
Developing an R package - Going further - Slides totaly
inspired from those of Ghislain Durif
https://github.com/gdurif/devRpkg
R Programming - HAX815X

Jean-Michel Marin

February 2025

Faculty of Sciences, University of Montpellier

https://github.com/gdurif/devRpkg

Additional R packages to help you create R packages

• testthat: to implement automatic tests of your functions
• remotes: to install package from anywhere (integrated in devtools)
• rmarkdown and knitr: to create detailed documentation materials and note-
books (code showcase)

• pkgdown to create a website for your package

2

https://testthat.r-lib.org/
https://remotes.r-lib.org
https://rmarkdown.rstudio.com
https://yihui.org/knitr
https://pkgdown.r-lib.org/

Additional references regarding R programming

• Hadley Wickham book: Advanced R (web version and sources)

3

http://had.co.nz/
https://adv-r.hadley.nz
https://github.com/hadley/adv-r

Digression: Good practice for software development and programming (not just
in R)

• The code should be human readable1 and easily understandable (use comments,
code presentation and formatting)

– Experiment: read your (5 weeks/months/years) old codes, are you sure that
you will understand it? (worst with code written by others)

• Use a versioning system (e.g. git) to manage your code evolution/version and for
collaborative development

1being machine readable is necessary for the code to work but not sufficient

4

https://git-scm.com/book/

Good practice for software development and programming

• Implement automatic tests (e.g. unit tests) for each new function/module/etc. (and
not afterward) to verify your implementation and results and avoid breaking your
code2

• Use continuous integration3: to automatically run build, check, tests as your pack-
age development progresses (e.g. commit after commit if you are using a versioning
system like git)

2never trust yourself, you will implement bugs
3software forge offers such service like gitlab CI/CD or github actions

5

https://docs.gitlab.com/ee/ci/
https://github.com/features/actions

Good practice for software development and programming

• Write a documentation for your code/package/library, including explained code
showcases/demos

• Publish your source codes (preferably on a software forge), so that other can con-
tinue your work, especially when you move on to other projects, carreer path

• Archive your source codes (because your software forge or webpage can disappear)

6

Software forge

An online server and/or website offering code/software development and management
functionality

• versioning
• collaborative work and planning
• issue, feedback, bug reports, feature requests
• software release/publication
• continuous integration
• possibility to get a publication identification like a DOI4

• etc.

4eventually externally with Zenodo, c.f. later

7

https://zenodo.org/

Software forge

Examples of software forge

• gitlab: free and open-source git forge hosting software (different hosts are
available: in the academic world5 or abroad6)

• github: very popular7 git forge with gratis and commercial solutions to host de-
velopment projects (maybe more simple to reach outside the french academic com-
munity)

• other: bitbucket

Discontinued forges: gitorious, Google code, Inria Gforge (It happens!)
5e.g. https://plmlab.math.cnrs.fr, https://gitlab.inria.fr, etc.
6e.g. https://gitlab.com
7but owned by Microsoft

8

https://github.com
https://bitbucket.org
https://plmlab.math.cnrs.fr
https://gitlab.inria.fr
https://gitlab.com

Archive your code (publication ̸= archiving)

• What happens if your software forge (or the webpage where you host your code)
disappear?

• The Software Heritage initiative

– “Our ambition is to collect, preserve, and share all software that is publicly
available in source code form. On this foundation, a wealth of applications
can be built, ranging from cultural heritage to industry and research.”

– Simple deposit procedure from a software forge8

8See https://archive.softwareheritage.org/save/

9

https://www.softwareheritage.org
https://archive.softwareheritage.org/save/

Get a DOI for your code with Zenodo

• a DOI9 to facilitate your software identification and citation (e.g. in publication using
it)

• Upload your codes to Zenodo and get a unique DOI for the current version (possible
integration with github to directly generate identification for the different versions
of your code)

• Possible to identify codes, datasets, creative contents

• More at https://help.zenodo.org/features/ and in the FAQ

9Digital Object Identifier

10

https://zenodo.org/
https://help.zenodo.org/features/
https://help.zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier

Publish and distribute your package

• Others can use your work, collaborate with you to improve it (collaborative devel-
opment)

• Many repositories: the CRAN (official), bioconductor (bioinformatics-oriented pack-
age repository)

• the remotes package (exported by devtools) can be used to install packages
stored almost anywhere on the Internet (CRAN, bioconductor, git forges, etc.)
or locally

11

https://cran.r-project.org/
https://www.bioconductor.org/
https://remotes.r-lib.org/

CRAN

• Strict policy to accept a package (READ IT!)

