
Developing an R package: a tutorial
Going further with your R package development

Ghislain Durif and Jean-Michel Marin
January 2023
Laboratory of Biology and Modeling of the Cell (LBMC), ENS Lyon, France and CNRS – Institut Montpelliérain
Alexander Grothendieck (IMAG), University of Montpellier

Getting started

2

Additional R packages to help you create R packages

• testthat: to implement automatic tests of your functions

• remotes: to install package from anywhere (integrated in devtools)

• rmarkdown and knitr: to create detailed documentation materials and
notebooks (code showcase)

• pkgdown to create a website for your package

3

https://testthat.r-lib.org/
https://remotes.r-lib.org
https://rmarkdown.rstudio.com
https://yihui.org/knitr
https://pkgdown.r-lib.org/

Additional references regarding R programming

• Hadley Wickham book: Advanced R (web version and sources)

4

http://had.co.nz/
https://adv-r.hadley.nz
https://github.com/hadley/adv-r

Digression: Good practice for
software development and
programming (not just in R)

5

Good practice (1)

• The code should be human readable1 and easily understandable (use
comments, code presentation and formatting)

• Experiment: read your (5 weeks/months/years) old codes, are you sure that
you will understand it? (worst with code written by others)

• Use a versioning system (e.g. git) to manage your code evolution/version
and for collaborative development

1being machine readable is necessary for the code to work but not sufficient
6

https://git-scm.com/book/

Good practice (2)

• Implement automatic tests (e.g. unit tests) for each new
function/module/etc. (and not afterward) to verify your implementation
and results and avoid breaking your code2

• Use continuous integration3: to automatically run build, check, tests as
your package development progresses (e.g. commit after commit if you are
using a versioning system like git)

2never trust yourself, you will implement bugs
3software forge offers such service like gitlab CI/CD or github actions

7

https://docs.gitlab.com/ee/ci/
https://github.com/features/actions

Good practice (3)

• Write a documentation for your code/package/library, including explained
code showcases/demos

• Publish your source codes (preferably on a software forge), so that other
can continue your work, especially when you move on to other projects,
carreer path

• Archive your source codes (because your software forge or webpage can
disappear)

8

Software forge (1)

An online server and/or website offering code/software development and
management functionality

• versioning
• collaborative work and planning
• issue, feedback, bug reports, feature requests
• software release/publication
• continuous integration
• possibility to get a publication identification like a DOI4
• etc.

4eventually externally with Zenodo, c.f. later
9

https://zenodo.org/

Software forge (2)

Examples of software forge

• gitlab: free and open-source git forge hosting software (different
hosts are available: in the academic world5 or abroad6)

• github: very popular7 git forge with gratis and commercial solutions to
host development projects (maybe more simple to reach outside the french
academic community)

• other: bitbucket

Discontinued forges: gitorious, Google code, Inria Gforge (It happens!)

5e.g. https://plmlab.math.cnrs.fr, https://gitlab.inria.fr, etc.
6e.g. https://gitlab.com
7but owned by Microsoft 10

https://github.com
https://bitbucket.org
https://plmlab.math.cnrs.fr
https://gitlab.inria.fr
https://gitlab.com

Archive your code (publication ̸= archiving)

• What happens if your software forge (or the webpage where you host your
code) disappear ?

• The Software Heritage initiative
• “Our ambition is to collect, preserve, and share all software that is publicly

available in source code form. On this foundation, a wealth of applications
can be built, ranging from cultural heritage to industry and research.”

• Simple deposit procedure from a software forge8

8See https://archive.softwareheritage.org/save/

11

https://www.softwareheritage.org
https://archive.softwareheritage.org/save/

Get a DOI for your code with Zenodo

• a DOI9 to facilitate your software identification and citation (e.g. in
publication using it)

• Upload your codes to Zenodo and get a unique DOI for the current version
(possible integration with github to directly generate identification for the
different versions of your code)

• Possible to identify codes, datasets, creative contents

• More at https://help.zenodo.org/features/ and in the FAQ

9Digital Object Identifier
12

https://zenodo.org/
https://help.zenodo.org/features/
https://help.zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier

Sharing (your code) is caring

13

Publish and distribute your package

• Others can use your work, collaborate with you to improve it (collaborative
development)

• Many repositories: the CRAN (official), bioconductor
(bioinformatics-oriented package repository)

• the remotes package (exported by devtools) can be used to install
packages stored almost anywhere on the Internet (CRAN, bioconductor,
git forges, etc.) or locally

14

https://cran.r-project.org/
https://www.bioconductor.org/
https://remotes.r-lib.org/

CRAN

• Strict policy to accept a package (READ IT!)

