for
the curious reader.

We illustrate the procedure to cure the problem at j = 0 in the case of the heat equation. We integrate Eq. (1) on
a small disk of radius δr/2 and between times tn and tn+1:

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
∂ϕ

∂t
(r, θ, t) = D

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
1

r

∂

∂r

(
r
∂ϕ

∂r

)
(r, θ, t)

+D

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
1

r2
∂2ϕ

∂θ2
(r, θ, t).

The second integral in the right-hand side vanishes because of the 2π-periodicity of ϕ with respect to θ:

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
∂2ϕ

∂θ2
(r, θ, t) =

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

[
∂ϕ

∂θ
(r, θ, t)

]θ=2π

θ=0

= 0.

We can also simplify the integral in the left-hand side by performing the time integration:

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
∂ϕ

∂t
(r, θ, t) =

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
[
ϕ(r, θ, t)

]t=tn+1

t=tn

=

ˆ δr/2

0

dr r

ˆ 2π

0

dθ [ϕ(r, θ, tn+1)− ϕ(r, θ, tn)] .

We can finally simplify the first integral in the right-hand side by simplifying by r and performing the integration with
respect to r:

ˆ tn+1

tn

dt

ˆ δr/2

0

dr r

ˆ 2π

0

dθ
1

r

∂

∂r

(
r
∂ϕ

∂r

)
(r, θ, t) =

ˆ tn+1

tn

dt

ˆ 2π

0

dθ

[
r
∂ϕ

∂r
(r, θ, t)

]r=δr/2

r=0

=
δr
2

ˆ tn+1

tn

dt

ˆ 2π

0

dθ
∂ϕ

∂r
(δr/2, θ, t).

We are thus left with the following equality:

ˆ δr/2

0

dr r

ˆ 2π

0

dθ [ϕ(r, θ, tn+1)− ϕ(r, θ, tn)] =
Dδr
2

ˆ tn+1

tn

dt

ˆ 2π

0

dθ
∂ϕ

∂r
(δr/2, θ, t).

We now approximate the two above integrals. For the integral in the left-hand side, we use the left rectangular rule
for the integration over r, after the change of variable s = r2:

ˆ δr/2

0

dr r [ϕ(r, θ, tn+1)− ϕ(r, θ, tn)] =
1

2

ˆ δ2r/4

0

ds
[
ϕ(
√
s, θ, tn+1)− ϕ(

√
s, θ, tn)

]
=
δ2r
8

[ϕ(0, θ, tn+1)− ϕ(0, θ, tn)] .

The right-hand side does not depend on θ because we evaluate the solution for r = 0 (origin), so we can easily
perform the integration over θ, and finally express the integral in the left-hand side with the value of ϕ at the nodes:

ˆ δr/2

0

dr r

ˆ 2π

0

dθ [ϕ(r, θ, tn+1)− ϕ(r, θ, tn)] = 2π × δ2r
8

(
ϕn+1
0 − ϕn0

)
=
πδ2r
4

(
ϕn+1
0 − ϕn0

)
.

We proceed similarly for the integral in the right-hand side. We first use a left rectangular method for the time
integration time: ˆ tn+1

tn

dt
∂ϕ

∂r
(δr/2, θ, t) = h

∂ϕ

∂r
(δr/2, θ, tn).

7
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For the integration with respect to θ, we also apply the left rectangular method:

ˆ tn+1

tn

dt

ˆ 2π

0

dθ
∂ϕ

∂r
(δr/2, θ, t) = h

ˆ 2π

0

dθ
∂ϕ

∂r
(δr/2, θ, tn) = hδθ

Mθ−1∑
k=0

∂ϕ

∂r
(δr/2, θk, tn).

We finally approximate the spatial derivative above with a CS representation, leading to

ˆ tn+1

tn

dt

ˆ 2π

0

dθ
∂ϕ

∂r
(δr/2, θ, t) = hδθ

Mθ−1∑
k=0

ϕn1k − ϕn0
δr

.

Combining the above results, we obtain that

πδ2r
4

(
ϕn+1
0 − ϕn0

)
=
Dhδθ
2

Mθ−1∑
k=0

(ϕn1k − ϕn0 ) ,

that we can rearrange as
ϕn+1
0 − ϕn0

h
= D × 2δθ

πδ2r

Mθ−1∑
k=0

(ϕn1k − ϕn0 ) .

We recognize on the left-hand side the FD representation of the time derivative. Therefore the term in the right-hand
side corresponds to the FD representation of the Laplacian for j = 0.

