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Introduction
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Computational physics

A common situation in physics: The equations describing a physical system are known
but cannot be solved analytically.

Exact solutions only exist for a few exceptional problems
(highly symmetric systems, few degrees of freedom, no dissipation. . . )

Controlled approximations sometimes possible for systems su�ciently close to an
exactly solvable one

Generic systems typically require numerical methods!
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Computational physics

Example: celestial mechanics

Kepler problem: two point masses, potential V ∼ 1
r
:

exactly solvable (trajectories = conic sections).

Solar system: n-body problem (n > 2), but gravitational forces between planets
small compared to gravitational �eld of the sun
→ can obtain analytic results from perturbation theory

Generic n-body problem (n > 2), all masses of the same order
→ must solve equations of motion numerically
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Computational physics

Example: quantum chemistry

Goal: Solve the Schrödinger equation for an entire molecule

One electron, one nucleus → hydrogen-like atom, exact solution in quantum
mechanics

Several electrons → numerical methods (Hartree-Fock, post-HF, DFT. . . )
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Computational physics

Example: elementary particle physics

Elementary particles (excitations of quantum �elds) without interactions:
theory exactly solvable

Particles with weak interactions (quantum electrodynamics. . . ):
perturbation theory

Particles charged under the strong nuclear force at low energies
→ numerical methods: lattice �eld theory
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Computational physics: Some 21st century examples

Cosmic structure formation → Springel et al. 2005

Simulation of the dark matter distribution in the universe, starting from primordial
density �uctuations: 1010 �particles� interacting via Newtonian gravity, computing time
= 1 month on a supercomputer
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Computational physics: Some 21st century examples

Computational general relativity → Ossokine/Buonanno/Dietrich/Haas, SXS project 2017

bh.mp4

Gravity wave emission from two colliding black holes, event GW170104 observed in 2017
by the LIGO experiment
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Computational physics: Some 21st century examples

Lattice quantum �eld theory → Borsanyi et al. 2014
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First ab-initio calculation of the proton-neutron mass di�erence ∆N (60 TB of
simulation data)
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Computational physics: Some 21st century examples

Heavy ion collisions → Models and Data Analysis Initiative, https://madai-public.cs.unc.edu/

himovie.mov

Simulation of two Au ions colliding at an energy of 200 GeV at the Relativistic Heavy Ion
Collider RHIC
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Overview of this course

Contents: Algorithms for computational physics

Numerical error and algorithmic complexity

Numerical integration and di�erentiation

Ordinary di�erential equations

Partial di�erential equations (�nite-di�erence methods)

Monte-Carlo methods

Requirements:

Knowledge of physics and mathematics at the Physics Bachelor's level (�Licence de
Physique�)

Good programming skills

Previous experience with Python, even if Python is not your �native programming
language� → Hervé Wozniak's lectures and tutorials

Up to you to revise these subjects independently where necessary
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Overview of this course

Course materials:

These slides, available on Moodle

Other lecture notes, e.g. by A. Palacios@UM (this course until 2015; in French)

Pedagogical textbook: �Computational physics� by M. Newman, CreateSpace 2013.

Comprehensive textbook: �Numerical recipes in C++ (3rd ed.)� by W. H. Press,
S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Cambridge Univ. Pr. 2007

Complementary material (the Python 3 language, root-�nding methods, numerical linear
algebra and applications. . . ):

Lecture notes for HAP608P �Programmation pour la physique� (L3 level, in French)

To help you with the exercises, and to encourage you to modify and experiment with the
algorithms discussed here:

All example programs on these slides are also available for download on Moodle
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Computational physics with Python

The Python 3 programming language:

easy to learn, straightforward to read

widespread, many possible areas of application

�batteries included�: comprehensive and versatile standard library

(essentially) an interpreted, not a compiled language ⇒ programs are high-level,
easily portable

supports various programming paradigms: procedural programming, object-oriented
programming, functional programming. . .
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Computational physics with Python

Python's main weakness: programs are slow, not easy to optimize
⇒ not ideally suited for high-performance computations

For a research project in computational physics with intense demands on computing
resources, one would typically prefer a compiled language (C++, FORTRAN. . . )

Here we use Python for its pedagogical qualities. The goal of this course is to understand
how numerical algorithms work. You should then (hopefully) be able to implement them
in any language of your choice if needed.
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Numerical error, stability, algorithmic complexity
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In this chapter:

Representing numerical data in Python

Numerical error

Numerical stability

Algorithmic complexity
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Python's representation of numerical data

A �nite computer cannot possibly provide in�nite computing resources:

Numbers represented with �nite precision
→ rounding error
→ numerical instabilities if errors accumulate

Computing time, memory and bandwith are limited:
→ approximate results, truncation error
→ limits on the maximal size of feasible tasks
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Python's representation of numerical data

Python provides three basic numerical data types:

integer numbers (int)

real �oating-point numbers (float)

complex �oating-point numbers (complex)

Unlike most other programming languages, there is (theoretically) no limit to the size of
an int in Python: arbitrary-precision arithmetic.
In practice it is of course limited by the machine's memory.

A float is a �xed-precision data type of 8 bytes = 64 bits, as speci�ed in the �double
precision� norm IEEE754.

A complex corresponds to two float, one each for the real and imaginary parts.
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Double-precision �oating-point numbers

The meaning of the 64 bits of a float:

sign: 1 bit

exponent: 11 bits
mantissa: 52 bits

The exponent E can represent 211 = 2048 di�erent numbers, chosen by convention
to be between −1022 and 1023. The two remaining values have a special meaning.

With the b0 . . . b51 bits of the mantissa and the sign bit s, the numerical value is

(−1)s
(

1 +
52∑
n=1

b52−n2−n
)
· 2E .

Absolute values between 2−1022 ≈ 10−308 and 21024 ≈ 10308 (and 0) with a
precision of 53 log10 2 ≈ 16 decimals.

When the absolute value of a variable becomes greater than 10308: over�ow, it is set
to the special value inf (in�nity).

When it becomes smaller than 10−308: under�ow, it is set to zero.
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Exercise

Write two versions of a program which calculates the factorial x! of a given number x. In
the �rst version, all numerical data is represented by variables of the type int, and in the
second version, by variables of the type float. What do you obtain when trying to
calculate 200! with both programs? Explain what you observe.
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Numerical error: Rounding error

Relative precision = 16 digits

Example

In Python:
√

2 = 1.4142135623730951
In reality:

√
2 = 1.4142135623730950488 . . .