• Pipeline
1. devtools::build() (or R CMD build)
2. devtools::check() (or R CMD check --as-cran)
3. upload it10 to https://cran.r-project.org/submit.html

• devtools::release() can help you to prepare the release (i.e. the version
of your package that will be publish)

10in bundle state
15

https://cran.r-project.org/web/packages/policies.html
https://devtools.r-lib.org//reference/build.html
https://devtools.r-lib.org//reference/check.html
https://cran.r-project.org/submit.html
https://devtools.r-lib.org//reference/release.html

Reverse dependencies

• Important: if you are releasing a new version of existing package, it is your
responsibility to check that it does not break downstream dependencies11

(i.e. all packages that list your package in the Depends, Imports,
Suggests or LinkingTo fields)

• usethis::use_revdep() to enable the revdepcheck package that can
help you in that task

11called “reverse dependencies”
16

https://usethis.r-lib.org/reference/use_revdep.html
https://r-lib.github.io/revdepcheck/

git

• versioning system: see the official website and the book
• manage evolution of your code
• branch-base system for production/development code cohabitation
• decentralized system: if you lose your remote, you do not lose the project

history
• easy to distribute (with git clone) and to move from remote to remote

• Command line tool or possible to manage everything from R/Rstudio:
• usethis::use_git() to initialize a repository in your project
• Git panel in Rstudio to manage your local repository and interact with

remote (ssh key generation, etc.)

• More detail at https://r-pkgs.org/git.html
17

https://git-scm.com/
https://git-scm.com/book/
https://usethis.r-lib.org/reference/use_git.html
https://r-pkgs.org/git.html

Distribute your package on a git repository

To install packages hosted on:

• github: remotes::install_github()
• any git forge: remotes::install_git()

Possibility to specify the branch, the sub-directory where to find the package, etc.

remotes::install_github("RcppCore/Rcpp")

remotes::install_git(
"https://github.com/getkeops/keops",
subdir = "rkeops", branch = "dev", args="--recursive"

)

18

https://remotes.r-lib.org/reference/install_github.html
https://remotes.r-lib.org/reference/install_git.html

Organize your package project

• Package root directory = Rstudio project/git repository root directory
(default behavior when using usethis::create_package() or Rstudio
new project package)

• The package root directory is a sub-directory of the Rstudio project/git
repository

• you can specify the path to your package directory to devtools functions
• Rstudio project setup: Tools - Project Options - Build tools - Package

directory

19

Advanced documentation

20

Writing a “vignette”

• A document12 presenting/detailing your package (or a functionality in your
package), included in the package (and visible on CRAN)

• Written in a markup language: Rmarkdown13 to integrate R code chunks, or
LaTeX or Markdown

• To create a vignette: usethis::use_vignette("my-vignette")

• Possible to write multiple vignettes (e.g. Rcpp package)

• Rendering (in pdf/html/etc.) with the package knitr

12See https://r-pkgs.org/vignettes.html
13See also this cheat sheet

21

https://rmarkdown.rstudio.com/
https://cran.r-project.org/package=Rcpp
https://yihui.org/knitr
https://r-pkgs.org/vignettes.html
https://raw.githubusercontent.com/rstudio/cheatsheets/master/rmarkdown-2.0.pdf

Create a website

• Create and build a standardized website for your package with pkgdown14

• Hostable on Github or Gitlab pages, or on your own webpage

• To create the website template: usethis::use_pkgdown()

• To build the website15 (e.g. generate the HTML source):
pkgdown::build_site()

• More details in the pkgdown vignette
14See also https://github.com/r-lib/pkgdown
15README.md become the homepage, man documentation are used to generate function
references, and vignettes are rendered into articles 22

https://pkgdown.r-lib.org/
https://cran.r-project.org/web/packages/pkgdown/vignettes/pkgdown.html
https://github.com/r-lib/pkgdown

Continuous Integration

• Automate package testing and checking when you modify it

• Generally associated with a software forge

• See usethis::use_gitlab_ci() or usethis::use_github_actions()

