QUANTUM FIELD THEORY, SOLUTIONS TO PROBLEM SHEET 13

Problem 1: Furry's theorem

- 1. Charge conjugation is a linear operation C exchanging particles with antiparticles without involving any of their space-time transformation properties (such as spin or parity). For the Dirac field, $\psi \to C\overline{\psi}^T$ with $C = i\gamma^0\gamma^2$ in the Weyl basis. For the photon, $A_{\mu} \to -A_{\mu}$. Show that the QED Lagrangian is invariant under charge conjugation.
- 2. How does the electromagnetic current j_{μ} transform under charge conjugation? Show that all correlation functions for an odd number of currents are zero,

$$\langle 0|T j_{\mu_1}(x_1) \dots j_{\mu_{2n+1}}(x_{2n+1})|0\rangle = 0$$

and that, consequently, all (2n+1)-photon amplitudes are zero. This is Furry's theorem.

Solution: 1. We first collect some useful relations which are valid in the Weyl basis of γ matrices:

$$(\gamma^0)^T = \gamma^0, \quad (\gamma^1)^T = -\gamma^1, \quad (\gamma^2)^T = \gamma^2, \quad (\gamma^3)^T = -\gamma^3.$$
 (1)

Furthermore, we explicitly write out the Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$:

$$\gamma^{\mu}\gamma^{\nu} = -\gamma^{\nu}\gamma^{\mu} \quad (\mu \neq \nu) \,, \qquad (\gamma^0)^2 = \mathbb{1} \,, \qquad (\gamma^i)^2 = -\mathbb{1} \quad (i = 1, 2, 3) \,. \tag{2}$$

Finally, explicit calculation shows that

$$C^{\dagger} = C^T = C^{-1} = -C. \tag{3}$$

From the transformation $\psi \to C\overline{\psi}^T$, one deduces that $\overline{\psi} \to \psi^T C$. Therefore,

$$\overline{\psi}\psi \to \psi^{\mathrm{T}}CC\overline{\psi}^T = -\psi^T\overline{\psi}^T = \overline{\psi}\psi.$$

(the minus sign in the last equality is from anticommuting the spinors) and so the electron mass term $m\overline{\psi}\psi$ is invariant.

Moreover, we have

$$\overline{\psi}\gamma^{\mu}\psi = \psi^T C \gamma^{\mu} C \overline{\psi}^T.$$

Using the relations (1) and (2), it is easy to show (for each $\mu = 0, 1, 2, 3$ separately) that

$$C\gamma^{\mu}C = (\gamma^{\mu})^T.$$

Therefore,

$$\overline{\psi}\gamma^{\mu}\psi \,\to\, \psi^T(\gamma^{\mu})^T\overline{\psi}^T = -\overline{\psi}\gamma^{\mu}\psi \,,$$

so the electron-photon coupling $eA_{\mu}\overline{\psi}\gamma^{\mu}\psi$ is invariant if A_{μ} is taken to transform as $A_{\mu} \rightarrow -A_{\mu}$ (note that this leaves the photon kinetic term invariant because it is quadratic in A_{μ}).

Finally, ∂_{μ} does not change under charge conjugation, so the kinetic term for the electron transforms as

$$\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi \rightarrow -(\partial_{\mu}\overline{\psi})\gamma^{\mu}\psi = \overline{\psi}\gamma^{\mu}\partial_{\mu}\psi + \text{ (total derivative)}.$$

2. We showed already that $j^{\mu} \rightarrow -j^{\mu}$. Therefore,

$$\langle 0|T j^{\mu_1}(x_1) \dots j^{\mu_{2n+1}}(x_{2n+1})|0\rangle \rightarrow -\langle 0|T j^{\mu_1}(x_1) \dots j^{\mu_{2n+1}}(x_{2n+1})|0\rangle$$
.

Since charge conjugation is a symmetry of QED, the correlation functions should not charge under charge conjugation, hence

$$\langle 0|T j^{\mu_1}(x_1) \dots j^{\mu_{2n+1}}(x_{2n+1})|0\rangle = 0.$$

The k-photon amplitude is proportional to the k-current amplitude since each external photon attaches to a current. Therefore, for k odd also the k-photon amplitude is zero.