Rounding error: 0.0000000000000000512 . . .

3.0 and 2.999999999999999 are �the same number� in double precision!

But Python doesn't know that ⇒ don't test equality of two floats like this:

x = 1.1 + 2.2 # x = 3.3000000000000003

if x == 3.3: # False!

do_something_with(x)

but rather test if they are equal to within the expected precision:

precision = 1.0E-15

if abs(x - 3.3) < precision: # better

do_something_with(x)
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Numerical error: Information loss

Problem when adding or subtracting numbers of (vastly) di�erent order of
magnitude.

Example: x = 1, y = 1 + 10−14
√

2, therefore 1014(y − x) =
√

2.

In Python:
√

2 = 1.414213562373095 · · ·
x = 1.000000000000000 · · ·
y = 1.000000000000014 · · ·

y − x = 1.4 · · · · · · · · · · · · · · · · · 10−14

Explicitly: the program

x = 1.0

root2 = 2**0.5

y = 1.0 + 1.0E-14 * root2

print(root2)

print (1.0 E14 * (x - y))

will produce the output
1.4142135623730951

1.4210854715202004

⇒ rounding error already in the 3rd decimal!
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Exercise

Write a program which calculates the solutions of the second-order equation
ax2 + bx+ c = 0 by the standard formula,

x =
−b±

√
∆

2a
, ∆ = b2 − 4ac .

What do you obtain for a = c = 0.001 and b = 1000?
Show that the two solutions can also be written

x =
2c

−b∓
√

∆
.

Modify your program to calculate the solutions also with the second formula, and
run it with a = c = 0.001 and b = 1000. What do you obtain? Explain your results.
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Numerical error: Truncation error

Any quantity de�ned by a limit may not be represented exactly on the computer.

Example:

e = lim
N→∞

N∑
n=0

1

n!

Impossible to sum in�nitely many terms in practice, need to stop at some N

⇒ truncation error

In reality: e = 2.71828182845904 . . .
With N = 10: e ≈ 2.71828180114638
Truncation error: 0.00000002731266 . . .
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Numerical error: Absolute and relative error

For any numerical approximation x̃ of some quantity x, we de�ne the absolute error
ε(x, x̃),

ε(x, x̃) = |x− x̃|

and the relative error εr(x, x̃)

εr(x, x̃) =
|x− x̃|
|x| = ε

(
1,
x̃

x

)
.

The exact values of ε, εr are generally unknown (or else there would be no need for
numerical approximations). In practice, one supposes that they are random variables
following a normal (Gaussian) probability distribution.

Denote by σ the standard deviation of ε and by C the standard deviation of εr,

σ = C|x| .

E.g. for the rounding error due to the limits of double-precision �oating point arithmetic,
C ≈ 10−16.

Error analysis aims to estimate C (or σ) in order to estimate the typical size of εr (or ε).
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Numerical error: Error propagation

From standard probability theory (just as for experimental uncertainties):

For the sum y = x1 + x2 of two quantities x1 and x2 with uncorrelated uncertainties
σ1 and σ2, one has σ

2
y = σ2

1 + σ2
2 and therefore

σy =
√
σ2

1 + σ2
2 .

For a product y = x1x2, the squared relative uncertainties must be added, hence

Cy =
√
C2

1 + C2
2

General case: Let y = y(x1, . . . xn), then the uncertainty for y is

σy =

√√√√ n∑
i=1

(
∂y

∂xi
σi

)2
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Numerical stability

An algorithm is called

unstable: small variations in the input data can produce large variations in the
output data
⇒ the numerical error is ampli�ed

stable: small variations in the input data will not lead to large variations in the
output data
⇒ the numerical error remains of the same order or is even diminished

The precise de�nition of stability depends on the algorithm under study.

It is obviously best to use stable methods when possible. But often they come at a price:
they may be more di�cult to implement and/or computationally more expensive.
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Numerical stability
Most important for algorithms using a feedback loop: if the error is ampli�ed at each
iteration, it may eventually dominate the result.

Example: Numerical evaluation of spherical Bessel functions of the �rst kind (solutions of
the radial free Schrödinger equation in spherical coordinates)

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, jn(x) =

2n− 1

x
jn−1(x)− jn−2(x)

Plotting jn(10) as a function of n (numerical value found recursively, exact value):

HAP708P, U Montpellier Modelling and Simulation in Physics 29 / 233



Numerical stability

Explanations:

The recurrence relation has a second solution (the spherical Bessel functions of the
second kind kn(x)) which grows monotonically as a function of n for n > x

Numerical error ⇒ instead of just jn(x), the computer really calculates some linear
superposition of jn(x) and kn(x)

The kn(x) component is initially small (due to truncation/rounding errors when
computing j0 and j1). But it grows at each iteration.

Finally, for large n, the numerical solution is dominated by the growing kn(x)
component.

Possible solution:

Use the recurrence relation backwards (for decreasing n); normalize the result by j0.
Stable.
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Analysis of algorithms

Some typical computational problems:

Evaluate a function with n-digit precision

Find the solution of an equation with a precision of 1/n

Solve a system of n equations at �xed precision

Diagonalize an n× n matrix

Sort a list of n elements

Find some given element within a list of n elements

. . .

Time complexity as a measure of an algorithm's e�ciency:
How does the run-time T (n) depend on the �characteristic problem size� n?

(Other measures could be: consumption of memory M(n) or network bandwith B(n). . . )

In particular: study the asymptotic behaviour of T (n) for large n.
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Analysis of algorithms: Asymptotic growth, Landau symbols

Let f : R+ → R+ be a monotonically increasing reference function.

We say of some other function g : R+ → R+ that

g ∈ O(f)
⇔ g grows at most as fast as f asymptotically
⇔ there exists a constant C > 0 s.t. for su�ciently large x, g(x) ≤ C f(x).

g ∈ Ω(f)
⇔ g grows at least as fast as f asymptotically
⇔ ∃ c > 0, x0 > 0 ∀x > x0 : c f(x) ≤ g(x)

g ∈ Θ(f)
⇔ g grows as fast as f asymptotically
⇔ g ∈ O(f) and g ∈ Ω(f)
⇔ c f(x) ≤ g(x) ≤ C f(x) for suitable constants c and C and su�ciently large x
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Analysis of algorithms: Asymptotic growth, Landau symbols

Example: Consider f(x) = x3.

