Exercice 1

On s'intéresse à la taille de crevettes ayant grandies dans des eaux de salinité différente. La salinité est représentée par la variable sal, qui est une variable quantitative continue. Les crevettes considérées peuvent appartenir à cinq groupes génétiques représentés par la variable qualitative crts (cinq modalités : A, B, C, D et E). L'objectif est d'expliquer la taille des crevettes selon les variables salinité et groupe génétique. Il y a au total 42 individus.

Un modèle linéaire faisant intervenir la salinité (sal) et le groupe génétique (crts) est considéré. Le listing obtenu est donné ci-dessous.

The GLM Procedure

Informations sur le niveau de classe

			Classe		Niveaux	Va	leu	rs		
			crts		5	A	В	С	D	E
					Observations Observations					42 42
nendent	Variable	taillo	Number	OI	ubservations	use	α			42

Dependent Variable: taille

Source	DDL	Somme des carres	Moyenne quadratique	Valeur F	Pr > F
Model	x	533.5089523	x	12.79	<.0001
Error	х	148.2967620	х		
Corrected Total	x	681.8057143			

R-carre	Coef de Var	Racine MSE	taille Moyenne
x	9.709507	2.152736	22.17143

Source	DDL	Type I SS	Moyenne quadratique	Valeur F	Pr > F
crts	4	184.3020833	46.0755208	9.94	<.0001
sal*crts	5	349.2068690	69.8413738	15.07	<.0001
Source	DDL	Type III SS	Moyenne quadratique	Valeur F	Pr > F
crts	4	271.9584900	67.9896225	14.67	<.0001
sal*crts	5	349.2068690	69.8413738	15.07	<.0001

	Valeur		Valeur		
Parametre	estimee	Erreur type	du test t	Pr > t	
Intercept	19.43745434 B	4.11008182	4.73	<.0001	

crts	Α	22.82133857	В	4.95629217	4.60	<.0001
crts	В	17.78270238	В	5.32789102	3.34	0.0022
crts	C	13.65507899	В	4.89994616	2.79	0.0089
crts	D	0.25368183	В	4.56157115	0.06	0.9560
crts	E	0.00000000	В		•	•
sal*crts	Α	-0.34882376		0.05272691	-6.62	<.0001
sal*crts	В	-0.27166982		0.06620112	-4.10	0.0003
sal*crts	C	-0.20853333		0.05558341	-3.75	0.0007
sal*crts	D	0.03992542		0.04998373	0.80	0.4303
sal*crts	Ε	-0.01969316		0.10971806	-0.18	0.8587

- 1. Quel type d'approche par modèle linéaire est considéré ici?
- 2. Donner une écriture explicite du modèle considéré.
- 3. Donner une écriture concise de la formulation matricielle de ce modèle.
- 4. Retrouver les valeurs des DDL remplacées ici par des 'x'.
- 5. Pourquoi le DDL associé à sal * crts est il de 5?
- 6. Quelle est la valeur de R-carre? Comment s'interprète ce coefficient?
- 7. Quelle est la valeur estimée de l'écart-type résiduel? même question pour l'écart-type de la taille des crevettes?
- 8. Dans le tableau des estimations des paramètres, pourquoi la ligne crts E comporte-t-elle des points?
- 9. L'expérience considérée est-elle équilibrée?
- 10. Donner une interprétation des sorties du listing obtenu.
- 11. En utilisant ce modèle, quelle est l'équation qui permet de prévoir la taille moyenne d'une crevette du groupe crs A se développant dans une salinité donnée x_s ?

Exercice 2

On s'intéresse à des données concernant la rapidité de lecture suivant le caractère (concret, abstrait) des mots, le sexe (fille, garçon) et l'âge des enfants (petit ou grand). Voici ci-dessous les mesures (en secondes) obtenues pour les garçons puis pour les filles lors de la lecture de deux textes (l'un avec des mots concrets et l'autre avec des mots abstraits) :

garcons	

	concret	abstrait		
petit	1450 1495 1668	1445 1433 1702		
grand	966 1168 590	1104 1027 788		

filles:

ĺ		concret	abstrait			
ĺ	petit	1224 1286 1098	1344 1182 1524			
	grand	765 840 1183	1092 893 1150			

- $1. \ \, Quelle(s) \ question(s) \ vous \ semble(nt) \ naturelle(s) \ ici \ et \ quelle(s) \ approche(s) \ vous \ semble(nt) \ appropriée(s) \ pour \ y \ répondre?$
- 2. On décide de faire une analyse de variance à trois facteurs. Un premier modèle, appelé Model1, est ajusté. La sortie SAS correpondante est donnée ci-dessous.

