Correction de l'examen de session 1 du 16/05/24

Exercice 1 (9 points)

On considère la série de fonctions

$$F(x) = \sum_{n=1}^{\infty} \frac{x}{1 + n^2 x^2}, \qquad x \in \mathbb{R}.$$

1. Est-ce que la convergence est normale sur \mathbb{R} ?

Posons $f_n(x) = \frac{x}{1+n^2x^2}, x \in \mathbb{R}$. Alors $f'_n(x) = \frac{1-n^2x^2}{(1+n^2x^2)^2}$. On voit alors que $\sup_{x \in \mathbb{R}} |f_n(x)| = f_n(\frac{1}{n}) = \frac{1}{2n}$. On constate que la série $\sum \sup_{x \in \mathbb{R}} |f_n(x)|$ diverge. Donc la convergence de la série de fonctions $\sum f_n(x)$ n'est pas normale sur \mathbb{R} .

2. Montrer que la convergence est uniforme sur les compacts de $]0, +\infty[$.

Soit $[a,b] \subset]0,+\infty[$. Alors $0 \leq f_n(x) \leq \frac{b}{1+n^2a^2}, \ \forall x \in [a,b]$. Comme la série numérique $\sum \frac{b}{1+n^2a^2}$ converge, on a montré que la série de fonctions $\sum f_n(x)$ converge uniformément sur [a,b].

3. Montrer que la fonction F est de classe C^1 sur $\mathbb{R} - \{0\}$.

On a déjà vu que la série $F(x) = \sum_{n=1}^{\infty} f_n(x)$ converge sur $\mathbb{R} - \{0\}$. Pour montrer que F est C^1 , il suffit de montrer que la série des dérivées $\sum f'_n(x)$ converge uniformément sur les compacts de $[0, +\infty[$. Soit $[a, b] \subset]0, +\infty[$. Alors

$$|f'_n(x)| = \frac{|1 - n^2 x^2|}{(1 + n^2 x^2)^2} \le \frac{1}{1 + n^2 x^2} \le \frac{1}{1 + n^2 a^2}, \quad \forall x \in [a, b].$$

Comme la série numérique $\sum \frac{1}{1+n^2a^2}$ converge, on a montré que la série de fonction $\sum f'_n(x)$ converge uniformément sur [a,b].

4. Justifier le fait que pour tout $x \neq 0$ et tout $n \geq 1$, on a l'encadrement

$$\int_{n-1}^{n} \frac{dt}{1+t^2x^2} \ge \frac{1}{1+n^2x^2} \ge \int_{n}^{n+1} \frac{dt}{1+t^2x^2}.$$
 (1)

Pour tout $x \neq 0$ la fonction $t \geq 0 \mapsto \frac{1}{1+t^2x^2}$ est décroissante. Ainsi $\frac{1}{1+t^2x^2} \geq \frac{1}{1+n^2x^2}$ $\forall t \in [n-1,n]$, et en intégrant cette relation sur [n-1,n], on obtient

$$\int_{n-1}^{n} \frac{dt}{1 + t^2 x^2} \ge \int_{n-1}^{n} \frac{dt}{1 + n^2 x^2} = \frac{1}{1 + n^2 x^2}.$$

L'autre inégalité s'obtient de la même façon.

5. Déduire de (1) un encadrement de F(x) pour tout x > 0, ainsi que la limite $\lim_{x\to 0^+} F(x)$.

En sommant la relation (1) pour n entre 1 et N, on obtient

$$\int_0^N \frac{dt}{1 + t^2 x^2} \ge \sum_{n=1}^N \frac{1}{1 + n^2 x^2} \ge \int_1^{N+1} \frac{dt}{1 + t^2 x^2} = \int_0^{N+1} \frac{dt}{1 + t^2 x^2} - \int_0^1 \frac{dt}{1 + t^2 x^2}$$

En passant à la limite $N \to +\infty$, on obtient

$$0 \le \int_0^\infty \frac{dt}{1 + t^2 x^2} - \sum_{n=1}^\infty \frac{1}{1 + n^2 x^2} \le \int_0^1 \frac{dt}{1 + t^2 x^2}, \qquad \forall x \ne 0.$$

Cela donne un encadrement de F(x) pour tout x > 0:

$$0 \le \int_0^\infty \frac{ds}{1+s^2} - F(x) \le \int_0^x \frac{dt}{1+s^2}.$$

Ici on se sert du fait que $x\int_0^b\frac{dt}{1+t^2x^2}=\int_0^{xb}\frac{ds}{1+s^2}$ pour tout b,x>0. On montre ainsi que $\lim_{x\to 0^+}F(x)=\int_0^\infty\frac{ds}{1+s^2}=\frac{\pi}{2}$.