The function g(x) = 2x3 − 3x2 + 1 is in Θ(x3)
(for large x, can neglect −3 x2 and 1 w.r.t. 2 x3; 2 x3 ∈ Θ(x3) since constant factors don't matter)
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Asymptotic growth, Landau symbols

Exercise

Show that for any positive constants a, b, c, one has

Θ(log(xa)) = Θ(logb x) = Θ(log(cx)) = Θ(log(x)) .
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Analysis of algorithms

Goal of the analysis of algorithms: Characterize the asymptotic growth of the function
T (n) = run-time as a function of problem size; how does T (n) behave at large n?

⇒ count the number of elementary steps necessary to carry out the algorithm

Elementary step = assignment, arithmetic operation on a float, comparison,
branching. . . any simple instruction that does not depend on n

Remark 1: In computer science, it is common to use O instead of Θ even though, strictly
speaking, their meaning is di�erent. E.g. if T (n) ∈ Θ(n logn), on frequently �nds the
statement that �T (n) ∈ O(n logn)� (or even, by abuse of notation,
�T (n) = O(n logn)�). Correct (since Θ ⊂ O) but imprecise.

Remark 2: For our discussion, we de�ned O in the limit where the argument of a
function tends to in�nity. By contrast, in calculus one often de�nes O in the limit where
it tends to zero (see next chapter on integrals and derivatives).
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Analysis of algorithms, example: Linear search

Input data: a list L of length n which contains the element x

Desired output: the position of x in L

Algorithm: iterate over L, compare each element with x, terminate iteration upon
equality

def linear_search(L, x):

# use enumerate(L) to obtain a sequence of pairs

# (0, L[0]), (1, L[1]), (2, L[2]), etc.

for index , item in enumerate(L):

if item == x:

return index

Analysis: Count the number of elementary steps for some given n.

Best case: First element = x, hence T (n) = const., hence T (n) ∈ Θ(1).

Worst case: Last element = x, so need to iterate over the entire list to �nd x, hence
T (n) ∝ n, hence T (n) ∈ Θ(n).

Average case: Need to iterate over half of the list to �nd x, T (n) ∝ n
2
, hence still

T (n) ∈ Θ(n).
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Analysis of algorithms, second example: Binary search

Input data: a sorted list L of length n which contains the element x

Desired output: the position of x in L

Algorithm: compare the element m at the center of L with x. If m > x, repeat with
the half of the list on the left of m. Otherwise, repeat with the half on the right of m.
Terminate when the remaining sublist contains only a single element.

def binary_search(L, x):

left , right = 0, len(L) # L[left:right] contains x

while right - left > 1: # does it contain >1 element?

mid = (right + left) // 2 # index of the center

if L[mid] > x: # is x in the left half ?

right = mid # -> repeat with L[left:mid]

else: # otherwise it is in the right half

left = mid # -> repeat with L[mid:right]

return left

Analysis:

log2 n loop iterations ⇒ T (n) ∝ log2 n, hence T (n) ∈ Θ(log(n)).
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Analysis of algorithms

Exercise

The following program tests if n is prime. Analyse its run-time complexity: what is the
worst-case growth of T (n)?

def is_prime(n):

k = 2

while k**2 <= n:

if n % k == 0:

return False

k += 1

return True

Exercise

Recall that the matrix product between two n× n matrices A and B is

(A ·B)ij =
n∑
k=1

AikBkj .

Analyse the run-time complexity of a routine which calculates the matrix product with
this formula as a function of n.
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Analysis of algorithms

Hypothetical example: Suppose that some algorithm needs a run-time of T (10) = 10 µs
for some input data of size n = 10. Then, for n > 10, the run-time will be approximately:

n = 10 n = 20 n = 30 n = 100 n = 1000 n = 10 000

Θ(1) 10 µs 10 µs 10 µs 10 µs 10 µs 10 µs
Θ(logn) 10 µs 13 µs 15 µs 20 µs 30 µs 40 µs
Θ(
√
n) 10 µs 14 µs 17 µs 32 µs 100 µs 320 µs

Θ(n) 10 µs 20 µs 30 µs 100 µs 1 ms 10 ms
Θ(n2) 10 µs 40 µs 90 µs 1 ms 100 ms 10 s
Θ(n3) 10 µs 80 µs 270 µs 10 ms 10 s 3 h
Θ(en) 10 µs 220 ms 1.5 h 1026 yrs∗ 10417 yrs∗ 104326 yrs∗

(∗ age of the universe ≈ 1010 years)

Useful orders of magnitude: Python on an ordinary PC can do ∼ 109 elementary steps in
a �reasonable� time (∼ seconds).

Time needed for 106 elementary steps = �instantaneous� (� 1s)

Time needed for 1012 elementary steps = �in�nite� (& hours)
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Numerical integrals and derivatives
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In this chapter

The trapezoidal method

Simpson's method and other Newton-Cotes methods

Adaptive methods

Gaussian quadrature

Numerical �rst and second derivatives

HAP708P, U Montpellier Modelling and Simulation in Physics 41 / 233



Numerical integration

Goal: Compute
∫ b
a
f(x) dx for some given function f (which cannot be analytically

integrated)

Possible complications (→ later):

Improper integrals (f not de�ned at a or b, or a = −∞ or b =∞)

Singularities or discontinuities within the domain of integration

Multi-dimensional integrals → Monte-Carlo methods, chapter 6

De�nition of the integral by Riemann sum (here: �right rule�)∫ b

a

f(x) dx = lim
N→∞

N∑
k=1

h fk , h =
b− a
N

, fk = f(xk) , xk = a+ kh

Approximate the area between f(x) and the x-axis by N rectangles of area h fk.

x x x x xx0 1 2 3 4 5 6

f(x)

xa = x
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Newton-Cotes methods: Trapezoid method

Better: instead of rectangles, use trapezoids

x

f(x)

x x x x xx0 1 2 3 4 5 6a = x

Trapezoidal rule: ∫ xk+1

xk

f(x) dx ≈ h

2
(fk+1 + fk)

and therefore∫ b

a

f(x) dx =

N−1∑
k=0

∫ xk+1

xk

f(x) dx ≈ h

(
f(a)

2
+
f(b)

2
+

N−1∑
k=1

fk

)
.
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Newton-Cotes methods: Trapezoid method

Simple function for calculating integrals with the trapezoid method:

def int_trapez(f, a, b, N):

h = (b - a) / N

result = f(a)/2 + f(b)/2 # boundary points

for k in range(1, N): # interior points

result += f(a + k*h)

result *= h

return result

Test:

from math import sin , pi

print("I =", int_trapez(sin , 0, pi, 10000))
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Error estimate for the trapezoidal rule
Taylor series expansion of f(x) around xk (notation reminder: fk ≡ f(xk))

f(x) = fk + (x− xk)f ′k +
1

2
(x− xk)2f ′′k + . . .

