Résumé du cours HAX201X

Ci-dessous les cours polycopiés (cf. Moodle) sont notés :

- [C1] = Analyse 2, par Jérémie Brieussel, 2022
- [C2] = Notes de cours sur les Développements Limités, par Paul-Emile Paradan, 2022–2024
- [C3] = Introduction aux séries numériques, par Paul-Emile Paradan, 2022–2024

SEMAINE 1

I. Rappels du premier semestre [C1, $\S 1.1-1.4$]

Vocabulaire

- (1) suites majorées, minorées, bornées, périodiques, croissantes et décroissantes
- (2) utilisation de la terminologie ji à partir d'un certain rang ¿¿

- Limites de suites

- (1) suites convergentes et divergentes
- (2) les suites convergentes sont bornées; réciproque fausse (exemple de $u_n = (-1)^n$)
- (3) suites tendant vers $+\infty$ ou $-\infty$
- (4) règle des croissances comparées, et quelques limites classiques :

$$\lim_{n\to\infty} \frac{\ln(n)}{n^\alpha} = 0 \ , \ \lim_{n\to\infty} \frac{q^n}{n^\alpha} = +\infty \ , \ \lim_{n\to\infty} \frac{q^n}{(q')^{n^2}} = 0 \quad \forall \alpha>0, \forall q,q'>1.$$

(5) Etude de quelques cas indéterminés :

$$u_n = ne^{2n} - n^3e^n - n^7$$
, $v_n = \frac{n^3 - \cos(n) + 2n}{n^2\ln(n) + n}$.

- limites et fonctions

- (1) Soit $f:[0,\infty[\to\mathbb{R} \text{ telle que } \lim_{x\to\infty}f(x)=L\in\mathbb{R}\cup\{\pm\infty\}$. Alors $\lim_{n\to\infty}f(n)=L$.
- (2) Soit $f:]0, 1[\to \mathbb{R}$ telle que $\lim_{x \to 0^+} f(x) = L \in \mathbb{R} \cup \{\pm \infty\}$. Alors $\lim_{n \to \infty} f(1/n) = L$.
- (3) Soit $f: I \to \mathbb{R}$ est continue et (u_n) est une suite de I convergente vers $L \in I$. Alors $(f(u_n))$ converge vers f(L).
- (4) Exemples: $u_n = \ln(n+1) \ln(n), v_n = n \sin(1/n)$

suites monotones

(1) **Théorème** de convergence des suites monotones : " (u_n) monotone converge ssi elle est bornée".

Autrement dit, par ex. dans le cas où (u_n) est une suite croissante : soit (u_n) n'est pas majorée, et alors $\lim u_n = +\infty$, soit (u_n) est majorée, et alors (u_n) converge vers $\sup\{u_n, n \in \mathbb{N}\}.$

(2) Exemples : série harmonique $h_n = \sum_{k=1}^n 1/k$ et $u_n = \sum_{k=1}^n 1/k^2$. (Méthode par encadrement intégral.)

suites adjacentes

- (1) **Théorème**: Si (u_n) est croissante, (v_n) est décroissante, $u_n \leq v_n$ pour tout $n \in \mathbb{N}$, et $\lim (u_n v_n) = 0$, alors (u_n) et (v_n) convergent vers la même limite.
- (2) Exemple: $A_n = \sum_{k=1}^n (-1)^{k+1}/k$: (A_{2n}) et (A_{2n+1}) sont adjacentes (cf. poly pour détails).

– Relations de comparaison o, O et \sim

- (1) Définitions
- (2) Exemples : $q^n = o(1)$ si |q| < 1, $\sqrt{n^2 + 1} + n\cos(n) = O(n)$, $n^{\alpha} = o(q^n)$ pour tous $\alpha > 0, q > 1$, $(q')^n = o(q^n)$ pour tous q > q' > 0.
- (3) Exemples: $\sin(\frac{1}{n}) \sim \frac{1}{n}$, $\sum_{k=1}^{n} 1/k \sim \ln(n)$

