
Developing an R package - Tutorial - Slides totaly inspired
from those of Ghislain Durif
https://github.com/gdurif/devRpkg
R Programming - HAX815X

Jean-Michel Marin

February 2025

Faculty of Sciences, University of Montpellier

https://github.com/gdurif/devRpkg

Getting started - R packages to help you create R packages

• usethis: to automate package and project creation/configuration/setup

• devtools: complete collection of development tools

• roxygen2: to document your code and generate help pages

• lintr to review your code (“adherence to a given style, syntax errors and possible
semantic issues”)

2

https://usethis.r-lib.org
https://devtools.r-lib.org
https://roxygen2.r-lib.org
https://cran.r-project.org/package=lintr

Getting started - Note

• If you are not working from Rstudio, you will not benefit from all its functionality
but it is possible to do everything from the R command line

• In R: pkg::fun() refers to the function fun() defined in the package pkg

3

Getting started - Setup your environment

• install R packages providing development tools1: devtools, usethis, roxygen2,
lintr

install.packages(c(”devtools”, ”usethis”, ”roxygen2”, ”lintr”))

• for a more complete setup: see https://r-pkgs.org/setup.html

1devtools may require to install additional system libraries depending on your OS, a quick search on
the web will help you if you encounter any error.

4

https://r-pkgs.org/setup.html

Getting started - Create a package

• Initialize a package template:

usethis::create_package(”mypkg”)

• Directly from Rstudio (equivalent): File - New Project - New directory - R package

• Attention: if you want to initialize an R package without initializing an Rstudio
project2, use:

usethis::create_package(”mypkg1”, rstudio = FALSE, open = FALSE)

2e.g. because you want to create your package in an existing Rstudio project, or you don’t use Rstudio

5

Getting started - Rstudio project

• Project specific configuration, workspace, history

• Isolated R environment for the project

• RStudio project management feature (e.g. git management)

6

Getting started - The old-fashion built-in R function to create package

(for more advanced users)

two functions and two ”data sets” :
f <- function(x, y) x+y
g <- function(x, y) x-y
d <- data.frame(a = 1, b = 2)
e <- rnorm(1000)
automatically ”fill” the package
package.skeleton(list = c(”f”,”g”,”d”,”e”), name = ”mypkg2”)

Attention: using package.skeleton() creates a package that is not ready “out-of-the-
box”, you will have to edit and fix the help pages (e.g. by using roxygen2, c.f. later).

7

Getting started - Naming your package

• three formal requirements:

– The name can only consist of letters, numbers, and periods, i.e., ..
– It must start with a letter
– It cannot end with a period

• Advice: use a catchy name or acronym with a link to your package functionality

• Check if the name you chose is not already used to name a package with the
available package

8

https://cran.r-project.org/package=available

Getting started - Always choose a license!

• It governs the possibility to use, modify or redistribute a software

• It helps to identify clear authorship/copyright3

• Without a license: fuzzy and unclear (generally “all rights reserved” but you are
never sure4)

3depending on legal consideration, varying from one country to another
4”Was it forgotten or a deliberate choice?”

9

Getting started - Different types of license

• Use a software-specific license for software and a content-specific license for data5

• Recommandation: favor free6 and open-source licenses (versus proprietary or
closed licenses), either permissive or with copyleft

5e.g. Creative Commons license are for contents and not for software
6as in ”libre” and not as in ”gratis” (proprietary software can be gratis)

10

https://creativecommons.org/licenses/

Getting started - How to choose a license?

See functionsusethis::use_XX_license()7 from the usethis package

Additional resources on software license:

• https://choosealicense.com
• https://opensource.org/licenses
• https://www.gnu.org/licenses/license-list.en.html

7e.g. use_mit_license() or use_gpl_license()

11

https://usethis.r-lib.org/reference/licenses.html
https://choosealicense.com
https://opensource.org/licenses
https://www.gnu.org/licenses/license-list.en.html

R package structure - Files and sub-directories

Empty package:

mypkg
+-- DESCRIPTION
+-- NAMESPACE
+-- R

+-- (empty)