6. Calculer $\int_a^1 F(x) dx$ pour tout $a \in]0,1]$. En déduire que

$$\int_0^1 F(x)dx = \sum_{n=1}^{\infty} \frac{\ln(1+n^2)}{2n^2}.$$

Soit $a \in]0,1]$. Comme la série de fonctions $F(x) = \sum_{n=1}^{\infty} f_n(x)$ converge uniformément sur [a, 1], on a

$$\int_{a}^{1} F(x)dx = \sum_{n=1}^{\infty} \int_{a}^{1} \frac{x}{1 + n^{2}x^{2}} dx = \sum_{n=1}^{\infty} \frac{\ln(1 + n^{2})}{2n^{2}} - \sum_{n=1}^{\infty} \frac{\ln(1 + a^{2}n^{2})}{2n^{2}}$$

Considérons la fonction $G(a):=\sum_{n=1}^{\infty}\frac{\ln(1+a^2n^2)}{2n^2}$ pour $a\in[0,1]$. On a l'encadrement $0\le\frac{\ln(1+a^2n^2)}{2n^2}\le\frac{\ln(1+n^2)}{2n^2}$ pour tout $a\in[0,1]$ et tout $n\ge 1$. Comme la série numérique $\sum_{n=1}^{\infty}\frac{\ln(1+n^2)}{2n^2}$ est convergente, on sait que la série $G(a):=\sum_{n=1}^{\infty}\frac{\ln(1+a^2n^2)}{2n^2}$ admet une convergence uniforme sur [0,1]. Cela implique que la fonction G est continue, ainsi $\lim_{a\to 0^+}G(a)=G(0)=0$. On a finalement montré que $\int_0^1F(x)dx=\sum_{n=1}^{\infty}\frac{\ln(1+n^2)}{2n^2}$.

7. Donner un équivalent de F(x) lorsque $x \to +\infty$.

Pour x > 0, nous avons

$$0 \le \frac{1}{n^2 x} - \frac{x}{1 + n^2 x^2} = \frac{1}{(1 + n^2 x^2)n^2 x} \le \frac{1}{n^4 x^3}, \quad \forall n \ge 1$$

En sommant ces inégalités on obtient

$$0 \le \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n^2} - F(x) \le \frac{1}{x^3} \sum_{n=1}^{\infty} \frac{1}{n^4}, \quad \forall x > 0.$$

On obtient le DL asymptotique en $+\infty: F(x) = \frac{\alpha}{x} + O\left(\frac{1}{x^3}\right)$ avec $\alpha = \sum_{n=1}^{\infty} \frac{1}{n^2}$. Cela montre que $F(x) \sim \frac{\alpha}{x}$ lorsque $x \to +\infty$.

Exercice 2 (5 points)

Soient $\alpha \neq 0$ et $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie par $f(x) = \operatorname{ch}(\alpha x)$ sur $]-\pi,\pi]$.

1. Montrer que

$$\int_{-\pi}^{\pi} \cos(nt) e^{\alpha t} dt = (-1)^n \frac{2\alpha \operatorname{sh}(\alpha \pi)}{\alpha^2 + n^2}, \quad \forall n \in \mathbb{Z}.$$

On calcule tout d'abord

$$\int_{-\pi}^{\pi} e^{(in+\alpha)t} dt = \left[\frac{1}{in+\alpha} e^{(in+\alpha)t} \right]_{-\pi}^{\pi} = \frac{(-1)^n}{in+\alpha} \left(e^{\alpha\pi} - e^{-\alpha\pi} \right) = \frac{(-1)^n \left(e^{\alpha\pi} - e^{-\alpha\pi} \right)}{n^2 + \alpha^2} \left(-in + \alpha \right).$$

En prenant la partie réelle de la dernière relation, on obtient l'égalité souhaitée.

2. Calculer les coefficients $a_n(f)$ et $b_n(f)$ pour tout $n \ge 1$.

Comme la fonction f est paire, les coefficients $b_n(f)$ sont nuls. D'autre part

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nt) \cosh(\alpha t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(nt) e^{\alpha t} dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(nt) e^{-\alpha t} dt.$$

On obtient finalement $a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nt) e^{\alpha t} dt = (-1)^n \frac{2\alpha \sin(\alpha \pi)}{\pi(\alpha^2 + n^2)}$.

3. En déduire la valeur des séries

$$\sum_{n=1}^{\infty} \frac{1}{\alpha^2 + n^2}, \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha^2 + n^2}, \qquad \sum_{n=1}^{\infty} \frac{1}{(1+n^2)^2}.$$

La fonction 2π -périodique $f: \mathbb{R} \to \mathbb{R}$ est continue et C^1 par morceaux. Le théorème de Dirichlet nous permet de voir que

$$f(x) = c_0(f) + \sum_{n \ge 1} a_n(f) \cos(nx), \quad \forall x \in \mathbb{R}.$$

avec
$$c_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{ch}(\alpha t) dt = \frac{\operatorname{sh}(\alpha \pi)}{\alpha \pi}$$
.