3. Building an integration scheme to solve Initial Value Problems

We have seen how to discretize space and time separately. For Boundary Value Problems, like the Poisson
equation (3), the FD scheme is complete. But for Initial Value Problems, like the heat equation (1) or the wave
equation (2), we need to combine the two to build an integration scheme. We illustrate few possible combinations
in the case of the heat equation in two dimensions below. Of course, you can then easily adapt them to other
PDEs.

a. Forward Time Centered Space scheme

Presentation of the scheme. The Forward Time Centered Space (FTCS) scheme is obtained by combining a
FT representation of the time derivative with a CS representation of the Laplacian:

∂ϕ

∂t

∣∣∣∣n
jk

= D ∆ϕ|njk

ϕn+1
jk − ϕnjk

h
+O(h) = D

(
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

δ2x
+
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

δ2y

)
+O(δ2x, δ

2
y).

We thus obtain the following recurrence relation.

FTCS scheme for the heat equation
The FTCS scheme for the 2D heat equation is given by the following recurrence relation:

ϕn+1
jk = ϕnjk +

Dh

δ2x

(
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

)
+
Dh

δ2y

(
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

)
. (11)

This scheme is explicit because the equations giving ϕn+1
jk for all j and k are independent and only involve

the values of the solution at time tn.

The FTCS scheme is equivalent to the Forward Euler method for ODEs.

Solving the scheme. Because the scheme is explicit, it can be solved straightforwardly after boundary conditions
have been provided (see the section about Boundary Conditions).

8
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b. Backward Time Centered Space scheme

Presentation of the scheme. The Backward Time Centered Space (BTCS) scheme is obtained by combining
a BT representation of the time derivative with a CS representation of the Laplacian:

∂ϕ

∂t

∣∣∣∣n+1

jk

= D ∆ϕ|n+1
jk

ϕn+1
jk − ϕnjk

h
+O(h) = D

(
ϕn+1
j+1,k + ϕn+1

j−1,k − 2ϕn+1
jk

δ2x
+
ϕn+1
j,k+1 + ϕn+1

j,k−1 − 2ϕn+1
jk

δ2y

)
+O(δ2x, δ

2
y).

We thus obtain the following recurrence relation.

BTCS scheme for the heat equation
The BTCS scheme for the 2D heat equation is given by the following recurrence relation:

−Dh
δ2x

(
ϕn+1
j+1,k + ϕn+1

j−1,k

)
− Dh

δ2y

(
ϕn+1
j,k+1 + ϕn+1

j,k−1

)
+ ϕn+1

jk

(
1 +

2Dh

δ2x
+

2Dh

δ2y

)
= ϕnjk. (12)

This scheme is implicit because the equations giving ϕn+1
jk for all j and k are coupled.

The BTCS scheme is equivalent to the Backward Euler method for ODEs.

Solving the scheme. Because the scheme is implicit, it cannot be solved straightforwardly. This is because
the equations giving ϕn+1

jk for all j and k are coupled. If the PDE is linear, you obtain a set of coupled linear
equations that you can rewrite as a linear system. If the PDE is not linear, then you obtain a set of coupled
non-linear equations. Solving these sets of coupled equations is discussed below.

c. Crank-Nicolson scheme

Presentation of the scheme. The Crank-Nicolson scheme is obtained by averaging the FT and BT schemes.

ϕn+1
jk − ϕnjk

h
+O(h) =

D

2

(
ϕn+1
j+1,k + ϕn+1

j−1,k − 2ϕn+1
jk

δ2x
+
ϕn+1
j,k+1 + ϕn+1

j,k−1 − 2ϕn+1
jk

δ2y

)

+
D

2

(
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

δ2x
+
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

δ2y

)
+O(δ2x, δ

2
y),

leading to the following recurrence relation.

Crank-Nicolson scheme of the heat equation
The Crank-Nicolson scheme for the 2D heat equation is given by the following recurrence relation:

− Dh

2δ2x

(
ϕn+1
j+1,k + ϕn+1

j−1,k

)
− Dh

2δ2y

(
ϕn+1
j,k+1 + ϕn+1

j,k−1

)
+ ϕn+1

jk

(
1 +

Dh

δ2x
+
Dh

δ2y

)
= ϕnjk

(
1− Dh

δ2x
− Dh

δ2y

)
+
Dh

2δ2x

(
ϕnj+1,k + ϕnj−1,k

)
+
Dh

2δ2y

(
ϕnj,k+1 + ϕnj,k−1

)
.

(13)

This scheme is implicit because the equations giving ϕn+1
jk for all j and k are coupled.

The Crank-Nicolson scheme is equivalent to the Trapezoidal method for ODEs.

Solving the scheme. Because the scheme is implicit, it cannot be solved straightforwardly, like the BTCS
scheme.

9
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II. Implementing Boundary Conditions

Before discussing how to solve the various schemes introduced above, we need to complement the PDE with
Boundary Conditions (BCs). In these notes, we discuss the most common ones: periodic BCs, Dirichlet BCs
and Neumann BCs.