More complete package:

mypkg2
+-- data
| +-- d.rda
| +-- e.rda
+-- DESCRIPTION
+-- man
| +-- d.Rd
| +-- e.Rd
| +-- f.Rd
| +-- g.Rd
| +-- mypkg2-package.Rd
+-- NAMESPACE
+-- R

+-- f.R
+-- g.R

12

R package structure - Files and sub-directories

• Meta-data files: DESCRIPTION and NAMESPACE (c.f. later)

• R sub-directory: where to store R source files implementing the function included
in your package

• man sub-directory: where to store the mandatory help pages

• src sub-directory (optional): where to store code to be compiled (written in other
languages, not in R) included in your package

• data sub-directory (optional): where to store data files attached to your package

13

R package structure - R source code

The R sub-directory:

• Write your code as functions
• Save your code implementing functions in R source code files8

• Group related functions in the same file
• Create and edit source code files manually or with usethis::use_r(”name”)
• See R code formatting convention
• Check your code formatting with the lintr package and lintr::lint_package()

8with .R extension

14

https://usethis.r-lib.org/reference/use_r.html
https://style.tidyverse.org/index.html
https://cran.r-project.org/web/packages/lintr/readme/README.html

R package structure - R source code

Debugging-friendly advice:

• Avoid very long functions (split long functions into several shorter ones)

• Factorize re-used code into specific functions (avoid copying-pasting chunk of
codes several time)

15

R package structure - From R scripts to R functions

Scripting

data
a = 7
b = 3
intermediate operations
tmp1 = 2 * a
tmp2 = b / 6
final computations
c = tmp1 + tmp2

Objective: simplify your code by “hiding”
intermediate steps into a function

Implementing functions in your package

myFun <- function(x, y) {
tmp1 = 2 * x
tmp2 = y / 6
return(tmp1 + tmp2)

}

In a script using your package

library(mypkg)
data
a = 7 ; b = 3
computations
c = myFun(a,b) ; d = myFun(10, 3)

16

R package structure - Meta-data files

• DESCRIPTION: a structured text file giving information about your package (title,
description, authors, license, dependencies, etc.)

• NAMESPACE: a text file indicating9 names of R objects (functions, datasets) that are
imported in your package (from other packages), and/or exported by your package
(to be usable when you install your package)

9and/or the name of the dynamic library related to compiled codes to be used in your package if
relevant

17

https://r-pkgs.org/description.html#pkg-description
https://r-pkgs.org/description.html#author
https://r-pkgs.org/description.html#description-license
https://r-pkgs.org/description.html#dependencies

R package structure - DESCRIPTION file

• Can be edited manually, or created and modified with
usethis::use_description() and other usethis::use_XXX()

• Setup your package requirements and dependencies (c.f. later)

• More details at https://r-pkgs.org/description.html

• Important: package versioning

18

https://usethis.r-lib.org/reference/use_description.html
https://usethis.r-lib.org/reference/index.html
https://r-pkgs.org/description.html
https://semver.org/

R package structure - DESCRIPTION file

Package: mypkg
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:

person(given = ”First”,
family = ”Last”,
role = c(”aut”, ”cre”),
email = ”first.last@example.com”,
comment = c(ORCID = ”YOUR-ORCID-ID”))

Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()`
or friends to pick a license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.1

19

R package structure - NAMESPACE file

Can be created with usethis::use_namespace(), or edited manually, or (better) au-
tomatically updated thanks to roxygen2 inline documentation (c.f. later)

Example

Generated by roxygen2: do not edit by hand

importFrom(stats, runif)
export(my_function)

20

https://usethis.r-lib.org/reference/use_namespace.html
https://roxygen2.r-lib.org/articles/namespace.html

R package structure - Data in your package

• Binary R data file (.Rda or .Rdata file) can be stored in the data sub-directory

• Raw data can be stored in the inst sub-directory and found after installation with
the system.file() function10 (important: you do not need to search for the inst
sub-directory, just anything in it)

system.file(filename, package = ”mypkg”)
system.file(dirname, package = ”mypkg”)
system.file(package = ”mypkg”) # package root directory

• More at https://r-pkgs.org/data.html

10any other file or sub-directory shipped with a package can be found likewise

21

https://r-pkgs.org/data.html

R package structure - help/man pages

• Available with the R commands ?function_name (e.g. ?rnorm) or help(function_name)

