Modelling and Simulation in Physics

HAP708P, Faculté des Sciences de Montpellier Felix Brümmer (felix.bruemmer@umontpellier.fr)

2 Numerical error, stability, algorithmic complexity

Oumerical integrals and derivatives

Ordinary differential equations

Partial differential equations

6 Monte-Carlo methods

Introduction

A common situation in physics: The equations describing a physical system are known but cannot be solved analytically.

- Exact solutions only exist for a few exceptional problems (highly symmetric systems, few degrees of freedom, no dissipation...)
- Controlled approximations sometimes possible for systems sufficiently close to an exactly solvable one
- Generic systems typically require numerical methods!

Example: celestial mechanics

- Kepler problem: two point masses, potential $V \sim \frac{1}{r}$: exactly solvable (trajectories = conic sections).
- Solar system: n-body problem (n > 2), but gravitational forces between planets small compared to gravitational field of the sun
 → can obtain analytic results from perturbation theory
- Generic n-body problem (n>2), all masses of the same order
 - \rightarrow must solve equations of motion numerically

Example: quantum chemistry

- Goal: Solve the Schrödinger equation for an entire molecule
- \bullet One electron, one nucleus \rightarrow hydrogen-like atom, exact solution in quantum mechanics
- Several electrons \rightarrow numerical methods (Hartree-Fock, post-HF, DFT...)

Example: elementary particle physics

- Elementary particles (excitations of quantum fields) without interactions: theory exactly solvable
- Particles with weak interactions (quantum electrodynamics...): perturbation theory
- Particles charged under the strong nuclear force at low energies \rightarrow numerical methods: lattice field theory

Cosmic structure formation \rightarrow Springel et al. 2005

Simulation of the dark matter distribution in the universe, starting from primordial density fluctuations: 10^{10} "particles" interacting via Newtonian gravity, computing time = 1 month on a supercomputer

 $Computational \ general \ relativity \rightarrow Ossokine/Buonanno/Dietrich/Haas, \ SXS \ project \ 2017$

bh.mp4

Gravity wave emission from two colliding black holes, event GW170104 observed in 2017 by the LIGO experiment

Lattice quantum field theory \rightarrow Borsanyi et al. 2014

First ab-initio calculation of the proton-neutron mass difference ΔN (60 TB of simulation data)

 $Heavy \ ion \ \ collisions \ \rightarrow \ \ Models \ and \ \ Data \ \ Analysis \ \ lnitiative, \ https://madai-public.cs.unc.edu/$

himovie.mov

Simulation of two Au ions colliding at an energy of 200 GeV at the Relativistic Heavy Ion Collider RHIC

Overview of this course

Contents: Algorithms for computational physics

- Numerical error and algorithmic complexity
- Numerical integration and differentiation
- Ordinary differential equations
- Partial differential equations (finite-difference methods)
- Monte-Carlo methods

Requirements:

- Knowledge of physics and mathematics at the Physics Bachelor's level ("Licence de Physique")
- Good programming skills
- Previous experience with Python, even if Python is not your "native programming language" \rightarrow Hervé Wozniak's lectures and tutorials

Up to you to revise these subjects independently where necessary

Overview of this course

Course materials:

- These slides, available on Moodle
- Other lecture notes, e.g. by A. Palacios@UM (this course until 2015; in French)
- Pedagogical textbook: "Computational physics" by M. Newman, CreateSpace 2013.
- Comprehensive textbook: "Numerical recipes in C++ (3rd ed.)" by W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Cambridge Univ. Pr. 2007

Complementary material (the Python 3 language, root-finding methods, numerical linear algebra and applications...):

• Lecture notes for HAP608P "Programmation pour la physique" (L3 level, in French)

To help you with the exercises, and to encourage you to modify and experiment with the algorithms discussed here:

• All example programs on these slides are also available for download on Moodle

Computational physics with Python

The Python 3 programming language:

- easy to learn, straightforward to read
- widespread, many possible areas of application
- "batteries included": comprehensive and versatile standard library
- (essentially) an interpreted, not a compiled language \Rightarrow programs are high-level, easily portable
- supports various programming paradigms: procedural programming, object-oriented programming, functional programming...

Computational physics with Python

Python's main weakness: programs are slow, not easy to optimize \Rightarrow not ideally suited for high-performance computations

For a research project in computational physics with intense demands on computing resources, one would typically prefer a compiled language (C++, FORTRAN...)

Here we use Python for its pedagogical qualities. The goal of this course is to understand how numerical algorithms work. You should then (hopefully) be able to implement them in any language of your choice if needed.

Numerical error, stability, algorithmic complexity

In this chapter:

- Representing numerical data in Python
- Numerical error
- Numerical stability
- Algorithmic complexity

Python's representation of numerical data

A finite computer cannot possibly provide infinite computing resources:

- Numbers represented with finite precision
 - \rightarrow rounding error
 - \rightarrow numerical instabilities if errors accumulate
- Computing time, memory and bandwith are limited:
 - \rightarrow approximate results, truncation error
 - \rightarrow limits on the maximal size of feasible tasks

Python's representation of numerical data

Python provides three basic numerical data types:

- integer numbers (int)
- real floating-point numbers (float)
- complex floating-point numbers (complex)

Unlike most other programming languages, there is (theoretically) no limit to the size of an int in Python: arbitrary-precision arithmetic. In practice it is of course limited by the machine's memory.

A float is a fixed-precision data type of 8 bytes = 64 bits, as specified in the "double precision" norm IEEE754.

A complex corresponds to two float, one each for the real and imaginary parts.

Double-precision floating-point numbers

- The exponent E can represent $2^{11} = 2048$ different numbers, chosen by convention to be between -1022 and 1023. The two remaining values have a special meaning.
- ullet With the $b_0 \dots b_{51}$ bits of the mantissa and the sign bit s, the numerical value is

$$(-1)^{s}\left(1+\sum_{n=1}^{52}b_{52-n}2^{-n}\right)\cdot 2^{E}$$

- Absolute values between $2^{-1022} \approx 10^{-308}$ and $2^{1024} \approx 10^{308}$ (and 0) with a precision of 53 $\log_{10} 2 \approx 16$ decimals.
- When the absolute value of a variable becomes greater than 10³⁰⁸: overflow, it is set to the special value inf (infinity).
- When it becomes smaller than 10^{-308} : underflow, it is set to zero.

Exercise

Write two versions of a program which calculates the factorial x! of a given number x. In the first version, all numerical data is represented by variables of the type int, and in the second version, by variables of the type float. What do you obtain when trying to calculate 200! with both programs? Explain what you observe.

Numerical error: Rounding error

Relative precision = 16 digits

Example

In Python: $\sqrt{2} = 1.4142135623730951$ In reality: $\sqrt{2} = 1.4142135623730950488...$ Rounding error: 0.0000000000000000512...

But Python doesn't know that \Rightarrow don't test equality of two floats like this:

but rather test if they are equal to within the expected precision:

Numerical error: Information loss

Problem when adding or subtracting numbers of (vastly) different order of magnitude.