• Pipeline

– devtools::build() (or R CMD build)
– devtools::check() (or R CMD check --as-cran)
– upload it10 to https://cran.r-project.org/submit.html

• devtools::release() can help you to prepare the release (i.e. the version of
your package that will be publish)

10in bundle state

12

https://cran.r-project.org/web/packages/policies.html
https://devtools.r-lib.org//reference/build.html
https://devtools.r-lib.org//reference/check.html
https://cran.r-project.org/submit.html
https://devtools.r-lib.org//reference/release.html

Reverse dependencies

• Important: if you are releasing a new version of existing package, it is your respon-
sibility to check that it does not break downstream dependencies11 (i.e. all packages
that list your package in the Depends, Imports, Suggests or LinkingTo fields)

• usethis::use_revdep() to enable the revdepcheck package that can help
you in that task

11called “reverse dependencies”

13

https://usethis.r-lib.org/reference/use_revdep.html
https://r-lib.github.io/revdepcheck/

git

• versioning system: see the official website and the book
– manage evolution of your code
– branch-base system for production/development code cohabitation
– decentralized system: if you lose your remote, you do not lose the project
history

– easy to distribute (with git clone) and to move from remote to remote

• Command line tool or possible to manage everything from R/Rstudio:

– usethis::use_git() to initialize a repository in your project
– Git panel in Rstudio to manage your local repository and interact with remote
(ssh key generation, etc.)

• More detail at https://r-pkgs.org/git.html

14

https://git-scm.com/
https://git-scm.com/book/
https://usethis.r-lib.org/reference/use_git.html
https://r-pkgs.org/git.html

Distribute your package on a git repository

To install packages hosted on:

• github: remotes::install_github()
• any git forge: remotes::install_git()

Possibility to specify the branch, the sub-directory where to find the package, etc.

remotes::install_github(”RcppCore/Rcpp”)

remotes::install_git(
”https://github.com/getkeops/keops”,
subdir = ”rkeops”, branch = ”dev”, args=”--recursive”

)

15

https://remotes.r-lib.org/reference/install_github.html
https://remotes.r-lib.org/reference/install_git.html

Organize your package project

• Package root directory = Rstudio project/git repository root directory (default behav-
ior when using usethis::create_package() or Rstudio new project package)

• The package root directory is a sub-directory of the Rstudio project/git repository

– you can specify the path to your package directory to devtools functions
– Rstudio project setup: Tools - Project Options - Build tools - Package directory

16

Writing a “vignette”

• A document12 presenting/detailing your package (or a functionality in your package),
included in the package (and visible on CRAN)

• Written in a markup language: Rmarkdown13 to integrate R code chunks, or LaTeX
or Markdown

• To create a vignette: usethis::use_vignette(”my-vignette”)

• Possible to write multiple vignettes (e.g. Rcpp package)

• Rendering (in pdf/html/etc.) with the package knitr

12See https://r-pkgs.org/vignettes.html
13See also this cheat sheet

17

https://rmarkdown.rstudio.com/
https://cran.r-project.org/package=Rcpp
https://yihui.org/knitr
https://r-pkgs.org/vignettes.html
https://raw.githubusercontent.com/rstudio/cheatsheets/master/rmarkdown-2.0.pdf

Create a website

• Create and build a standardized website for your package with pkgdown14

• Hostable on Github or Gitlab pages, or on your own webpage

• To create the website template: usethis::use_pkgdown()

• To build the website15 (e.g. generate the HTML source): pkgdown::build_site()

• More details in the pkgdown vignette

14See also https://github.com/r-lib/pkgdown
15README.md become the homepage, man documentation are used to generate function references, and
vignettes are rendered into articles

18

https://pkgdown.r-lib.org/
https://cran.r-project.org/web/packages/pkgdown/vignettes/pkgdown.html
https://github.com/r-lib/pkgdown