Integrate between xk and xk+1:∫ xk+1

xk

f(x) dx

= fk

∫ xk+1

xk

dx+ f ′k

∫ xk+1

xk

(x− xk) dx+
1

2
f ′′k

∫ xk+1

xk

(x− xk)2 dx+ . . .

= h fk +
1

2
h2 f ′k +

1

6
h3 f ′′k +O(h4)

Similarly, for an expansion of f(x) around xk+1,∫ xk+1

xk

f(x) dx = h fk+1 −
1

2
h2f ′k+1 +

1

6
h3 f ′′k+1 +O(h4) .

Adding and dividing by 2:∫ xk+1

xk

f(x) dx =
1

2
h (fk + fk+1) +

1

4
h2 (f ′k − f ′k+1

)
+

1

12
h3 (f ′′k + f ′′k+1

)
+O(h4)
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Error estimate for the trapezoidal rule
Taking the sum over all the slices:∫ b

a

f(x) dx =

N−1∑
k=0

∫ xk+1

xk

f(x) dx

=
1

2
h

N−1∑
k=0

(fk + fk+1)︸ ︷︷ ︸
trapezoidal rule

+
1

4
h2 (f ′(a)− f ′(b)

)
+

1

12
h3

N−1∑
k=0

(
f ′′k + f ′′k+1

)
+O(Nh4)

All terms ∝ h2 cancel out, except 1
4
h2(f ′(a)− f ′(b)).

One can show: Terms ∝ h4 also cancel ⇒ the O(Nh4) terms are in fact O(h4).

The ∝ h3 terms correspond to the trapezoidal rule for the integrand h2

6
f ′′(x):

1

12
h3

N−1∑
k=0

(
f ′′k + f ′′k+1

)
=

∫ b

a

(
h2

6
f ′′(x)

)
dx+O(h4) =

h2

6

(
f ′(b)− f ′(a)

)
+O(h4) .

Summary:∫ b

a

f(x) dx =
1

2
h

N−1∑
k=0

(fk + fk+1)︸ ︷︷ ︸
trapezoidal rule

+
1

12
h2 (f ′(a)− f ′(b)

)
︸ ︷︷ ︸
leading-order error term

+O(h4) .
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Error estimate for the trapezoidal rule
Euler-MacLaurin formula for truncation error:

ε ≈ 1

12
h2(f ′(a)− f ′(b)) .

Order-h method: The result is exact up to terms of order h2.

Comparing with rounding error: With a relative precision of C ∼ 10−16, the errors
are comparable when

1

12
h2(f ′(a)− f ′(b)) ' C

∫ b

a

f(x) dx

or, with h = (b− a)/N ,

N ∼ (b− a)

√
f ′(a)− f ′(b)
12
∫ b
a
f(x) dx

C−1/2 .

If the prefactor is O(1), then it takes N ' 108 subdivisions for the truncation error
to become negligible. For a reasonable number of subdivisions, the truncation error
is dominant.

Analysis: 1/n precision requires at least Θ(
√
n) elementary steps (provided that

evaluating f(x) takes Θ(1) time � the most optimistic case).
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Error estimate for the trapezoidal rule

More practical way to estimate the error: vary the number of points.

Let

I be the integral's exact value, I =
∫ b
a
f(x) dx

N1 be the number of slices of witdh h1 = (b− a)/N1

I1 be the numerical approximation obtained with the trapezoidal method

ε1 be the numerical error to �rst approximation, I ≈ I1 + ε1

Knowing that the trapezoidal method is of order h:

I = I1 + ε1 +O(h4
1) = I1 + c h2

1 +O(h4
1) , c = const.

Doubling the number of points, N2 = 2N1 and h2 = h1/2, one �nds similarly

I = I2 + c h2
2 + . . .

and therefore
I2 − I1 = c (h2

1 − h2
2) ≈ 3c h2

2

⇒ ε2 ≈
1

3
(I2 − I1)
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Newton-Cotes methods: Simpson's method

x

f(x)

x x x x xx1 2 3 4 5 6x x x x xx0 1 2 3 4 5 60a = x

Even better: approximate the integrand on every slice neither by a constant (Riemann
sum) nor by a straight line (trapezoidal rule) but by a parabola: Simpson's method.
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Newton-Cotes methods: Simpson's method
Quadratic function de�ned on two consecutive slices, interpolating between the points
(xk−1, fk−1), (xk, fk), and (xk+1, fk+1):

αx2
k−1 + β xk−1 + γ = fk−1

αx2
k + β xk + γ = fk

αx2
k+1 + β xk+1 + γ = fk+1

 3 linear equations, 3 unknowns α, β, γ

For simplicity: xk−1 = −h, xk = 0, xk+1 = h:

αh2 − β h+ γ =f(−h)

γ =f(0)

αh2 + β h+ γ =f(h)

Solution:

γ = f(0) , β =
f(h)− f(−h)

2h
, α =

f(h) + f(−h)− 2 f(0)

2h2
.