Example: x = 1, $y = 1 + 10^{-14}\sqrt{2}$, therefore $10^{14}(y - x) = \sqrt{2}$. In Python: $\sqrt{2} = 1.414213562373095\cdots$ $x = 1.0000000000000\cdots$ $y = 1.0000000000014\cdots$ $y - x = 1.4\cdots\cdots 10^{-14}$

Explicitly: the program

```
x = 1.0
root2 = 2**0.5
y = 1.0 + 1.0E-14 * root2
print(root2)
print(1.0E14 * (x - y))
```

will produce the output 1.4142135623730951 1.4210854715202004

 \Rightarrow rounding error already in the 3rd decimal!

Exercise

• Write a program which calculates the solutions of the second-order equation $ax^2 + bx + c = 0$ by the standard formula,

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
, $\Delta = b^2 - 4ac$.

What do you obtain for a = c = 0.001 and b = 1000?

• Show that the two solutions can also be written

$$x = \frac{2c}{-b \mp \sqrt{\Delta}}$$

Modify your program to calculate the solutions also with the second formula, and run it with a = c = 0.001 and b = 1000. What do you obtain? Explain your results.

Numerical error: Truncation error

Any quantity defined by a limit may not be represented exactly on the computer. Example:

$$e = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!}$$

Impossible to sum infinitely many terms in practice, need to stop at some N \Rightarrow truncation error

 $\label{eq:stability} \begin{array}{ll} {\rm ln \ reality:} & e = 2.71828182845904\ldots \\ {\rm With} \ N = 10: \ e \approx 2.71828180114638 \\ {\rm Truncation \ error:} \ 0.00000002731266\ldots \end{array}$

Numerical error: Absolute and relative error

For any numerical approximation \tilde{x} of some quantity x, we define the absolute error $\epsilon(x, \tilde{x})$,

$$\epsilon(x, \tilde{x}) = |x - \tilde{x}|$$

and the relative error $\epsilon_r(x, \tilde{x})$

$$\epsilon_r(x, \tilde{x}) = \frac{|x - \tilde{x}|}{|x|} = \epsilon \left(1, \frac{\tilde{x}}{x}\right).$$

The exact values of ϵ , ϵ_r are generally unknown (or else there would be no need for numerical approximations). In practice, one supposes that they are random variables following a normal (Gaussian) probability distribution.

Denote by σ the standard deviation of ϵ and by C the standard deviation of ϵ_r ,

$$\sigma = C|x|.$$

E.g. for the rounding error due to the limits of double-precision floating point arithmetic, $C\approx 10^{-16}.$

Error analysis aims to estimate C (or σ) in order to estimate the typical size of ϵ_r (or ϵ).

Numerical error: Error propagation

From standard probability theory (just as for experimental uncertainties):

• For the sum $y = x_1 + x_2$ of two quantities x_1 and x_2 with uncorrelated uncertainties σ_1 and σ_2 , one has $\sigma_y^2 = \sigma_1^2 + \sigma_2^2$ and therefore

$$\sigma_y = \sqrt{\sigma_1^2 + \sigma_2^2}$$

• For a product $y = x_1 x_2$, the squared relative uncertainties must be added, hence

$$C_y = \sqrt{C_1^2 + C_2^2}$$

• General case: Let $y = y(x_1, \dots, x_n)$, then the uncertainty for y is

$$\sigma_y = \sqrt{\sum_{i=1}^n \left(\frac{\partial y}{\partial x_i}\sigma_i\right)^2}$$

Numerical stability

An algorithm is called

- unstable: small variations in the input data can produce large variations in the output data
 - \Rightarrow the numerical error is amplified

 stable: small variations in the input data will not lead to large variations in the output data
 ⇒ the numerical error remains of the same order or is even diminished

The precise definition of stability depends on the algorithm under study.

It is obviously best to use stable methods when possible. But often they come at a price: they may be more difficult to implement and/or computationally more expensive.

Numerical stability

Most important for algorithms using a feedback loop: if the error is amplified at each iteration, it may eventually dominate the result.

Example: Numerical evaluation of spherical Bessel functions of the first kind (solutions of the radial free Schrödinger equation in spherical coordinates)

$$j_0(x) = \frac{\sin x}{x}$$
, $j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$, $j_n(x) = \frac{2n-1}{x}j_{n-1}(x) - j_{n-2}(x)$

Plotting $j_n(10)$ as a function of n (numerical value found recursively, exact value):

Numerical stability

Explanations:

- The recurrence relation has a second solution (the spherical Bessel functions of the second kind $k_n(x)$) which grows monotonically as a function of n for n > x
- Numerical error \Rightarrow instead of just $j_n(x)$, the computer really calculates some linear superposition of $j_n(x)$ and $k_n(x)$
- The $k_n(x)$ component is initially small (due to truncation/rounding errors when computing j_0 and j_1). But it grows at each iteration.
- Finally, for large n, the numerical solution is dominated by the growing $k_n(x)$ component.

Possible solution:

Use the recurrence relation backwards (for decreasing n); normalize the result by j_0 . Stable.

Analysis of algorithms

Some typical computational problems:

- Evaluate a function with n-digit precision
- ullet Find the solution of an equation with a precision of 1/n
- Solve a system of n equations at fixed precision
- Diagonalize an $n \times n$ matrix
- Sort a list of n elements
- $\bullet\,$ Find some given element within a list of n elements

•

Time complexity as a measure of an algorithm's efficiency: How does the run-time T(n) depend on the "characteristic problem size" n? (Other measures could be: consumption of memory M(n) or network bandwith B(n)...) In particular: study the asymptotic behaviour of T(n) for large n.

Analysis of algorithms: Asymptotic growth, Landau symbols

Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ be a monotonically increasing reference function.

We say of some other function $g:\,\mathbb{R}_+\,
ightarrow\,\mathbb{R}_+$ that

Analysis of algorithms: Asymptotic growth, Landau symbols

Example: Consider $f(x) = x^3$. The function $g(x) = 2x^3 - 3x^2 + 1$ is in $\Theta(x^3)$ (for large x, can neglect $-3x^2$ and $1 \text{ w.r.t. } 2x^3$; $2x^3 \in \Theta(x^3)$ since constant factors don't matter)

Asymptotic growth, Landau symbols

Exercise

Show that for any positive constants a, b, c, one has

 $\Theta(\log(x^a)) = \Theta(\log_b x) = \Theta(\log(cx)) = \Theta(\log(x)) \,.$

Analysis of algorithms

Goal of the analysis of algorithms: Characterize the asymptotic growth of the function T(n) = run-time as a function of problem size; how does T(n) behave at large n?

 \Rightarrow count the number of elementary steps necessary to carry out the algorithm Elementary step = assignment, arithmetic operation on a float, comparison, branching... any simple instruction that does not depend on n

Remark 1: In computer science, it is common to use \mathcal{O} instead of Θ even though, strictly speaking, their meaning is different. E.g. if $T(n) \in \Theta(n \log n)$, on frequently finds the statement that " $T(n) \in \mathcal{O}(n \log n)$ " (or even, by abuse of notation, " $T(n) = \mathcal{O}(n \log n)$ "). Correct (since $\Theta \subset \mathcal{O}$) but imprecise.

Remark 2: For our discussion, we defined \mathcal{O} in the limit where the argument of a function tends to infinity. By contrast, in calculus one often defines \mathcal{O} in the limit where it tends to zero (see next chapter on integrals and derivatives).

