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Recap from previous lecture

I Importance sampling is an approach for Monte Carlo with a target
p(x) and a proposal distribution q(x)

I We calculate the importance weight w(x) = p(x)/q(x), and calculate
the average of φ(x)w(x)

I Importance sampling requires q(x) covers p(x)φ(x), and with lower
variance estimators being more desirable, and achievable when the
proposal is concentrated towards |φ(x)|p(x)

I Today we focus on two useful cases of importance sampling: rare
event estimation and normalized importance sampling
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Outline

Rare event estimation using exponential tilting
Importance sampling in high dimension
Normalised Importance Sampling
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Normal Monte Carlo for rare events is impractical

I One important class of applications of IS is for problems in which we
estimate the probability for a rare event. In such scenarios, we may be
able to sample from p directly and use Monte Carlo, but it is
inefficient.

I Consider for example X ∼ p with φ(X) = 1 if X > x0, i.e.
P(X > x0) = Ep (I[X > x0]) = θ

I If θ � 1, we may not get any samples Xi > x0 even for moderately
large n, and our estimate θ̂n =

∑
i I(Xi > x0)/n is simply zero.

I Though are estimator is still unbiased, it is impractical, with a
variance that is too large

I By using IS, we can actually reduce the variance of our estimator.
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We can get a proposal by exponentially tilting a normal
target
I Let X ∼ N (µ, σ2) be a scalar normal random variable and we want

to estimate θ = P(X > x0) for some x0 � µ+ 3σ.
I If p is the pdf of X then

q(x) =
p(x)etx

Mp(t)

is called an exponentially tilted version of p where Mp(t) = Ep(etX) is
the moment generating function of X.

I For many standard pdfs, the exponentially tilted pdf is in the same
family as p, with different parameters

I For p the pdf of a Gaussian variable with mean µ and variance σ2,

q(x) ∝ e−(x−µ)2/2σ2
etx = e−(x−µ−tσ2)2/2σ2

eµt+t
2σ2/2

so we have

q(x) = N (x;µ+ tσ2, σ2), Mp(t) = eµt+t
2σ2/2.
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Constructing our specific proposal

I The IS weight function is p(x)/q(x) = e−txMp(t) so

w(x) = e−t(x−µ−tσ
2/2).

I We take samples Yi ∼ N (µ+ tσ2, σ2), and form our IS estimator for
θ = P(X > x0)

θ̂ISn =
1

n

n∑
i=1

w(Yi)I(Yi > x0)

since φ(Yi) = I(Yi > x0).

I We have not said how to choose t. The point here is that we want
samples in the region of interest. We choose the mean of the tilted
distribution so that it equals x0, this ensure we have samples in the
region of interest; that is µ+ tσ2 = x0, or t = (x0 − µ)/σ2.
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Original and exponentially tilted densities

I p(x) = N(x; 0, 1) and q(x) = N(x; t, 1), x0 = t = 4

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

x

p(x)
q(x)

−4 −2 0 2 4 6 8

0.
00

00
0

0.
00

00
8

w(x) * phi(x)

Part A Simulation. HT 2020. R. Davies. 7 / 22



Optimal tilting

I We selected t such that µ+ tσ2 = x0 somewhat heuristically.

I In practice, we might be interested in selecting the t value which
minimizes the variance of θ̂ISn where

V(θ̂ISn ) =
1

n

(
Ep (w(X)I(X > x0))− Ep (I(X > x0))2

)
=

1

n

(
Ep (w(X)I(X > x0))− θ2

)
.

I Hence we need to minimize Ep (w(X)I(X > x0)) w.r.t t where

Ep (w(X)I(X > x0)) =

∫ ∞
x0

p(x)e−t(x−µ−tσ
2/2)dx

= Mp(t)

∫ ∞
x0

p(x)e−txdx
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Optimal Tilted Densities

I Here we see the variance V(θ̂ISn ) for different values of t for
n = 10, 000
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Estimate t using importance sampling

Calculate Mp(t)
∫∞
x0
p(x)e−txdx using importance sampling

calc_int <- function(t) {

y <- rnorm(1000000, mean = 4, sd = 1)

p <- dnorm(y, mean = 0, sd = 1)

q <- dnorm(y, mean = 4, sd = 1)

w <- p / q

phi <- as.integer(y > 4) * exp(-t * y)

is <- mean(w * phi)

mu <- 0

sigma <- 1

mgf <- exp(mu * t + sigma **2 * t ** 2 /2)

return(mgf * is)

}
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Outline

Rare event estimation using exponential tilting
Importance sampling in high dimension
Normalised Importance Sampling
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Importance sampling in high dimension
I Purely for illustration, consider that we want to estimate

θ = Ep(1) = 1

where the target pdf is a d-dimensional Gaussian

p(x1, ..., xd) = (2π)−d/2 exp

(
−1

2

d∑
k=1

x2
k

)
.

I Consider the proposal density

q(x1, ..., xd) = (2πσ2)−d/2 exp

(
− 1

2σ2

d∑
k=1

x2
k

)
.

I We have

w(x) =
p(x1, ..., xd)

q(x1, ..., xd)
= σd exp

(
−1

2
(1− σ−2)

d∑
k=1

x2
k

)
.
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Importance Sampling in High Dimension

I For Yi ∼ q, θ̂ISn = 1
n

∑n
i=1w(Yi) is a consistent estimate of θ = 1.

