Exercise sheet 4

Exercise 1: Successive overrelaxation

1. Write a program to solve the electrostatics problem of the lecture, using successive overrelaxation. Experiment with several values of the overrelaxation parameter ω and study the effect on the speed of convergence. Plot the solution.
2. Write a program to solve the two-dimensional Poisson equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \phi(x, y)=-\frac{\rho(x, y)}{\epsilon_{0}}
$$

where ρ is a charge density and ϵ_{0} is the permittivity. The solution region is a $1 \mathrm{~m} \times 1$ m square whose boundaries are at ground potential $V=0$. In the interior, ρ is zero everywhere except for two homogeneously charged squares of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$, where $\rho / \epsilon_{0}= \pm 1 \mathrm{~V} \mathrm{~m}^{-2}$. Use successive overrelaxation.

Exercise 2: Minimal surface

In Cartesian coordinates, a minimal surface $(x, y, z(x, y))$ satisfies the non-linear PDE

$$
\left(1+\left(\partial_{x} z\right)^{2}\right) \partial_{y}^{2} z+\left(1+\left(\partial_{y} z\right)^{2}\right) \partial_{x}^{2} z-2\left(\partial_{x} z\right)\left(\partial_{y} z\right)\left(\partial_{x} \partial_{y} z\right)=0
$$

where we have abbreviated $\partial_{x}=\frac{\partial}{\partial x}, \partial_{x}^{2}=\frac{\partial^{2}}{\partial x^{2}}$ etc.

1. By a pen-and-paper calculation, discretize the minimal-surface equation on a regular $(N+1) \times(N+1)$ lattice in the (x, y) plane: $z(x, y) \rightarrow z_{i j}$. Thus, find a finite-distance expression for $z_{i j}$ as a function of the neighbouring values $z_{i \pm 1, j \pm 1}$.
2. A tent cloth is suspended between two parabolic arcs at $x=-1$ and at $x=1$, and fixed to the ground at $y=-1$ and at $y=1$:

$$
z(-1, y)=1-y^{2}, \quad z(1, y)=1-y^{2}, \quad z(x,-1)=0, \quad z(x, 1)=0
$$

Find the shape of the tent numerically (assuming the tent cloth to be perfectly deformable, so that it forms a minimal surface). Plot z as a function of y for $x=0$, $x=0.4, x=0.8$.
Instructions: Use a grid of 100×100 squares in the (x, y) plane, i.e. 101×101 points. Use successive overrelaxation or (better) the vectorized Jacobi method to speed up convergence.

Exercise 3: Temperature profile of the Earth's crust

The surface temperature of the Earth is susceptible to seasonal variation; however, at a depth of 20 m , the temperature is approximately constant (and higher than the average surface temperature because of heating from the Earth's radioactive interior). We take $D=0.1 \mathrm{~m}^{2} /$ day as the thermal diffusion coefficient, and set $T_{0}(t)=A+B \sin \frac{2 \pi t}{\tau}$ for the daily mean temperature at the surface with $A=10^{\circ} \mathrm{C}, B=12^{\circ} \mathrm{C}$, and $\tau=365$ days, as well as $T_{1}=11^{\circ} \mathrm{C}$ at a depth of 20 m .

Write a program calculating the temperature profile between 0 et 20 m depth, by solving the heat equation with the FTCS method. Run it over a sufficiently long time interval (a few years) to eliminate all dependence on the initial conditions, until a stable seasonal cycle is established. Then plot the solutions at 4 dates with a 3 -month separation between them, in order to see how the temperature depends on the depth in the different seasons.

Exercise 4: Schrödinger equation

In this exercise you will numerically solve the time-dependent Schrödinger equation for a particle in a one-dimensional box of length L. The potential is zero for $0<x<L$ and otherwise infinite, and the Schrödinger equation reads

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t) \quad(0<x<L) .
$$

1. Write down the Crank-Nicolson equation for this system (i.e. the equation for $\psi_{n}(t+h)$ given by the mean of the explicit and implicit Euler schemes).
2. Putting all the $\psi_{n}(t)$ into a vector $\boldsymbol{\psi}(t)$ such that the C-N equations become

$$
\mathbf{A} \cdot \boldsymbol{\psi}(t+h)=\mathbf{B} \cdot \boldsymbol{\psi}(t),
$$

find explicit expressions for the matrices A and \mathbf{B}.
3. Write a program to compute the time evolution of a wave function in this potential. Use $m=9.109 \cdot 10^{-31} \mathrm{~kg}$ (the electron mass), $\hbar=1.0545718 \cdot 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$ and $L=10^{-8} \mathrm{~m}$. At $t=0$, the wave function profile in the interior of the box is Gaussian:

$$
\psi(x, 0)=A \exp \left(-\frac{(x-L / 2)^{2}}{2 \sigma^{2}}\right) \exp (i k x) .
$$

Here $\sigma=10^{-10} \mathrm{~m}, k=2 \cdot 10^{10} \mathrm{~m}^{-1}$ and A is an unimportant normalization (you can take $A=1$). The boundary conditions are $\psi(0, t)=\psi(L, t)=0$. Plot the real part and the absolute value of the solution computed with $N=400$ intermediate points after $t=(1,5,10,20) \cdot 10^{-16} \mathrm{~s}$ have evolved.
Hints: To set up a numpy.ndarray with complex entries, use the dtype argument, e.g. psi = numpy.zeros([N+1], dtype=complex). The real part is then accessed with psi.real and the absolute value with numpy.abs(psi). To solve the C-N equations, use the pre-defined function numpy.linalg.solve(), even if it is inefficient on sparse matrices (see below).
4. Bonus: If you are familiar with Gaussian elimination, optimize your code such that the solution of the C-N equation is computed in $T(N) \in \Theta(N)$ time. This can be done thanks to the sparse structure of the \mathbf{A} and \mathbf{B} matrices; note that the only nonzero elements are on the main diagonal or next to it (for comparison, for a generic $N \times N$ matrix, Gaussian elimination takes $\Theta\left(N^{3}\right)$ time! $)$