Analysis of algorithms, example: Linear search

- ullet Input data: a list L of length n which contains the element ${f x}$
- \bullet Desired output: the position of x in L
- Algorithm: iterate over L, compare each element with x, terminate iteration upon equality

```
def linear_search(L, x):
    # use enumerate(L) to obtain a sequence of pairs
    # (0, L[0]), (1, L[1]), (2, L[2]), etc.
    for index, item in enumerate(L):
        if item == x:
            return index
```

Analysis: Count the number of elementary steps for some given n.

- Best case: First element = x, hence T(n) = const., hence $T(n) \in \Theta(1)$.
- Worst case: Last element = x, so need to iterate over the entire list to find x, hence $T(n) \propto n$, hence $T(n) \in \Theta(n)$.
- Average case: Need to iterate over half of the list to find x, $T(n) \propto \frac{n}{2}$, hence still $T(n) \in \Theta(n)$.
Analysis of algorithms, second example: Binary search

- ullet Input data: a sorted list L of length n which contains the element ${f x}$
- \bullet Desired output: the position of x in L
- Algorithm: compare the element m at the center of L with x. If m > x, repeat with the half of the list on the left of m. Otherwise, repeat with the half on the right of m. Terminate when the remaining sublist contains only a single element.

```
def binary_search(L, x):
  left, right = 0, len(L)  # L[left:right] contains x
  while right - left > 1:  # does it contain >1 element?
  mid = (right + left) // 2 # index of the center
  if L[mid] > x:  # is x in the left half ?
    right = mid  # -> repeat with L[left:mid]
  else:  # otherwise it is in the right half
    left = mid  # -> repeat with L[mid:right]
  return left
```

Analysis:

 $\log_2 n \text{ loop iterations} \Rightarrow T(n) \propto \log_2 n$, hence $T(n) \in \Theta(\log(n))$.

Analysis of algorithms

Exercise

The following program tests if n is prime. Analyse its run-time complexity: what is the worst-case growth of T(n)?

```
def is_prime(n):
    k = 2
    while k**2 <= n:
        if n % k == 0:
            return False
        k += 1
    return True</pre>
```

Exercise

Recall that the matrix product between two $n \times n$ matrices A and B is

$$(A \cdot B)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \,.$$

Analyse the run-time complexity of a routine which calculates the matrix product with this formula as a function of n.

Analysis of algorithms

Hypothetical example: Suppose that some algorithm needs a run-time of $T(10) = 10 \ \mu s$ for some input data of size n = 10. Then, for n > 10, the run-time will be approximately:

	n = 10	n = 20	n = 30	n = 100	n = 1000	n = 10000
$\Theta(1)$	10 μ s	10 μ s	10 μ s	10 μ s	10 μ s	10 μ s
$\Theta(\log n)$	10 μ s	13 μ s	15 μ s	20 μ s	30 μ s	40 μ s
$\Theta(\sqrt{n})$	10 μ s	14 μ s	$17~\mu s$	32 μ s	100 μ s	320 μ s
$\Theta(n)$	10 μ s	20 μ s	30 μ s	100 μ s	1 ms	10 ms
$\Theta(n^2)$	10 μ s	40 μ s	90 μ s	1 ms	100 ms	10 s
$\Theta(n^3)$	10 μ s	80 μ s	270 μs	10 ms	10 s	3 h
$\Theta(e^n)$	10 μ s	220 ms	1.5 h	$10^{26} \ { m yrs}^{*}$	$10^{417}~{ m yrs}^*$	$10^{4326}~{ m yrs}^*$

(* age of the universe $\approx 10^{10}$ years)

Useful orders of magnitude: Python on an ordinary PC can do $\sim 10^9$ elementary steps in a "reasonable" time (\sim seconds).

Time needed for 10^6 elementary steps = "instantaneous" (\ll 1s) Time needed for 10^{12} elementary steps = "infinite" (\gtrsim hours)

Numerical integrals and derivatives

In this chapter

- The trapezoidal method
- Simpson's method and other Newton-Cotes methods
- Adaptive methods
- Gaussian quadrature
- Numerical first and second derivatives

Numerical integration

Goal: Compute $\int_a^b f(x) dx$ for some given function f (which cannot be analytically integrated)

Possible complications (\rightarrow later):

- Improper integrals (f not defined at a or b, or $a = -\infty$ or $b = \infty$)
- Singularities or discontinuities within the domain of integration
- Multi-dimensional integrals \rightarrow Monte-Carlo methods, chapter 6

Definition of the integral by Riemann sum (here: "right rule")

$$\int_{a}^{b} f(x) \, dx = \lim_{N \to \infty} \sum_{k=1}^{N} h \, f_k \,, \qquad h = \frac{b-a}{N} \,, \quad f_k = f(x_k) \,, \quad x_k = a + kh$$

Approximate the area between f(x) and the x-axis by N rectangles of area $h f_k$.

Newton-Cotes methods: Trapezoid method

Better: instead of rectangles, use trapezoids

Trapezoidal rule:

$$\int_{x_k}^{x_{k+1}} f(x) \, dx \approx \frac{h}{2} (f_{k+1} + f_k)$$

and therefore

$$\int_{a}^{b} f(x) \, dx = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x) \, dx \approx h\left(\frac{f(a)}{2} + \frac{f(b)}{2} + \sum_{k=1}^{N-1} f_{k}\right) \, .$$

Newton-Cotes methods: Trapezoid method

Simple function for calculating integrals with the trapezoid method:

```
def int_trapez(f, a, b, N):
    h = (b - a) / N
    result = f(a)/2 + f(b)/2 # boundary points
    for k in range(1, N): # interior points
        result += f(a + k*h)
    result *= h
    return result
```

Test:

```
from math import sin, pi
print("I =", int_trapez(sin, 0, pi, 10000))
```

Taylor series expansion of f(x) around x_k (notation reminder: $f_k \equiv f(x_k)$)

$$f(x) = f_k + (x - x_k)f'_k + \frac{1}{2}(x - x_k)^2 f''_k + \dots$$

Integrate between x_k and x_{k+1} :

$$\int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x$$

= $f_k \int_{x_k}^{x_{k+1}} \mathrm{d}x + f'_k \int_{x_k}^{x_{k+1}} (x - x_k) \, \mathrm{d}x + \frac{1}{2} f''_k \int_{x_k}^{x_{k+1}} (x - x_k)^2 \, \mathrm{d}x + \dots$
= $h f_k + \frac{1}{2} h^2 f'_k + \frac{1}{6} h^3 f''_k + \mathcal{O}(h^4)$

Similarly, for an expansion of f(x) around x_{k+1} ,

$$\int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x = h f_{k+1} - \frac{1}{2} h^2 f'_{k+1} + \frac{1}{6} h^3 f''_{k+1} + \mathcal{O}(h^4) \, .$$

Adding and dividing by 2:

$$\int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x = \frac{1}{2}h\left(f_k + f_{k+1}\right) + \frac{1}{4}h^2\left(f'_k - f'_{k+1}\right) + \frac{1}{12}h^3\left(f''_k + f''_{k+1}\right) + \mathcal{O}(h^4)$$