The polynomial αx2 + βx+ γ is easily integrated analytically:∫ h

−h
αx2 + βx+ γ dx =

h

3
(f(−h) + 4 f(0) + f(h)) .
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Newton-Cotes methods: Simpson's method

x

f(x)

x x x x xx1 2 3 4 5 6x x x x xx0 1 2 3 4 5 60a = x

We have found: ∫ xk+1

xk−1

f(x) dx ≈ h

3
(fk−1 + 4 fk + fk+1)

And we have ∫ b

a

f(x) dx =
∑

1≤k≤N−1
k odd

∫ xk+1

xk−1

f(x) dx

⇒
∫ b

a

f(x) dx ≈ h

3

f(a) + f(b) + 4
∑

1≤k≤N−1
k odd

fk + 2
∑

2≤k≤N−2
k even

fk


Simpson's rule.
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Error estimate for Simpson's method

Similar calculation as for trapezoidal method: Euler-MacLaurin formula for Simpson's
method,

ε ≈ 1

90
h4 (f ′′′(a)− f ′′′(b)

)
Order-h3 method: Result is exact up to terms of order h4.

The truncation error becomes comparable to the double-precision rounding error for
N ' 10 000 points. Further increasing N will not increase the precision.

Converges much more quickly than the trapezoidal method for well-behaved
integrands (bounded derivatives. . . )

Algorithm analysis: for a target precision of 1/n,

1

n

!
= ε ∝ h4 ∝ 1

N4

need to evaluate f at N ∝ n1/4 points ⇒ at least ∝ n1/4 elementary steps
⇒ run-time complexity Θ(n1/4) in the best case.
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Simpson's method

Exercises

Just as we did for the trapezoidal method (see p. 48), one may estimate the
dominant error term for Simpson's method by doubling the number of points. Show
that one obtains the estimate

ε2 ≈
1

15
(I2 − I1) .

Write a function int_simpson(f, a, b, N) similar to the function int_trapez,
but using Simpson's method.
Compute

I =

∫ π

0

x2 sinx dx

with the trapezoid method and with Simpson's method for N = 10, 100, 1000, 2000.
Compare with the exact result I = π2 − 4. For N = 2000, compare the actual
numerical error with the error estimate given by the above formula (or rather by the
formula of p. 48 for the trapezoid method).
Implement an adaptive version of Simpson's method (similar to the one presented
below for the trapezoid method).
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Newton-Cotes methods of degree p

Generalization:

p consecutive slices between xk and xk+p de�ne a polynomial of degree p

One may therefore approximate∫ xk+p

xk

f(x) dx ≈
∫ xk+p

xk

(
cpx

p + cp−1x
p−1 + . . .+ c0

)
dx

where the coe�cients ci are determined by the p+ 1 linear equations

cpx
p
k + . . .+ c0 = fk

. . .

cpx
p
k+p + . . .+ c0 = fk+p

The polynomial can be integrated analytically.

Result: Newton-Cotes method of degree p.
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Newton-Cotes methods of degree p
p = 1: Trapezoid rule,∫ b

a

f(x) dx ≈ h
(

1

2
f(a) + f1 + f2 + f3 + . . .+ fN−1 +

1

2
f(b)

)
.

p = 2: Simpson's rule,∫ b

a

f(x) dx ≈ h
(

1

3
f(a) +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4 + . . .+

4

3
fN−1 +

1

3
f(b)

)
.

p = 3: Simpson's 3/8 rule,∫ b

a

f(x) dx ≈ h
(

3

8
f(a) +

9

8
f1 +

9

8
f2 +

3

4
f3 +

9

8
f4 +

9

8
f5 +

3

4
f6 + . . .+

3

8
f(b)

)
.

p = 4: Boole's rule,∫ b

a

f(x) dx ≈ h

(
14

45
f(a) +

64

45
f1 +

8

15
f2 +

64

45
f3 +

28

45
f4

+
64

45
f5 +

8

15
f6 +

64

45
f7 + . . .+

64

45
fN−1 +

14

45
f(b)

)
.
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Newton-Cotes methods

The p-th degree method gives the exact result if the integrand f is itself a
polynomial of degree ≤ p.
(Even better if p is even: exact method for degrees ≤ p + 1 ← more di�cult to show.)

In practice: Initially the speed of convergence grows with p if f is �well-behaved�,
i.e. if f is well approximated by a polynomial; no discontinuities and/or singularities.
In geneneral, there exists some optimal p beyond which the polynomial
approximation becomes worse (�Runge's phenomenon�).

For discontinuous, rapidly �uctuating or singular integrands: trapezoidal rule may
still be the best choice
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Adaptive trapezoid method

Back to the trapezoid method; recall the notation of p. 48:

I =

∫ b

a

f(x) dx

= Ii + εi +O(h4
i ) computed with Ni slices of width hi =

b− a
Ni

= hi

(
f(a)

2
+
f(b)

2
+

Ni−1∑
k=1

fk

)
+ εi +O(h4

i ) ,

Recall also the error estimate: If Ni+1 = 2Ni, then

εi+1 ≈
1

3
(Ii+1 − Ii) .

Adaptive method to obtain a given precision δ:

Compute I1 with some initial choice for N1

Successively double the number of points, Ni+1 = 2Ni, and compute Ii+1.
(One may re-use the points calculated previously → save computing resources.)

Compute εi+1. When |εi+1| < δ, terminate.
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Adaptive trapezoid method
To re-use the points calculated previously, note that

Ii = hi

(
f(a)

2
+
f(b)

2
+

Ni−1∑
k=1

f(a+ khi)

)

= hi

f(a)

2
+
f(b)

2
+

∑
1≤k≤Ni−1

k odd

f(a+ khi) +
∑

2≤k≤Ni−2
k even

f(a+ khi)


We have

∑
2≤k≤Ni−2
k even

f(a+ k hi) =

Ni/2−1∑
`=1

f(a+ 2`hi) =

Ni−1−1∑
`=1

f(a+ `hi−1)

where we have changed variables, k = 2`, and used that 2hi = hi−1 and Ni/2 = Ni−1.
One obtains a recurrence formula,

Ii =
1

2
hi−1

f(a)

2
+
f(b)

2
+

Ni−1−1∑
`=1

f(a+ `hi−1)


︸ ︷︷ ︸

Ii−1

+hi
∑

1≤k≤Ni−1
k odd

f(a+ khi) .
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Adaptive trapezoid method

Ii =
1

2
Ii−1 + hi

∑
1≤k≤Ni−1

k odd

f(a+ khi)

Code:

def int_trapez_ad(f, a, b, delta =1.0E-5, N=10):

oldI = 1.0 E308 # "infinity"

h = (b - a) / N

newI = 0.5*f(a) + 0.5*f(b) # compute I_1

for k in range(1, N):

newI += f(a + h*k)

newI *= h # end of computation of I_1

while abs(oldI - newI)/3 > delta: # compute next I_i:

h /= 2 # decrease increment

N *= 2 # increase number of points

oldI = newI # memorize I_(i-1)

newI *= 0.5 # first term = I_(i-1) / 2

for k in range(1, N, 2): # add h f_k terms (k odd)

newI += h * f(a + k*h)

return newI
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Gaussian quadrature

Recap:

Newton-Cotes methods are based on subdividing the integration interval into N
slices of the same width h.
(The p-th degree method requires that N is a multiple of p.)