I The estimator has finite variance for σ2 > 1
2 , with

V
(
θ̂ISn

)
=

Vq (w(Y1))

n
=

1

n

((
σ4

2σ2 − 1

)d/2
− 1

)

with σ4

2σ2−1
> 1 for σ2 > 1

2 , σ2 6= 1.

I Variance of the IS estimator grows exponentially with the dimension d.
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Outline

Rare event estimation using exponential tilting
Importance sampling in high dimension
Normalised Importance Sampling
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Normalised Importance Sampling
I In most practical scenarios,

p(x) = p̃(x)/Zp and q(x) = q̃(x)/Zq

where p̃(x), q̃(x) are known but Zp =
∫

Ω p̃(x)dx, Zq =
∫

Ω q̃(x)dx are
unknown or difficult to compute.

I The previous IS estimator is not applicable as it requires evaluating
w(x) = p(x)/q(x).

I An alternative IS estimator can be proposed based on the following
alternative IS identity.

I Proposition. Let Y ∼ q and X ∼ p be continuous or discrete rv on
Ω. Assume p(x) > 0⇒ q(x) > 0, then for any function φ : Ω→ R
we have

Ep(φ(X)) =
Eq(φ(Y )w̃(Y ))

Eq(w̃(Y ))

where w̃ : Ω→ R+ is the importance weight function

w̃(x) = p̃(x)/q̃(x).
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Normalised Importance Sampling
I Proof: Observe that

Eq(w̃(Y )) =

∫
p̃(x)

q̃(x)
q(x)dx

=

∫
p(x)

q(x)

Zq
Zp
q(x)dx

=
Zq
Zp

and noting that w̃ = w
Zq

Zp
we have that

Eq(φ(Y )w̃(Y ))

Eq(w̃(Y ))
= Eq(φ(Y )w(Y ))

I Remark: Even if we are interested in a simple function φ, we do need
p(x) > 0⇒ q(x) > 0 to hold instead of p(x)φ(x) 6= 0⇒ q(x) > 0 for
the previous IS identity.
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Normalised Importance Sampling

An alternate version of the proof

I Proof: We have

Ep(φ(X)) =

∫
Ω
φ(x)p(x)dx

=

∫
Ω φ(x)p(x)

q(x)q(x)dx∫
Ω
p(x)
q(x)q(x)dx

=

∫
Ω φ(x)w̃(x)q(x)dx∫

Ω w̃(x)q(x)dx

=
Eq(φ(Y )w̃(Y ))

Eq(w̃(Y ))
.
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Normalised Importance Sampling Pseudocode

1. Inputs:
I Function to draw samples from q
I Function w̃(x) = p̃(x)/q̃(x)
I Function φ
I Number of samples n

2. For i = 1, . . . , n:

2.1 Draw yi ∼ q.
2.2 Compute w̃i = w̃(yi).

3. Return ∑n
i=1 w̃iφ(yi)∑n

i=1 w̃i
.
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Normalised Importance Sampling Estimator

Proposition

Let q and p be pdf or pmf on Ω, with q(x) ∝ q̃(x) and p(x) ∝ p̃(x).
Assume p(x) > 0⇒ q(x) > 0. Let X ∼ p, and φ : Ω→ R such that
θ = Ep(φ(X)) exists. Let Y1, ..., Yn be a sample of independent random
variables distributed according to q then the normalized importance
sampling estimator, defined by

θ̂NISn =
1
n

∑n
i=1 φ(Yi)w̃(Yi)

1
n

∑n
i=1 w̃(Yi)

=

∑n
i=1 φ(Yi)w̃(Yi)∑n

i=1 w̃(Yi)
,

with w̃(x) = p̃(x)
q̃(x) .

I This estimator is consistent.

I Remark: It is easy to show that Ân = 1
n

∑n
i=1 φ(Yi)w̃(Yi) (resp.

B̂n = 1
n

∑n
i=1 w̃(Yi)) is an unbiased and consistent estimator of

A = Eq (φ(Y )w̃(Y )) (resp. B = Eq (w̃(Y ))). However θ̂NISn , which is
a ratio of estimates, is biased for finite n.
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Normalised Importance Sampling Estimator

I Proof strong consistency (not examinable). The strong law of large
numbers yields

P
(

lim
n→∞

Ân → A
)

= P
(

lim
n→∞

B̂n → B
)

= 1

This implies

P
(

lim
n→∞

Ân → A, lim
n→∞

B̂n → B
)

= 1

and

P

(
lim
n→∞

Ân

B̂n
→ A

B

)
= 1.
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Example Revisited: Gamma Distribution
I We are interested in estimating Ep (φ(X)) where X ∼Gamma(α, β)

using samples from a Gamma(a, b) distribution; i.e.

p(x) =
βα

Γ(α)
xα−1e−βx, q(x) =

ba

Γ(a)
xa−1e−bx

I Suppose we do not remember the expression of the normalising
constant for the Gamma, so that we use

p̃(x) = xα−1e−βx, q̃(x) = xa−1e−bx

⇒w̃(x) = xα−ae−(β−b)x

I Practically, we simulate Yi ∼Gamma(a, b), for i = 1, 2, ..., n then
compute

w̃(Yi) = Y α−a
i e−(β−b)Yi ,

θ̂NISn =

∑n
i=1 φ(Yi)w̃(Yi)∑n

i=1 w̃(Yi)
.
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Recap

I Importance sampling is particularly useful for rare events

I It can also be used for unnormalized proposals and targets, in which
case, one additionally calculates a denominator as the average of the
normalized importance weights
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