Model1

Analysis of Variance Procedure

Dependent Variable: RAPIDITE

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	х	1421487.25000000	x	7.81	0.0004
Error	x	515975.70833334	x		
Corrected Total x		1937462.95833333			
R-Square		C.V.	Root MSE	RAPI	DITE Mean

	х	14.71374	174.21685411	1184.0416666	7
Source	DF	SSI	Mean Square F Value	e Pr > F	
SEXE	x	65626.04166666	65626.04166666	2.16 0.159	7
AGE	х	1163801.04166666	1163801.04166666	38.34 0.000	1
CARACTER	х	37683.37500000	37683.37500000	1.24 0.280	7
SEXE*AGE	х	137259.37500000	137259.37500000	4.52 0.0484	4
SEXE*CARACTER	х	16380.37500000	16380.37500000	0.54 0.4726	6 (*)
AGE*CARACTER	x	737.04166666	737.04166666	0.02 0.8780	0
Source	DF	SSIII	Mean Square F Val	lue Pr > F	
SEXE	x	65626.04166666	65626.04166666	2.16 0.159	7
AGE	х	1163801.04166666	1163801.04166666	38.34 0.000	1
CARACTER	х	37683.37500000	37683.37500000	1.24 0.280	7
SEXE*AGE	х	137259.37500000	137259.37500000	4.52 0.0484	4
SEXE*CARACTER	х	16380.37500000	16380.37500000	0.54 0.4726	6 (**)
AGE*CARACTER	х	737.04166666	737.04166666	0.02 0.8780	0

- (a) Ecrire de façon claire et explicite le modèle statistique considéré.
- (b) Quels sont les postulats qui s'y rattachent?
- (c) Dans le premier tableau, complétez la colonne DF en remplaçant les \times par les valeurs correspondantes.
- (d) Même question pour les deux tableaux suivants.
- (e) Quel est le nombre de paramètres non-liés (indépendants) dans Model1?
- (f) Comment interprétez-vous la probabilité 0.0004 du premier tableau?
- (g) Quelle est l'estimation de l'écart-type résiduel?

Dependent Variable: RAPIDITE

- (h) Quelle est la valeur de R-square? Comment l'interprétez-vous?
- (i) Ecrire les hypothèses H_0 et H_1 testées dans les lignes (*) et (**). Que concluez-vous pour ces tests?
- (j) Le modèle Model1 vous paraît-il satisfaisant? Pourquoi?
- 3. Le modèle Model1 est peu à peu affiné et le modèle Model2, dont les sorties SAS sont listées ci-dessous, est au final obtenu.

Model2

Analysis of Variance Procedure

	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model	3	1366686.45833333	455562.15277778	15.96	0.0001
	Error	20	570776.50000000	28538.82500000		
	Corrected Total	23	1937462.95833333			
R-Square		R-Square	C.V.	Root MSE	RAPIDIT	E Mean
	(0.705400	14.26760	168.93438075	1184.04	166667

Source	DF	SSI	Mean Square F Value	e Pr > F
SEXE AGE	1	65626.04166666 1163801.04166666	65626.04166666 1163801.04166666	2.30 0.1451 40.78 0.0001
SEXE*AGE	1	137259.37500000	137259.37500000	4.81 0.0403
Source	DF	SSIII	Mean Square F Valu	ie Pr > F
SEXE	1	65626.04166666	65626.04166666	2.30 0.1451
AGE	1	1163801.04166666	1163801.04166666	40.78 0.0001
SEXE*AGE	1	137259.37500000	137259.37500000	4.81 0.0403

- (a) Selon vous, quelle démarche a été suivie pour aboutir au modèle Model2?
- (b) Donner l'écriture matricielle de Model2.
- (c) Comment pourrait-on voir si le modèle Model2 est significativement meilleur que le modèle Model1 ? Comment pourrait-on en obtenir la p-value associée ?
- (d) Quelle est l'estimation de la variance de la rapidité de lecture?
- (e) Que peut-on dire de l'effet de la variable Sexe?
- (f) En supposant les postulats vérifiés, interprétez le listing obtenu.
- 4. L'option Solution ayant été utilisée dans le programme SAS relatif à Model2, le tableau suivant est obtenu :

Parameter		Estimate	T for HO: Parameter=0	Pr > T	Std Error of Estimate
INTERCEPT		1532.166667 B	22.22	0.0001	68.9671721
SEXE	fille	-255.833333 B	-2.62	0.0163	97.5343102
	garcon	0.000000 B	•	•	
AGE	grand	-591.666667 B	-6.07	0.0001	97.5343102
	petit	0.000000 B	•	•	
SEXE*AGE	fille grand	302.500000 B	2.19	0.0403	137.9343443
	fille petit	0.000000 B			
	garcon grand	0.000000 B			
	garcon petit	0.000000 B	•	•	•

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations.

Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

- (a) Que représentent les valeurs de la colonne Estimate?
- (b) Que signifient les '.' et comment peut-on les expliquer?
- (c) Quels paramètres d'interaction ont été estimés?
- (d) Compte tenu du problème initialement considéré, que pouvez-vous dire du modèle Model2 finalement retenu ? Quelles conclusions pouvez-vous tirer en exploitant Model2?
- (e) Pour un enfant petit et de sexe féminin, quelle prédiction de rapidité moyenne de lecture d'un texte concret obtient-on avec Model2? et pour un texte abstrait?
- 5. Afin de détecter d'éventuelles différences significatives, un test de comparaisons multiples est mené et les résultats suivants sont obtenus :

Test de Newman-Keuls pour la variable RAPIDITE

Alpha 0.05

Nombre de moyennes Etendue critique		2 5.9914986		3 7.3365405	4 8.1641879
	SNK Groupement	Moyenne	N	interact	
	A	1532.17	4	petit-garcon	
	В	1276.33	4	petit-fille	
	C	987.16	4	grand-fille	
	D	940.5	4	grand-garcon	

- (a) Quel est le principe général de l'approche utilisée?
- (b) Que peut-on dire de l'effet Sexe?
- (c) Donner une interprétation des résultats obtenus.

Exercice 3

Lors de décès de patients atteints d'une maladie M, une variable V1 Temps de survie (en mois) est calculée et les valeurs de 2 régresseurs V2 et V3 liées à des caractéristiques cliniques au moment du décès sont enregistrées.

I) On décide de faire une régression de V1 sur V2 et V3 et le listing de l'approche est donné ci-dessous :

```
Variable dépendante : V1
Nb d'observations lues 200
Nb d'obs. utilisées 200
```

Analyse de variance Source DDL Somme des Moyenne Valeur F Pr > Fcarrés quadratique Modèle x 82.43 <.0001 455.62849 x 544.47300 Erreur x Х Total 1000.10149

Root MSE x R carré x Moyenne dépendante $5.05175~\rm R$ car. ajust. $0.4501~\rm Coeff$ Var 32.90889

Variable D	DL	Valeur estimée	Erreur	Valeur	Pr > t
		des paramètres	type	du tes	t t
Intercept	1	4.99165	0.11786	42.35	<.0001
V2	1	1.16887	0.12096	9.66	<.0001
V3	1	1.04154	0.11527	9.04	<.0001

- I.1) Ecrire de façon claire et explicite le modèle statistique considéré.
- I.2) Remplacer les \times du listing par les valeurs prévues.
- I.3) En supposant les postulats du modèle linéaire vérifiés, donner une interprétation du listing obtenu

II) On décide de tester si l'interaction entre les deux régresseurs V2 et V3 est significative. Une régression faisant intervenir les régresseurs V2 et V3 ainsi que leur interaction V4 est menée et les résultats sont les suivants;

```
Nb d'observations lues 200
Nb d'obs. utilisées 200
```

Analyse de variance

```
Source DDL Somme des
                                     Valeur F
                                                Pr > F
                         Moyenne
                carrés
                         quadratique
Modèle 3
              455.82685
                           151.94228
                                        54.72
                                                  <.0001
Erreur 196
              544.27464
                          2.77691
Total 199
              1000.10149
```

Root MSE 1.66641 R carré 0.4558 Moyenne dépendante 5.05175 R car. ajust. 0.4475 Coeff Var 32.98672

Variable	DDL Valeur estimée	Erreur	Valeur Pr > t	
	des paramètres	type	du test t	
Intercept	1 4.99326	0.11830 4	12.21 <.0001	
V2	1 1.17234	0.12194	9.61 <.0001	
V3	1 1.03875	0.11602	8.95 <.0001	
V4	1 0.03030	0.11338	0.27 0.7895	

- II.1) Comment s'exprime la matrice de design X du modèle considéré? (donner sa forme générale permettant de la caractériser);
- II.2) Quelle est l'estimation de la variance résiduelle?
- II.3) Comment interprétez vous les valeurs de \mathbb{R}^2 et \mathbb{R}^2 adjust? Que pouvez-vous en déduire?
- II.4) Comment est calculée la variable V3? Que pouvez-vous die de l'interaction?
- III) Dans le fichier de données, on se rend compte qu'il existe en fait 3 autres régresseurs disponibles, W1, W2 et W3. On cherche à tester **globalement** l'utilité de prendre en compte ces 3 regresseurs après prise en compte des régresseurs V1 et V2.
 - III.1) Comment proposez vous de procéder?
 - III.2) Comment pourrait-on obtenir la p-value du test concerné?