1. Periodic boundary conditions

a. Definition

We start by defining periodic boundary conditions.

Definition of periodic boundary conditions
Periodic boundary conditions in the x-direction mean that for all y, the point of coordinates (xi, y) is the
same as the point of coordinates (xf , y) (you wrap the rectangle around itself). For the solution, this
amounts to say that

∀n ∈ J0, NK ∀k ∈ J0, MyK ϕn0k = ϕnMx,k. (14)

Periodic boundary conditions in the y-direction mean that for all x, the point of coordinates (x, yi) is the
same as the point of coordinates (x, yf) (you wrap the rectangle around itself). For the solution, this
amounts to say that

∀n ∈ J0, NK ∀j ∈ J0, MxK ϕnj0 = ϕnj,My
. (15)

Periodic BCs emerge naturally in the case of polar coordinates (the solutions are 2π-periodic functions of θ).
Otherwise, they may be used to avoid finite-size effects and to mimic an infinite system.

Periodic boundary conditions are easy to implement. We illustrate this for the one-dimensional heat equation

∂ϕ

∂t
= D

∂2ϕ

∂x2
,

ϕ(0, t) = ϕ(1, t),

ϕ(x, 0) = ϕi(x),

first for the FTCS scheme, and then for the BTCS scheme.

b. FTCS scheme for the 1D heat equation with periodic BCs

The recurrence relation for the FTCS scheme is given by Eq. (11):

ϕn+1
j = ϕnj +

Dh

δ2x

(
ϕnj+1 + ϕnj−1 − 2ϕnj

)
.

Because of the periodic boundary conditions, we can restrict j to J0, Mx − 1K. If we write explicitely the above
recurrence relation, we get 

ϕn+1
0 = ϕn0 +

Dh

δ2x

(
ϕn1 + ϕnMx−1 − 2ϕn0

)
,

ϕn+1
1 = ϕn1 +

Dh

δ2x
(ϕn2 + ϕn0 − 2ϕn1 ) ,

...

ϕn+1
Mx−1 = ϕnMx−1 +

Dh

δ2x

(
ϕn0 + ϕnMx−2 − 2ϕnMx−1

)
.

(16)

10
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c. BTCS scheme for the 1D heat equation with periodic BCs

We can repeat the procedure for the BTCS scheme. The recurrence relation is given by Eq. (12):

−Dh
δ2x

(
ϕn+1
j+1 + ϕn+1

j−1

)
+ ϕn+1

j

(
1 +

2Dh

δ2x

)
= ϕnj .

Because of the periodic boundary conditions, we can restrict j to J0, Mx − 1K. If we write explicitely the above
recurrence relation, we get the following linear system

1 + 2Dh/δ2x −Dh/δ2x 0 . . . 0 −Dh/δ2x
−Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x 0 . . . 0

. . . . . .
0 . . . 0 −Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x

−Dh/δ2x 0 . . . 0 −Dh/δ2x 1 + 2Dh/δ2x



ϕn+1
0

ϕn+1
1
...

ϕn+1
Mx−2

ϕn+1
Mx−1

 =


ϕn0
ϕn1
...

ϕnMx−2

ϕnMx−1

 .

(17)

2. Dirichlet boundary conditions

a. Definition

We start by defining Dirichlet boundary conditions.

Definition of Dirichlet boundary conditions
Dirichlet boundary conditions correspond to imposing the value of the solution on one boundary.

For example, for a boundary condition of the form ϕ(xi, y, t) = g(y, t), this amounts to say that

∀n ∈ J0, NK ∀k ∈ J0, MyK ϕn0k = gnk , (18)

where gnk = g(yk, tn).

Dirichlet BCs are used when you want to impose the value of the solution on one boundary. Several physical
examples are given below.

Examples of natural Dirichlet BCs include:

▶ fixing the value of the electrostatic potential on a conductor,

▶ fixing the amplitude of motion of the extremity of a string,

▶ fixing the temperature at the interface between two media.

Dirichlet boundary conditions are easy to implement. We illustrate this again for the one-dimensional heat
equation (physically, this corresponds to imposing the temperature on the two boundaries)

∂ϕ

∂t
= D

∂2ϕ

∂x2
,

ϕ(0, t) = a(t),

ϕ(1, t) = b(t),

ϕ(x, 0) = ϕi(x),

first for the FTCS scheme, and then for the BTCS scheme.

11
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b. FTCS scheme for the 1D heat equation with Dirichlet BCs

The recurrence relation for the FTCS scheme is given by Eq. (11):

ϕn+1
j = ϕnj +

Dh

δ2x

(
ϕnj+1 + ϕnj−1 − 2ϕnj

)
.