II. Suites récurrentes $u_{n+1} = F(u_n)$ [C1, §1.6]

- (1) Définition, représentation graphique
- (2) Proposition : (u_n) est monotone si $F: I \to I$ est une fonction croissante et $u_0 \in I$, et la limite éventuelle L doit satisfaire F(L) = L si F est continue
- (3) Méthode générale pour étudier (u_n) récurrente + deux exemples : $F(x) = \sqrt{x+1}$, et $F(x) = -x^2 + 2x$. Voir dans [C1, pp 22-24] le cas de $F(x) = \cos(x)$.
- (4) notion d'application contractante
- (5) Énoncé du **théorème du point fixe** (preuve en semaine 4, ou dans [C1, §1.9]) :

Soient I un intervalle <u>fermé</u> de \mathbb{R} et $F: I \to I$ une application contractante. Alors F possède un unique point fixe qui est la limite de la suite récurrente $u_{n+1} = F(u_n)$, $u_0 \in I$.

(On dit qu'un intervalle est fermé si $I = \mathbb{R}$ tout entier, ou si I est de la forme [a, b], ou $[a, +\infty[$, ou $]-\infty, a]$, avec $a, b \in \mathbb{R}$).

- (6) Applications/exemples:
 - approximation de $\sqrt{2}$ en étudiant la suite $u_{n+1} = u_n/2 + 1/u_n$. On utilise ici f(x) = x/2 + 1/x, qui est contractante sur $I = [1, \infty[$.
 - approximation de la racine α du polynôme $x^3 + 2x^2 + 10x 20$ appartenant à l'intervalle [1, 2]. On utilise la suite $u_{n+1} = F(u_n)$ avec $F(x) = 20/(x^2 + 2x + 10)$.
 - Notion de vitesse de convergence lente, géométrique, rapide; étude de quelques cas : $u_n = \sum_{k=1}^n 1/k^2$ converge lentement, toute suite récurrente avec F contractante converge géométriquement, et $u_n = \frac{C}{n!}$, $C \in \mathbb{R}$, converge rapidement.

SEMAINE 3

III. Valeurs d'adhérences d'une suite (u_n) [C1, §1.7-1.8]

Définition. On note $AD((u_n))$ l'ensemble des valeurs d'adhérence de la suite (u_n) .

- (1) Si $\lim u_n = l$, alors $AD((u_n)) = \{l\}$.
- (2) Si $\lim u_n = \pm \infty$, alors $AD((u_n)) = \emptyset$.
- (3) Exemple: pour $u_n = (-1)^n$, $AD((u_n)) = \{\pm 1\}$.
- (4) Exemple de suite (u_n) non convergente et telle que $AD((u_n))$ est un singleton.
- (5) Exemple de suite (u_n) tel que $AD((u_n))$ est un intervalle : la suite qui à $n = 10^k a_k + \ldots + 10a_1 + a_0$ associe le nombre décimal $u_n = 0, a_0 a_1 \ldots a_k \in [0, 1[$.
- (6) **Théorème de Bolzano-Weierstrass** : toute suite bornée admet une valeur d'adhérence. Preuve par dichotomie.

<u>– suites extraites ou sous-suites</u> : Définition, puis :

- (1) Si $\lim u_n = l \in \mathbb{R} \cup \{\pm \infty\}$, alors $\lim u_{\varphi(n)} = l$ pour toute extraction φ .
- (2) Si $AD((u_n)) \neq \emptyset$, alors $l \in AD((u_n))$ si, et seulement si, il existe une extraction φ telle que $\lim u_{\varphi(n)} = l$.
- (3) Exemples

- limites supérieures et inférieures : Définitions, puis : $\limsup(u_n)$ et $\liminf(u_n)$ sont finis tous les deux si et seulement si (u_n) est bornée

Théorème: pour une suite bornée (u_n) , $\limsup(u_n)$ et $\liminf(u_n)$ sont la plus grande et plus petite valeur d'adhérence de (u_n) .

Corollaire : deuxième preuve du théorème de Bolzano-Weierstrass (via $\limsup (u_n) \in AD((u_n))$!).