Problem 2: Photon self-energy

Show that, if $i\Pi^{\mu\nu}(p)$ is defined to be the sum of all 1-particle irreducible insertions into the photon propagator,

$$i\Pi^{\mu\nu}(p) = \prod_{\mu} \mathbf{PI}$$

then $\Pi^{\mu\nu}(p)$ can be written as

$$\Pi^{\mu\nu}(p) = (p^2 g^{\mu\nu} - p^{\mu} p^{\nu}) \Pi(p^2)$$

for a suitable function $\Pi(p^2)$. Thus, show that the full photon propagator takes the form

$$\frac{p}{\mu} = \frac{-i}{p^2(1-\Pi(p^2))} \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right) - i\xi \frac{p^{\mu}p^{\nu}}{(p^2)^2}.$$

Conclude that the photon mass remains zero to all orders in perturbation theory.

Solution: The only Lorentz-covariant two-index object that can be formed from p is of the form $A p^{\mu} p^{\nu} + B g^{\mu\nu}$, where A and B are scalars (functions of p^2 only). By the Ward identity, $p_{\mu}\Pi^{\mu\nu} = 0$, which fixes $B = -A p^2$. We can therefore write

$$\Pi^{\mu\nu}(p) = (p^2 g^{\mu\nu} - p^\mu p^\nu)\,\Pi(p^2) = \Delta^{\mu\nu}\,p^2\Pi(p^2)$$

where we have defined $\Delta^{\mu\nu} = g^{\mu\nu} - p^{\mu}p^{\nu}/p^2$. (In principle, for a complete proof one should also show that the function $\Pi(p^2)$ is nonsingular.)

Using this notation, we can write down the series obtained from successive insertions of 1PI diagrams into the tree-level propagator to obtain the exact propagator:

$$\begin{split} & \overrightarrow{p^2} \left(\Delta^{\mu\nu} + \xi \frac{p^\mu p^\nu}{p^2} \right) \\ & + \frac{-i}{p^2} \left(\Delta^{\mu\nu} + \xi \frac{p^\mu p^\nu}{p^2} \right) \left(i \Delta_{\lambda\kappa} p^2 \Pi(p^2) \right) \frac{-i}{p^2} \left(\Delta^{\kappa\nu} + \xi \frac{p^\kappa p^\nu}{p^2} \right) \\ & + \frac{-i}{p^2} \left(\Delta^{\mu\lambda} + \xi \frac{p^\mu p^\lambda}{p^2} \right) \left(i \Pi(p^2) p^2 \Delta_{\lambda\kappa} \right) \frac{-i}{p^2} \left(\Delta^{\kappa\rho} + \xi \frac{p^\kappa p^\rho}{p^2} \right) \left(i \Pi(p^2) p^2 \Delta_{\rho\sigma} \right) \frac{-i}{p^2} \left(\Delta^{\sigma\nu} + \xi \frac{p^\sigma p^\nu}{p^2} \right) \\ & + \dots \\ & = \frac{-i}{p^2} \left(\Delta^{\mu\lambda} + \xi \frac{p^\mu p^\lambda}{p^2} \right) \left(\sum_{n=0}^{\infty} \left(\Pi(p^2) \Delta \right)^n \right)_{\lambda}^{\nu} \\ & = \frac{-i}{p^2(1 - \Pi(p^2))} \Delta^{\mu\nu} - i \xi \frac{p^\mu p^\nu}{(p^2)^2} \,. \end{split}$$

Here we have repeatedly used $\Delta^{\mu\nu}\Delta_{\nu}^{\lambda} = \Delta^{\mu\lambda}$ (which is easy to show by direct calculation) and $\Delta^{\mu\nu}p_{\nu} = 0$, and summed the geometric series in the last step. According to the Ward identity the terms proportional to $p_{\mu}p_{\nu}$ cannot contribute to matrix elements (they must in fact be unphysical since they depend on the gauge parameter ξ). The pole is at $p^2 = 0$, so the photon remains massless.