Because of the Dirichlet boundary conditions, we can restrict j to J1, Mx − 1K because ϕn0 = an and ϕnMx
= bn

[with an = a(tn) and bn = b(tn)]. If we write explicitely the above recurrence relation, we get

ϕn+1
1 = ϕn1 +

Dh

δ2x
(ϕn2 + an − 2ϕn1 ) ,

ϕn+1
2 = ϕn2 +

Dh

δ2x
(ϕn3 + ϕn1 − 2ϕn2 ) ,

...

ϕn+1
Mx−1 = ϕnMx−1 +

Dh

δ2x

(
bn + ϕnMx−2 − 2ϕnMx−1

)
.

(19)

c. BTCS scheme for the 1D heat equation with Dirichlet BCs

We can repeat the procedure for the BTCS scheme. The recurrence relation is given by Eq. (12):

−Dh
δ2x

(
ϕn+1
j+1 + ϕn+1

j−1

)
+ ϕn+1

j

(
1 +

2Dh

δ2x

)
= ϕnj .

Because of the Dirichlet boundary conditions, we can restrict j to J1, Mx − 1K. If we write explicitely the above
recurrence relation, we get the following linear system

1 + 2Dh/δ2x −Dh/δ2x 0 . . . 0 0
−Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x 0 . . . 0

. . . . . .
0 . . . 0 −Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x
0 0 . . . 0 −Dh/δ2x 1 + 2Dh/δ2x



ϕn+1
1

ϕn+1
2
...

ϕn+1
Mx−2

ϕn+1
Mx−1



=


ϕn1 +Dhan+1/δ2x

ϕn2
...

ϕnMx−2

ϕnMx−1 +Dhbn+1/δ2x

 .

(20)

3. Neumann boundary conditions

a. Definition

We start by defining Neumann boundary conditions.

Definition of Neumann boundary conditions
Neumann boundary conditions correspond to imposing the value of the normal derivative of the solution on
one boundary. For example, a Neumann boundary condition at x = xi is of the form

∂ϕ

∂x
(xi, y, t) = h(y, t). (21)

12
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Similarly, a Neumann boundary condition at y = yf is of the form

∂ϕ

∂y
(x, yf , t) = h(x, t). (22)

Neumann BCs are used when you want to impose the value of the normal derivative, i.e., the flux, on one
boundary. Several physical examples are given below.

Examples of natural Neumann BCs include:

▶ fixing the value of the electric field (gradient of the electrostatic potential) at the interface between two media,

▶ fixing the heat flux at the interface between two media.

Neumann boundary conditions require some manipulations that we explain now.

Implementation of Neumann boundary conditions
To impose the boundary condition given by Eq. (21), you have to define a ghost cell (see Fig. 2) labelled
j = −1. Then by using a CS representation, you get

ϕn1,k − ϕn−1,k

2δx
= hnk ,

with hnk = h(yk, tn). The values ϕn−1,k will also appear in the recurrence relations of the scheme in order to
close the system of equations.

xi xfyi

yf

x

y

Figure 2: Illustration of the ghost cell construction to define Neumann Boundary Conditions. We use
the same space discretization as in Fig. 1. If we want to impose a Neumann boundary condition at x = xi, we
define ghost nodes of abscissa xi − δx (empty disks connected to real nodes by dashed lines).

We illustrate the implementation of Neumann BCs again for the one-dimensional heat equation (physically, this
corresponds to imposing the heat flux on the two boundaries)

∂ϕ

∂t
= D

∂2ϕ

∂x2
,

∂ϕ

∂x
(0, t) = q(t),

ϕ(1, t) = b(t),

ϕ(x, 0) = ϕi(x),

first for the FTCS scheme, and then for the BTCS scheme. Note that we have imposed one Neumann BC on
the left, but a Dirichlet BC on the right (simpler case).

13
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b. FTCS scheme for the 1D heat equation with Neumann BCs

The recurrence relation for the FTCS scheme is given by Eq. (11):

ϕn+1
j = ϕnj +

Dh

δ2x

(
ϕnj+1 + ϕnj−1 − 2ϕnj

)
.

Because of the Dirichlet boundary condition on the right extremity, we can restrict j to J0, Mx − 1K because
ϕnMx

= bn. We now write explicitely the above recurrence relation:

ϕn+1
0 = ϕn0 +

Dh

δ2x

(
ϕn1 + ϕn−1 − 2ϕn0

)
,

ϕn+1
1 = ϕn1 +

Dh

δ2x
(ϕn2 + ϕ0 − 2ϕn1 ) ,

...

ϕn+1
Mx−1 = ϕnMx−1 +

Dh

δ2x

(
b+ ϕnMx−2 − 2ϕnMx−1

)
.