- Quelques faits:

- (1) Si (u_n) n'est pas majorée, alors il existe une suite extraite $(u_{\varphi(n)})$ qui tend vers $+\infty$.
- (2) Si $u_n \leq \alpha$ à partir d'un certain rang, alors $\limsup (u_n) \leq \alpha$.
- (3) Si $\limsup (u_n) < \alpha$, alors $u_n < \alpha$ à partir d'un certain rang
- (4) $\limsup (u_n + v_n) \le \limsup (u_n) + \limsup (v_n)$ et $\liminf (u_n + v_n) \ge \liminf (u_n) + \liminf (v_n)$

Théorème (caractérisation des suites bornées convergentes):

Pour une suite (u_n) bornée, les faits suivants sont équivalents :

- i) (u_n) est convergente,
- ii) $\limsup (u_n) = \liminf (u_n)$,
- iii) (u_n) possède une seule valeur d'adhérence.

IV. Suites de Cauchy [C1, §1.9]

Définitions, puis :

- (1) une suite de Cauchy est bornée
- (2) une suite convergente est de Cauchy
- (3) **Théorème**: une suite de Cauchy (u_n) est convergente.
- (4) Application : preuve du théorème du point fixe.

- Fonctions continues sur un segment :

- (1) **Théorème des bornes atteintes** : une fonction continue sur un intervalle fermé borné est bornée et atteint ses bornes. Preuve via Bolzano-Weierstrass.
- (2) Fonctions uniformément continues.

Théorème de Heine: une fonction continue sur un segment est uniformément continue.

- Une application de la continuité uniforme :

- (1) **Théorème** (Sommes de Riemann) : Soit $f : [a, b] \to \mathbb{R}$ continue. Alors $\frac{(b-a)}{n} \sum_{k=1}^{n} f(a + \frac{k}{n}(b-a))$ tend vers $\int_{a}^{b} f(t)dt$ lorsque $n \to +\infty$.
- (2) Calcul de la limite de la suite $A_n = \sum_{k=1}^n \frac{1}{k+n}$.

V. Voisinages et relations o, O et \sim entre fonctions [C1, §2.1]

- Définition du voisinage d'un élément de $\mathbb{R} \cup \{-\infty, +\infty\}$
- Définition des relations o, O et \sim au voisinage de $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

Notation $F = o_{x_0}(G)$ (resp. $F = O_{x_0}(G)$, resp. $F \sim_{x_0} G$) pour désigner le fait que F est négligeable (resp. dominée, resp. équivalente) par rapport à G au voisinage de x_0 .

- Exemples:

```
\begin{array}{l} - \text{ en } 0: x^a = o_0(x^b) \text{ si } a > b > 0 \\ - \text{ en } 0: \ln(x) = o_0(x^{-1}) \\ - \text{ en } +\infty: x^\alpha = o_{+\infty}(1) \text{ si } \alpha < 0 \\ - \text{ en } +\infty: x^\alpha = o_{+\infty}(x^\beta) \text{ si } \alpha < \beta \\ - \text{ en } +\infty: x^\beta = o_{+\infty}(e^{\alpha x}) \text{ si } \alpha > 0 \text{ (pour tout } \beta \in \mathbb{R}) \\ - \text{ en } +\infty: \ln^\beta(x) = o_{+\infty}(x^\alpha) \text{ si } \alpha > 0 \text{ (pour tout } \beta \in \mathbb{R}) \\ - \text{ en } +\infty: \ln(x) \frac{x \sin(x) + 2}{\sqrt{x} - 1} = O_{+\infty}(\sqrt{x} \ln(x)) \\ - \text{ en } 0: \frac{1 + \sqrt{x} \ln(x)}{x^2} = O_0(\frac{1}{x^2}) \\ - \text{ Si } \lim_{x \to x_0} f(x) = l, \ l \neq 0, \text{ alors } f(x) \sim_{x_0} l \\ - \text{ en } 0 \text{ et en } +\infty: x + x^2 \sim_0 x, \ x + x^2 \sim_{+\infty} x^2 \end{array}
```

Proposition:

- (i) si $f = o_{x_0}(g)$ et $h = o_{x_0}(g)$ alors $f + g = o_{x_0}(g)$.
- (ii) si $f_1 = o_{x_0}(g_1)$ et $f_2 = o_{x_0}(g_2)$ alors $f_1 f_2 = o_{x_0}(g_1 g_2)$
- (iii) si $f = o_{x_0}(g)$ et $g = o_{x_0}(h)$ alors $f = o_{x_0}(h)$
- (iv) $f \sim_{x_0} g \text{ ssi } f g = o_{x_0}(g)$

Même chose en remplacant o par O (resp. \sim) dans (i)–(iii) (resp. (ii)–(iii)).