Moreover, the p-th degree Newton-Cotes method is exact if the integrand is a
polynomial of degree ≤ p. In this case, N = p slices are su�cient.

The integrand f is evaluated at N + 1 points (nodes).

Gaussian quadrature:

A method with N nodes which is exact for polyomial integrands of even higher
degree, up to ≤ 2N − 1.

It is correspondingly more precise for general integrands (that are well approximated
by polynomials).

Essential idea: instead of evenly spaced nodes, optimize the spacing between them.
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Gaussian quadrature

General integration rule: ∫ b

a

f(x) dx ≈
N∑
k=0

wkfk

fk = f(xk) with the nodes xk ∈ [a, b], not necessarily evenly spaced, not necessarily
x0 = a or xN = b

{wk} = weights

Example: Trapezoid rule, xk = a+ kh and weights w0 = wN = h
2
, w1≤k≤N−1 = h

Example: Simpson's rule, xk = a+ kh and w0 = wN = h
3
, others wk = 4h

3
or 2h

3
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Gaussian quadrature
To �nd the weights wk, given a set of N nodes xk (1 ≤ k ≤ N), consider the
interpolating polynomials of degree N − 1:

φ(k)(x) =
∏

m=1...N
m 6=k

x− xm
xk − xm

=

(
x− x1

xk − x1

)
· · ·
(
x− xk−1

xk − xk−1

)
��

���(
x− xk
xk − xk

)(
x− xk+1

xk − xk+1

)
· · ·
(
x− xN
xk − xN

)
The essential property of the φ(k):

φ(k)(xn) = δnk ≡
{

1 , n = k
0 , n 6= k

De�ne

Φ(x) =
N∑
k=1

f(xk)φ(k)(x)

Properties of Φ:

Polynomial of degree ≤ N − 1 (linear combination of polynomials of degree N − 1)

Φ(xm) =

N∑
k=1

f(xk)φ(k)(xm) =
N∑
k=1

f(xk)δkm = f(xm)

Unique with theses two properties, since its N coe�cients are �xed by N constraints
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Gaussian quadrature

Approximating f(x) ≈ Φ(x) on the domain of integration, we �nd∫ b

a

f(x) dx ≈
∫ b

a

Φ(x) dx =

∫ b

a

N∑
k=1

f(xk)φ(k)(x) dx =

N∑
k=1

f(xk)

∫ b

a

φ(k)(x) dx

and therefore

wk =

∫ b

a

φ(k)(x) dx .

This gives the weights {wk} for a given generic set of nodes {xk}, such that∫ b
a
f(x) dx =

∑
k wkfk holds exactly for polynomial f

Unfortunately, one cannot just compute them by integrating φ(k)(x) analytically
(polynomial � but de�ned by 2N−1 terms! Far too many for N & 30). Must
restrict to special cases where closed-form expressions exist. We will discuss an
important example shortly.

Fortunately, the wk need to be computed only once for a �xed choice of a and b.
Afterwards, one may easily adapt them to integrate any function f(x) on any
interval [a, b].
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Gaussian quadrature

Adapting the nodes and weights to an arbitrary interval

Suppose we are given a set of nodes {xk} and corresponding weights {wk} on the
reference interval [−1, 1]

To adapt them to any other integration interval [a, b]: Rede�ne the nodes

x′k =
1

2
(b− a)xk︸ ︷︷ ︸

compress/stretch

+
1

2
(b+ a)︸ ︷︷ ︸
shift

(a�ne transformation)

and rescale the weights,

w′k =
1

2
(b− a)wk .

Now we may integrate any function f(x) on any interval [a, b]:∫ b

a

f(x) dx ≈
N∑
k=1

w′kf(x′k) .
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Gaussian quadrature

How to choose the nodes xk on the reference interval [−1, 1] optimally?
What are the corresponding weights wk?

Optimal choice, giving the exact result if f(x) is a polynomial of degree ≤ 2N − 1:

xk = roots of the Nth Legendre polynomial PN (x)

wk =
2

(1− x2
k)P ′N (xk)2

(Proof for the interested: see following slides.) See also TD 1.3.

Gauss-Legendre quadrature.

Other choices of xk and wk give exact results for

f(x) = W (x)× polynonial

(⇒ optimized results if f is well approximated by such an expression)

where e.g. W (x) = 1√
1−x2

(Gauss-Chebyshev), W (x) = xαe−x (Gauss-Laguerre), W (x) = e−x
2

(Gauss-Hermite). . .
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Parenthesis: Proof of the Gauss-Legendre formulas, I � Nodes
To show that the nodes xk are the roots of the N -th Legendre polynomial, we need an
important property of the latter which we quote without proof:

Proposition: Let Q be a polynomial of degree < n. Then Q and the n-th Legendre
polynomial Pn are orthogonal on [−1, 1], i.e.∫ 1

−1

Pn(x)Q(x) dx = 0 .

(In fact, the usual de�nition of Pn starts from this property.)