Continuous Integration

• Automate package testing and checking when you modify it

• Generally associated with a software forge

• See usethis::use_gitlab_ci() or usethis::use_github_actions()

• You define a set of actions (e.g. tests and checks) that are run after each commit, or
before any pull/merge request (configurable)

19

https://usethis.r-lib.org/reference/ci.html
https://usethis.r-lib.org/reference/github_actions.html

Rcpp: Seamless R and C++ Integration

• See the Rcpp webpage and the introduction vignette

• C++ API to use R types and R like functions16 in C++

• Automatic export of C++ functions to R17 in particular when creating/building a pack-
age

• Expose C++ functions and classes to R18

• Conversion from C++ to R and back19

16See the “Rcpp-sugar” vignette
17See the “Rcpp-attributes” vignette
18See the “Rcpp-modules” vignette
19See the “Rcpp-extending” vignette

20

https://github.com/RcppCore/Rcpp
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-sugar.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-attributes.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-modules.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-extending.pdf

Rcpp: compilation on the fly

In convolve.cpp file

#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector convolveCpp(

NumericVector a, NumericVector b
) {

int na = a.size(), nb = b.size();
int nab = na + nb - 1;
NumericVector xab(nab);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
xab[i + j] += a[i] * b[j];

return xab;
}

Compilation on the fly in R

sourceCpp(”convolve.cpp”)
convolveCpp(x, y)

21

Rcpp in a package

• Create a Rcpp-based package template:

Rcpp::Rcpp.package.skeleton(”NewPackage”, attributes = TRUE)

• All C++ codes should be in the src sub-directory

• Add the comment // [[Rcpp::export]] before every C++ functions that should
be exported to R

• Add LinkingTo: Rcpp in DESCRIPTION file

22

Rcpp in a package

• To generate the C++ to R wrappers: devtools::load_all()20 or
devtools::build() will call Rcpp::compileAttributes()21

• The files src/RcppExports.cpp and R/RcppExports.R are automatically cre-
ated (or updated) and contain the code necessary to expose your C++ functions in
R

• You C++ code will be compiled during your package installation

20Reminder: CTRL + SHIFT + L
21or you can call it yourself

23

Rcpp in a package

• Compatible with roxygen2 doc
generation

• Rcpp::compileAttributes()
converts //' C++ doc comment
chunks to #' roxygen2 doc comment
chunks in the R/RcppExports.R file

#include <Rcpp.h>

using namespace Rcpp;

//' Do something
//' @author someone
//' @description
//' This function does something
//'
//' @param x An integer vector
//' @export
// [[Rcpp::export]]
void my_fun(IntegerVector a) {

// do something...
}

24

The Rcpp ecosystem

• RcppEigen: ‘Rcpp’ Integration for the Eigen Templated Linear Algebra Library

• RcppArmadillo: ‘Rcpp’ Integration for the Armadillo Templated Linear Algebra
Library

• RcppGSL: Rcpp Integration for GNU GSL Vectors and Matrices

• BH´: Boost C++ Header Files (“a set of libraries providing support for tasks and struc-
tures such as linear algebra, pseudo-random number generation, multi-threading,
image processing, regular expressions, and unit testing”)

• and more…

25

https://cran.r-project.org/package=RcppEigen
https://eigen.tuxfamily.org
https://cran.r-project.org/package=RcppArmadillo
http://arma.sourceforge.net/
https://cran.r-project.org/package=RcppGSL
https://www.gnu.org/software/gsl/
https://cran.r-project.org/package=BH
https://www.boost.org/

The Rcpp ecosystem

How to use the previous C++ libraries in your package ?

