QUANTUM FIELD THEORY, PROBLEM SHEET 4

Problem 1: Asymptotic overlap between wave packets

Consider an interacting theory of a real scalar field with mass m. Let $|\psi\rangle$ be a multi-particle wave packet given by

$$|\psi\rangle = \int d^3p \; \psi(\vec{p}) |\lambda_p\rangle.$$

Here $\psi(\vec{p})$ is an enveloping function (e.g. a Gaussian) whose precise shape is unimportant, and $|\lambda_p\rangle$ is a multi-particle state of total 4-momentum $p=(p^0,\vec{p})$ and invariant mass $\sqrt{p^2} \equiv M > m$. With

$$a_{\chi}^{\dagger}(t) = \int \mathrm{d}^3k \, \chi(\vec{k}) a^{\dagger}(\vec{k}, \, t),$$

where $\chi(\vec{k})$ is another enveloping function, show that

$$\lim_{t \to +\infty} \langle \psi | a_{\chi}^{\dagger}(t) | 0 \rangle = 0 \,,$$

i.e. the overlap between a one-particle and a multi-particle wave packet tends to zero at $t \to \pm \infty$.

Hints:

- Express a^{\dagger} in terms of ϕ and write $\phi(x) = e^{iPx}\phi(0)e^{-iPx}$, where P is the 4-momentum operator.
- Two of the resulting integrals collapse when using $\int d^3x \ e^{i\vec{q}\cdot\vec{x}} = (2\pi)^3 \delta^3(\vec{q})$.
- A bound on the remaining integral can be found with the help of the stationary phase approximation: Let $f: \mathbb{R}^n \to \mathbb{C}$ be a suitable test function, $\lambda > 0$, and $\varphi: \mathbb{R}^n \to \mathbb{R}$ a smooth function. Suppose that φ has a single critical point p_0 and that this critical point is nondegenerate, i.e. the Hessian matrix $H_{\varphi}(p_0)$ is nonsingular. Then, with $\sigma = \operatorname{sgn} H_{\varphi}(p_0) = \operatorname{the number of positive minus the number of negative eigenvalues of <math>H_{\varphi}(p_0)$,

$$\int d^{n} p \ f(p) e^{i\lambda\varphi(p)} = \left| \det H_{\varphi}(p_{0}) \right|^{-1/2} e^{i\lambda\varphi(p_{0}) + i\pi\sigma/4} \left(\frac{2\pi}{\lambda} \right)^{n/2} f(p_{0}) + o(|\lambda|^{-n/2}).$$

Problem 2: Gaussian and oscillatory integrals

We recall the basic Gaussian integral: if $a \in \mathbb{C}$ with Re a > 0, then

$$\int_{-\infty}^{\infty} \mathrm{d}x \; e^{-ax^2} = \sqrt{\frac{\pi}{a}}.$$

1. Let $a, b \in \mathbb{C}$ with Re a > 0. Show that:

$$\int_{-\infty}^{\infty} \mathrm{d}x \, \exp\left(-\frac{1}{2}a\,x^2 + b\,x\right) = \sqrt{\frac{2\pi}{a}} \exp\left(\frac{1}{2}\frac{b^2}{a}\right) \,.$$

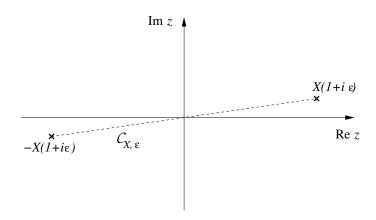
2. Let $a \in \mathbb{R}_+^*$ and $b \in \mathbb{C}$. We define the integral

$$I = \int_{-\infty}^{\infty} \mathrm{d}x \, \exp\left(\frac{i}{2}a\,x^2 + i\,b\,x\right)$$

by a complex line integral whose curve of integration $C_{X,\epsilon}$ is the straight line connecting the points $-X(1+i\epsilon)$ and $+X(1+i\epsilon)$:

$$I = \lim_{\epsilon \searrow 0} \lim_{X \to \infty} \int_{\mathcal{C}_{X,\epsilon}} dz \, \exp\left(\frac{i}{2}a \, z^2 + i \, b \, z\right) \, .$$

For illustration:



Calculate I. Compare your result with the stationary phase approximation given in exercise 1.

3. Let A be a real symmetric positive definite $n \times n$ matrix. Show that

$$\int \mathrm{d}^n x \exp\left(-\frac{1}{2}x^T A x\right) = \sqrt{\frac{(2\pi)^n}{\det A}}\,, \qquad \int \mathrm{d}^n x \exp\left(\frac{i}{2}x^T A x\right) = e^{in\pi/4} \sqrt{\frac{(2\pi)^n}{\det A}}.$$