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QUANTUM FIELD THEORY, PROBLEM SHEET 3

Solutions to be discussed on 30/09/2024

Problem 1: The free scalar field and causality

Recall from quantum mechanics that, if two observables are represented by operators
O; and Oy with [0, Os] # 0, then a measurement of O; will influence a subsequent
measurement of Oy. However, in a Lorentz invariant quantum field theory, two events
with spacelike separation should not affect each other in order to preserve causality.

Convince yourself that for any spacelike four-vector z, there exists a proper or-
thochronous Lorentz transformation sending 2° — 0. Conclude that

A(z,y) =0 whenever (z —y)? < 0.

Here A(z,y) = [¢(z), ¢(y)] and ¢ is a free real scalar field. What is the corresponding
statement for a complex scalar field?

Problem 2: The residue theorem

To obtain the electrostatic potential of a point particle in Exercise 3.4 on Problem
Sheet 1, you were given the identity
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Prove this formula with the help of the residue theorem.

Problem 3: Propagators

You have seen in the lecture that the expression
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depends on the curve C in the plane of complex kY along which the poles at +w
are avoided. For example, choosing to circumvent the pole at k° = —w in the lower
half-plane and the pole at k° = 4w in the upper half-plane yields the Feynman
propagator
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1. Show that any iDc¢(z — y) is a Green function for the Klein-Gordon operator

O —i—mQ:
(Oz +m?)De(x — y) = —id* (x — y) .

. Express Dr(z — y) and Da(x — y) in terms of © functions and of vacuum

expectation values of products of ¢(x) and ¢(y). Here Dg(z — y) is defined to
avoid both poles in the upper half-plane, and D(x — y) is defined to avoid
both poles in the lower half-plane.

. Starting from the expression of the lecture
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and evaluating the integral, write the Feynman propagator for (z — y)% # 0
explicitly in terms of the modified Bessel function of the second kind K (z).
You can use the identity (see Gradshteyn & Ryzhik, “Table of integrals, series
and products”, eq. 3.914/9)
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