Licence 2 - HAC310X Mathématiques pour la Chimie

CORRIGÉ **EXAMEN FINAL** (10/01/2022)

Problème 1 [5 points].

(a) [2 points]
$$det(A) = 4 - 1 = 3 \neq 0$$
 donc A inversible. $A^{-1} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}$.

(b) [1 point]
$$A^t = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 et donc $AA^t = A^2 = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \neq I_2$. A n'est donc pas orthogonale.

(c) [1 point]
$$det(A - \lambda I) = 0 \iff \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0$$
. Valeurs propres $\lambda_1 = 1$ et $\lambda_2 = 3$.

(d) [1 point] Pour $\lambda_1 = 1$,

$$Ax = \lambda_1 x \iff (A - \lambda_1 I)x = 0 \iff \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \iff x_1 = -x_2$$

Solution générale $X = (-x_2, x_2)$.

Le système fondamentale de solutions $\left\{x_2\begin{pmatrix} -1\\1 \end{pmatrix}\right\}$. Soit $x_2=1, v_1=\begin{pmatrix} -1\\1 \end{pmatrix}$.

Pour $\lambda_2 = 3$,

$$Ax = \lambda_2 x \iff (A - \lambda_2 I)x = 0 \iff \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \iff x_1 = x_2$$

Solution générale $X = (x_2, x_2)$.

Le système fondamentale de solutions $\left\{x_2\begin{pmatrix}1\\1\end{pmatrix}\right\}$. Soit $x_2=1,v_2=\begin{pmatrix}1\\1\end{pmatrix}$.

Problème 2 [4 points].

- (a) [2 points] $z^2 = 28 + 96i$ et $\frac{z}{\bar{z}} = \frac{7}{25} + \frac{24}{25}i$. (b) [2 points] Les racines sont : z_0 et $-z_0$ avec $z_0 = 1 + 3i$.

Problème 3 [5 points].

(a) [2 points] On a

$$\frac{\partial f}{\partial x} = \frac{-2x}{(1+x^2+y^2)^2}, \quad \frac{\partial f}{\partial x} = \frac{-2y}{(1+x^2+y^2)^2}.$$

A partir de $\frac{-2x}{(1+x^2+y^2)^2}=0$ et $\frac{-2y}{(1+x^2+y^2)^2}=0$ nous avons que le seul pont critique est quand x=y=0. Maintenant,

$$\frac{\partial^2 f}{\partial x^2} = \frac{-2(1+x^2+y^2)^4 - (-2x)(1+x^2+y^2)^2(2x)}{(1+x^2+y^2)^4}$$

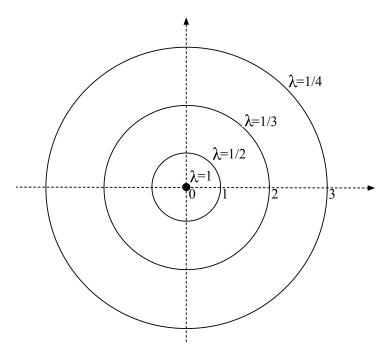
$$\frac{\partial^2 f}{\partial y^2} = \frac{-2(1+x^2+y^2)^4 - (-2y)(1+x^2+y^2)^2(2y)}{(1+x^2+y^2)^4}$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{-(-2x)(1+x^2+y^2)^2(2y)}{(1+x^2+y^2)^4}$$

Nous avons

$$\Delta = \frac{\partial^2 f}{\partial x^2}(0,0) \cdot \frac{\partial^2 f}{\partial y^2}(0,0) - \left(\frac{\partial^2 f}{\partial y \partial x}(0,0)\right)^2 = (-2)(-2) - 0^2 = 4 > 0$$

Alors, (0,0) est soit a minimum ou un maximum. Comme $\frac{\partial^2 f}{\partial x^2}(0,0) = -2 < 0$ alors (0,0) est un maximum.