Taking the sum over all the slices:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x) \, \mathrm{d}x$$
$$= \underbrace{\frac{1}{2}h \sum_{k=0}^{N-1} (f_{k} + f_{k+1})}_{\text{trapezoidal rule}} + \frac{1}{4}h^{2} \left(f'(a) - f'(b)\right) + \frac{1}{12}h^{3} \sum_{k=0}^{N-1} \left(f_{k}'' + f_{k+1}''\right) + \mathcal{O}(Nh^{4})$$

- All terms $\propto h^2$ cancel out, except $\frac{1}{4}h^2(f'(a)-f'(b)).$
- One can show: Terms $\propto h^4$ also cancel \Rightarrow the $\mathcal{O}(Nh^4)$ terms are in fact $\mathcal{O}(h^4)$.
- The $\propto h^3$ terms correspond to the trapezoidal rule for the integrand $\frac{h^2}{6}f^{\prime\prime}(x)$:

$$\frac{1}{12}h^3 \sum_{k=0}^{N-1} \left(f_k'' + f_{k+1}'' \right) = \int_a^b \left(\frac{h^2}{6} f''(x) \right) \mathrm{d}x + \mathcal{O}(h^4) = \frac{h^2}{6} \left(f'(b) - f'(a) \right) + \mathcal{O}(h^4) \,.$$

Summary:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \underbrace{\frac{1}{2}h \sum_{k=0}^{N-1} (f_{k} + f_{k+1})}_{\text{trapezoidal rule}} + \underbrace{\frac{1}{12}h^{2} \left(f'(a) - f'(b)\right)}_{\text{leading-order error term}} + \mathcal{O}(h^{4}) \, .$$

Euler-MacLaurin formula for truncation error:

$$\epsilon \approx \frac{1}{12}h^2(f'(a) - f'(b))\,.$$

- Order-h method: The result is exact up to terms of order h^2 .
- Comparing with rounding error: With a relative precision of $C\sim 10^{-16},$ the errors are comparable when

$$\frac{1}{12}h^2(f'(a) - f'(b)) \simeq C \int_a^b f(x) \, \mathrm{d}x$$

or, with h = (b-a)/N,

$$N \sim (b-a) \sqrt{\frac{f'(a) - f'(b)}{12 \int_a^b f(x) \, \mathrm{d}x}} C^{-1/2} \,.$$

If the prefactor is $\mathcal{O}(1)$, then it takes $N \simeq 10^8$ subdivisions for the truncation error to become negligible. For a reasonable number of subdivisions, the truncation error is dominant.

• Analysis: 1/n precision requires at least $\Theta(\sqrt{n})$ elementary steps (provided that evaluating f(x) takes $\Theta(1)$ time — the most optimistic case).

More practical way to estimate the error: vary the number of points.

Let

- I be the integral's exact value, $I = \int_a^b f(x) \, \mathrm{d}x$
- N_1 be the number of slices of witdh $h_1=(b-a)/N_1$
- ullet I_1 be the numerical approximation obtained with the trapezoidal method
- ϵ_1 be the numerical error to first approximation, $Ipprox I_1+\epsilon_1$

Knowing that the trapezoidal method is of order h:

$$I = I_1 + \epsilon_1 + \mathcal{O}(h_1^4) = I_1 + c h_1^2 + \mathcal{O}(h_1^4), \qquad c = \text{const.}$$

Doubling the number of points, $N_2=2\,N_1$ and $h_2=h_1/2$, one finds similarly

$$I = I_2 + c h_2^2 + \dots$$

and therefore

$$I_2 - I_1 = c \left(h_1^2 - h_2^2\right) \approx 3c h_2^2$$
$$\Rightarrow \qquad \boxed{\epsilon_2 \approx \frac{1}{3}(I_2 - I_1)}$$

Newton-Cotes methods: Simpson's method

Even better: approximate the integrand on every slice neither by a constant (Riemann sum) nor by a straight line (trapezoidal rule) but by a parabola: Simpson's method.

Newton-Cotes methods: Simpson's method

Quadratic function defined on two consecutive slices, interpolating between the points (x_{k-1}, f_{k-1}) , (x_k, f_k) , and (x_{k+1}, f_{k+1}) :

3 linear equations, 3 unknowns lpha, eta, γ

For simplicity: $x_{k-1} = -h$, $x_k = 0$, $x_{k+1} = h$:

$$\alpha h^{2} - \beta h + \gamma = f(-h)$$
$$\gamma = f(0)$$
$$\alpha h^{2} + \beta h + \gamma = f(h)$$

Solution:

$$\gamma = f(0), \quad \beta = \frac{f(h) - f(-h)}{2h}, \quad \alpha = \frac{f(h) + f(-h) - 2f(0)}{2h^2}.$$

The polynomial $\alpha x^2 + \beta x + \gamma$ is easily integrated analytically:

$$\int_{-h}^{h} \alpha x^{2} + \beta x + \gamma \, \mathrm{d}x = \frac{h}{3} \left(f(-h) + 4 f(0) + f(h) \right) \,.$$

Newton-Cotes methods: Simpson's method

We have found:

$$\int_{x_{k-1}}^{x_{k+1}} f(x) \, \mathrm{d}x \approx \frac{h}{3} \left(f_{k-1} + 4 \, f_k + f_{k+1} \right)$$

And we have

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{\substack{1 \le k \le N-1 \\ k \text{ odd}}} \int_{x_{k-1}}^{x_{k+1}} f(x) \, \mathrm{d}x$$

$$\Rightarrow \quad \left| \int_a^b f(x) \, \mathrm{d}x \approx \frac{h}{3} \left(f(a) + f(b) + 4 \sum_{\substack{1 \le k \le N-1 \\ k \text{ odd}}} f_k + 2 \sum_{\substack{2 \le k \le N-2 \\ k \text{ even}}} f_k \right) \right|$$

Simpson's rule.

Error estimate for Simpson's method

Similar calculation as for trapezoidal method: Euler-MacLaurin formula for Simpson's method,

$$\epsilon \approx \frac{1}{90} h^4 \left(f^{\prime\prime\prime}(a) - f^{\prime\prime\prime}(b) \right)$$

- Order- h^3 method: Result is exact up to terms of order h^4 .
- The truncation error becomes comparable to the double-precision rounding error for $N\simeq 10\,000$ points. Further increasing N will not increase the precision.
- Converges much more quickly than the trapezoidal method for well-behaved integrands (bounded derivatives...)
- Algorithm analysis: for a target precision of 1/n,

$$\frac{1}{n} \stackrel{!}{=} \epsilon \propto h^4 \propto \frac{1}{N^4}$$

need to evaluate f at $N\propto n^{1/4}$ points \Rightarrow at least $\propto n^{1/4}$ elementary steps \Rightarrow run-time complexity $\Theta(n^{1/4})$ in the best case.

Simpson's method

Exercises

• Just as we did for the trapezoidal method (see p. 48), one may estimate the dominant error term for Simpson's method by doubling the number of points. Show that one obtains the estimate

$$\epsilon_2 \approx \frac{1}{15} (I_2 - I_1) \,.$$

- Write a function int_simpson(f, a, b, N) similar to the function int_trapez, but using Simpson's method.
- Compute

$$I = \int_0^\pi x^2 \sin x \, \mathrm{d}x$$

with the trapezoid method and with Simpson's method for N = 10, 100, 1000, 2000. Compare with the exact result $I = \pi^2 - 4$. For N = 2000, compare the actual numerical error with the error estimate given by the above formula (or rather by the formula of p. 48 for the trapezoid method).

