Developing an R package - Going further - Slides totaly
inspired from those of Ghislain Durif
https://github.com/gdurif/devRpkg

R Programming - HAX815X

Jean-Michel Marin

February 2025

Faculty of Sciences, University of Montpellier

https://github.com/gdurif/devRpkg

Additional R packages to help you create R packages

- testthat: to implement automatic tests of your functions

- remotes: to install package from anywhere (integrated in devtools)

- rmarkdown and knitr: to create detailed documentation materials and note-
books (code showcase)

- pkgdown to create a website for your package

https://testthat.r-lib.org/
https://remotes.r-lib.org
https://rmarkdown.rstudio.com
https://yihui.org/knitr
https://pkgdown.r-lib.org/

Additional references regarding R programming

- Hadley Wickham book: Advanced R (web version and sources)

http://had.co.nz/
https://adv-r.hadley.nz
https://github.com/hadley/adv-r

Digression: Good practice for software development and programming (not just

in R)

- The code should be human readable' and easily understandable (use comments,
code presentation and formatting)
- Experiment: read your (5 weeks/months/years) old codes, are you sure that
you will understand it? (worst with code written by others)
- Use a versioning system (e.g. git) to manage your code evolution/version and for
collaborative development

"being machine readable is necessary for the code to work but not sufficient

https://git-scm.com/book/

Good practice for software development and programming

- Implement automatic tests (e.g. unit tests) for each new function/module/etc. (and
not afterward) to verify your implementation and results and avoid breaking your

code?

- Use continuous integration®: to automatically run build, check, tests as your pack-
age development progresses (e.g. commit after commit if you are using a versioning

system like git)

Znever trust yourself, you will implement bugs
3software forge offers such service like gitlab CI/CD or github actions

https://docs.gitlab.com/ee/ci/
https://github.com/features/actions

Good practice for software development and programming

- Write a documentation for your code/package/library, including explained code
showcases/demos

- Publish your source codes (preferably on a software forge), so that other can con-
tinue your work, especially when you move on to other projects, carreer path

- Archive your source codes (because your software forge or webpage can disappear)

Software forge

An online server and/or website offering code/software development and management

functionality

- versioning

- collaborative work and planning

- issue, feedback, bug reports, feature requests

- software release/publication

- continuous integration

- possibility to get a publication identification like a DOI*
- etc.

“eventually externally with Zenodo, cf. later

https://zenodo.org/

Software forge

Examples of software forge

- gitlab: free and open-source git forge hosting software (different hosts are
available: in the academic world® or abroad®)

- github: very popular’ git forge with gratis and commercial solutions to host de-
velopment projects (maybe more simple to reach outside the french academic com-
munity)

- other: bitbucket

: oogle code, Inria Gforge (It happens!)
*eg. https://plmlab.math.cnrs.fr https://gitlab.inria.fr, etc.

beg https://gitlab.com
"but owned by Microsoft

https://github.com
https://bitbucket.org
https://plmlab.math.cnrs.fr
https://gitlab.inria.fr
https://gitlab.com

Archive your code (publication # archiving)

- What happens if your software forge (or the webpage where you host your code)
disappear?

- The Software Heritage initiative

- “Our ambition is to collect, preserve, and share all software that is publicly
available in source code form. On this foundation, a wealth of applications
can be built, ranging from cultural heritage to industry and research.”

- Simple deposit procedure from a software forge®

8See https://archive.softwareheritage.org/save/

https://www.softwareheritage.org
https://archive.softwareheritage.org/save/

Get a DOI for your code with Zenodo

- a DOI° to facilitate your software identification and citation (e.g. in publication using
it)

- Upload your codes to Zenodo and get a unique DOI for the current version (possible
integration with github to directly generate identification for the different versions
of your code)

- Possible to identify codes, datasets, creative contents

- More at https://help.zenodo.org/features/ and in the FAQ

°Digital Object Identifier

https://zenodo.org/
https://help.zenodo.org/features/
https://help.zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier

Publish and distribute your package

- Others can use your work, collaborate with you to improve it (collaborative devel-

opment)

- Many repositories: the CRAN (official), bioconductor (bioinformatics-oriented pack-

age repository)

- the remotes package (exported by devtools) can be used to install packages
stored almost anywhere on the Internet (CRAN, bioconductor, git forges, etc.)

or locally

"

https://cran.r-project.org/
https://www.bioconductor.org/
https://remotes.r-lib.org/

CRAN

- Strict policy to accept a package (READ IT!)