- (b) [1 point] Nous avons f(0,0) = 1 donc l'origine n'appartient pas à S_f .
- (c) [1 point] $S_f \cap \{f(x,y) = \lambda\} = \{(x,y) \in \mathbb{R}^2 | \frac{1}{1+x^2+y^2} = \lambda\} = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = \frac{1}{\lambda} 1\}.$ Comme $\lambda \le 1$ alors $1 \le \frac{1}{\lambda}$ et donc $0 \le \frac{1}{\lambda} - 1$.



(d) [1 point] Oui, la représentation correspond bien à S_f , En effet, le seul maximum (local) est au point (0,0,f(0,0))=(0,0,1) et les courbes de niveau induisent la représentation.

Problème 4 [2 points].

[1 point] Nous avons $w = F(x,y)dx + G(x,y)dy = 3x^2ydx + x^3dy$. Alors, $\frac{\partial F}{\partial y} = 3x^2 = \frac{\partial G}{\partial x}$ et w

est donc bien exacte. [1 point] On a $\frac{\partial f}{\partial x} = 3x^2y$ et $\frac{\partial f}{\partial y} = x^3$. En intégrant la dernière égalité par rapport à y on obtient $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial$ que $f = \int x^3 dy = x^3 y + c(y)$. En dérivant cette égalité par rapport à x on a $\frac{\partial f}{\partial x} = 3x^2 y + c'(y)$ et comme $\frac{\partial f}{\partial x} = 3x^2 y$ on en déduit que c'(y) = 0 et donc c(y) = K où K est une constante. D'où $f = x^3 y + K$. Problème 5 [2 points].

[1 point] C est l'arc paramétré $t\mapsto \left(\frac{t^2-4}{3},t\right)t$ variant en croissant de -2 à 2. Nous avons y=t et donc dy=dt et $x=\frac{t^2-4}{3}$ et donc $dx=\frac{2}{3}tdt$.

[1 point] On a

$$\int_{C} (x - \frac{y^{2}}{3}) dx + x dy = \int_{-2}^{2} \left(\frac{t^{2}}{3} - \frac{4}{3} - \frac{t^{2}}{3} \right) \frac{2}{3} t dt + \left(\frac{t^{2}}{3} - \frac{4}{3} \right) dt
= \int_{-2}^{2} \left(-\frac{8}{9} t + \frac{t^{2}}{3} - \frac{4}{3} \right) dt
= \left[-\frac{8}{18} t^{2} + \frac{1}{9} t^{3} - \frac{4}{3} t \right]_{-2}^{2}
= -\frac{32}{18} + \frac{8}{9} - \frac{8}{3} - \left(-\frac{32}{18} - \frac{8}{9} + \frac{8}{3} \right)
= \frac{16}{9} - \frac{16}{3} = \frac{8}{3} - \frac{48}{3} = -\frac{40}{3}.$$

Problème 6 [3 points].

[1 point] L'équation homogène est $y'(t) + \frac{2}{t}y(t) = 0$ dont les solutions sont :

$$y(t) = C \exp^{\int -\frac{2}{t}dt} = C \exp^{-2\ln t} = C \exp^{\ln t^{-2}} = Ct^{-2}, \quad C \in \mathbb{R}$$

[1 point] On cherche une solution particulière sous la forme

$$y_0(t) = C(t)t^{-2}$$

On a $y_0'(t) + \frac{2}{t}y_0(t) = 3t^2$ alors $C(t)(-2)t^{-3} + t^{-2}C'(t) + \frac{2}{t}C(t)t^{-2} = 3t^2$ d'où $C'(t) = 3t^4$. En intégrant par rapport à t nous obtenons

$$C(t) = \int 3t^4 dt = \frac{3}{5}t^5 + K, K \in \mathbb{R}$$

En posant K = 0, nous avons $y_0(t) = \frac{3}{5}t^5t^{-2} = \frac{3}{5}t^3$.

[1 point] On a qu'une solution générale est

$$y(t) = \frac{3}{5}t^3 + Ct^{-2}$$

En utilisant que pour t=1 on a y=3 alors $3=\frac{3}{5}+C$ obtenant $C=\frac{12}{5}$. Donc, la solution générale est

$$y(t) = \frac{3}{5}t^3 + \frac{12}{5}t^{-2}.$$