• Install the corresponding R package (with install.packages(”<pkg>”))

• Add LinkingTo: <pkg> in your DESCRIPTION file

• Add the comment // Rcpp::depends(<pkg>)]] when including the corre-
sponding library in your C++ code, e.g.:

#include <RcppArmadillo.h>
// Rcpp::depends(RcppArmadillo)]]

• Use the C++ corresponding library in a standard way in your C++ code

26

reticulate: R Interface to Python

CRAN page and webpage

• Calling Python from R (dedicated vignette)

library(reticulate)
scipy <- import(”scipy”)
scipy$amin(c(1,3,5,7))

• Conversion from R to Python matrix/array (dedicated vignette)

• Python code chunks in Rmarkdown (dedicated vignette])

27

https://cran.r-project.org/package=reticulate
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/arrays.html
https://rstudio.github.io/reticulate/articles/r_markdown.html

Managing Python from R

• Python Version Configuration (dedicated vignette and help page)

• Use virtual environment with reticulate::use_virtualenv()
and reticulate::use_condaenv()

28

https://rstudio.github.io/reticulate/articles/versions.html
https://rstudio.github.io/reticulate/reference/use_python.html

Using Python code in an R package

• Using reticulate in a R package (dedicated vignette)

• Configuring Python dependencies of your R package (dedicated vignette)

29

https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/python_dependencies.html

Control your R environment - renv

https://rstudio.github.io/renv/articles/renv.html

30

https://rstudio.github.io/renv/articles/renv.html

Configuring R

• References: here and here

• Configure where you install packages and from where you load packages (i.e. in
which directory on your system)

• Setup a default CRAN mirror for package installation

• Define default R objects, functions that will be available without additional file
sourcing

• Modify R global options (see the functions options() and getOption() to check
R global options)

31

https://support.rstudio.com/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://rstats.wtf/r-startup.html

.Renviron: configure the environment where R is run (1)

.Renviron = a file defining environment variables (as in bash) with the following syntax
(!!not R code!!):

Key1=value1
Key2=value2
...

To edit your .Renviron file, you can use usethis::edit_r_environ().

32

.Renviron: configure the environment where R is run (2)

• To modify the directory where packages are installed22 and loaded from23: you
can set24 R_LIBS_USER=/path/to/my/lib/dir (useful to have project-specific
package installation25)

• Define environment variables (e.g. MYVAR=5) that will be available in R (with
Sys.getenv(”MYVAR”)) or have an effect an your R code behavior

22by install.package(), devtools::install(), remotes::install_from_xxx()
23by library() or require()
24default value is ‘R_LIBS_USER=~/R/%p/%v
25to avoid package version conflict between project

33

Where storing the .Renviron file

R tries to use an .Renviron file in the following order:

• in the working directory where R is started (if existing), e.g. in your RStudio project
root directory

• in your home directory (if existing)
Note: You can modify this behavior by setting (outside of R/RStudio26) the following
environment variable: R_ENVIRON_USER=/path/to/my/.Renviron
Anyway: R has a global Renviron.site file that is read first ; using your own
.Renviron file allows you to modify the default environment defined in this file

26as in your bash environment

34

.Rprofile: configure and modify your R session

• .Rprofile = an R source file that will be run at R startup (after .Renviron was
read)

• What for ?

– define your own default R objects/functions
– write a startup message
– modify R global options
– etc.

To edit your .Rprofile file, you can use usethis::edit_r_profile().

35

.Rprofile: an example

setup a default CRAN repository
options(repos = c(CRAN = ”https://cran.rstudio.org”))

modify an option only in interactive mode
if(interactive()) {

options(width = 120)
}

Note: interactive mode = as in R console27 (in RStudio or in a terminal)

27versus script mode (like scripts run by Rscript)

36

Where storing the .Rprofile file

R tries to use an .profile file in the following order:

• in the working directory where R is started (if existing), e.g. in your RStudio project
root directory

• in your home directory (if existing)
Note: You can modify this behavior by setting (outside of R/RStudio28) the following
environment variable: R_PROFILE_USER=/path/to/my/.Renviron
Anyway: R has a global Rprofile.site file that is read first and using your own
.Rprofile file allows you to modify the default R session defined in this file.

28as in your bash environment

37

.Renviron/.Rprofile and reproducibility

Attention: you should be careful that your code is usable without your .Renviron and
.Rprofile files

• .Renviron and .Rprofile files are personal files, another user may configure its
environment differently

• Example: charging packages or modifying (global or packages) options that have
an impact on output values29 in your .Rprofile file may affect the reproducibility
of your code (i.e. the results can be different or you code can be broken without
your .Rprofile file)

29e.g. options(stringsAsFactors = FALSE)

38