- Pipeline
- devtools::build() (or R CMD build)
- devtools::check() (orR CMD check --as-cran)
- upload it to https://cran.r-project.org/submit.html

- devtools::release() can help you to prepare the release (i.e. the version of
your package that will be publish)

% bundle state

https://cran.r-project.org/web/packages/policies.html
https://devtools.r-lib.org//reference/build.html
https://devtools.r-lib.org//reference/check.html
https://cran.r-project.org/submit.html
https://devtools.r-lib.org//reference/release.html

Reverse dependencies

- Important: if you are releasing a new version of existing package, it is your respon-
sibility to check that it does not break downstream dependencies” (i.e. all packages
that list your package in the Depends, Imports, Suggests or LinkingTo fields)

- usethis::use_revdep() to enable the revdepcheck package that can help

you in that task

"called “reverse dependencies”

https://usethis.r-lib.org/reference/use_revdep.html
https://r-lib.github.io/revdepcheck/

- versioning system: see the official website and the book

- manage evolution of your code
- branch-base system for production/development code cohabitation

decentralized system: if you lose your remote, you do not lose the project
history
easy to distribute (with git clone) and to move from remote to remote

- Command line tool or possible to manage everything from R/Rstudio:
- usethis::use_git() to initialize a repository in your project
- Git panel in Rstudio to manage your local repository and interact with remote

(ssh key generation, etc.)

- More detail at https://r-pkgs.org/git.html

14

https://git-scm.com/
https://git-scm.com/book/
https://usethis.r-lib.org/reference/use_git.html
https://r-pkgs.org/git.html

Distribute your package on a git repository

To install packages hosted on:

- github: remotes::install_github()
- any git forge: remotes::install_git()

Possibility to specify the branch, the sub-directory where to find the package, etc.
remotes::install_github(”RcppCore/Rcpp”)
remotes::install_git(

"https://github.com/getkeops/keops”,
subdir = "rkeops”, branch = "dev”, args="--recursive”

https://remotes.r-lib.org/reference/install_github.html
https://remotes.r-lib.org/reference/install_git.html

Organize your package project

- Package root directory = Rstudio project/git repository root directory (default behav-
ior when using usethis::create_package() or Rstudio new project package)

- The package root directory is a sub-directory of the Rstudio project/git repository

- you can specify the path to your package directory to devtools functions
- Rstudio project setup: Tools - Project Options - Build tools - Package directory

Writing a “vignette”

- Adocument™ presenting/detailing your package (or a functionality in your package),
included in the package (and visible on CRAN)

- Written in a markup language: Rmarkdown™ to integrate R code chunks, or LaTeX
or Markdown

- To create a vignette: usethis::use_vignette(”"my-vignette”)
- Possible to write multiple vignettes (e.g. Rcpp package)

- Rendering (in pdf/html/etc.) with the package knitr

See https://r-pkgs.org/vignettes.html
BSee also this cheat sheet

https://rmarkdown.rstudio.com/
https://cran.r-project.org/package=Rcpp
https://yihui.org/knitr
https://r-pkgs.org/vignettes.html
https://raw.githubusercontent.com/rstudio/cheatsheets/master/rmarkdown-2.0.pdf

Create a website

- Create and build a standardized website for your package with pkgdown'

- Hostable on Github or Gitlab pages, or on your own webpage

- To create the website template: usethis: :use_pkgdown()

- To build the website®™ (e.g. generate the HTML source): pkgdown: :build_site()

- More details in the pkgdown vignette

"See also https://github.com/r-1ib/pkgdown
SREADME .md become the homepage, man documentation are used to generate function references, and

vignettes are rendered into articles

https://pkgdown.r-lib.org/
https://cran.r-project.org/web/packages/pkgdown/vignettes/pkgdown.html
https://github.com/r-lib/pkgdown

Continuous Integration

- Automate package testing and checking when you modify it
- Generally associated with a software forge
- See usethis::use_gitlab_ci() orusethis::use_github_actions()

