Quantum Field Theory, solutions to problem sheet 13

Problem 1: Furry's theorem

1. Charge conjugation is a linear operation C exchanging particles with antiparticles without involving any of their space-time transformation properties (such as spin or parity). For the Dirac field, $\psi \rightarrow C \bar{\psi}^{T}$ with $C=i \gamma^{0} \gamma^{2}$ in the Weyl basis. For the photon, $A_{\mu} \rightarrow-A_{\mu}$. Show that the QED Lagrangian is invariant under charge conjugation.
2. How does the electromagnetic current j_{μ} transform under charge conjugation? Show that all correlation functions for an odd number of currents are zero,

$$
\langle 0| \mathrm{T} j_{\mu_{1}}\left(x_{1}\right) \ldots j_{\mu_{2 n+1}}\left(x_{2 n+1}\right)|0\rangle=0
$$

and that, consequently, all $(2 n+1)$-photon amplitudes are zero. This is Furry's theorem.

Solution: 1. We first collect some useful relations which are valid in the Weyl basis of γ matrices:

$$
\begin{equation*}
\left(\gamma^{0}\right)^{T}=\gamma^{0}, \quad\left(\gamma^{1}\right)^{T}=-\gamma^{1}, \quad\left(\gamma^{2}\right)^{T}=\gamma^{2}, \quad\left(\gamma^{3}\right)^{T}=-\gamma^{3} . \tag{1}
\end{equation*}
$$

Furthermore, we explicitly write out the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$:

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu} \quad(\mu \neq \nu), \quad\left(\gamma^{0}\right)^{2}=\mathbb{1}, \quad\left(\gamma^{i}\right)^{2}=-\mathbb{1} \quad(i=1,2,3) . \tag{2}
\end{equation*}
$$

Finally, explicit calculation shows that

$$
\begin{equation*}
C^{\dagger}=C^{T}=C^{-1}=-C . \tag{3}
\end{equation*}
$$

From the transformation $\psi \rightarrow C \bar{\psi}^{T}$, one deduces that $\bar{\psi} \rightarrow \psi^{T} C$. Therefore,

$$
\bar{\psi} \psi \rightarrow \psi^{\mathrm{T}} C C \bar{\psi}^{T}=-\psi^{T} \bar{\psi}^{T}=\bar{\psi} \psi .
$$

(the minus sign in the last equality is from anticommuting the spinors) and so the electron mass term $m \bar{\psi} \psi$ is invariant.
Moreover, we have

$$
\bar{\psi} \gamma^{\mu} \psi=\psi^{T} C \gamma^{\mu} C \bar{\psi}^{T}
$$

Using the relations (1) and (2), it is easy to show (for each $\mu=0,1,2,3$ separately) that

$$
C \gamma^{\mu} C=\left(\gamma^{\mu}\right)^{T} .
$$

Therefore,

$$
\bar{\psi} \gamma^{\mu} \psi \rightarrow \psi^{T}\left(\gamma^{\mu}\right)^{T} \bar{\psi}^{T}=-\bar{\psi} \gamma^{\mu} \psi
$$

so the electron-photon coupling $e A_{\mu} \bar{\psi} \gamma^{\mu} \psi$ is invariant if A_{μ} is taken to transform as $A_{\mu} \rightarrow-A_{\mu}$ (note that this leaves the photon kinetic term invariant because it is quadratic in A_{μ}).

Finally, ∂_{μ} does not change under charge conjugation, so the kinetic term for the electron transforms as

$$
\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi \rightarrow-\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi=\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+(\text { total derivative }) .
$$

2. We showed already that $j^{\mu} \rightarrow-j^{\mu}$. Therefore,

$$
\langle 0| \mathrm{T} j^{\mu_{1}}\left(x_{1}\right) \ldots j^{\mu_{2 n+1}}\left(x_{2 n+1}\right)|0\rangle \rightarrow-\langle 0| \mathrm{T} j^{\mu_{1}}\left(x_{1}\right) \ldots j^{\mu_{2 n+1}}\left(x_{2 n+1}\right)|0\rangle .
$$

Since charge conjugation is a symmetry of QED, the correlation functions should not change under charge conjugation, hence

$$
\langle 0| \mathrm{T} j^{\mu_{1}}\left(x_{1}\right) \ldots j^{\mu_{2 n+1}}\left(x_{2 n+1}\right)|0\rangle=0 .
$$

The k-photon amplitude is proportional to the k-current amplitude since each external photon attaches to a current. Therefore, for k odd also the k-photon amplitude is zero.

