Quantum Field Theory, problem sheet 8

Solutions to be discussed on $29 / 11 / 2023$.

Problem 1: Feynman parameters

Prove the following identities ($A \neq 0$ and $B \neq 0$ are real constants):
1.

$$
\frac{1}{A B}=\int_{0}^{1} \mathrm{~d} x \frac{1}{(x A+(1-x) B)^{2}}
$$

2.

$$
\frac{1}{A^{n} B}=\int_{0}^{1} \mathrm{~d} x \frac{n x^{n-1}}{(x A+(1-x) B)^{n+1}}
$$

3.

$$
\frac{1}{A_{1} \cdots A_{n}}=\int_{0}^{1} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{n} \delta\left(1-x_{1}-\ldots-x_{n}\right) \frac{(n-1)!}{\left(x_{1} A_{1}+\ldots+x_{n} A_{n}\right)^{n}}
$$

Problem 2: The path integral and the semiclassical limit

We reinstate \hbar for this exercise and work with the Wick-rotated Euclidean generating functional

$$
Z_{E}[J]=N \int \mathcal{D} \phi e^{-\frac{1}{\hbar} S_{E}[\phi, J]}
$$

where N is a normalisation constant, S_{E} is the Euclidean action

$$
S_{E}[\phi, J]=\int \mathrm{d}^{4} x\left(\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}+V_{\mathrm{int}}(\phi)-J \phi\right),
$$

and the path integral measure is normalised as $\mathcal{D} \phi=\prod_{i} \frac{\mathrm{~d} \phi_{i}}{\sqrt{2 \pi \hbar}}$.

1. State the classical equation of motion for ϕ in the presence of a source J.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$with a minimum at x_{0}. Assume that $f(x)$ increases sufficiently steeply at $x \rightarrow \pm \infty$. Demonstrate the saddle point approximation:

$$
\int_{-\infty}^{\infty} \mathrm{d} x e^{-f(x)} \approx e^{-f\left(x_{0}\right)} \sqrt{\frac{2 \pi}{f^{\prime \prime}\left(x_{0}\right)}}
$$

3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$with a minimum at x_{0}. Assume that $f(x)$ increases sufficiently steeply at $|x| \rightarrow \infty$. Use the result of Ex. 4.2 .3 to show that

$$
\int \mathrm{d}^{n} x e^{-f(x)} \approx e^{-f\left(x_{0}\right)} \sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} H_{f}\left(x_{0}\right)}}
$$

where H_{f} is the Hessian matrix of $f,\left(H_{f}\right)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.
4. Apply this approximation to the generating functional $Z_{E}[J]$. By boldly generalising your previous result to functional calculus in infinitely many dimensions, prove the formal identity

$$
Z_{E}[J]=N \exp \left(-\frac{1}{\hbar}\left(S_{E}\left[\phi_{0}, J\right]+\frac{\hbar}{2} \operatorname{Tr} \log \left(-\square_{E}+m^{2}+V_{\text {int }}^{\prime \prime}\left(\phi_{0}\right)\right)+\mathcal{O}\left(\hbar^{2}\right)\right)\right)
$$

where ϕ_{0} obeys the classical equation of motion (and therefore implicitly depends on J), $\square_{E} \equiv \partial_{t}^{2}+\nabla^{2}$, and the trace Tr of an operator with a continous spectrum is defined to be the integral over its eigenvalues (which is generally divergent and requires some regularisation, hence "formal identity").

We now specialise to the case $V_{\text {int }}(\phi)=\frac{\lambda}{24} \phi^{4}$.
5. Expanding ϕ_{0} in powers of λ,

$$
\phi_{0}=\phi^{(0)}+\lambda \phi^{(1)}+\mathcal{O}\left(\lambda^{2}\right),
$$

show that

$$
\phi^{(0)}(x)=\int \mathrm{d}^{4} y D(x-y) J(y)
$$

where $D(x-y)$ is a Green function of the Wick-rotated Klein-Gordon operator, $\left(-\square_{E}+m^{2}\right) D(x-y)=\delta^{4}(x-y)$.
6. Use this result to show that
$\phi^{(1)}(x)=-\frac{1}{6} \int \mathrm{~d}^{4} y \mathrm{~d}^{4} u \mathrm{~d}^{4} v \mathrm{~d}^{4} w D(x-y) D(y-u) D(y-v) D(y-w) J(u) J(v) J(w)$.
7. Show that

$$
S_{E}\left[\phi_{0}, J\right]=\int \mathrm{d}^{4} x\left(-\frac{\lambda}{24} \phi_{0}^{4}-\frac{1}{2} J \phi_{0}\right) .
$$

Thus, using the results of 5. and 6., calculate the connected part of the fourpoint function $\langle 0| \mathrm{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle_{c}$ to leading order in \hbar. Finally, calculate its Fourier transform
$G_{E}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4} e^{-i \sum_{k=1}^{4} x_{k} p_{k}}\langle 0| \mathrm{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle_{c}$
and read off the leading contribution to the $\phi \phi \rightarrow \phi \phi$ scattering amplitude, using the LSZ formula.