• Implement an adaptive version of Simpson's method (similar to the one presented below for the trapezoid method).

Newton-Cotes methods of degree p

Generalization:

- p consecutive slices between x_k and x_{k+p} define a polynomial of degree p
- One may therefore approximate

$$\int_{x_k}^{x_{k+p}} f(x) \, \mathrm{d}x \approx \int_{x_k}^{x_{k+p}} \left(c_p x^p + c_{p-1} x^{p-1} + \ldots + c_0 \right) \mathrm{d}x$$

where the coefficients c_i are determined by the p+1 linear equations

$$c_p x_k^p + \ldots + c_0 = f_k$$
$$\ldots$$
$$c_p x_{k+p}^p + \ldots + c_0 = f_{k+p}$$

• The polynomial can be integrated analytically.

Result: Newton-Cotes method of degree *p*.

Newton-Cotes methods of degree p

• p = 1: Trapezoid rule,

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx h\left(\frac{1}{2}f(a) + f_{1} + f_{2} + f_{3} + \ldots + f_{N-1} + \frac{1}{2}f(b)\right)$$

• p = 2: Simpson's rule,

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx h\left(\frac{1}{3}f(a) + \frac{4}{3}f_{1} + \frac{2}{3}f_{2} + \frac{4}{3}f_{3} + \frac{2}{3}f_{4} + \ldots + \frac{4}{3}f_{N-1} + \frac{1}{3}f(b)\right) \, .$$

• p = 3: Simpson's 3/8 rule,

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx h\left(\frac{3}{8}f(a) + \frac{9}{8}f_{1} + \frac{9}{8}f_{2} + \frac{3}{4}f_{3} + \frac{9}{8}f_{4} + \frac{9}{8}f_{5} + \frac{3}{4}f_{6} + \ldots + \frac{3}{8}f(b)\right) \,.$$

• p = 4: Boole's rule,

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx h \left(\frac{14}{45} f(a) + \frac{64}{45} f_1 + \frac{8}{15} f_2 + \frac{64}{45} f_3 + \frac{28}{45} f_4 + \frac{64}{45} f_5 + \frac{8}{15} f_6 + \frac{64}{45} f_7 + \ldots + \frac{64}{45} f_{N-1} + \frac{14}{45} f(b) \right).$$

Newton-Cotes methods

- The p-th degree method gives the exact result if the integrand f is itself a polynomial of degree ≤ p.
 (Even better if p is even: exact method for degrees
- In practice: Initially the speed of convergence grows with p if f is "well-behaved", i.e. if f is well approximated by a polynomial; no discontinuities and/or singularities. In geneneral, there exists some optimal p beyond which the polynomial approximation becomes worse ("Runge's phenomenon").
- For discontinuous, rapidly fluctuating or singular integrands: trapezoidal rule may still be the best choice

Adaptive trapezoid method

Back to the trapezoid method; recall the notation of p. 48:

$$\begin{split} I &= \int_{a}^{b} f(x) \, \mathrm{d}x \\ &= I_{i} + \epsilon_{i} + \mathcal{O}(h_{i}^{4}) \qquad \text{computed with } N_{i} \text{ slices of width } h_{i} = \frac{b-a}{N_{i}} \\ &= h_{i} \left(\frac{f(a)}{2} + \frac{f(b)}{2} + \sum_{k=1}^{N_{i}-1} f_{k} \right) + \epsilon_{i} + \mathcal{O}(h_{i}^{4}) \,, \end{split}$$

Recall also the error estimate: If $N_{i+1} = 2 N_i$, then

$$\epsilon_{i+1} \approx \frac{1}{3} \left(I_{i+1} - I_i \right) \,.$$

Adaptive method to obtain a given precision δ :

- Compute I_1 with some initial choice for N_1
- Successively double the number of points, $N_{i+1} = 2N_i$, and compute I_{i+1} . (One may re-use the points calculated previously \rightarrow save computing resources.)
- Compute ϵ_{i+1} . When $|\epsilon_{i+1}| < \delta$, terminate.

Adaptive trapezoid method

To re-use the points calculated previously, note that

$$\begin{split} I_i &= h_i \left(\frac{f(a)}{2} + \frac{f(b)}{2} + \sum_{k=1}^{N_i - 1} f(a + kh_i) \right) \\ &= h_i \left(\frac{f(a)}{2} + \frac{f(b)}{2} + \sum_{\substack{1 \le k \le N_i - 1 \\ k \text{ odd}}} f(a + kh_i) + \sum_{\substack{2 \le k \le N_i - 2 \\ k \text{ even}}} f(a + kh_i) \right) \end{split}$$

We have

$$\sum_{\substack{2 \le k \le N_i - 2\\k \text{ even}}} f(a + k h_i) = \sum_{\ell=1}^{N_i/2 - 1} f(a + 2\ell h_i) = \sum_{\ell=1}^{N_{i-1} - 1} f(a + \ell h_{i-1})$$

where we have changed variables, $k = 2\ell$, and used that $2h_i = h_{i-1}$ and $N_i/2 = N_{i-1}$. One obtains a recurrence formula,

$$I_{i} = \frac{1}{2} \underbrace{h_{i-1} \left(\frac{f(a)}{2} + \frac{f(b)}{2} + \sum_{\ell=1}^{N_{i-1}-1} f(a+\ell h_{i-1}) \right)}_{I_{i-1}} + h_{i} \sum_{\substack{1 \le k \le N_{i}-1\\k \text{ odd}}} f(a+kh_{i}).$$

Adaptive trapezoid method

$$I_i = \frac{1}{2}I_{i-1} + h_i \sum_{\substack{1 \leq k \leq N_i - 1 \\ k \text{ odd}}} f(a + kh_i)$$

Code:

```
def int_trapez_ad(f, a, b, delta=1.0E-5, N=10):
    oldI = 1.0E308
                               # "infinitv"
    h = (b - a) / N
    newI = 0.5*f(a) + 0.5*f(b) \# compute I_1
    for k in range(1, N):
       newI += f(a + h*k)
    newT *= h
                               # end of computation of I_1
    while abs(oldI - newI)/3 > delta: # compute next I_i:
       h /= 2
                               # decrease increment
       N *= 2
                               # increase number of points
                         # memorize I (i-1)
        oldI = newI
       newI *= 0.5
                            # first term = I_{(i-1)} / 2
        for k in range(1, N, 2): # add h f_k terms (k odd)
            newI += h * f(a + k*h)
    return newI
```

Recap:

- Newton-Cotes methods are based on subdividing the integration interval into N slices of the same width h.
 (The p-th degree method requires that N is a multiple of p.)
- Moreover, the p-th degree Newton-Cotes method is exact if the integrand is a polynomial of degree $\leq p$. In this case, N = p slices are sufficient.
- The integrand f is evaluated at N + 1 points (nodes).

Gaussian quadrature:

- A method with N nodes which is exact for polyomial integrands of even higher degree, up to $\leq 2N 1$.
- It is correspondingly more precise for general integrands (that are well approximated by polynomials).
- Essential idea: instead of evenly spaced nodes, optimize the spacing between them.