• Content:

– usage description and functioning details
– input arguments and return value description
– function authorship
– link to related functions
– bibliographic reference
– minimum working examples

• Encoded in .Rd files in the man sub-directory: structured text files with a specific
syntax

22

R package structure - Document your code and generate help page at once

• Avoid creating and editing .Rd file manually (laborious)

• Good practice: DOCUMENT YOUR CODE (with inline comments) for other and YOUR
FUTURE SELF

• Inline code documentation with roxygen2 based on tags identified with @

23

https://roxygen2.r-lib.org

R package structure - Document your code and your package with roxygen2

Inline code documentation (identified with
#' comment characters)

#' Add together two numbers
#'
#' @param x A number
#' @param y A number
#' @return The sum of \code{x} and \code{y}
#' @author Anonymous
#' @examples
#' add(1, 1)
#' add(10, 1)
#' @export
add <- function(x, y) {
x + y

}

Corresponding .Rd file
% Generated by roxygen2 (3.2.0): do not edit by hand
\name{add}
\alias{add}
\title{Add together two numbers}
\usage{
add(x, y)
}
\arguments{

\item{x}{A number}

\item{y}{A number}
}
\value{
The sum of \code{x} and \code{y}
}
\description{
Add together two numbers
}
\examples{
add(1, 1)
add(10, 1)
}

24

R package structure - Document your code and your package with roxygen2

• Generate themanpages (and update NAMESPACE file) with devtools::document()
or in Rstudio interface (Build panel - More - Document11)

• Identify exported functions12 with the tag @export (automatically added to the
NAMESPACE file)

• Identify imported functions13 with the tag @importFrom package function (au-
tomatically added to the NAMESPACE file)

11keyboard shortcut: CTRL + SHIFT + D
12your functions that will be available to users
13functions from other packages that you use

25

https://devtools.r-lib.org/reference/document.html

R package structure - Document your code and your package with roxygen2

More complete example

#' A function to do some stuff
#' @description
#' Do some stuff
#' @details
#' I do the stuff in a complicated way.
#' @param x A number
#' @param y A number
#' @return what the function is returning
#' @author Someone
#' @importFrom stats rnorm
#' @seealso [mypkg::my_other_fun()]
#' @examples
#' add(1, 1)
#' add(10, 1)
#' @export
my_fun <- function(x, y) {

tmp = rnorm(7)
...

}

Tips

• add Roxygen: list(markdown = TRUE) to the
DESCRIPTION file to use markdown syntax in
documentation chunks or run
usethis::use_roxygen_md() (possible
conversion from existing standard roxygen2
syntax with roxygen2md package)

• internal functions (only used by other functions in
your package, and not to be available for users) can
be tagged with @keywords internal and (and
without @export tag)

26

https://usethis.r-lib.org/reference/use_roxygen_md.html
https://roxygen2md.r-lib.org

Document your code and your package with roxygen2 (5)

References

• More details at https://r-pkgs.org/man.html
• roxygen2 cheat sheet
• Help to format your documentation chunks at
https://roxygen2.r-lib.org/articles/rd-formatting.html and
https://roxygen2.r-lib.org/articles/rd.html

27

https://r-pkgs.org/man.html
https://roxygen2.r-lib.org/articles/formatting.html
https://roxygen2.r-lib.org/articles/rd-formatting.html
https://roxygen2.r-lib.org/articles/rd.html

Manage your dependencies (1)

Several fields in the DESCRIPTION file:

• Depends: R (>= 3.1.0): the minimal R version required by your package

• Imports: ...: packages (with optional minimal versions) required for your package to work

• Suggests: ... (optional): additional packages (with optional minimal versions) that are not
necessary for your package to work but that would improve the user experience with your package

• Additional (optional) fields: LinkingTo (useful if external codes needs to be compiled
and linked against external library), OS_type: unix (to specify which OS are supported14),
SystemRequirements: C++11 (to specify additional external system requirements15)

14here it means that Windows is not supported
15here a C++ compiler compatible with C++11 standard

28

Manage your dependencies (2)

Example

Depends: R (>= 3.1.0)
LinkingTo:

Rcpp (>= 1.0.1),
RcppEigen (>= 0.3.3.5)