We see that ϕn−1 (the value of the function at the ghost node) appears in these equations. We now combine the
first equation of this system, with the Neumann boundary condition

ϕn1 − ϕn−1

2δx
= qn =⇒ ϕn−1 = ϕn1 − 2δxq

n,

where qn = q(tn), to get

ϕn+1
0 = ϕn0 +

2Dh

δ2x
(ϕn1 − δxq

n − ϕn0 ) .

Eventually, the recurrence relation can be written

ϕn+1
0 = ϕn0 +

2Dh

δ2x
(ϕn1 − δxq

n − ϕn0 ) ,

ϕn+1
1 = ϕn1 +

Dh

δ2x
(ϕn2 + ϕn0 − 2ϕn1 ) ,

...

ϕn+1
Mx−1 = ϕnMx−1 +

Dh

δ2x

(
bn + ϕnMx−2 − 2ϕnMx−1

)
.

(23)

c. BTCS scheme for the 1D heat equation with Neumann BCs

We can repeat the procedure for the BTCS scheme. The recurrence relation is given by Eq. (12):

−Dh
δ2x

(
ϕn+1
j+1 + ϕn+1

j−1

)
+ ϕn+1

j

(
1 +

2Dh

δ2x

)
= ϕnj .

Because of the Dirichlet boundary condition on the right extremity, we can restrict j to J0, Mx − 1K. Similarly
as before, we have to combine the recurrence relation for j = 0

−Dh
δ2x

(
ϕn+1
1 + ϕn+1

−1

)
+ ϕn+1

0

(
1 +

2Dh

δ2x

)
= ϕn0 .

with the Neumann BC (this time at instant tn+1)

ϕn+1
1 − ϕn+1

−1

2δx
= qn+1 =⇒ ϕn+1

−1 = ϕn+1
1 − 2δxq

n+1,

14
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to get rid of ϕn+1
−1 (which is unknown). We thus get

−2Dh

δ2x
ϕn+1
1 + ϕn+1

0

(
1 +

2Dh

δ2x

)
= ϕn0 − 2Dh

δx
qn+1.

Therefore, we can write explicitely the recurrence relations as the following linear system
1 + 2Dh/δ2x −2Dh/δ2x 0 . . . . . . 0
−Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x 0 . . . 0

. . . . . .
0 . . . 0 −Dh/δ2x 1 + 2Dh/δ2x −Dh/δ2x
0 . . . . . . 0 −Dh/δ2x 1 + 2Dh/δ2x



ϕn+1
0

ϕn+1
1
...

ϕn+1
Mx−2

ϕn+1
Mx−1



=


ϕn0 − 2Dhqn+1/δx

ϕn1
...

ϕnMx−2

ϕnMx−1 +Dhbn+1/δ2x

 .

(24)

4. Other boundary conditions

There are other kinds of boundary conditions, which involve the value of the function and of its spatial derivatives
on the frontiers of the domain. They are referred to as mixed boundary conditions. They will not be discussed
in these lecture notes.

5. Conclusion: the role of boundary conditions

The above discussion should have made clear that a Finite-Difference scheme must always be complemented
with Boundary Conditions in order to be solvable. Otherwise, the problem has more unknowns than
equations.

III. Solving Finite-Difference equations for Initial Value Problems and Bound-
ary Value Problems

1. Method

We now discuss methods to solve IVPs and BVPs, like the heat equation (1) or the wave equation (2).

Solving explicit schemes. Examples of explicit schemes are given by Eqs. (16), (19) and (23). These equations
are not coupled for ϕn+1

lk and can thus be solved very straightforwardly.

Solving implicit schemes. Examples of implicit schemes are given by Eqs. (17), (20) and (24). These schemes
amount to solving coupled equations for ϕn+1

lk which are linear as soon as the PDE is linear. As a conclusion, we
need to solve linear systems at each time step.

The matrix involved in the linear systems given by Eqs. (17), (20) and (24) has an important property, it is sparse,
meaning that it has a lot of zeros on each line. Specific and efficient methods to solve linear systems exist for sparse
matrices, you can look at the documentation page of scipy.sparse. For example, the systems given by Eqs. (17),
(20) and (24) are of size O(Mx). Gaussian elimination costs O(M3

x) operations, while specific algorithms for sparse
matrices only cost O(Mx) operations.

2. Choice of the discretization steps

The choice of the discretization steps h, δx and δy remains to be discussed. Of course, we expect the integration
scheme to provide a better approximation of the solution when h, δx, δy → 0 (if the scheme is convergent).

15
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However, the smaller the discretization steps are, the larger the computation time. Therefore, we ask how large
can we make the discretization steps to still get an acceptable estimate of the solution?