General integration rule:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \sum_{k=0}^{N} w_{k} f_{k}$$

- $f_k = f(x_k)$ with the nodes $x_k \in [a, b]$, not necessarily evenly spaced, not necessarily $x_0 = a$ or $x_N = b$
- $\{w_k\} = weights$

Example: Trapezoid rule, $x_k = a + kh$ and weights $w_0 = w_N = \frac{h}{2}$, $w_{1 \le k \le N-1} = h$ **Example**: Simpson's rule, $x_k = a + kh$ and $w_0 = w_N = \frac{h}{3}$, others $w_k = \frac{4h}{3}$ or $\frac{2h}{3}$

To find the weights w_k , given a set of N nodes x_k $(1 \le k \le N)$, consider the interpolating polynomials of degree N - 1:

$$\phi_{(k)}(x) = \prod_{\substack{m=1,\dots,N\\m\neq k}} \frac{x-x_m}{x_k-x_m}$$
$$= \left(\frac{x-x_1}{x_k-x_1}\right) \cdots \left(\frac{x-x_{k-1}}{x_k-x_{k-1}}\right) \left(\frac{x-x_k}{x_k-x_k}\right) \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right) \cdots \left(\frac{x-x_N}{x_k-x_N}\right)$$

The essential property of the $\phi_{(k)}$:

$$\phi_{(k)}(x_n) = \delta_{nk} \equiv \begin{cases} 1, & n = k \\ 0, & n \neq k \end{cases}$$

Define

$$\Phi(x) = \sum_{k=1}^{N} f(x_k)\phi_{(k)}(x)$$

Properties of Φ :

• Polynomial of degree $\leq N-1$ (linear combination of polynomials of degree N-1)

•
$$\Phi(x_m) = \sum_{k=1}^N f(x_k)\phi_{(k)}(x_m) = \sum_{k=1}^N f(x_k)\delta_{km} = f(x_m)$$

• Unique with theses two properties, since its N coefficients are fixed by N constraints

HAP708P, U Montpellier

Approximating $f(x) \approx \Phi(x)$ on the domain of integration, we find

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \int_{a}^{b} \Phi(x) \, \mathrm{d}x = \int_{a}^{b} \sum_{k=1}^{N} f(x_{k})\phi_{(k)}(x) \, \mathrm{d}x = \sum_{k=1}^{N} f(x_{k}) \int_{a}^{b} \phi_{(k)}(x) \, \mathrm{d}x$$

and therefore

$$w_k = \int_a^b \phi_{(k)}(x) \, \mathrm{d}x \, .$$

- This gives the weights $\{w_k\}$ for a given generic set of nodes $\{x_k\}$, such that $\int_a^b f(x) \, \mathrm{d}x = \sum_k w_k f_k$ holds exactly for polynomial f
- Unfortunately, one cannot just compute them by integrating $\phi_{(k)}(x)$ analytically (polynomial but defined by 2^{N-1} terms! Far too many for $N \gtrsim 30$). Must restrict to special cases where closed-form expressions exist. We will discuss an important example shortly.
- Fortunately, the w_k need to be computed only once for a fixed choice of a and b. Afterwards, one may easily adapt them to integrate any function f(x) on any interval [a, b].

Adapting the nodes and weights to an arbitrary interval

- \bullet Suppose we are given a set of nodes $\{x_k\}$ and corresponding weights $\{w_k\}$ on the reference interval $[-1,\,1]$
- To adapt them to any other integration interval [a, b]: Redefine the nodes

$$x'_{k} = \underbrace{\frac{1}{2}(b-a)x_{k}}_{\text{compress/stretch}} + \underbrace{\frac{1}{2}(b+a)}_{\text{shift}} \qquad \text{(affine transformation)}$$

and rescale the weights,

$$w_k' = \frac{1}{2}(b-a)w_k \,.$$

• Now we may integrate any function f(x) on any interval [a, b]:

$$\int_a^b f(x) \, \mathrm{d}x \approx \sum_{k=1}^N w'_k f(x'_k) \, .$$

How to choose the nodes x_k on the reference interval [-1, 1] optimally? What are the corresponding weights w_k ?

Optimal choice, giving the exact result if f(x) is a polynomial of degree $\leq 2N - 1$:

$$x_k$$
 = roots of the Nth Legendre polynomial $P_N(x)$
 $w_k = rac{2}{(1-x_k^2) P_N'(x_k)^2}$

(Proof for the interested: see following slides.) See also TD 1.3. Gauss-Legendre quadrature.

Other choices of x_k and w_k give exact results for

$$f(x) = W(x) \times polynonial$$

(\Rightarrow optimized results if f is well approximated by such an expression) where e.g. $W(x) = \frac{1}{\sqrt{1-x^2}}$ (Gauss-Chebyshev), $W(x) = x^{\alpha}e^{-x}$ (Gauss-Laguerre), $W(x) = e^{-x^2}$ (Gauss-Hermite)...

Parenthesis: Proof of the Gauss-Legendre formulas, I — Nodes

To show that the nodes x_k are the roots of the N-th Legendre polynomial, we need an important property of the latter which we quote without proof:

Proposition: Let Q be a polynomial of degree < n. Then Q and the *n*-th Legendre polynomial P_n are orthogonal on [-1, 1], i.e.

$$\int_{-1}^{1} P_n(x)Q(x) \, \mathrm{d}x = 0 \, .$$

(In fact, the usual definition of P_n starts from this property.)

Now let us prove the following **Theorem**: Let

- f be a polynomial of degree < 2N
- $\{x_k \, | \, k=1 \dots N\}$ the roots of P_N
- $\phi_{(k)}$ the corresponding interpolating polynomials, i.e. the unique polynomials of degree < N which satisfy $\phi_{(k)}(x_\ell) = \delta_{k\ell}$, see p. 62

• $w_k = \int_{-1}^1 \phi_{(k)}(x) \, \mathrm{d}x$ (we will prove the explicit formula for w_k afterwards)

Then

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = \sum_{k=1}^{N} w_k f(x_k) \, .$$

Parenthesis: Proof of the Gauss-Legendre formulas, I - Nodes

Proof: After polynomial division, $f(x) = P_N(x)Q(x) + R(x)$ where Q and R are polynomials of degree < N. We have

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} P_N(x)Q(x) dx + \int_{-1}^{1} R(x) dx$$

=
$$\int_{-1}^{1} R(x) dx \qquad \text{since } Q \perp P_N$$

=
$$\int_{-1}^{1} \sum_{k=1}^{N} R(x_k)\phi_{(k)}(x) dx \qquad \text{since } \sum_{k} R(x_k)\phi_{(k)} \text{ is the unique polynomial}$$

of degree $< N$ whose values at x_k are $R(x_k)$,
so it must be equal to R

$$= \sum_{k=1}^{N} R(x_k) \int_{-1}^{1} \phi_{(k)}(x) dx$$

= $\sum_{k=1}^{N} (\underbrace{P_N(x_k)}_{=0} Q(x_k) + R(x_k)) w_k$
= $\sum_{k=1}^{N} f(x_k) w_k$.