Imports:
Rcpp (>= 1.0.1),
openssl

Suggests:
testthat (>= 2.1.0)

SystemRequirements: C++11

29

Manage your dependencies (3)

• usethis::use_package() to update Imports or Suggests fields

• More details at https://r-pkgs.org/description.html#dependencies

30

https://usethis.r-lib.org/reference/use_package.html
https://r-pkgs.org/description.html#dependencies

Manage your dependencies (4)

Imported objects (functions, dataset) should be declared in the NAMESPACE file

→ automatically manage thanks to roxygen2

31

Other (optional) files and sub-directories (1)

• README16, LICENSE (depending on the license your choose), COPYRIGHT (to detail
authorship, copyright associated to the package content)

• src: source codes to be compiled (c.f. later)

• inst to store additional files (e.g. required for tests, vignettes, etc.), raw data, etc.

• tests to write automatic tests (c.f. later)

16possible format: .md or .Rmd (Rmarkdown), see usethis::use_readme_md() or
usethis::use_readme_rmd()

32

https://r-pkgs.org/src.html
https://r-pkgs.org/inst.html
https://r-pkgs.org/tests.html
https://usethis.r-lib.org/reference/use_readme_rmd.html
https://usethis.r-lib.org/reference/use_readme_rmd.html

Other (optional) files and sub-directories (2)

• More details at https://r-pkgs.org/misc.html

• Non-standard files can be present in your project but not shipped in your package:
you should create a .Rbuildignore file

33

https://r-pkgs.org/misc.html
https://r-pkgs.org/package-structure-state.html#rbuildignore

Workflow - Package state

• source: what you are writing
• bundled: a single-file compressed version containing your package source (how
package are shipped by the CRAN for installation)

• binary: a single-file binary version of your package containing compiled library (if
relevant), mainly used by the CRAN to ship package for installation on Windows

• installed: available as a library on your system, i.e. the package files and sub-
directories (along with library files if compilation was needed) have been copied
somewhere on your computer

• in-memory: loaded and ready to use (after calling library(mypkg))

34

Workflow - Dev workflow (building and installing a package)

Ref: https://r-pkgs.org/package-structure-state.html

35

https://r-pkgs.org/package-structure-state.html

Workflow - Dev workflow (loading a package)

Ref: https://r-pkgs.org/workflows101.html#load-all

36

https://r-pkgs.org/workflows101.html#load-all

load

Load your package for a test drive (manual test) without building/installing it

• devtools::load_all()

• in Rstudio interface (Build panel - More - Load all17)

Development cycle: write code, test it, correct your code, test it, etc.

17keyboard shortcut: CTRL + SHIFT + L

37

https://devtools.r-lib.org/reference/load_all.html

document (reminder)

Generate the man pages (and update NAMESPACE file)

• devtools::document()

• in Rstudio interface (Build panel More - Document18)

18keyboard shortcut: CTRL + SHIFT + D

38

https://devtools.r-lib.org/reference/document.html

build

Prepare your package for installation (and distribution)

• devtools::build()

• in Rstudio interface (Build panel - More - “Build source package”)

• R built-in shell command line tool19: R CMD build mypkg

• Create a .tar.gz archive files containing the sources (or a .zip file if you use
“Build binary package”) ready for installation

19R.exe on Windows

39

https://devtools.r-lib.org/reference/build.html

check

Verify that your package is functional and that your package structure is correct

• devtools::check()

• in Rstudio interface (Build panel - Check)

• R built-in shell command line tool20: R CMD check mypkg_1.0.0.tag.gz

• Verbose output: often clearly identify problems (and suggest fixes)

• More details at https://r-pkgs.org/r-cmd-check.html

20R.exe on Windows

40

https://devtools.r-lib.org/reference/check.html
https://r-pkgs.org/r-cmd-check.html

usethis (exhaustive tour)

See https://usethis.r-lib.org/reference/index.html

Possible to write every files manually for more advanced users

41

https://usethis.r-lib.org/reference/index.html

devtools (exhaustive tour)

See https://devtools.r-lib.org/reference/index.html

(devtools exports several functions from other development-oriented packages)

42

https://devtools.r-lib.org/reference/index.html