The major constraint is the stability of the scheme. Said differently, a numerical integrator of PDEs can become
unstable if the discretization steps are taken too large. The analysis of the stability of PDE integrators is complex
because of the boundary conditions which affect the form of the recurrence relations [see for instance Eqs. (17),
(20) and (24)]. In the following, we propose a method to assess the stability of an integrator scheme for linear
PDEs without taking into account the boundary conditions. This method, called the von Neumann stability
criterion, however cannot provide a sufficient criterion for the scheme to be stable, but only a necessary
condition.

von Neumann stability criterion
If a FD scheme solving a linear PDE is stable then injecting the von Neumann ansatz

ϕnjk = φnei(ξj+ηk) (25)

(with ξ, η ∈ R and φn ∈ C) into the recurrence relation must lead to a non-diverging amplitude:∣∣φn+1
∣∣ ≤ |φn| (26)

for all values of ξ and η. The ratio ρ = φn+1/φn is called the symbol or the amplification factor of the
scheme. The latter is stable if |ρ| ≤ 1.

Again, be careful that the reciprocal is not true. In other words, the von Neumann stability criterion can be
satisfied but the scheme can be unstable because of the boundary conditions.

We illustrate the method in an example below for the FTCS scheme to solve the 2D heat equation (try it by
yourself first!).

We inject the von Neumann ansatz (25) into the FTCS scheme for the 2D heat equation [see Eq. (11)]:

φn+1ei[ξ(j+1)+ηk] = φnei(ξj+ηk) +
Dh

δ2x

{
φnei[ξ(j+1)+ηk] + φnei[ξ(j−1)+ηk] − 2φnei(ξj+ηk)

}
+
Dh

δ2y

{
φnei[ξj+η(k+1)] + φnei[ξj+η(k−1)] − 2φnei(ξj+ηk)

}
.

Simplifying by ei(ξj+ηk), we get

φn+1 = φn

[
1 +

Dh

δ2x

(
eiξ + e−iξ − 2

)
+
Dh

δ2y

(
eiη + e−iη − 2

)]
φn+1 = φn

[
1 +

2Dh

δ2x
(cos ξ − 1) +

2Dh

δ2y
(cos η − 1)

]
φn+1 = φn

[
1− 4Dh

δ2x
sin2

(
ξ

2

)
− 4Dh

δ2y
sin2

(η
2

)]
.

We thus identify the symbol

ρ = 1− 4Dh

δ2x
sin2

(
ξ

2

)
− 4Dh

δ2y
sin2

(η
2

)
As a result, for the scheme to be stable, we need −1 ≤ ρ ≤ 1. The inequality ρ ≤ 1 is verified. The other inequality
is verified if

2Dh

δ2x
sin2

(
ξ

2

)
+

2Dh

δ2y
sin2

(η
2

)
≤ 1.

This inequality has to be true for all values of ξ and η. The maximum value of the left-hand side is obtained for

16
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ξ = η = π and we thus need that

2Dh

(
1

δ2x
+

1

δ2y

)
≤ 1 =⇒ h ≤

δ2xδ
2
y

2D(δ2x + δ2y)
.

We have not discussed the convergence properties of the integrator, namely, whether the numerical solution approaches
the exact solution when the discretization steps go to 0. There exists a theorem, called the Lax equivalence theorem,
which tells you that if a scheme is consistent and stable, then it is convergent. Here all the schemes presented are
generalizations of schemes introduced for ODEs. They are thus all consistent (the recurrence relation approximates
the PDE well). As a consequence, as long as they are stable, they converge.

IV. Solving Finite-Difference equations for Boundary Value Problems

In this section, we list several methods to solve stationary BVPs, that we illustrate in the particular case of the
Poisson equation (3). For more details about all these methods, you can read J. W. Thomas, Numerical Partial
Differential Equations. Conservation Laws and Elliptic Equations.

1. Finite-Difference representation of the Poisson equation

We start by building the FD representation of Eq. (3).

Finite-Difference representation of the Poisson equation
The FD representation of the 2D Poisson equation is

ϕj+1,k + ϕj−1,k − 2ϕjk
δ2x

+
ϕj,k+1 + ϕj,k−1 − 2ϕjk

δ2y
= fjk (27)

using a second-order CS scheme, where fjk = f(xj , yk).

Do not forget that this equation must be complemented with boundary conditions. We have already seen how
to implement boundary conditions, and here we only focus on Dirichlet boundary conditions:

∆ϕ = f,

ϕ(xi, y) = a(y),

ϕ(xf , y) = b(y),

ϕ(x, yi) = c(x),

ϕ(x, yf) = d(x).

Because of the Dirichlet boundary conditions, we can restrict ourselves to j ∈ J1,Mx − 1K and k ∈ J1,My − 1K.
We are thus left with Mx ×My coupled linear equations that we can write as a system. For that, we need to
rearrange all ϕjk’s into a column vector Φ. We decide to go line by line (although other rearrangements are
possible), look at Fig. 1 to find your way with the indices:

Φ =



Φ1

Φ2

Φ3
...