• You define a set of actions (e.g. tests and checks) that are run after each
commit, or before any pull/merge request (configurable)

23

https://usethis.r-lib.org/reference/ci.html
https://usethis.r-lib.org/reference/github_actions.html

Non R code

24

Rcpp: Seamless R and C++ Integration

• See the Rcpp webpage and the introduction vignette

• C++ API to use R types and R like functions16 in C++

• Automatic export of C++ functions to R17 in particular when
creating/building a package

• Expose C++ functions and classes to R18

• Conversion from C++ to R and back19

16See the “Rcpp-sugar” vignette
17See the “Rcpp-attributes” vignette
18See the “Rcpp-modules” vignette
19See the “Rcpp-extending” vignette

25

https://github.com/RcppCore/Rcpp
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-sugar.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-attributes.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-modules.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-extending.pdf

Rcpp: compilation on the fly

In convolve.cpp file:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector convolveCpp(

NumericVector a, NumericVector b
) {

int na = a.size(), nb = b.size();
int nab = na + nb - 1;
NumericVector xab(nab);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
xab[i + j] += a[i] * b[j];

return xab;
}

Compilation on the fly in R:

sourceCpp("convolve.cpp")
convolveCpp(x, y)

26

Rcpp in a package (1)

• Create a Rcpp-based package template:

Rcpp::Rcpp.package.skeleton("NewPackage", attributes = TRUE)

• All C++ codes should be in the src sub-directory

• Add the comment // [[Rcpp::export]] before every C++ functions that
should be exported to R

• Add LinkingTo: Rcpp in DESCRIPTION file

27

Rcpp in a package (2)

• To generate the C++ to R wrappers: devtools::load_all()20 or
devtools::build() will call Rcpp::compileAttributes()21

• The files src/RcppExports.cpp and R/RcppExports.R are automatically
created (or updated) and contain the code necessary to expose your C++
functions in R

• You C++ code will be compiled during your package installation

20Reminder: CTRL + SHIFT + L
21or you can call it yourself

28

Rcpp in a package (3)

• Compatible with roxygen2 doc
generation

• Rcpp::compileAttributes()
converts //' C++ doc comment
chunks to #' roxygen2 doc
comment chunks in the
R/RcppExports.R file

#include <Rcpp.h>

using namespace Rcpp;

//' Do something
//' @author someone
//' @description
//' This function does something
//'
//' @param x An integer vector
//' @export
// [[Rcpp::export]]
void my_fun(IntegerVector a) {

// do something...
}

29

The Rcpp ecosystem (1)

• RcppEigen: ‘Rcpp’ Integration for the Eigen Templated Linear Algebra
Library

• RcppArmadillo: ‘Rcpp’ Integration for the Armadillo Templated Linear
Algebra Library

• RcppGSL: Rcpp Integration for GNU GSL Vectors and Matrices

• BH´: Boost C++ Header Files (“a set of libraries providing support for tasks
and structures such as linear algebra, pseudo-random number generation,
multi-threading, image processing, regular expressions, and unit testing”)

• and more…
30

https://cran.r-project.org/package=RcppEigen
https://eigen.tuxfamily.org
https://cran.r-project.org/package=RcppArmadillo
http://arma.sourceforge.net/
https://cran.r-project.org/package=RcppGSL
https://www.gnu.org/software/gsl/
https://cran.r-project.org/package=BH
https://www.boost.org/

The Rcpp ecosystem (2)

How to use the previous C++ libraries in your package ?

1. Install the corresponding R package (with install.packages("<pkg>"))

2. Add LinkingTo: <pkg> in your DESCRIPTION file

3. Add the comment // Rcpp::depends(<pkg>)]] when including the
corresponding library in your C++ code, e.g.:

#include <RcppArmadillo.h>
// Rcpp::depends(RcppArmadillo)]]

4. Use the C++ corresponding library in a standard way in your C++ code
31

reticulate: R Interface to Python

CRAN page and webpage

• Calling Python from R (dedicated vignette)

library(reticulate)
scipy <- import("scipy")
scipy$amin(c(1,3,5,7))

• Conversion from R to Python matrix/array (dedicated vignette)

• Python code chunks in Rmarkdown (dedicated vignette])

32

https://cran.r-project.org/package=reticulate
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/arrays.html
https://rstudio.github.io/reticulate/articles/r_markdown.html