Remarque: la relation \sim_{x_0} est une relation d'équivalence sur l'ensemble des fonctions définies au voisinage de x_0 , au sens de l'UE "Combinatoire et dénombrement" (réflexivité, symétrie, transitivité sont satisfaites).

Proposition (lien avec la dérivée) : f est dérivable en a ssi f(x) = f(a) + f'(a)(x-a) + o(x-a). Interprétation graphique.

Exemples/applications:

```
-\text{ en } 0: \frac{\sin(x)}{x} = 1 + o_0(1).
-\text{ en } 0: \sqrt{x+1} = 1 + \frac{x}{2} + o_0(x)
-\text{ en } +\infty: \sqrt{x+1} - \sqrt{x} = \sqrt{x}(\sqrt{1+\frac{1}{x}} - 1) = \sqrt{x}(\frac{1}{2x} + o(\frac{1}{x})) = \frac{1}{2\sqrt{x}} + o_{+\infty}(\frac{1}{\sqrt{x}}).
Donc en particulier \frac{\sin(x)}{x} \sim_0 1, \sqrt{x+1} - \sqrt{x} \sim_{+\infty} \frac{1}{2\sqrt{x}}, \sqrt{x+1} \sim_0 1 + \frac{x}{2}.
```

Proposition (changement de variables) : $F = o_b(G)$ et $\lim_{t\to a} \varphi(t) = b \Rightarrow F \circ \varphi = o_a(G \circ \varphi)$. Même chose si on remplace o par O ou \sim .

Attention : ça ne marche plus si on "compose" par la gauche : $x=_{+\infty} o(x^2)$ mais $\ln(x)$ n'est pas négligeable par rapport à $\ln(x^2)$ en $+\infty$

Proposition (lien entre "o" et primitive) : Soient f, g deux fonctions continues définies au voisinage de $a \in \mathbb{R}$. Si $f(x) = o_a(g(x))$ alors $F(x) = o_a(G(x))$ où $F(x) = \int_a^x f(t)dt$ et $G(x) = \int_a^x |g(t)|dt$.

Cas particulier : au voisinage de 0 on a $f(x) = o_0(x^n)$ alors $F(x) = o_0(x^{n+1})$.

VI. Fonctions de classe C^n et C^{∞} , théorème de Taylor-Young et DL [C2, §1-2]

- Définition des fonctions de classe \mathcal{C}^n et \mathcal{C}^{∞}
- Exemples de fonctions C^{∞} : polynômes, fractions rationnelles, exp, log, sin, cos, Arcsin, Arccos, Arctan
- Exemple : $f: \mathbb{R} \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = x^3 \cos(1/x)$ pour $x \neq 0$, est de classe C^1 sur \mathbb{R} mais pas de classe C^2 .

Proposition Soit f une fonction de classe C^n au voisinage de a. Si les dérivées $f^{(k)}(a)$ sont nulles pour tout $k = 0, \ldots, n$, alors $f(x) = o((x - a)^n)$. Exemple: $\sin(x^2) - x^2 = o(x^5)$ en 0.

Théorème (Taylor-Young) Soit I un intervalle ouvert, $a \in I$, et $f: I \to \mathbb{R}$ une fonction de classe C^n . On a

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

- notation "f a un $DL_n(a)$ ".
- si f est de classe C^n au voisinage de a, alors f admet un $DL_n(a)$.
- Réciproque fausse : $f: \mathbb{R} \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = x^3 \cos(\frac{1}{x^2})$ si $x \neq 0$ admet un $DL_2(0)$, mais f n'est pas C^2 au voisinage de 0.
- DL en 0 (et en dehors de 0) des fonctions classiques :

$$\exp, \sin, \cos, \ln(1+x), 1/(1-x), (1+x)^{\alpha} \ (\alpha \in \mathbb{R}).$$

— exemple: le $DL_6(0)$ de $f(x) = \sin(x^3 + \sin(x))$ est $f(x) = x + \frac{2}{3}x^3 - \frac{2}{5}x^5 + o(x^6)$.