- You define a set of actions (e.g. tests and checks) that are run after each commit, or
before any pull/merge request (configurable)

19

https://usethis.r-lib.org/reference/ci.html
https://usethis.r-lib.org/reference/github_actions.html

Rcpp: Seamless R and C++ Integration

- See the Rcpp webpage and the introduction vignette
- C++ APl to use R types and R like functions™ in C++

- Automatic export of C++ functions to R" in particular when creating/building a pack-
age

- Expose C++ functions and classes to R'®

- Conversion from C++ to R and back™

®See the “Rcpp-sugar” vignette
See the “Rcpp-attributes” vignette
'8See the “Rcpp-modules” vignette
See the “Rcpp-extending” vignette

20

https://github.com/RcppCore/Rcpp
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-sugar.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-attributes.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-modules.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-extending.pdf

Rcpp: compilation on the fly

In convolve.cpp file Compilation on the fly in R
#include <Rcpp.h> sourceCpp(”convolve.cpp”)
using namespace Rcpp; convolveCpp(x, vy)

// [[Rcpp::export]]
NumericVector convolveCpp(
NumericVector a, NumericVector b
) {
int na = a.size(), nb = b.size();
int nab = na + nb - 1;
NumericVector xab(nab);
for (int 1 = 0; i < na; 1i++)
for (int j = 0; j < nb; j++)
xab[i + j] += alil = b[j];
return xab;

21

Rcpp in a package

- Create a Rcpp-based package template:

Rcpp: :Rcpp.package.skeleton(”NewPackage”, attributes = TRUE)

- All C++ codes should be in the src sub-directory

- Add the comment // [[Rcpp::export]] before every C++ functions that should
be exported to R

- Add LinkingTo: Rcpp in DESCRIPTION file

22

Rcpp in a package

- To generate the C++ to R wrappers: devtools::load_all()® or
devtools::build() will call Rcpp::compileAttributes()?

- The files src/RcppExports.cpp and R/RcppExports.R are automatically cre-

ated (or updated) and contain the code necessary to expose your C++ functions in
R

- You C++ code will be compiled during your package installation

2%Reminder: CTRL + SHIFT + L
Zor you can call it yourself

23

Rcpp in a package

- Compatible with roxygen2 doc
generation

- Rcpp::compileAttributes()
converts //"' C++ doc comment
chunks to #' roxygen2 doc comment
chunks in the R/RcppExports.R file

#include <Rcpp.h>

using namespace Rcpp;

//' Do something

//' @author someone

//' @description

//' This function does something

e

//' @param x An integer vector

//" @export

// [[Rcpp::export]]

void my_fun(IntegerVector a) {
// do something...

24

The Rcpp ecosystem

- RcppEigen: ‘Rcpp’ Integration for the Eigen Templated Linear Algebra Library

- RcppArmadillo: ‘Rcpp’ Integration for the Armadillo Templated Linear Algebra
Library

- RcppGSL: Rcpp Integration for GNU GSL Vectors and Matrices

- BH: Boost C++ Header Files (“a set of libraries providing support for tasks and struc-
tures such as linear algebra, pseudo-random number generation, multi-threading,
image processing, regular expressions, and unit testing”)

- and more...

25

https://cran.r-project.org/package=RcppEigen
https://eigen.tuxfamily.org
https://cran.r-project.org/package=RcppArmadillo
http://arma.sourceforge.net/
https://cran.r-project.org/package=RcppGSL
https://www.gnu.org/software/gsl/
https://cran.r-project.org/package=BH
https://www.boost.org/

The Rcpp ecosystem

How to use the previous C++ libraries in your package ?

