
Rewriting R code in C++

Jean-Michel Marin
Février 2022
CNRS – IMAG (Montpellier, France)

Introduction

2

Introduction

• Sometimes R code just isn’t fast enough
• We will learn how to improve performance by rewriting key functions in C++
• This magic comes by way of the Rcpp package
• Rcpp makes it very simple to connect C++ to R

3

Introduction

• Rcpp provides a clean, approachable API that lets you write
high-performance code, insulated from R’s complex C API

• Typical bottlenecks that C++ can address include:
• Loops that can’t be easily vectorised because subsequent iterations depend

on previous ones
• Recursive functions, or problems which involve calling functions millions of

times
• Problems that require advanced data structures and algorithms that R

doesn’t provide.

4

Introduction

• The aim of this course is to discuss only those aspects of C++ and Rcpp
that are absolutely necessary to help you eliminate bottlenecks in your code

• We won’t spend much time on advanced features like object-oriented
programming or templates because the focus is on writing small,
self-contained functions, not big programs

• A working knowledge of C++ is helpful, but not essential

5

Prerequisites

We will use Rcpp to call C++ from R

library(Rcpp)

• You’ll also need a working C++ compiler. To get it:
• On Windows, install Rtools
• On Mac, install Xcode from the app store
• On Linux, sudo apt-get install r-base-dev or similar

6

Getting started with C++

7

Getting started with C++

cppFunction() allows you to write C++ functions in R:

cppFunction('int add(int x, int y, int z) {
int sum = x + y + z;
return sum;

}')
add(1, 2, 3)

[1] 6

• When you run this code, Rcpp will compile the C++ code and construct an R
function that connects to the compiled C++ function

8

No inputs, scalar output

Let’s start with a very simple function. It has no arguments and always returns
the integer 1:

one <- function() 1

The equivalent C++ function is:

int one() {
return 1;

}

9

No inputs, scalar output

We can compile and use this from R with cppFunction()

cppFunction('int one() {
return 1;

}')

10

No inputs, scalar output

This small function illustrates a number of important differences between R and
C++:

• The syntax to create a function looks like the syntax to call a function
• You must declare the type of output the function returns. This function

returns an int (a scalar integer). The classes for the most common types of
R vectors are: NumericVector, IntegerVector, CharacterVector, and
LogicalVector

• Scalars and vectors are different. The scalar equivalents of numeric, integer,
character, and logical vectors are: double, int, String, and bool

• You must use an explicit return statement to return a value from a function
• Every statement is terminated by a ;

11

Scalar input, scalar output

The next example function implements a scalar version of the sign() function
which returns 1 if the input is positive, and -1 if it’s negative

signR <- function(x) {
if (x > 0) { 1
} else if (x == 0) { 0
} else { -1
}

}
signR(-5)

[1] -1

12

Scalar input, scalar output

cppFunction('int signC(int x) {
if (x > 0) {

return 1;
} else if (x == 0) {

return 0;
} else {

return -1;
}

}')
signC(-5)

[1] -1

13

Scalar input, scalar output

In the C++ version:

• We declare the type of each input in the same way we declare the type of
the output

• The if syntax is identical — while there are some big differences between R
and C++, there are also lots of similarities! C++ also has a while
statement that works the same way as R’s

14

Vector input, scalar output

One big difference between R and C++ is that the cost of loops is much lower in
C++ ; for example, we could implement the sum function in R using a loop

sumR <- function(x) {
total <- 0
for (i in seq_along(x)) {

total <- total + x[i]
}
total

}
sumR(c(5,6,7))

[1] 18
15

Vector input, scalar output

In C++, loops have very little overhead, so it’s fine to use them

cppFunction('double sumC(NumericVector x) {
int n = x.size();
double total = 0;
for(int i = 0; i < n; ++i) {

total += x[i];
}
return total;

}')
sumC(c(5,6,7))

[1] 18
16

Vector input, scalar output

The C++ version is similar, but:

• To find the length of the vector, we use the .size() method, which returns an
integer ; C++ methods are called with . (i.e., a full stop)

• The for statement has a different syntax: for(init; check; increment). This
loop is initialised by creating a new variable called i with value 0. Before
each iteration we check that i < n, and terminate the loop if it’s not. After
each iteration, we increment the value of i by one, using the special prefix
operator ++ which increases the value of i by 1

17

Vector input, scalar output

• In C++, vector indices start at 0, which means that the last
element is at position n-1

• Use = for assignment, not <-
• C++ provides operators that modify in-place: total += x[i] is equivalent to

total = total + x[i]

18

Vector input, scalar output

This is a good example of where C++ is much more efficient than R

library(bench)
x <- runif(1e3)
mark(sum(x),sumC(x),sumR(x))[1:6]

A tibble: 3 x 6
expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
1 sum(x) 2.52us 2.6us 355754. 0B 0
2 sumC(x) 2.61us 4.15us 260561. 3.77MB 0
3 sumR(x) 22us 25.71us 38505. 11.47KB 0

19

Vector input, vector output

Next we’ll create a function that computes the Euclidean distance between a
value and a vector of values

pdistR <- function(x, ys) {
sqrt((x - ys) ˆ 2)

}

In R, it’s not obvious that we want x to be a scalar from the function definition, and
we’d need to make that clear in the documentation

20

Vector input, vector output

That’s not a problem in the C++ version because we have to be explicit about
types

cppFunction('NumericVector pdistC(double x, NumericVector ys) {
int n = ys.size();
NumericVector out(n);

for(int i = 0; i < n; ++i) {
out[i] = sqrt(pow(ys[i] - x, 2.0));

}
return out;

}')

21

Vector input, vector output

This function introduces only a few new concepts

• We create a new numeric vector of length n with a constructor:
NumericVector out(n)

• C++ uses pow(), not ˆ, for exponentiation

22

Vector input, vector output

Note that because the R version is fully vectorised, it’s already going to be fast

y <- runif(1e6)
library(bench)
mark(pdistR(0.5, y),pdistC(0.5, y))[1:6]

A tibble: 2 x 6
expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
1 pdistR(0.5, y) 4.65ms 5.04ms 189. 7.63MB 37.9
2 pdistC(0.5, y) 1.83ms 2.36ms 419. 7.63MB 174.

23

Vector input, vector output

• The reason why the C++ function is faster is subtle, and relates to memory
management

• The R version needs to create an intermediate vector the same length as y
(x - ys), and allocating memory is an expensive operation

• The C++ function avoids this overhead because it uses an intermediate
scalar

24

Using sourceCpp

• It’s usually easier to use stand-alone C++ files and then source them into R
using sourceCpp()

• This lets you take advantage of text editor support for C++ files (e.g.,
syntax highlighting) as well as making it easier to identify the line numbers
in compilation errors

• Your stand-alone C++ file should have extension .cpp, and needs to start
with:

#include <Rcpp.h>
using namespace Rcpp;

25

Using sourceCpp

And for each function that you want available within R, you need to prefix it with:

// [[Rcpp::export]]

You can embed R code in special C++ comment blocks. This is really
convenient if you want to run some test code:

/*** R
This is R code
*/

26

Using sourceCpp

• The R code is run with source(echo = TRUE) so you don’t need to
explicitly print output

• To compile the C++ code, use sourceCpp("path/to/file.cpp")
• This will create the matching R functions and add them to your current

session

27

Using sourceCpp

For example, running sourceCpp() on the following file implements mean in
C++ and then compares it to the built-in mean():
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double meanC(NumericVector x) {

int n = x.size();
double total = 0;
for(int i = 0; i < n; ++i) {

total += x[i];
}
return total / n;

}
/*** R
x <- runif(1e5) ; bench::mark(mean(x),meanC(x))
*/

28

Using sourceCpp

A tibble: 2 × 13
expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl>

1 mean(x) 139.8µs 173µs 5803. 0B 0 2901 0
2 meanC(x) 92.9µs 113µs 9000. 2.49KB 0 4499 0