Now let us prove the following
Theorem: Let

f be a polynomial of degree < 2N

{xk | k = 1 . . . N} the roots of PN

φ(k) the corresponding interpolating polynomials, i.e. the unique polynomials of
degree < N which satisfy φ(k)(x`) = δk`, see p. 62

wk =
∫ 1

−1
φ(k)(x) dx (we will prove the explicit formula for wk afterwards)

Then ∫ 1

−1

f(x) dx =

N∑
k=1

wk f(xk) .
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Parenthesis: Proof of the Gauss-Legendre formulas, I � Nodes
Proof: After polynomial division, f(x) = PN (x)Q(x) +R(x) where Q and R are
polynomials of degree < N . We have∫ 1

−1

f(x) dx =

∫ 1

−1

PN (x)Q(x) dx+

∫ 1

−1

R(x) dx

=

∫ 1

−1

R(x) dx since Q ⊥ PN

=

∫ 1

−1

N∑
k=1

R(xk)φ(k)(x) dx since
∑
k

R(xk)φ(k) is the unique polynomial

of degree < N whose values at xk are R(xk),

so it must be equal to R

=

N∑
k=1

R(xk)

∫ 1

−1

φ(k)(x) dx

=
N∑
k=1

(
PN (xk)︸ ︷︷ ︸

=0

Q(xk) +R(xk)
)
wk

=
N∑
k=1

f(xk)wk .
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Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Preliminary remarks on the derivation of the weight formula:

We will use the orthogonality property, as well as the recurrence relations of ex. 1.3

P ′n(x) = − nx

1− x2
Pn(x)+

n

1− x2
Pn−1(x), Pn(x) =

2n− 1

n
xPn−1(x)−n− 1

n
Pn−2(x)

Note that the Legendre polynomials are not normalized via the scalar product of
p. 66 but by the condition Pn(1) = 1. Indeed,∫ 1

−1

P 2
n(x) dx =

2

2n+ 1
.

Finally, we denote by an the leading coe�cient of Pn, i.e. the prefactor of the x
n

term. Thus, if {xm} are the roots of Pn, then

Pn(x) =
n∏

m=1

x− xm
1− xm

=
∏
m

(
1

1− xm

)
︸ ︷︷ ︸

=an

∏
m

(x−xm) = an x
n+ (terms of degree < n)
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Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Lemma 1: Using the notation of the theorem of p. 66, we can write the interpolating
polynomials φ(k) as

φ(k)(x) =
PN (x)

x− xk
1

P ′N (xk)
.

Proof:

PN (x) = aN

N∏
m=1

(x−xm) = aN (x−xk)
∏
m 6=k

(x−xm) = aN (x−xk)φ(k)(x)
∏
m 6=k

(xk−xm)

where we have used the de�nition of φ(k), see p. 62. Combining this with the de�nition
of the derivative P ′N (xk),

P ′N (xk) = lim
x→ xk

PN (x)−

=0︷ ︸︸ ︷
PN (xk)

x− xk
= aN φ(k)(xk)︸ ︷︷ ︸

=1

∏
m 6=k

(xk − xm)

and reinserting into the expression for PN (x) above gives the desired formula.
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Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

To obtain the weights wk =
∫ 1

−1
φ(k)(x) dx, we still need to calculate

∫ 1

−1

PN (x)
x−xk

dx.

Lemma 2: Any polynomial Q of degree ≤ N satis�es the identity

Q(xk)

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

Q(x)PN (x)

x− xk
dx .

Proof: It is su�cient to consider Q = some monomial xm with m ≤ N . We have

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

PN (x)


(
x
xk

)m
x− xk

+
1−

(
x
xk

)m
x− xk

 dx .

The term in blue is a polynomial of degree m− 1 < N . It is therefore orthogonal to PN ,
hence it does not contribute to the integral, and one obtains

xmk

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

xm PN (x)

x− xk
dx .
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Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Choosing Q(x) = PN−1(x) in Lemma 2, we can now �nally prove the following

Proposition: The weights wk are given by

wk =
2

1− x2
k

1

P ′N (xk)2
.

Proof: According to Lemma 2,

PN−1(xk)

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

PN−1(x)
PN (x)

x− xk︸ ︷︷ ︸
=aNx

N−1+( terms ⊥PN−1)

dx

= aN

∫ 1

−1

xN−1PN−1(x) dx

= aN

∫ 1

−1

(
PN−1(x)

aN−1
+ ( terms ⊥ PN−1)

)
PN−1(x) dx

=
aN
aN−1

∫ 1

−1

PN−1(x)2 dx

=
2

2N − 1

aN
aN−1

.
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Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Continuation of the proof:

Inserting this last expression into Lemma 1, one obtains

wk =

∫ 1

−1

φ(k)(x) dx =
1

P ′N (xk)

∫ 1

−1

PN (x)

x− xk
dx =

2

2N − 1

aN
aN−1

1

P ′N (xk)PN−1(xk)
.

Finally, use the recurrence relations to show that

aN
aN−1

=
2N − 1

N

and that

PN−1(xk) =
1− x2

N
P ′N (xk)

and insert into the above expression for wk, which concludes the proof.
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Gaussian quadrature

Weights and nodes for Gauss-Legendre quadrature:

N = 10 N = 100

(Images taken from the book by M. Newman)
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Gaussian quadrature

def int_gauss(f, nodes , weights):

result = 0.0

for x, w in zip(nodes , weights):

result += w * f(x)

return result

The �le gaussxw.py contains a function gaussxw(N) which computes the nodes and
weights for Gauss-Legendre quadrature on the interval [−1, 1] for any given N . Example:

from gaussxw import gaussxw

N = 100

x, w = gaussxw(N)

# adapt x -> x' and w -> w' to the interval [a, b]:

a, b = 0, 1 # using [a, b] = [0, 1] as an example

xp = 0.5*(b - a)*x + 0.5*(b + a)

wp = 0.5*(b - a)*w

# integrate some function (e.g. arctanh(x)) on [a, b]:

from math import atanh

print("Result:", int_gauss(atanh , xp, wp))
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Gaussian quadrature

Advantages:

Excellent convergence for integrands which are well approximated by polynomials
(or by W (x)× polynomial for suitable W (x))

Very few function calls of f(x) are necessary ⇒ ideal if evaluating the integrand is
expensive

Open method: no need to evaluate the boundary points f(a) and f(b)

Drawbacks:

Poor convergence for irregular integrands

Computing nodes and weights may be expensive (but needs to be done only once)

Impossible to re-use previously calculated points after an increase of N
⇒ error estimation can be di�cult and costly

In practice:

Instead of gaussxw(N), one may use the NumPy function
numpy.polynomial.legendre.leggauss(N)

Nodes and weights for Gauss-Chebyshev, Gauss-Laguerre, Gauss-Hermite are also
found in NumPy
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Gaussian quadrature

Exercises

In the Debye model, the heat capacity of a solid is given by

CV = 9nV kB

(
T

ΘD

)3 ∫ ΘD/T

0

x4 ex

(ex − 1)2
dx

where V is the volume, n is the number density, kB = 1.38 · 10−23 JK−1 is Boltzmann's
constant, T is the temperature, and ΘD is a constant.

