
HAP708P “Modelization and simulation in physics”, University of Montpellier, 2022

Exercise sheet 4

Exercise 1: Successive overrelaxation

1. Write a program to solve the electrostatics problem of the lecture, using successive
overrelaxation. Experiment with several values of the overrelaxation parameter ω and
study the effect on the speed of convergence. Plot the solution.

2. Write a program to solve the two-dimensional Poisson equation(
∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = −ρ(x, y)

ε0

where ρ is a charge density and ε0 is the permittivity. The solution region is a 1 m × 1
m square whose boundaries are at ground potential V = 0. In the interior, ρ is zero
everywhere except for two homogeneously charged squares of 20 cm × 20 cm, where
ρ/ε0 = ±1 V m−2. Use successive overrelaxation.

φ = 0

x

y

20 cm

20 cm

20 cm
20 cm

20 cm

20 cm

+ 1 V/m

− 1 V/m2

2

Exercise 2: Minimal surface

In Cartesian coordinates, a minimal surface (x, y, z(x, y)) satisfies the non-linear PDE(
1 + (∂xz)

2
)
∂2yz +

(
1 + (∂yz)

2
)
∂2xz − 2 (∂xz)(∂yz)(∂x∂yz) = 0

where we have abbreviated ∂x = ∂
∂x , ∂2x = ∂2

∂x2
etc.

1. By a pen-and-paper calculation, discretize the minimal-surface equation on a regular
(N + 1)× (N + 1) lattice in the (x, y) plane: z(x, y) → zij . Thus, find a finite-distance
expression for zij as a function of the neighbouring values zi±1,j±1.

2. A tent cloth is suspended between two parabolic arcs at x = −1 and at x = 1, and
fixed to the ground at y = −1 and at y = 1:

z(−1, y) = 1− y2 , z(1, y) = 1− y2 , z(x,−1) = 0 , z(x, 1) = 0 .



Find the shape of the tent numerically (assuming the tent cloth to be perfectly de-
formable, so that it forms a minimal surface). Plot z as a function of y for x = 0,
x = 0.4, x = 0.8.

Instructions: Use a grid of 100× 100 squares in the (x, y) plane, i.e. 101× 101 points.
Use successive overrelaxation or (better) the vectorized Jacobi method to speed up
convergence.

Exercise 3: Temperature profile of the Earth’s crust

The surface temperature of the Earth is susceptible to seasonal variation; however, at a
depth of 20 m, the temperature is approximately constant (and higher than the average
surface temperature because of heating from the Earth’s radioactive interior). We take
D = 0.1 m2/day as the thermal diffusion coefficient, and set T0(t) = A + B sin 2πt

τ for the
daily mean temperature at the surface with A = 10◦C, B = 12◦C, and τ = 365 days, as well
as T1 = 11◦C at a depth of 20 m.

Write a program calculating the temperature profile between 0 et 20 m depth, by solving the
heat equation with the FTCS method. Run it over a sufficiently long time interval (a few
years) to eliminate all dependence on the initial conditions, until a stable seasonal cycle is
established. Then plot the solutions at 4 dates with a 3-month separation between them, in
order to see how the temperature depends on the depth in the different seasons.

Exercise 4: Schrödinger equation

In this exercise you will numerically solve the time-dependent Schrödinger equation for a
particle in a one-dimensional box of length L. The potential is zero for 0 < x < L and
otherwise infinite, and the Schrödinger equation reads

i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) (0 < x < L) .

1. Write down the Crank-Nicolson equation for this system (i.e. the equation for ψn(t+h)
given by the mean of the explicit and implicit Euler schemes).

2. Putting all the ψn(t) into a vector ψ(t) such that the C-N equations become

A ·ψ(t+ h) = B ·ψ(t) ,

find explicit expressions for the matrices A and B.



3. Write a program to compute the time evolution of a wave function in this potential.
Use m = 9.109 · 10−31 kg (the electron mass), ~ = 1.0545718 · 10−34 m2 kg s−1 and
L = 10−8 m. At t = 0, the wave function profile in the interior of the box is Gaussian:

ψ(x, 0) = A exp

(
−(x− L/2)2

2σ2

)
exp (ikx) .

Here σ = 10−10 m, k = 2 · 1010 m−1 and A is an unimportant normalization (you can
take A = 1). The boundary conditions are ψ(0, t) = ψ(L, t) = 0. Plot the real part and
the absolute value of the solution computed with N = 400 intermediate points after
t = (1, 5, 10, 20) · 10−16 s have evolved.
Hints: To set up a numpy.ndarray with complex entries, use the dtype argument,
e.g. psi = numpy.zeros([N+1], dtype=complex). The real part is then accessed with
psi.real and the absolute value with numpy.abs(psi). To solve the C-N equations,
use the pre-defined function numpy.linalg.solve(), even if it is inefficient on sparse
matrices (see below).

4. Bonus: If you are familiar with Gaussian elimination, optimize your code such that
the solution of the C-N equation is computed in T (N) ∈ Θ(N) time. This can be done
thanks to the sparse structure of the A and B matrices; note that the only nonzero
elements are on the main diagonal or next to it (for comparison, for a generic N ×N
matrix, Gaussian elimination takes Θ(N3) time!)