Problem 2: Photon self-energy

Show that, if $i \Pi^{\mu \nu}(p)$ is defined to be the sum of all 1-particle irreducible insertions into the photon propagator,

then $\Pi^{\mu \nu}(p)$ can be written as

$$
\Pi^{\mu \nu}(p)=\left(p^{2} g^{\mu \nu}-p^{\mu} p^{\nu}\right) \Pi\left(p^{2}\right)
$$

for a suitable function $\Pi\left(p^{2}\right)$. Thus, show that the full photon propagator takes the form

Conclude that the photon mass remains zero to all orders in perturbation theory.

Solution: The only Lorentz-covariant two-index object that can be formed from p is of the form $A p^{\mu} p^{\nu}+B g^{\mu \nu}$, where A and B are scalars (functions of p^{2} only). By the Ward identity, $p_{\mu} \Pi^{\mu \nu}=0$, which fixes $B=-A p^{2}$. We can therefore write

$$
\Pi^{\mu \nu}(p)=\left(p^{2} g^{\mu \nu}-p^{\mu} p^{\nu}\right) \Pi\left(p^{2}\right)=\Delta^{\mu \nu} p^{2} \Pi\left(p^{2}\right)
$$

where we have defined $\Delta^{\mu \nu}=g^{\mu \nu}-p^{\mu} p^{\nu} / p^{2}$. (In principle, for a complete proof one should also show that the function $\Pi\left(p^{2}\right)$ is nonsingular.)

Using this notation, we can write down the series obtained from successive insertions of 1PI diagrams into the tree-level propagator to obtain the exact propagator:

$$
\begin{aligned}
& \xrightarrow[\mu]{p} \\
= & \frac{-i}{p^{2}}\left(\Delta^{\mu \nu}+\xi \frac{p^{\mu} p^{\nu}}{p^{2}}\right) \\
& +\frac{-i}{p^{2}}\left(\Delta^{\mu \lambda}+\xi \frac{p^{\mu} p^{\lambda}}{p^{2}}\right)\left(i \Delta_{\lambda \kappa} p^{2} \Pi\left(p^{2}\right)\right) \frac{-i}{p^{2}}\left(\Delta^{\kappa \nu}+\xi \frac{p^{\kappa} p^{\nu}}{p^{2}}\right) \\
& +\frac{-i}{p^{2}}\left(\Delta^{\mu \lambda}+\xi \frac{p^{\mu} p^{\lambda}}{p^{2}}\right)\left(i \Pi\left(p^{2}\right) p^{2} \Delta_{\lambda \kappa}\right) \frac{-i}{p^{2}}\left(\Delta^{\kappa \rho}+\xi \frac{p^{\kappa} p^{\rho}}{p^{2}}\right)\left(i \Pi\left(p^{2}\right) p^{2} \Delta_{\rho \sigma}\right) \frac{-i}{p^{2}}\left(\Delta^{\sigma \nu}+\xi \frac{p^{\sigma} p^{\nu}}{p^{2}}\right) \\
& +\ldots \\
= & \frac{-i}{p^{2}}\left(\Delta^{\mu \lambda}+\xi \frac{p^{\mu} p^{\lambda}}{p^{2}}\right)\left(\sum_{n=0}^{\infty}\left(\Pi\left(p^{2}\right) \Delta\right)^{n}\right)_{\lambda}^{\nu} \\
= & \frac{-i}{p^{2}\left(1-\Pi\left(p^{2}\right)\right)} \Delta^{\mu \nu}-i \xi \frac{p^{\mu} p^{\nu}}{\left(p^{2}\right)^{2}} .
\end{aligned}
$$

Here we have repeatedly used $\Delta^{\mu \nu} \Delta_{\nu}{ }^{\lambda}=\Delta^{\mu \lambda}$ (which is easy to show by direct calculation) and $\Delta^{\mu \nu} p_{\nu}=0$, and summed the geometric series in the last step.
According to the Ward identity the terms proportional to $p_{\mu} p_{\nu}$ cannot contribute to matrix elements (they must in fact be unphysical since they depend on the gauge parameter ξ). The pole is at $p^{2}=0$, so the photon remains massless.