Write a function CV(T) which calculates CV as a function of temperature, for a
cube of aluminium of (10× 10× 10)cm3 (n = 6.022 · 1028 m−3, ΘD = 428 K). Use
Gauss-Legendre quadrature with N = 50 nodes.
Plot CV (T ) between T = 5 K and T = 500 K.
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Comparison of numerical integration methods

Trapezoidal method:

Easy to implement

Slow convergence

Good for irregular integrands

Simpson's method:

Easy to implement

Rather fast convergence

Poor choice for irregular integrands

Gaussian quadrature:

Implementation requires computing nodes and weights

Very fast

Poor choice for irregular integrands

Other methods exist, notably Romberg integration which relies on Richardson
extrapolation to accelerate convergence.
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Numerical integration: Improper integrals

To calculate an improper integral, ∫ ∞
0

f(x) dx

the standard procedure is to change variables:

y =
x

1 + x
, x =

y

1− y .

Thus

dx =
dy

(1− y)2
,

∫ ∞
0

f(x) dx =

∫ 1

0

1

(1− y)2
f

(
y

1− y

)
dy .

To calculate
∫∞
a
f(x) dx: calculate

∫∞
0
f(x) dx and subtract

∫ a
0
f(x) dx.

To calculate
∫∞
−∞ f(x) dx: calculate the sum of

∫∞
0
f(x) dx and

∫ 0

−∞ f(x) dx.

Depending on the integrand, other choices of variables may give better results, for
example

y =
xα

β + xα
with suitable constants α, β .
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Numerical integration: Singularities

The integrand may exhibit singularities within the domain of integration, or at its
boundary.

If the behaviour near the singularities is known, convergence may be improved by
subtracting the singular terms and calculating them separately.

Example: Calculate

I =

∫ 1

−1

1√
| sin(x)|

dx

Integrand singular at x = 0, where sinx ∼ x.

Subtracting 1√
|x|

:

I =

∫ 1

−1

(
1√
| sin(x)|

− 1√
|x|

)
dx︸ ︷︷ ︸

regular

+

∫ 1

−1

1√
|x|

dx︸ ︷︷ ︸
=2

∫ 1
0

1√
x

dx=2[2
√
x]1

0
=4

Now the �rst term can be calculated reliably with our numerical integration methods.
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Numerical derivatives

Goal: Given a di�erentiable function f(x) (which can be evaluated numerically),
compute f ′(x).

Preferred solution if possible: compute f ′ analytically and evaluate the result numerically.

If f is any combination of elementary functions, then f ′ can be easily computed
analytically

Simplest techniques for calculating numerical derivatives are rather imprecise.

But sometimes we don't have an explicit expression for f(x) (if the values of f are
themselves obtained by some numerical procedure). In this case, one may need to
compute f ′ purely numerically.
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Numerical derivatives: Forward and backward di�erences

De�nition of the derivative:

f ′(x) = lim
h→ 0

f(x+ h)− f(x)

h
.

Approximation

f ′(x) ≈ f(x+ h)− f(x)

h

for h su�ciently small: forward di�erence.

Equivalent:

f ′(x) ≈ f(x)− f(x− h)

h
,

for h su�ciently small: backward di�erence.

x−h x x+h

backward
forward
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Numerical derivatives: error estimate

Error on the derivative obtained by forward di�erencing:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + . . . (Taylor expansion)

⇒ f ′(x) =
f(x+ h)− f(x)

h
− 1

2
h f ′′(x) + . . .

Error O(h).

Problem: choosing h small, the truncation error shrinks, but the rounding error grows.

Reason: subtracting f(x) from f(x+ h), two numbers that are very close → see chapter
2 and exercise 1.3. Extreme example: f(x) = x2, derivative at x = 1 with h = 10−16:

h = 1.0E-16

print (((1.0+h)**2 - 1.0**2) / h)

This gives 0.0 although the result should be 2!

Optimal choice for this method if f(x) = O(1): h ≈ 10−8, not very precise. Similar for
backward di�erencing.
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Central di�erence

Average of forward and backward di�erences with a step width h/2:

f ′(x) ≈
f
(
x+ h

2

)
− f

(
x− h

2

)
h

Taylor expansion:

f

(
x+

h

2

)
= f(x) +

1

2
hf ′(x) +

1

8
h2f ′′(x) +

1

48
h3f ′′′(x) + . . .

f

(
x− h

2

)
= f(x)− 1

2
hf ′(x) +

1

8
h2f ′′(x)− 1

48
h3f ′′′(x) + . . .

Subtracting these two equations gives

f ′(x) =
f
(
x+ h

2

)
− f

(
x− h

2

)
h

− 1

24
h2f ′′′(x) + . . .

Better than forward and backward di�erences: error O(h2).

Optimal choice for f(x) = O(1): h ≈ 10−5, error ε ≈ 10−10.
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Second derivative

Central di�erence:

f ′′(x) ≈
f ′
(
x+ h

2

)
− f ′

(
x− h

2

)
h

With

f ′
(
x+

h

2

)
≈
f(x+ h

2
+ h

2
)− f

(
x+ h

2
− h

2

)
h

=
f(x+ h)− f(x)

h

and

f ′
(
x− h

2

)
≈ f(x)− f(x− h)

h

one �nds

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

Error:

ε = − 1

12
h2 f ′′′′(x) + . . . (→ exercices)

Optimal choice for f(x) = O(1): h ≈ 10−4, error ε ≈ 10−8.
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Exercises

Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− 1

12
h2 f ′′′′(x) +O(h3) .

Let us study the numerical derivative of f(x) = 1 + 1
2

tanh(2x).
Write a corresponding Python function f(x) (use the pre-de�ned function
numpy.tanh). Plot its graph on the interval [−2, 2].
Compute f ′(x) analytically.
Plot the di�erence between your analytic expression for f ′(x) and the numerical
derivative of f(x) on the interval [−2, 2]. Compute the numerical derivative using
central di�erencing with h = 10−4, h = 10−5, and h = 10−6. Compare the three
graphs; which choice of the step width gives the best result?
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