Prenons x=0. La relation précédente donne

$$1 = \frac{\operatorname{sh}(\alpha \pi)}{\alpha \pi} + \sum_{n>1} (-1)^n \frac{2\alpha \operatorname{sh}(\alpha \pi)}{\pi (\alpha^2 + n^2)}.$$

On obtient alors

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha^2 + n^2} = \frac{\pi}{2\alpha} \left(\frac{1}{\operatorname{sh}(\alpha \pi)} - \frac{1}{\alpha \pi} \right).$$

De la même façon, en prenant $x = \pi$, on obtient

$$\operatorname{ch}(\alpha \pi) = \frac{\operatorname{sh}(\alpha \pi)}{\alpha \pi} + \sum_{n>1} \frac{2\alpha \operatorname{sh}(\alpha \pi)}{\pi(\alpha^2 + n^2)}.$$

3

1.
$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

et cela donne $\sum_{n=1}^{\infty} \frac{1}{\alpha^2 + n^2} = \frac{\pi}{2\alpha} \left(\coth(\alpha \pi) - \frac{1}{\alpha \pi} \right)$. Pour calculer la somme $\sum_{n=1}^{\infty} \frac{1}{(1+n^2)^2}$, on utilise la formule de Parseval

$$c_0(f)^2 + \frac{1}{2} \sum_{n>1} a_n(f)^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt.$$

lorsque $\alpha = 1$. Cela donne

$$\left(\frac{\sinh(\pi)}{\pi}\right)^2 \left(1 + 2\sum_{n=1}^{\infty} \frac{1}{(1+n^2)^2}\right) = \frac{1}{2} + \frac{\sinh(2\pi)}{4\pi}$$

On obtient finalement

$$\sum_{n=1}^{\infty} \frac{1}{(1+n^2)^2} = \frac{1}{2} \left(\frac{\pi^2}{2\sinh(\pi)^2} + \frac{\pi \sinh(2\pi)}{4\sinh(\pi)^2} - 1 \right).$$

Exercice 3 (6 points)

1. Rappeler la définition du rayon de convergence d'une série entière $\sum a_n x^n$. Quel est le lien entre les rayons de convergence des séries entières $\sum a_n x^n$ et $\sum n(a_n)^2 x^n$?

Le rayon de convergence de la série entière $\sum a_n x^n$ est

$$R = \sup\{r \ge 0, (a_n r^n) \text{ est born\'ee}\}.$$

On sait aussi que $\frac{1}{R} = \limsup |a_n|^{1/n}$. Notons R' le rayon de convergence de la série entière $\sum n(a_n)^2 x^n$: alors $\frac{1}{R'} = \limsup |n(a_n)^2|^{1/n}$. Comme $\lim_{n\to\infty} n^{1/n} = 1$, on a $\limsup |n(a_n)^2|^{1/n} = (\limsup |a_n|^{1/n})^2$. Cela permet de voir que $R' = R^2$.

2. Développer en série entière en 0 la fonction $G(x) = \ln(x^2 + 3x + 2)$.

On a

$$G'(x) = \frac{2x+3}{x^2+3x+2} = \frac{1}{x+2} + \frac{1}{x+1}.$$

Nous avons les DL en séries entières $\frac{1}{x+1} = \sum_{n=0}^{\infty} (-1)^n x^n$ pour |x| < 1 et

$$\frac{1}{x+2} = \frac{1/2}{1+x/2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2^{n+1}}, \quad \forall |x| < 2.$$

Ainsi pour |x| < 1, on a la relation $G'(x) = \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2^{n+1}} + 1\right) x^n$. En intégrant on obtient

$$G(x) = \ln(2) + \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2^{n+1}} + 1\right) \frac{x^{n+1}}{n+1}, \quad \forall |x| < 1.$$

3. Soit (u_n) la suite récurrente définie par $u_0 = u_1 = 1$ et $u_n = u_{n-1} + u_{n-2}, \ \forall n \geq 2$.

4

(a) Montrer que $|u_n| \leq 2^n$, $\forall n \in \mathbb{N}$. En déduire que la série entière $S(x) = \sum_{n=0}^{\infty} u_n x^n$ converge sur l'intervalle $]\frac{-1}{2}, \frac{1}{2}[$.

La relation $|u_n| \leq 2^n$, $\forall n \in \mathbb{N}$ se montre au moyen d'une récurrence élémentaire. Ensuite, cette même relation montre que la suite $(u_n x^n)$ est bornée si $|x| \leq \frac{1}{2}$, donc que le rayon de convergence de la série $\sum_{n=0}^{\infty} u_n x^n$ est supérieur à $\frac{1}{2}$. Ainsi $S(x) = \sum_{n=0}^{\infty} u_n x^n$ converge sur l'intervalle $\left[\frac{-1}{2}, \frac{1}{2}\right]$.

(b) Exprimer la somme S(x), pour $x \in]\frac{-1}{2}, \frac{1}{2}[$, comme le quotient de deux fonctions polynomiales.

Pour $x \in]\frac{-1}{2}, \frac{1}{2}[$, on a

$$S(x) = 1 + x + \sum_{n=0}^{\infty} u_{n+2} x^{n+2}$$

$$= 1 + x + \left(\sum_{n=0}^{\infty} u_n x^n\right) x^2 + \left(\sum_{n=0}^{\infty} u_{n+1} x^{n+1}\right) x$$

$$= 1 + x + x^2 S(x) + x(S(x) - 1)$$

$$= 1 + (x^2 + x) S(x).$$

On voit ainsi que $S(x) = \frac{1}{1-x-x^2}, \forall x \in]\frac{-1}{2}, \frac{1}{2}[.$