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TUTORIAL: INTEGRATION OF ORDINARY DIFFERENTIAL
EQUATIONS

I. Harmonic oscillator

We want to integrate the equation of motion of a harmonic oscillator of angular frequency ω:

dx2

dt2
= −ω2x, (1)

with initial conditions: x(0) = 1 and dx/dt(0) = 0. We try several algorithms to integrate Eq. (1) up to time tf .

Question 1: How should you choose tf with respect to ω to observe the physics of the harmonic oscillator?

Question 2: We start with the Forward Euler method.

a. Implement the method.

b. Solve Eq. (1) for ω = 2 and for different values of the time step h ∈ [10−4, 0.2]. Plot the solutions as a
function of time for the different values of h on the same graph. What do you observe?

c. Plot the energy per unit mass

E =
1

2

(
dx

dt

)2

+
1

2
ω2x2 (2)

as a function of time for the different values of h considered above on the same graph. Comment (recall
that the energy of the harmonic oscillator is conserved!).

d. For a given value of h, we denote Ef(h) the value of E at the end of the simulation. Plot |Ef −ω2/2| as a
function of h in a loglog plot (for the values of h considered above). How does |Ef − ω2/2| scale with h?

e. Conclude on the feasibility of simulating a harmonic oscillator using the Forward Euler method.

Question 3: We now consider the Runge-Kutta 4 method. Repeat the above questions in this case.

II. A simplified model of Human crowds dynamics (a stiff ODE)

We want to solve the following Cauchy problem, which corresponds to an oversimplified model of Human crowds
dynamics: 

dx

dt
= −80x+ 9y (x sin t− y cos t) + 1440 cos t,

dy

dt
= −80y − 9x (x sin t− y cos t) + 1440 sin t,

x(0) = y(0) = 9,

(3)

for which the exact solution is known:

x(t) = 9
√
2 cos

(
t+

π

4

)
, y(t) = 9

√
2 sin

(
t+

π

4

)
. (4)

Question 1: We first try to solve the problem with the Runge-Kutta 4 method.

a. Implement the method.
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b. Solve up to t = 100 for h = 0.01 and h = 0.1. For each value of h, plot the numerical solution and the
exact solution as a function of time on the same graph. Comment.

Question 2: The above Cauchy problem is stiff (can you see why?). We thus turn to the Backward Euler
method.

a. We denote by x
(h)
n and y

(h)
n the numerical estimates of the solutions x(t) and y(t) at time tn = nh. Write

the recurrence relations for x(h)n+1 and y
(h)
n+1. Show that they take the form

G1

(
x
(h)
n+1, y

(h)
n+1

)
= G2

(
x
(h)
n+1, y

(h)
n+1

)
= 0, (5)

with 
G1(x, y) = x(1 + 80h)− x

(h)
n − 9hy (x sin tn+1 − y cos tn+1)− 1440h cos tn+1,

G2(x, y) = y(1 + 80h)− y
(h)
n + 9hx (x sin tn+1 − y cos tn+1)− 1440h sin tn+1.

(6)

b. Compute analytically the Jacobian matrix

J =


∂G1

∂x

∂G1

∂y

∂G2

∂x

∂G2

∂y

 . (7)

c. Question 2.a. shows that x
(h)
n+1 and y

(h)
n+1 are the roots of G1(x, y) and G2(x, y). By using the result of

question 2.b., implement the Newton root-finding method to compute x
(h)
n+1 and y

(h)
n+1. This requires to

solve linear systems involving J : you can first use pen and paper to invert J or directly use Python to solve
the linear systems.

d. Solve the Cauchy problem (3) with the Backward Euler method up to t = 100 for h = 0.01 and h = 0.1.
For each value of h, plot the numerical solution and the exact solution on the same graph. Comment.

III. Ballistic trajectory

x

y
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# »
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Figure 1: Forces acting on a cannonball. We have represented the cannonball of mass m and velocity #»v ,
along with the gravitational force

# »

Fg and the drag force
# »

Fd acting on it.

We consider a spherical cannonball of mass m = 4.08 kg which is subject to the gravitational force
# »

Fg = −mg #»ey
(g = 9.81m.s−2), and to a frictional force due to air drag (in the high-Reynolds number regime)

# »

Fd = −1

2
ρaScbC∥ #»v ∥ #»v , (8)
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see Fig. 1. In the above formula, ρa = 1.21 kg.m−3 is the density of air, Scb = πr2cb is the cross-sectional area of
the cannonball (with rb = 10.16 cm the radius of the cannonball), C = 0.47 is the drag coefficient of a sphere,
and #»v is the velocity of the cannonball. The drag force has a magnitude ∥ # »

Fd∥ ∝ #»v 2 and is always opposite to
the velocity.