Managing Python from R

• Python Version Configuration (dedicated vignette and help page)

• Use virtual environment with reticulate::use_virtualenv() and
reticulate::use_condaenv()

33

https://rstudio.github.io/reticulate/articles/versions.html
https://rstudio.github.io/reticulate/reference/use_python.html

Using Python code in an R package

• Using reticulate in a R package (dedicated vignette)

• Configuring Python dependencies of your R package (dedicated vignette)

34

https://rstudio.github.io/reticulate/articles/package.html
https://rstudio.github.io/reticulate/articles/python_dependencies.html

Control your R environment

35

renv

https://rstudio.github.io/renv/articles/renv.html

36

https://rstudio.github.io/renv/articles/renv.html

packrat

https://github.com/rstudio/packrat/

https://rstudio.github.io/packrat/

37

https://github.com/rstudio/packrat/
https://rstudio.github.io/packrat/

Configuring R

• References: here and here

• Configure where you install packages and from where you load packages
(i.e. in which directory on your system)

• Setup a default CRAN mirror for package installation

• Define default R objects, functions that will be available without additional
file sourcing

• Modify R global options (see the functions options() and getOption() to
check R global options)

38

https://support.rstudio.com/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://rstats.wtf/r-startup.html

.Renviron: configure the environment where R is run (1)

.Renviron = a file defining environment variables (as in bash) with the
following syntax (!!not R code!!):

Key1=value1
Key2=value2
...

To edit your .Renviron file, you can use usethis::edit_r_environ().

39

.Renviron: configure the environment where R is run (2)

• To modify the directory where packages are installed22 and loaded from23:
you can set24 R_LIBS_USER=/path/to/my/lib/dir (useful to have
project-specific package installation25)

• Define environment variables (e.g. MYVAR=5) that will be available in R
(with Sys.getenv("MYVAR")) or have an effect an your R code behavior

22by install.package(), devtools::install(), remotes::install_from_xxx()
23by library() or require()
24default value is ‘R_LIBS_USER=~/R/%p/%v
25to avoid package version conflict between project

40

Where storing the .Renviron file

R tries to use an .Renviron file in the following order:

1. in the working directory where R is started (if existing), e.g. in your RStudio
project root directory

2. in your home directory (if existing)

Note: You can modify this behavior by setting (outside of R/RStudio26) the
following environment variable: R_ENVIRON_USER=/path/to/my/.Renviron

Anyway: R has a global Renviron.site file that is read first. Using your own
.Renviron file allows you to modify the default environment defined in this file.
26as in your bash environment

41

.Rprofile: configure and modify your R session

• .Rprofile = an R source file that will be run at R startup (after
.Renviron was read)

• What for ?
• define your own default R objects/functions
• write a startup message
• modify R global options
• etc.

To edit your .Rprofile file, you can use usethis::edit_r_profile().

42

.Rprofile: an example

setup a default CRAN repository
options(repos = c(CRAN = "https://cran.rstudio.org"))

modify an option only in interactive mode
if(interactive()) {

options(width = 120)
}

Note: interactive mode = as in R console27 (in RStudio or in a terminal)

27versus script mode (like scripts run by Rscript)
43

Where storing the .Rprofile file

R tries to use an .profile file in the following order:

1. in the working directory where R is started (if existing), e.g. in your RStudio
project root directory

2. in your home directory (if existing)

Note: You can modify this behavior by setting (outside of R/RStudio28) the
following environment variable: R_PROFILE_USER=/path/to/my/.Renviron

Anyway: R has a global Rprofile.site file that is read first and using your
own .Rprofile file allows you to modify the default R session defined in this file.

28as in your bash environment
44

.Renviron/.Rprofile and reproducibility

Attention: you should be careful that your code is usable without your
.Renviron and .Rprofile files

• .Renviron and .Rprofile files are personal files, another user may
configure its environment differently

• Example: charging packages or modifying (global or packages) options that
have an impact on output values29 in your .Rprofile file may affect the
reproducibility of your code (i.e. the results can be different or you code can
be broken without your .Rprofile file)

29e.g. options(stringsAsFactors = FALSE)

45

	Getting started
	Digression: Good practice for software development and programming (not just in R)
	Sharing (your code) is caring
	Advanced documentation
	Non R code
	Control your R environment

