M2 Cosmos, Champs et Particules — Faculté des sciences de Montpellier

QFT, SOLUTIONS TO PROBLEM SHEET 2

Problem 1: Annihilation and creation operators for the free real scalar
field

1. Show that @ = 0.

Evaluating the two-sided derivative gives

a= /d3:c e'ke (wﬁ + kogb) = /dgzzz e'ke (ub + w<;5> :

Therefore
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where in the last step we have used the Klein-Gordon equation.

2. Show that defining a in this way inverts the Fourier decomposition.

One has
a* = /d3x e ke (—qu + ko(b) ,

and so
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Given that a is time-independent, we may choose z° = 3" to obtain
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Changing the integration variable k — —k in the second term doesn’t change the
value of the integral, so the ¢ terms cancel:
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3. Using the canonical equal-time commutation relations, compute
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According to part 1., we can write
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Since a and a' are time-independent, we choose z° = ¢ = t. With k° = w and

k'° = o' this gives
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In a similar way, one may show that [a(k), a(k')] = 0 = [al(k), o' (K)].

Problem 2: Canonical quantisation of the free complex scalar field

1. Find the canonical momenta conjugate to ¢ and ¢*.

We have 7y = g—g — ¢* and Ty = gdf* = ¢ = Ty, SO from now on we write ™ = m,

and 7 = e,

2. Promoting ¢ and ¢* to operators, imposing canonical equal-time commutation
relations for the fields and their conjugate momenta, and writing the mode
expansion of ¢ as

P(x) = /512 (a(g)e—m +bt(g)em> 7
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guess the commutation relations which should be obeyed by a(k) and b(k) and
their hermitian conjugates. Verify that your guess leads to the correct canonical
commutators for ¢ and ¢'.

The nonzero equal-time commutators should be
[o(t, 7). 7(t,9)] = 8T ~g),  [o'(t,2),7(t,7)] = i6®(T 7).

The mode expansion implies that
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and hence we should have, from the first commutation relation,
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With the ansatz

[a(k), b(6)] = 0 = [a' (k), b (£)]

(which can be guessed by analogy with the real scalar field case) the desired relation
is easily seen to be satisfied:
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The other commutators can be checked in a similar way.

3. Express the Hamiltonian in terms of a(k), b(k), and their conjugates.

The Hamiltonian density is obtained by a Legendre transform from the Lagrangian
density: ' '
H=mp+m¢" = L=a]*+[Vo]" +m’[¢|".

The Hamiltonian is therefore
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We have
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which allows to get rid of one of the momentum integrals. Setting & = w (which is
also equal to ¢° under both §® (k — £) and 6® (k + £)):
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H= / dk —( a(k)at (k) + bt (k)b(k) — a(k)b(—k)e 2! — bT(E)af(_E)e%wt)
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Finally we use that |k|? +m? = w? that [a,0] = 0 = [a,bT], and we change the

integration variable from k to —k for the last two terms in the first line. This makes
all terms proportional to the exponentials cancel. We are left with

H = % / 0k (a(®)al (F) + B (R)D(F) + ! (Ra(F) + b(RYD!(F))

This expression can be normal ordered, at the expense of introducing a divergent
zero-point energy FEjy:
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H= dkw t(F)a E)+bT(E)b(E))+EO.