Question 1: We start by formulating the problem mathematically.

a. Show analytically that the equations of motion of the cannonball can be written

d2x

dt2
= −α

dx

dt

√(
dx

dt

)2

+

(
dy

dt

)2

,
d2y

dt2
= −g − α

dy

dt

√(
dx

dt

)2

+

(
dy

dt

)2

. (9)

Express α as a function of C, m, ρa, rb.

b. Transform the above equations of motion into a system of four first-order ODEs.

Question 2: Implement a Runge-Kutta 4 method to integrate the above system of ODEs. Stop the integration
when the cannonball hits the ground (y = 0).

Question 3: For an initial velocity vi = 250m.s−1, an initial angle θi = 20◦ between #»v and #»ex, and starting
from the origin (xi = yi = 0), compute and plot the trajectory. Plot on the same graph the trajectory in the
absence of the drag force. Comment.

Question 4: The gunner located at xi = yi = 0 wants the cannonball to reach a target located at xt = 1km
and yt = 15m (with a tolerance of 10 cm). The initial speed vi = 700m.s−1 is imposed, but the gunner can
freely choose the initial angle made by the velocity with #»ex between 0◦ and 45◦.

a. Implement the bisection method to determine the angle θt which allows the gunner to reach the target.

b. What is the value of the speed of the cannonball at the impact?

IV. Simulation of two repulsive particles in a harmonic potential

We consider two particles 1 and 2 of equal mass m in a two-dimensional harmonic potential of stiffness κ,
corresponding to a potential energy (1/2)κ #»ra

2 (for a = 1, 2). The two particles also interact repulsively with an
interaction potential −δ ln(∥ #»r1 − #»r2∥).

Question 1: We start by formulating the problem mathematically.

a. Show that the equations of motion for the two particles are
m
d2 #»r1
dt2

= −κ #»r1 +
δ

∥ #»r1 − #»r2∥2
( #»r1 − #»r2),

m
d2 #»r2
dt2

= −κ #»r2 −
δ

∥ #»r1 − #»r2∥2
( #»r1 − #»r2).

(10)

b. We want to make the above equations non-dimensionalized. For that we express the time t in units of
t0 and define a non-dimensionalized time t̃ = t/t0 (with t0 having the dimension of time). Similarly, we
express all lengths ℓ in units of ℓ0 and define non-dimensionalized lengths ℓ̃ = ℓ/ℓ0 (with ℓ0 having the
dimension of length). Find ℓ0 and t0 such that the above equations read

d2 # »x1

dt̃2
= − # »x1 +

# »x1 − # »x2
∥ # »x1 − # »x2∥2

,

d2 # »x2

dt̃2
= − # »x2 −

# »x1 − # »x2
∥ # »x1 − # »x2∥2

,

(11)

with # »xa = #»ra/ℓ0 (for a = 1, 2).
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c. Justify that the non-dimensionalized energy

Ξ =
1

2

(
d # »x1

dt̃

)2

+
1

2

(
d # »x2

dt̃

)2

+
1

2
# »x1

2 +
1

2
# »x2

2 − ln ∥ # »x1 − # »x2∥. (12)

and the non-dimensionalized total angular momentum

#»

Λ = # »x1 ×
d # »x1

dt̃
+ # »x2 ×

d # »x2

dt̃
. (13)

are conserved quantities, i.e., they remain constant with time.

Question 2: We propose to use a velocity Verlet algorithm to solve Eq. (11) numerically.

a. Implement the algorithm.

b. For initial conditions

# »x1(0) =
#»ey,

d # »x1

dt̃
(0) = − #»ex,

# »x2(0) =
#»ex,

d # »x2

dt̃
(0) = #»ey, (14)

run the dynamics up to t̃ = 100 for a time step h̃ = 0.01. Plot the energy and the total angular momentum
as a function of time on two separated graphs. Check that the two quantities are approximately conserved.

Question 3: In simulations, energy is said to be conserved if its relative fluctuations are smaller than 10−4.
Relative energy fluctuations are defined as the standard deviation of the energy during the simulation (quantifying
energy fluctuations) divided by its mean.

a. Run different simulations up to t̃ = 100 with the initial conditions given by Eq. (14) for several values of
time steps h̃ ∈ [10−3, 1] and compute the relative energy fluctuations for each value of h̃.

b. Plot the relative energy fluctuations as a function of h̃ in a loglog plot. How do the relative energy
fluctuations scale with h̃?

c. How should you choose h̃ such that energy is conserved?

