## Quantum Field Theory, problem sheet 9

Solutions to be discussed on 06/12/2023.

## Problem 1: Decay of a scalar particle

Consider the following Lagrangian, involving two real scalar fields $\phi$ and $\chi$ :

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{2} M^{2} \chi^{2}-\frac{1}{2} \mu \chi \phi^{2} .
$$

Suppose that $M>2 m$, so that the decay $\chi \rightarrow \phi \phi$ is kinematically possible. Calculate the lifetime of $\chi$ to leading order in the coupling $\mu$.

Hints: The $\chi \phi^{2}$ interaction term gives rise to a vertex attaching to two $\phi$ propagators (thin lines) and one $\chi$ propagator (thick line), for which the Feynman rule is


From this it is easy to deduce the tree-level matrix element $\mathcal{M}$, which you can insert into the formula for the differential decay width ( $N$ is a combinatorial factor given by $n_{f}$ ! for each group of $n_{f}$ indistinguishable final-state particles)

$$
\mathrm{d} \Gamma=\frac{1}{N} \frac{1}{2 M} \prod_{f} \widetilde{\mathrm{~d} p_{f}^{\prime}}|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{i}-\sum_{f} p_{f}^{\prime}\right) .
$$

## Problem 2: Compton scattering

Consider an $e \gamma \rightarrow e \gamma$ scattering process. The four-momenta in the initial state are $p_{1}$ for the electron and $p_{2}$ for the photon, while in the final state they are $p_{2}^{\prime}$ for the photon and $p_{1}^{\prime}=p_{1}+p_{2}-p_{2}^{\prime}$ for the electron. A tree-level calculation in quantum electrodynamics gives the squared matrix element

$$
|\overline{\mathcal{M}}|^{2}=32 \pi^{2} \alpha^{2}\left(\frac{p_{1} p_{2}^{\prime}}{p_{1} p_{2}}+\frac{p_{1} p_{2}}{p_{1} p_{2}^{\prime}}+2 m^{2}\left(\frac{1}{p_{1} p_{2}}-\frac{1}{p_{1} p_{2}^{\prime}}\right)+m^{4}\left(\frac{1}{p_{1} p_{2}}-\frac{1}{p_{1} p_{2}^{\prime}}\right)^{2}\right) .
$$

Here $\alpha$ is the fine-structure constant, $m$ is the electron mass, and the bar in $\overline{\mathcal{M}}$ indicates that we have averaged over initial spin and polarization states and summed over final ones.
Starting from this expression, derive the Klein-Nishina formula

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}=\frac{\pi \alpha^{2}}{m^{2}} \frac{\omega^{\prime 2}}{\omega^{2}}\left(\frac{\omega^{\prime}}{\omega}+\frac{\omega}{\omega^{\prime}}-\sin ^{2} \theta\right),
$$

where $\omega$ and $\omega^{\prime}$ are the initial and final photon energies, and $\theta$ is the scattering angle between the two photons, in a frame where the initial electron is at rest.
Hints: Show that $\omega^{\prime}=\frac{\omega}{1+\frac{\omega}{m}(1-\cos \theta)}$, and thus

$$
\widetilde{\mathrm{d}^{3} p_{1}^{\prime}} \widetilde{\mathrm{d}^{3} p_{2}^{\prime}}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)=\frac{1}{8 \pi} \mathrm{~d} \cos \theta \frac{\left(\omega^{\prime}\right)^{2}}{\omega m} .
$$

If you get stuck, see Peskin \& Schroeder p. 162f.

