Quantum Field Theory, problem sheet 10

Solutions to be discussed on $13 / 12 / 2023$.

Problem 1: The Clifford algebra

1. Given a set of four matrices γ^{μ} which satisfy the Clifford algebra

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

show that the matrices $\gamma^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ satisfy the Lorentz algebra:

$$
\left[\gamma^{\kappa \lambda}, \gamma^{\rho \sigma}\right]=i\left(g^{\lambda \rho} \gamma^{\kappa \sigma}-g^{\kappa \rho} \gamma^{\lambda \sigma}-g^{\lambda \sigma} \gamma^{\kappa \rho}+g^{\kappa \sigma} \gamma^{\lambda \rho}\right) .
$$

2. Verify that the Clifford algebra is satisfied by both the Weyl representation of γ matrices

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right) .
$$

and the Dirac-Pauli representation

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)
$$

and find the unitary transformation that takes one into the other.
3. Defining $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, calculate

$$
\left\{\gamma^{5}, \gamma^{\mu}\right\} \quad \text { and } \quad\left[\gamma^{5}, \gamma^{\mu \nu}\right]
$$

Problem 2: The Dirac field

1. Show that

$$
\left(\mathbb{1}+\frac{i}{2} \omega_{\rho \sigma} \gamma^{\rho \sigma}\right) \gamma^{\mu}\left(\mathbb{1}-\frac{i}{2} \omega_{\rho \sigma} \gamma^{\rho \sigma}\right)=\left(\mathbb{1}-\frac{i}{2} \omega_{\rho \sigma} M^{\rho \sigma}\right)^{\mu} \gamma^{\nu}+\mathcal{O}\left(\|\omega\|^{2}\right),
$$

where the $M^{\rho \sigma}$ generate the vector representation of $\mathfrak{s o}(1,3)$,

$$
\left(M^{\kappa \lambda}\right)_{\mu \nu}=i\left(\delta^{\kappa}{ }_{\mu} \delta^{\lambda}{ }_{\nu}-\delta^{\kappa}{ }_{\nu} \delta^{\lambda}{ }_{\mu}\right) .
$$

Use this result to conclude that the Dirac Lagrangian

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

is invariant under proper orthochronous Lorentz transformations.
2. Find the Euler-Lagrange equations obtained from the Dirac Lagrangian.

Problem 3: Hamiltonian of the Dirac field

1. Let $p=\left(p^{0}, \vec{p}\right)$ be a momentum 4 -vector, $p^{2}=m^{2}$, and let $\bar{p}=\left(p^{0},-\vec{p}\right)$ be the same 4 -vector with the sign of the spatial components reversed. Prove that

$$
\gamma^{0} p p+\not p \gamma^{0}=2 p^{0}, \quad \gamma^{0} p p-\not p \gamma^{0}=0
$$

2. Prove that

$$
\begin{array}{cl}
\bar{u}_{s}(\vec{p}) \gamma^{0} u_{r}(\vec{p})=2 p^{0} \delta_{s r}, & \bar{v}_{s}(\vec{p}) \gamma^{0} v_{r}(\vec{p})=2 p^{0} \delta_{s r}, \\
\bar{u}_{s}(-\vec{p}) \gamma^{0} v_{r}(\vec{p})=0, & \bar{v}_{s}(-\vec{p}) \gamma^{0} u_{r}(\vec{p})=0 .
\end{array}
$$

Hint: Use the result of 1 ., remembering that $u_{s}(\vec{p})$ and $v_{s}(\vec{p})$ satisfy

$$
\begin{aligned}
(p p-m) u_{s}(\vec{p})=0, & (\not p+m) v_{s}(\vec{p})=0, \\
\bar{u}_{s}(\vec{p})(p-m)=0, & \bar{v}_{s}(\vec{p})(\not p+m)=0 \\
\bar{u}_{s}(\vec{p}) u_{r}(\vec{p})=2 m \delta_{r s}, & \bar{v}_{s}(\vec{p}) v_{r}(\vec{p})=-2 m \delta_{r s}
\end{aligned}
$$

3. Starting from the Fourier mode expansion of a free Dirac field

$$
\begin{aligned}
& \psi(x)=\sum_{s=+,-} \int \widetilde{\mathrm{d} p}\left(a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right), \\
& \bar{\psi}(x)=\sum_{s=+,-} \int \widetilde{\mathrm{d} p}\left(b_{s}(\vec{p}) \bar{v}_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) \bar{u}_{s}(\vec{p}) e^{i p x}\right),
\end{aligned}
$$

and using the relations derived in 2., show that the Dirac Hamiltonian $H=$ $\int \mathrm{d}^{3} x((\partial \mathcal{L} / \partial \dot{\psi}) \dot{\psi}-\mathcal{L})$ can be written as

$$
H=\sum_{s} \int \widetilde{\mathrm{~d} p} \omega_{\vec{p}}\left(a_{s}^{\dagger}(\vec{p}) a_{s}(\vec{p})-b_{s}(\vec{p}) b_{s}^{\dagger}(\vec{p})\right)
$$

It follows that the Hamiltonian can be made positive definite by imposing canonical anticommutation relations (rather than commutation relations).