Question 4: We now consider the initial conditions

# »x1(0) =
1

2
( #»ex +

#»ey) ,
d # »x1

dt̃
(0) = #»v0,

# »x2(0) = −1

2
( #»ex +

#»ey) ,
d # »x2

dt̃
(0) =

#»
0 . (15)

a. Run the dynamics for #»v0 =
#»
0 . Plot the trajectories of the two particles on the same graph. Can you

rationalize what you observe?

b. Now, run the dynamics for #»v0 = 0.1( #»ex +
#»ey). Plot the trajectories of the two particles on the same graph

and comment.

c. Finally, run the dynamics for #»v0 = 0.1( #»ex − #»ey). Plot the trajectories of the two particles on the same
graph and comment.

V. Kinetics of an allosteric protein (another stiff ODE)

We consider a protein X which can have two conformations X1 and X2. We denote by x1 and x2 their respective
concentrations in the medium as a function of time. This protein can be involved in different reactions depending
on its conformation.

4



Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

1. X can self-degrade with a conformation-dependent rate:
X1 −→

k1
∅, dx1

dt
= −k1x1,

X2 −→
k2

∅, dx2
dt

= −k2x2.
(16)

2. The protein in conformation X1 can react with a reactant Q to release a protein in conformation X2. A
molecule of Q and a protein in conformation X1 are also by-products of the reaction:

X1 + Q −→
k3

X1 + Q + X2,
dx2
dt

= k3x1. (17)

3. In the presence of a catalyst R, the protein X can switch from conformation X2 to conformation X1:

X2 + R −→
k4

X1 + R,


dx1
dt

= k4x2,

dx2
dt

= −k4x2.

(18)

4. Proteins in both conformations are injected periodically in the medium at the same period but with a phase
shift and different injection rates:

dx1
dt

= j1 sin (ωt) ,
dx2
dt

= j2 sin

(
ωt+

3π

4

)
. (19)

We want to study the dynamics of the two concentrations x1 and x2.

Question 1: We start by formulating the problem mathematically.

a. Show that the above problem is equivalent to the system of coupled ODEs:
dx1
dt

= −k1x1 + k4x2 + j1 sin(ωt),

dx2
dt

= k3x1 − (k2 + k4)x2 +
j2√
2
[cos(ωt)− sin(ωt)] .

(20)

b. In the following, we express times and concentrations in SI units without specifying their unit. In these
units, the value of the reaction rates read k1 = 2, k4 = 1, k2 = k3 = a − 1 (with a > 0). Finally, we
impose the following initial conditions: x1(0) = 2 and x2(0) = 3, and the following injection properties:
ω = 1, j1 = 2 and j2 =

√
2a. The mathematical description of the kinetics of the allosteric protein X then

becomes equivalent to the following Cauchy problem:

dx1
dt

= −2x1 + x2 + 2 sin t,

dx2
dt

= (a− 1)x1 − ax2 + a(cos t− sin t),

x1(0) = 2,

x2(0) = 3.

(21)

c. Check analytically that the solution to the above Cauchy problem is independent of a and reads

x1(t) = 2e−t + sin t, x2(t) = 2e−t + cos t. (22)
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Question 2: We now want to integrate numerically the above ODE.

a. Implement the trapezoidal method with a predictor-corrector scheme.

b. Apply the method with h = 0.001 up to t = 100, first for a = 2 and then for a = 999. For each value of
a, plot the numerical solution and the exact solution on the same graph. Check that you recover the exact
solution.

c. Integrate for the same values of a but with h = 0.01. For each value of a, plot the numerical solution and
the exact solution on the same graph. Comment.

d. By analyzing the different timescales involved in the problem, justify that Eq. (21) corresponds to a stiff
ODE.

Question 3: To solve Eq. (21), we implement an implicit trapezoidal method.

a. We denote x
(h)
1,n and x

(h)
2,n the estimates of the solutions of the ODE at time tn = nh. Show that the

estimates of the solutions of the ODE at step n+ 1 are the solutions of the linear system 1 + h −h

2

−h

2
(a− 1) 1 +

ah

2


x

(h)
1,n+1

x
(h)
2,n+1

 =

 x
(h)
1,n +

h

2

(
−2x

(h)
1,n + x

(h)
2,n + 2 sin tn + 2 sin tn+1

)
x
(h)
2,n +

h

2

[
(a− 1)x

(h)
1,n − ax

(h)
2,n + a (cos tn − sin tn + cos tn+1 − sin tn+1)

]
 .

(23)

b. Implement the implicit trapezoidal method. You can first use pen and paper to solve analytically the above
system, or you can solve it directly with Python.

c. Integrate Eq. (21) for a = 2 and a = 999 and vary the time step h ∈ [0.001, 0.1]. Plot the exact solution
and the numerical solution on the same graph. What do you observe?
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