- Install the corresponding R package (with install.packages(”<pkg>"))
- Add LinkingTo: <pkg> in your DESCRIPTION file

- Add the comment // Rcpp::depends(<pkg>)]] when including the corre-
sponding library in your C++ code, e.g.:

#include <RcppArmadillo.h>
// Rcpp::depends(RcppArmadillo)]]

- Use the C++ corresponding library in a standard way in your C++ code

26

reticulate: R Interface to Python

CRAN page and webpage

- Calling Python from R (dedicated vignette)

library(reticulate)
scipy <- import(”scipy”)
scipy$amin(c(1,3,5,7))

- Conversion from R to Python matrix/array (dedicated vignette)

- Python code chunks in Rmarkdown (dedicated vignette])

27

https://cran.r-project.org/package=reticulate
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/arrays.html
https://rstudio.github.io/reticulate/articles/r_markdown.html

Managing Python from R

- Python Version Configuration (dedicated vignette and help page)

- Use virtual environment with reticulate: :use_virtualenv()
and reticulate: :use_condaenv()

28

https://rstudio.github.io/reticulate/articles/versions.html
https://rstudio.github.io/reticulate/reference/use_python.html

Using Python code in an R package

- Using reticulate in a R package (dedicated vignette)

- Configuring Python dependencies of your R package (dedicated vignette)

29

https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/python_dependencies.html

Control your R environment - renv

https://rstudio.github.io/renv/articles/renv.html

30

https://rstudio.github.io/renv/articles/renv.html

Configuring R

- References: here and here

- Configure where you install packages and from where you load packages (i.e. in
which directory on your system)

- Setup a default CRAN mirror for package installation

- Define default R objects, functions that will be available without additional file

sourcing

- Modify R global options (see the functions options() and getOption() to check
R global options)

31

https://support.rstudio.com/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://rstats.wtf/r-startup.html

.Renviron: configure the environment where R is run (1)

.Renviron = afile defining environment variables (as in bash) with the following syntax
('not R code!!):

Keyl=valuel
Key2=value2

To edit your .Renviron file, you can use usethis::edit_r_environ().

32

.Renviron: configure the environment where R is run (2)

- To modify the directory where packages are installed® and loaded from®: you

can set* R_LIBS_USER=/path/to/my/lib/dir (useful to have project-specific
package installation®)

- Define environment variables (e.g. MYVAR=5) that will be available in R (with
Sys.getenv(”MYVAR")) or have an effect an your R code behavior

2py install.package(), devtools::install(), remotes::install_from_xxx()
Zpy library() or require()

2 default value is ‘R_LIBS_USER=~/R/%p/%v

%10 avoid package version conflict between project

33

Where storing the .Renviron file

R tries to use an .Renviron file in the following order:

- in the working directory where R is started (if existing), e.g. in your RStudio project

root directory

- in your home directory (if existing)
Note: You can modify this behavior by setting (outside of R/RStudio®) the following
environment variable: R_ENVIRON_USER=/path/to/my/.Renviron
Anyway: R has a global Renviron.site file that is read first ; using your own
.Renviron file allows you to modify the default environment defined in this file

%63s in your bash environment
34

.Rprofile: configure and modify your R session

- .Rprofile = an R source file that will be run at R startup (after .Renviron was
read)

- What for ?

define your own default R objects/functions
- write a startup message

- modify R global options

- etc.

To edit your .Rprofile file, you can use usethis::edit_r_profile().

35

.Rprofile: an example

setup a default CRAN repository
options(repos = c(CRAN = "https://cran.rstudio.org”))

modify an option only in interactive mode

if(interactive()) {
options(width = 120)

Note: interactive mode = as in R console?” (in RStudio or in a terminal)

Zversus script mode (like scripts run by Rscript)

36

Where storing the .Rprofile file

R tries to use an .profile file in the following order:

- in the working directory where R is started (if existing), e.g. in your RStudio project

root directory

- in your home directory (if existing)
Note: You can modify this behavior by setting (outside of R/RStudio?®) the following
environment variable: R_PROFILE_USER=/path/to/my/.Renviron
Anyway: R has a global Rprofile.site file that is read first and using your own
.Rprofile file allows you to modify the default R session defined in this file.

%835 in your bash environment
37

.Renviron/.Rprofile and reproducibility

Attention: you should be careful that your code is usable without your .Renviron and
.Rprofile files

- .Renvironand .Rprofile files are personal files, another user may configure its
environment differently

- Example: charging packages or modifying (global or packages) options that have
an impact on output values® in your .Rprofile file may affect the reproducibility
of your code (i.e. the results can be different or you code can be broken without
your .Rprofile file)

Yeg options(stringsAsFactors = FALSE)

38