Parenthesis: Proof of the Gauss-Legendre formulas, II - Weights

Preliminary remarks on the derivation of the weight formula:

• We will use the orthogonality property, as well as the recurrence relations of ex. 1.3

$$P'_{n}(x) = -\frac{nx}{1-x^{2}}P_{n}(x) + \frac{n}{1-x^{2}}P_{n-1}(x), \quad P_{n}(x) = \frac{2n-1}{n}xP_{n-1}(x) - \frac{n-1}{n}P_{n-2}(x)$$

• Note that the Legendre polynomials are not normalized via the scalar product of p. 66 but by the condition $P_n(1)=1$. Indeed,

$$\int_{-1}^{1} P_n^2(x) \, \mathrm{d}x = \frac{2}{2n+1}$$

• Finally, we denote by a_n the leading coefficient of P_n , i.e. the prefactor of the x^n term. Thus, if $\{x_m\}$ are the roots of P_n , then

$$P_n(x) = \prod_{m=1}^n \frac{x - x_m}{1 - x_m} = \underbrace{\prod_m \left(\frac{1}{1 - x_m}\right)}_{=a_n} \prod_m (x - x_m) = a_n x^n + (\text{terms of degree } < n)$$

Parenthesis: Proof of the Gauss-Legendre formulas, II — Weights

Lemma 1: Using the notation of the theorem of p. 66, we can write the interpolating polynomials $\phi_{(k)}$ as

$$\phi_{(k)}(x) = \frac{P_N(x)}{x - x_k} \frac{1}{P'_N(x_k)} \,.$$

Pro of:

$$P_N(x) = a_N \prod_{m=1}^N (x - x_m) = a_N(x - x_k) \prod_{m \neq k} (x - x_m) = a_N(x - x_k)\phi_{(k)}(x) \prod_{m \neq k} (x_k - x_m)$$

where we have used the definition of $\phi_{(k)}$, see p. 62. Combining this with the definition of the derivative $P_N'(x_k)$,

$$P'_{N}(x_{k}) = \lim_{x \to x_{k}} \frac{P_{N}(x) - P_{N}(x_{k})}{x - x_{k}} = a_{N} \underbrace{\phi_{(k)}(x_{k})}_{=1} \prod_{m \neq k} (x_{k} - x_{m})$$

and reinserting into the expression for $P_N(x)$ above gives the desired formula.

Parenthesis: Proof of the Gauss-Legendre formulas, II — Weights

To obtain the weights $w_k = \int_{-1}^1 \phi_{(k)}(x) \, dx$, we still need to calculate $\int_{-1}^1 \frac{P_N(x)}{x - x_k} \, dx$. Lemma 2: Any polynomial Q of degree $\leq N$ satisfies the identity

$$Q(x_k) \int_{-1}^{1} \frac{P_N(x)}{x - x_k} \, \mathrm{d}x = \int_{-1}^{1} \frac{Q(x) P_N(x)}{x - x_k} \, \mathrm{d}x \, .$$

Proof: It is sufficient to consider Q = some monomial x^m with $m \leq N$. We have

$$\int_{-1}^{1} \frac{P_N(x)}{x - x_k} \, \mathrm{d}x = \int_{-1}^{1} P_N(x) \left(\frac{\left(\frac{x}{x_k}\right)^m}{x - x_k} + \frac{1 - \left(\frac{x}{x_k}\right)^m}{x - x_k} \right) \, \mathrm{d}x \, .$$

The term in blue is a polynomial of degree m-1 < N. It is therefore orthogonal to P_N , hence it does not contribute to the integral, and one obtains

$$x_k^m \int_{-1}^1 \frac{P_N(x)}{x - x_k} \, \mathrm{d}x = \int_{-1}^1 \frac{x^m P_N(x)}{x - x_k} \, \mathrm{d}x.$$

Parenthesis: Proof of the Gauss-Legendre formulas, II — Weights Choosing $Q(x) = P_{N-1}(x)$ in Lemma 2, we can now finally prove the following **Proposition**: The weights w_k are given by

$$w_k = \frac{2}{1 - x_k^2} \frac{1}{P'_N(x_k)^2} \,.$$

Proof: According to Lemma 2,

$$P_{N-1}(x_k) \int_{-1}^{1} \frac{P_N(x)}{x - x_k} \, \mathrm{d}x = \int_{-1}^{1} P_{N-1}(x) \underbrace{\frac{P_N(x)}{x - x_k}}_{=a_N x^{N-1} + (\text{ terms } \perp P_{N-1})} \, \mathrm{d}x$$

$$= a_N \int_{-1}^{1} x^{N-1} P_{N-1}(x) \, \mathrm{d}x$$

$$= a_N \int_{-1}^{1} \left(\frac{P_{N-1}(x)}{a_{N-1}} + (\text{ terms } \perp P_{N-1}) \right) P_{N-1}(x) \, \mathrm{d}x$$

$$= \frac{a_N}{a_{N-1}} \int_{-1}^{1} P_{N-1}(x)^2 \, \mathrm{d}x$$

$$= \frac{2}{2N-1} \frac{a_N}{a_{N-1}} \, .$$

Parenthesis: Proof of the Gauss-Legendre formulas, II — Weights

Continuation of the proof:

Inserting this last expression into Lemma 1, one obtains

$$w_k = \int_{-1}^1 \phi_{(k)}(x) \, \mathrm{d}x = \frac{1}{P_N'(x_k)} \int_{-1}^1 \frac{P_N(x)}{x - x_k} \, \mathrm{d}x = \frac{2}{2N - 1} \frac{a_N}{a_{N-1}} \frac{1}{P_N'(x_k) P_{N-1}(x_k)}$$

Finally, use the recurrence relations to show that

$$\frac{a_N}{a_{N-1}} = \frac{2N-1}{N}$$

and that

$$P_{N-1}(x_k) = \frac{1-x^2}{N} P'_N(x_k)$$

and insert into the above expression for w_k , which concludes the proof.

Weights and nodes for Gauss-Legendre quadrature:

(Images taken from the book by M. Newman)

```
def int_gauss(f, nodes, weights):
result = 0.0
for x, w in zip(nodes, weights):
    result += w * f(x)
return result
```

The file gaussxw.py contains a function gaussxw(N) which computes the nodes and weights for Gauss-Legendre quadrature on the interval [-1, 1] for any given N. Example:

HAP708P, U Montpellier

Advantages:

- Excellent convergence for integrands which are well approximated by polynomials (or by $W(x) \times$ polynomial for suitable W(x))
- \bullet Very few function calls of f(x) are necessary \Rightarrow ideal if evaluating the integrand is expensive
- Open method: no need to evaluate the boundary points f(a) and f(b)

Drawbacks:

- Poor convergence for irregular integrands
- Computing nodes and weights may be expensive (but needs to be done only once)
- Impossible to re-use previously calculated points after an increase of N \Rightarrow error estimation can be difficult and costly

In practice:

- Instead of gaussxw(N), one may use the NumPy function numpy.polynomial.legendre.leggauss(N)
- \bullet Nodes and weights for Gauss-Chebyshev, Gauss-Laguerre, Gauss-Hermite are also found in NumPy

Exercises

In the Debye model, the heat capacity of a solid is given by

$$C_V = 9 n V k_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

where V is the volume, n is the number density, $k_B = 1.38 \cdot 10^{-23} \text{ JK}^{-1}$ is Boltzmann's constant, T is the temperature, and Θ_D is a constant.