29

R vectorisation versus C++
vectorisation

30

R vectorisation versus C++ vectorisation

vacc1a <- function(age, female, ily) {
p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
p <- p * if (female) 1.25 else 0.75
p <- max(0, p)
p <- min(1, p)
p

}

31

R vectorisation versus C++ vectorisation

We want to be able to apply this function to many inputs, so we might write a
vector-input version using a for loop.

vacc1 <- function(age, female, ily) {
n <- length(age)
out <- numeric(n)
for (i in seq_len(n)) {

out[i] <- vacc1a(age[i], female[i], ily[i])
}
out

}

32

R vectorisation versus C++ vectorisation

If you’re familiar with R, you’ll have a gut feeling that this will be slow, and
indeed it is

There are two ways we could attack this problem

• If you have a good R vocabulary, you might immediately see how to
vectorise the function (using ifelse(), pmin(), and pmax()).

• Alternatively, we could rewrite vacc1a() and vacc1() in C++, using our
knowledge that loops and function calls have much lower overhead in C++

33

R vectorisation versus C++ vectorisation

vacc2 <- function(age, female, ily) {
p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
p <- p * ifelse(female, 1.25, 0.75)
p <- pmax(0, p)
p <- pmin(1, p)
p

}

34

R vectorisation versus C++ vectorisation

#include <Rcpp.h>
using namespace Rcpp;
double vacc3a(double age, bool female, bool ily){

double p = 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily;
p = p * (female ? 1.25 : 0.75);
p = std::max(p, 0.0);
p = std::min(p, 1.0);
return p;

}
// [[Rcpp::export]]
NumericVector vacc3(NumericVector age, LogicalVector female,

LogicalVector ily) {
int n = age.size();
NumericVector out(n);
for(int i = 0; i < n; ++i) {

out[i] = vacc3a(age[i], female[i], ily[i]);
}
return out;

} 35

R vectorisation versus C++ vectorisation

n <- 1000
age <- rnorm(n, mean = 50, sd = 10)
female <- sample(c(T, F), n, rep = TRUE)
ily <- sample(c(T, F), n, prob = c(0.8, 0.2), rep = TRUE)
bench::mark(vacc1 = vacc1(age, female, ily),

vacc2 = vacc2(age, female, ily),
vacc3 = vacc3(age, female, ily))

A tibble: 3 x 6
expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
1 vacc1 1.65ms 1.81ms 553. 202.2KB 37.8
2 vacc2 47.26us 53.46us 15843. 82.8KB 26.0
3 vacc3 10.44us 11.15us 83336. 10.4KB 16.7

36

Using Rcpp in a package

37

Using Rcpp in a package

The same C++ code that is used with sourceCpp() can also be bundled into a
package

There are several benefits of moving code from a stand-alone C++ source file to
a package:

• Your code can be made available to users without C++ development tools
• Multiple source files and their dependencies are handled automatically by the

R package build system
• Packages provide additional infrastructure for testing, documentation, and

consistency

38

Using Rcpp in a package

To add Rcpp to an existing package, you put your C++ files in the src/ directory
and create or modify the following configuration files:

In DESCRIPTION add

LinkingTo: Rcpp
Imports: Rcpp

Make sure your NAMESPACE includes:

useDynLib(mypackage)
importFrom(Rcpp, sourceCpp)

39

Using Rcpp in a package

We need to import something (anything) from Rcpp so that internal Rcpp code
is properly loaded

The easiest way to set this up automatically is to call usethis::use_rcpp()

Before building the package, you’ll need to run Rcpp::compileAttributes()

This function scans the C++ files for Rcpp::export attributes and generates the
code required to make the functions available in R

Re-run compileAttributes() whenever functions are added, removed, or have their
signatures changed

This is done automatically by the devtools package and by Rstudio

40

	Introduction
	Getting started with C++
	R vectorisation versus C++ vectorisation
	Using Rcpp in a package