ΦMy−3

ΦMy−2

ΦMy−1


, (28)
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where Φk for k ∈ J1, My − 1K are column vectors of size Mx:

Φk =


ϕ1k
ϕ2k
...

ϕMx−2,k

ϕMx−1,k

 .

The column vector Φ is of size MxMy, and Eq. (28) is a block representation. If we multiply Eq. (27) by δx, the
recurrence relations become equivalent to the following system

RΦ = S, (29)

with R a square matrix of size MxMy which is, in block representation,

R =



T J 0 . . . . . . . . . 0
J T J 0 . . . . . . 0
0 J T J 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 J T J 0
0 . . . . . . 0 J T J
0 . . . . . . . . . 0 J T


,

where T and J are squared matrices of size Mx, with J = (δ2x/δ
2
y)I (I is the identity matrix) and

T =


−2(1 + δ2x/δ

2
y) 1 0 . . . . . . 0

1 −2(1 + δ2x/δ
2
y) 1 0 . . . 0

. . . . . .
0 . . . 0 1 −2(1 + δ2x/δ

2
y) 1

0 . . . . . . 0 1 −2(1 + δ2x/δ
2
y)

 .

The column vector S contains both the source term f and the Dirichlet BCs and reads, in block representation,

S = δ2x



F1

F2

F3
...

FMy−3

FMy−2

FMy−1


− δ2x
δ2y



C
0
0
...
0
0
D


−



L1

L2

L3
...

LMy−3

LMy−2

LMy−1


, (30)

where Fk and Lk for k ∈ J1, My − 1K are column vectors of size Mx:

Fk =


f1k
f2k
...

fMx−2,k

fMx−1,k

 , Lk =


ak
0
...
0
bk


with ak = a(yk) and bk = b(yk). Similarly, C and D are column vectors of siz Mx, with

C =


c1
c2
...

cMx−2

cMx−1

 , D =


d1
d2
...

dMx−2

dMx−1

 ,
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with cj = c(xj) and dj = d(xj). The second vector in Eq. (30) stands for the top and bottom boundary
conditions, the last vector for the left and right boundary conditions.

Conclusion. We are left with a linear system given by Eq. (29) to solve. In the following section, we propose
several ways of solving this system.

2. Brute-force solving

Just as we did for IVPs and BVPs, we can directly solve the linear system given by Eq. (29). However, these
systems can be very large, and the computation can be very slow. We thus propose iterative techniques which
can be faster in the following paragraph.

We can quantify how slow such a brute-force solving may be. The system (29) is of size MxMy and solving it with
Gaussian elimination requires O(M3

xM
3
y ) operations. Note though that the matrix is sparse and specific algorithms

only cost O(M3
xMy) operations. For Mx =My, this still represents O(M4

x) operations!

3. Iterative solving

a. The Jacobi method

The first iterative method, the Jacobi method, is directly inspired from our previous study of IVPs and BVPs.
Consider the heat equation

∂ϕ

∂t
= ∆ϕ− f,

in the presence of a source term f . We know that in the stationary state (i.e., when t → +∞), ϕ(x, y, t)
converges to the solution ∆ϕ = f , which is precisely the problem we have to solve. Asa consequence, the idea
is to solve the IVP and BVP given above up to a time when the solution does not change much. For instance,
if you use a FTCS scheme, the recurrence relation is

ϕn+1
jk = ϕnjk +

h

δ2x

(
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

)
+
h

δ2y

(
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

)
− hfjk.

How to choose the time step h, which is here a calculation trick? We have seen above that the FTCS scheme
can be stable only if

h ≤
δ2xδ

2
y

2(δ2x + δ2y)
.

To fasten the algorithm, we have to take h the largest while respecting the above condition, and we thus propose
to iterate with h = δ2xδ

2
y/[2(δ

2
x + δ2y)]. Then the iteration scheme becomes:

ϕn+1
jk = ϕnjk +

δ2y
2(δ2x + δ2y)

(
ϕnj+1,k + ϕnj−1,k − 2ϕnjk

)
+

δ2x
2(δ2x + δ2y)

(
ϕnj,k+1 + ϕnj,k−1 − 2ϕnjk

)
−

δ2xδ
2
y

2(δ2x + δ2y)
fjk

=
1

2(δ2x + δ2y)

[
δ2y(ϕ

n
j+1,k + ϕnj−1,k) + δ2x(ϕ

n
j,k+1 + ϕnj,k−1)− δ2xδ

2
yfjk

]
.