- Write a function CV(T) which calculates C_V as a function of temperature, for a cube of aluminium of $(10 \times 10 \times 10)$ cm³ ($n = 6.022 \cdot 10^{28}$ m⁻³, $\Theta_D = 428$ K). Use Gauss-Legendre quadrature with N = 50 nodes.
- Plot $C_V(T)$ between T = 5 K and T = 500 K.

Comparison of numerical integration methods

- Trapezoidal method:
 - Easy to implement
 - Slow convergence
 - Good for irregular integrands
- Simpson's method:
 - Easy to implement
 - Rather fast convergence
 - Poor choice for irregular integrands
- Gaussian quadrature:
 - Implementation requires computing nodes and weights
 - Very fast
 - Poor choice for irregular integrands

Other methods exist, notably Romberg integration which relies on Richardson extrapolation to accelerate convergence.

Numerical integration: Improper integrals

To calculate an improper integral,

$$\int_0^\infty f(x) \, \mathrm{d}x$$

the standard procedure is to change variables:

$$y = \frac{x}{1+x}$$
, $x = \frac{y}{1-y}$.

Thus

$$dx = \frac{dy}{(1-y)^2}, \qquad \int_0^\infty f(x) \, dx = \int_0^1 \frac{1}{(1-y)^2} f\left(\frac{y}{1-y}\right) \, dy.$$

- To calculate $\int_a^\infty f(x) \, \mathrm{d}x$: calculate $\int_0^\infty f(x) \, \mathrm{d}x$ and subtract $\int_0^a f(x) \, \mathrm{d}x$.
- To calculate $\int_{-\infty}^{\infty} f(x) \, dx$: calculate the sum of $\int_{0}^{\infty} f(x) \, dx$ and $\int_{-\infty}^{0} f(x) \, dx$.
- Depending on the integrand, other choices of variables may give better results, for example

$$y = rac{x^{lpha}}{eta + x^{lpha}}$$
 with suitable constants $lpha, eta$.

Numerical integration: Singularities

The integrand may exhibit singularities within the domain of integration, or at its boundary.

If the behaviour near the singularities is known, convergence may be improved by subtracting the singular terms and calculating them separately.

Example: Calculate

$$I = \int_{-1}^{1} \frac{1}{\sqrt{|\sin(x)|}} \, \mathrm{d}x$$

- Integrand singular at x = 0, where $\sin x \sim x$.
- Subtracting $\frac{1}{\sqrt{|x|}}$:

$$I = \underbrace{\int_{-1}^{1} \left(\frac{1}{\sqrt{|\sin(x)|}} - \frac{1}{\sqrt{|x|}} \right) \, \mathrm{d}x}_{\text{regular}} + \underbrace{\int_{-1}^{1} \frac{1}{\sqrt{|x|}} \, \mathrm{d}x}_{= 2 \int_{0}^{1} \frac{1}{\sqrt{x}} \, \mathrm{d}x = 2 [2\sqrt{x}]_{0}^{1} = 4}$$

• Now the first term can be calculated reliably with our numerical integration methods.

Numerical derivatives

Goal: Given a differentiable function f(x) (which can be evaluated numerically), compute f'(x).

Preferred solution if possible: compute f' analytically and evaluate the result numerically.

- $\bullet~$ If f is any combination of elementary functions, then f' can be easily computed analytically
- Simplest techniques for calculating numerical derivatives are rather imprecise.

But sometimes we don't have an explicit expression for f(x) (if the values of f are themselves obtained by some numerical procedure). In this case, one may need to compute f' purely numerically.

Numerical derivatives: Forward and backward differences

Definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
.

Approximation

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

for *h* sufficiently small: forward difference. Equivalent:

$$f'(x) \approx \frac{f(x) - f(x-h)}{h}$$
,

for h sufficiently small: backward difference.

Numerical derivatives: error estimate

Error on the derivative obtained by forward differencing:

$$\begin{split} f(x+h) &= f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + \dots \text{ (Taylor expansion)} \\ \Rightarrow \qquad f'(x) &= \frac{f(x+h) - f(x)}{h} - \frac{1}{2}h \, f''(x) + \dots \end{split}$$

Error $\mathcal{O}(h)$.

Problem: choosing h small, the truncation error shrinks, but the rounding error grows.

Reason: subtracting f(x) from f(x+h), two numbers that are very close \rightarrow see chapter 2 and exercise 1.3. Extreme example: $f(x) = x^2$, derivative at x = 1 with $h = 10^{-16}$:

h = 1.0E-16print(((1.0+h)**2 - 1.0**2) / h)

This gives 0.0 although the result should be 2!

Optimal choice for this method if f(x) = O(1): $h \approx 10^{-8}$, not very precise. Similar for backward differencing.

Central difference

Average of forward and backward differences with a step width h/2:

$$f'(x) \approx \frac{f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)}{h}$$

Taylor expansion:

$$f\left(x+\frac{h}{2}\right) = f(x) + \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) + \frac{1}{48}h^3f'''(x) + \dots$$
$$f\left(x-\frac{h}{2}\right) = f(x) - \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) - \frac{1}{48}h^3f'''(x) + \dots$$

Subtracting these two equations gives

$$f'(x) = \frac{f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)}{h} - \frac{1}{24}h^2 f'''(x) + \dots$$

Better than forward and backward differences: error $\mathcal{O}(h^2)$. Optimal choice for $f(x) = \mathcal{O}(1)$: $h \approx 10^{-5}$, error $\epsilon \approx 10^{-10}$.

Second derivative

Central difference:

$$f''(x) \approx \frac{f'\left(x + \frac{h}{2}\right) - f'\left(x - \frac{h}{2}\right)}{h}$$

With

$$f'\left(x + \frac{h}{2}\right) \approx \frac{f(x + \frac{h}{2} + \frac{h}{2}) - f\left(x + \frac{h}{2} - \frac{h}{2}\right)}{h} = \frac{f(x + h) - f(x)}{h}$$

and

$$f'\left(x-\frac{h}{2}\right) \approx \frac{f(x)-f(x-h)}{h}$$

one finds

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
.

Error:

$$\epsilon = -\frac{1}{12}h^2 f^{\prime\prime\prime\prime}(x) + \dots \qquad (\rightarrow \text{ exercices})$$

Optimal choice for $f(x)=\mathcal{O}(1):\ h\approx 10^{-4},\ \mathrm{error}\ \epsilon\approx 10^{-8}.$

Exercises

Show that

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}h^2 f''''(x) + \mathcal{O}(h^3) \,.$$

• Let us study the numerical derivative of $f(x) = 1 + \frac{1}{2} \tanh(2x)$.

- Write a corresponding Python function f(x) (use the pre-defined function numpy.tanh). Plot its graph on the interval [-2, 2].
- Compute f'(x) analytically.

• Plot the difference between your analytic expression for f'(x) and the numerical derivative of f(x) on the interval [-2, 2]. Compute the numerical derivative using central differencing with $h = 10^{-4}$, $h = 10^{-5}$, and $h = 10^{-6}$. Compare the three graphs; which choice of the step width gives the best result?