QUANTUM FIELD THEORY, PROBLEM SHEET 7

Solutions to be discussed on 22/11/2023.

Problem 1: Feynman diagrams

For ϕ^4 theory:

- 1. Find all connected Feynman diagrams contributing to the four-point function at $\mathcal{O}(\lambda^2)$ and determine their symmetry factors.
- 2. Repeat this exercice for the six-point function at $\mathcal{O}(\lambda^2)$.
- 3. State the algebraic expression in momentum space which corresponds to the following Feynman diagram (without evaluating the integrals)

An even simpler quantum field theory is ϕ^3 theory: $\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{\mu}{6} \phi^3$. It is problematic because its Hamiltonian is not bounded from below, but this is not visible in perturbation theory, so one may still formally construct its *n*-point functions perturbatively.

4. Find the Feynman rules for ϕ^3 theory, draw the connected Feynman diagrams contributing to the 1-point, 2-point and 3-point functions at $\mathcal{O}(\mu^2)$, and determine their symmetry factors.

Problem 2: Counterterms in ϕ^4 theory

The Lagrangian of ϕ^4 theory in renormalised perturbation theory is

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_r \partial^{\mu} \phi_r - \frac{1}{2} m^2 \phi_r^2 - \frac{\lambda}{24} \phi_r^4 + \frac{1}{2} \delta_Z \partial_{\mu} \phi_r \partial^{\mu} \phi_r - \frac{1}{2} \delta_{m^2} \phi_r^2 - \frac{\delta_\lambda}{24} \phi_r^4$$

Here ϕ_r is the rescaled field $\phi_r = \phi/\sqrt{Z}$, and $\delta_Z \equiv Z - 1$, δ_{m^2} and δ_{λ} are the counterterms.

Show that the Feynman rule for the "2-point vertex" associated to the counterterms δ_Z and δ_{m^2} is

$$\xrightarrow{p} = i(p^2\delta_Z - \delta_{m^2}) \,.$$

Hint: Note that the two-point function in the limit $\lambda \to 0$, $\delta_{\lambda} \to 0$ is now given by the infinite series

_____+ _____ + _____ + _____ +

By summing this series, show that it corresponds to the Feynman propagator for a a rescaled field $\sqrt{Z}\phi_r$ with a shifted mass $m^2 + \delta_{m^2}$.