Jacobi method for the Poisson equation
To solve the 2D Poisson equation (3), the Jacobi method consists in iterating the recurrence scheme

ϕn+1
jk =

1

2(δ2x + δ2y)

[
δ2y(ϕ

n
j+1,k + ϕnj−1,k) + δ2x(ϕ

n
j,k+1 + ϕnj,k−1)− δ2xδ

2
yfjk

]
(31)

for n ∈ J0, NK from an initial guess.

The value of N is set so that the relative change of the solution between two iterations at steps n and n+1
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xi xf
yi

yf

x

y

Updated value

Value not updated

Current value to compute

Values to average for the update

Figure 3: Illustration of the Gauss-Seidel method to solve the Poisson equation. The current node appears
in pink, the already updated nodes in blue and the nodes which still need to be updated in purple. The arrows
mark the data points to average to make the update.

is smaller than a given threshold ϵ≪ 1: ∥∥Φn − Φn+1
∥∥ < ϵ ∥Φn∥ , (32)

with Φn the column vector given by Eq. (28).

Said differently, the Jacobi method tells you that the updated values of ϕjk are obtained as the average of
the old neighboring values, plus an extra term coming from the source term.

The Jacobi method is explicit and can be implemented straightforwardly.

b. The Gauss-Seidel method

The Gauss-Seidel method is very close to the Jacobi method, but instead of updating ϕjk with the average of
the old neighboring values, you average over the neighboring nodes the new values if they are already known, or
the old values otherwise, see Fig. 3. Of course, you still have to add the extra term coming from the source f .

Gauss-Seidel method for the Poisson equation
To solve the 2D Poisson equation (3), the Gauss-Seidel method consists in iterating the recurrence scheme

ϕn+1
jk =

1

2(δ2x + δ2y)

[
δ2y(ϕ

n/n+1
j+1,k + ϕ

n/n+1
j−1,k ) + δ2x(ϕ

n/n+1
j,k+1 + ϕ

n/n+1
j,k−1 )− δ2xδ

2
yfjk

]
(33)

for n ∈ J0, NK from an initial guess. The superscript n/n+ 1 means that you should use the value at step
n+ 1 if it has already been computed (lower line and left column), or the value at step n otherwise (upper
line and right column), see Fig. 3.

The value of N is set so that the relative change of the solution between two iterations at steps n and n+1 is
smaller than a given threshold ϵ≪ 1:

∥∥Φn − Φn+1
∥∥ < ϵ ∥Φn∥, with Φn the column vector given by Eq. (28).

Said differently, the Gauss-Seidel method tells you that the updated values of ϕjk are obtained as the average
over the neighboring nodes of the new values if they are already known, or the old values otherwise, plus an
extra term coming from the source term.

The Gauss-Seidel method is explicit and can be implemented straightforwardly.
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c. Successive overrelaxation method

The successive overrelaxation method is very close to the Gauss-Seidel method. The updated value of ϕjk
is now obtained as a weighted average of the values at the step before and of the prediction coming from the
Gauss-Seidel method.

Successive overrelaxation method for the Poisson equation
To solve the 2D Poisson equation (3), the successive overrelaxation method consists in iterating the
recurrence scheme

ϕ̂jk =
1

2(δ2x + δ2y)

[
δ2y(ϕ

n/n+1
j+1,k + ϕ

n/n+1
j−1,k ) + δ2x(ϕ

n/n+1
j,k+1 + ϕ

n/n+1
j,k−1 )− δ2xδ

2
yfjk

]
ϕn+1
jk = (1− ω)ϕnjk + ωϕ̂jk

(34)

for n ∈ J0, NK from an initial guess. The superscript n/n+ 1 means that you should use the value at step
n+1 if it has already been computed (lower line and left column), or the value at step n otherwise (upper line
and right column), see Fig. 3. The weight ω must verify 0 < ω < 2 in order for the method to be convergent.

The value of N is set so that the relative change of the solution between two iterations at steps n and n+1 is
smaller than a given threshold ϵ≪ 1:

∥∥Φn − Φn+1
∥∥ < ϵ ∥Φn∥, with Φn the column vector given by Eq. (28).

How to choose the weight ω? First, you should take it different from 1, otherwise you recover the Gauss-Seidel
method. In practice, the larger the faster: therefore you should take ω ≲ 2.

V. Beyond Finite-Difference methods

In these lectures notes, we have only discussed Finite-Difference methods. Other methods to solve PDEs exist,
among them the Finite-Element methods and the Spectral methods. Both methods consist in decomposing
the solution of the PDE on a basis of functions. They can be more robust when you have to solve complex
non-linear PDEs. We will not discuss them in these notes, but you should know that there are Python librairies
implementing these methods. For more details, you can consult the documentation pages of FEniCS (Finite-
Element methods) or Dedalus (Spectral methods).
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