SEMAINE 7

- Opérations sur les DL : somme, produit et composition
- exemple : le $DL_3(0)$ de $\cos(\frac{\pi}{2(1+x)})$.

Proposition (Intégration des DL) Soit f continue au voisinage de a et F une primitive de f. Si f admet un $DL_n(a)$ de la forme $f(x) = \sum_{k=0}^n a_k (x-a)^k + o((x-a)^n)$, alors F admet un $DL_{n+1}(a)$ de la forme $F(x) = F(a) + \sum_{k=0}^n a_k \frac{(x-a)^{k+1}}{k+1} + o((x-a)^{n+1})$.

— La réciproque de la proposition est fausse : prendre $f: \mathbb{R} \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = x^3 \sin(\frac{1}{x})$ si $x \neq 0$; f est C^1 , a un $DL_2(0)$, mais f' n'a pas de $DL_1(0)$.

VII. DL de Taylor-Lagrange [C2, pages 13 à 20]

- Rappel : énoncé du théorème de Rolle, preuve du théorème des accroissements finis.
- Énoncé du théorème de Taylor-Lagrange (preuve sur poly) :

Théorème (Taylor-Lagrange) Soit I un intervalle ouvert, $a, b \in I$ tels que a < b, et $f : I \to \mathbb{R}$ une fonction de classe C^n et (n + 1)-fois dérivable sur I. Il existe $\theta \in]a, b[$ tel que l'on ait le " $DL_n(a)$ de Taylor-Lagrange":

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + f^{(n+1)} \frac{(b-a)^{n+1}}{(n+1)!}.$$

(et également la formule obtenue en échangeant a et b).

- Application 1 : approximation d'une valeur de fonction ; exemple : approximer $\ln(1,01)$ à 10^{-5} près.
- Applications 2 : conditions suffisantes pour obtenir un "développement limité ∞ " (appelé "développement en série entière"); exemples : les fonctions exp, cos, sin sont admettent un tel développement.

VIII. Autres applications des DL [C2, pages 21-30]

- Utilisation des DL pour le calcul de limites de fonctions et de suites.
- Développements asymptotiques.
- Utilisation des DL pour déterminer la position d'une courbe par rapport à sa tangente.
- étude des extréma locaux.

SEMAINES 9 & 10

IX. Séries numériques [C3]

- (1) Définitions. Quelques séries connues : $\sum q^k$, $\sum \frac{1}{n}$ (Exercice 6), $\sum \frac{(-1)^n}{n}$ (Exercice 62), $\sum \frac{1}{n^2}$ (vue au chapitre I).
- (2) Propriétés "de transfert":

 - $-\sum_{k=0}^{\infty} u_k \text{ converge} \Rightarrow \lim_{k \to \infty} u_k = 0.$ $-\sum_{k=0}^{\infty} |a_k| \text{ converge} \Rightarrow \sum_{k=0}^{\infty} a_k \text{ converge}.$ $-\sum_{k=0}^{\infty} u_k \text{ converge} \Rightarrow \text{ la série des restes } R_N := \sum_{n=N+1}^{+\infty} u_n \text{ tend vers } 0.$
 - soient (a_k) et (b_k) deux suites à termes **positifs** telles que $a_k \sim b_k$. Alors les séries $\sum a_k$ et $\sum b_k$ sont de même nature. De plus, en cas de divergence on a $\sum_{k=0}^n a_k \sim \sum_{k=0}^n b_k$, et en cas de convergence on a $\sum_{k=n}^{\infty} a_k \sim \sum_{k=n}^{\infty} b_k$.
- (3) Critères de d'Alembert et de Cauchy pour la convergence des séries à termes positifs
- (4) Comparaison Série Intégrale : soit $f:[0,+\infty[\to]0,\infty[$ continue décroissante et telle que $\lim_{x\to+\infty} f(x) = 0$. Alors la série $\sum f(k)$ est convergente ssi $\int_0^{+\infty} f(t)dt < +\infty$.
- (5) Critère spécial des séries alternées.
- (6) Exemples, dont : séries de Riemann et de Bertrand