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Recap from previous lecture

I Monte Carlo can estimate integrals when we can simulate random
variables

I We have seen how inversion, transformation, and rejection sampling
can generate random variables for different distributions, conditional
on being able to draw random uniforms

I Today, we have our first of two lectures on Importance Sampling
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Importance Sampling

I We want to estimate
θ = E(φ(X))

where X is a rv with pdf or pmf p and φ : Ω→ R.

I The Monte Carlo estimator uses samples from p to estimate θ, but
this choice is in general suboptimal

I Importance sampling uses samples from another distribution q, called
importance or proposal distribution, and reweight them

I It is also useful when we need to make an accurate estimate of the
probability that a random variable exceeds some very high threshold.

I In this context it is referred to as a variance reduction technique.
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Importance Sampling Identity

Importance sampling identity

Let Y ∼ q and X ∼ p be continuous or discrete rv on Ω. Assume
p(x) > 0⇒ q(x) > 0, then for any function φ : Ω→ R we have

Ep(φ(X)) = Eq(φ(Y )w(Y ))

where w : Ω→ R+ is the importance weight function

w(x) =
p(x)

q(x)
.
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Importance Sampling Identity

I Proof: We have

Ep(φ(X)) =

∫
Ω
φ(x)p(x)dx

=

∫
Ω
φ(x)

p(x)

q(x)
q(x)dx

=

∫
Ω
φ(x)w(x)q(x)dx

= Eq(φ(Y )w(Y )).

I Similar proof holds in the discrete case.
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Importance Sampling Estimator

Definition

Let q and p be pdfs or pmfs on Ω. Assume p(x)φ(x) 6= 0⇒ q(x) > 0. Let
φ : Ω→ R and X ∼ p such that θ = Ep(φ(X)) exists.
Let Y1, ..., Yn be a sample of independent random variables distributed
according to q. The importance sampling estimator is defined as

θ̂ISn =
1

n

n∑
i=1

φ(Yi)w(Yi).

Properties

The IS estimator is

I Unbiased: E[θ̂ISn ] = θ

I (Weakly and strongly) consistent: θ̂ISn −→ θ a.s. as n→∞.
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Importance Sampling Estimator

I Proof.

E[θ̂ISn ] =
1

n

n∑
i=1

E(φ(Yi)w(Yi))

= E(φ(Y1)w(Y1))

= E(φ(X)) = θ

Let Zi = φ(Yi)w(Yi). Z1, . . . , Zn are iid with mean
E(Zi) = E(φ(Yi)w(Yi)) = θ. From the strong law of large numbers

1

n

n∑
i=1

Zi → θ a.s. as n→∞
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Target and Proposal Distributions
I Target: p(x) = 1

2e
−|x|

I Proposal: q(x) = 1/
√

2π e−
x2

2

I Weight function: w(x) =
√
π/2 e−|x|+

x2

2
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Target and Proposal Distributions
I Target: p(x) = 1

2e
−|x|

I Proposal: q(x) = 1/(π(1 + x2))
I Weight function: w(x) = π/2 (1 + x2) e−|x|

Part A Simulation. HT 2020. R. Davies. 9 / 23



Example: Gamma Distribution

I Say we have simulated Yi ∼Gamma(a, b) and we want to estimate
Ep(φ(X)) where X ∼Gamma(α, β).

I Recall that the Gamma(α, β) density is

p(x) =
βα

Γ(α)
xα−1 exp(−βx)

so

w(x) =
p(x)

q(x)
=

Γ(a)βα

Γ(α)ba
xα−ae−(β−b)x

I Hence

θ̂ISn =
Γ(a)βα

Γ(α)ba
1

n

n∑
i=1

φ(Yi) Yi
α−ae−(β−b)Yi

is an unbiased and consistent estimate of Ep(φ(X)).
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Variance of the Importance Sampling Estimator

I Proposition. Assume θ = Ep(φ(X)) and Ep(w(X)φ2(X)) are finite.

Then θ̂ISn satisfies

E
((

θ̂ISn − θ
)2
)

= V
(
θ̂ISn

)
= 1

nVq (w(Y1)φ(Y1))

= 1
n

(
Eq
(
p2(Y1)
q2(Y1)

φ2(Y1)
)
− Eq

(
p(Y1)
q(Y1)φ(Y1)

)2
)

= 1
n

(
Ep
(
w(X)φ2(X)

)
− θ2

)
.

I Each time we do IS we should check that this variance is finite,
otherwise our estimates are somewhat untrustworthy! We check
Ep(w(X)φ2(X)) is finite.
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Variance of the Importance Sampling Estimator
I Target: p(x) = 1

2e
−|x|

I Proposal: q(x) = 1/
√

2π e−
x2

2

I w(x) =
√
π/2 e−|x|+

x2

2 , φ(x) = x
I Ep(w(X)φ2(X)) =∞
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Variance of the Importance Sampling Estimator
I Target: p(x) = 1

2e
−|x|

I Proposal: q(x) = 1/(π(1 + x2))

I w(x) = π/2 (1 + x2) e−|x|, φ(x) = x

I Ep(w(X)φ2(X)) <∞
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Variance of the Importance Sampling Estimator

I If Vp(φ(X)) is finite, a sufficient condition is that w is a bounded

function: there is M such that w(x) = p(x)
q(x) ≤M for all x ∈ Ω

I Note that this is the same condition as for rejection sampling,

I For IS it is enough just for M to exist—we do not have to work out
its value.

I Proof:

Ep(w(X)φ2(X)) ≤MEp(φ2(X))

<∞

as Vp(φ(X)) <∞.
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Example: Gamma Distribution
I Let us check that the variance of θ̂ISn in previous Example is finite if
θ = Ep(φ(X)) and Vp(φ(X)) are finite.

I It is enough to check that Ep
(
w(Y1)φ2(Y1)

)
is finite.

I The normalisation constants are finite so we can ignore those, and
begin with

w(x)φ2(x) ∝ xα−ae−(β−b)Xφ2(x).

I The expectation of interest is

Ep
(
w(X)φ2(X)

)
∝Ep

(
Xα−ae−(β−b)Xφ2(X)

)
=

∫ ∞
0

p(x)xα−a exp(−(β − b)x))φ2(x) dx

≤M
∫ ∞

0
p(x)φ(x)2 dx = MEp(φ2(X)).

where M = maxx>0 x
α−a exp(−(β − b)x) is finite if a < α and b < β

(see rejection sampling section).
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I Since θ = Ep(φ(X)) and Vp(φ(X)) are finite, we have
Ep(φ2(X)) <∞ if these conditions on a, b are satisfied. If not, we
cannot conclude as it depends on φ.

I These same (sufficient) conditions apply to our rejection sampler for
Gamma(α, β).
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Estimate probability random variable is in a range
I Let X be a random variable from a Cauchy distribution with
fX(x) = 1

π(1−x2)
I Consider that we are interested in P (X ∈ [3, 5]), i.e. that φ(X) is an

indicator function
I We can calculate this analytically to yield 1

π (tan−1(5)− tan−1(3))
I Let’s consider the performance of three different estimators: one

using normal Monte Carlo, and two using Importance sampling, with
different simple proposals
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Proposals that looks like the target times φ look promising

0 200 400 600 800 1000

0.
00

0.
04

0.
08

n

M
on

te
 C

ar
lo

 e
st

im
at

e

Cauchy
Uniform
Straight line

0 20 40 60 80 100

0.
00

0.
04

0.
08

n

M
on

te
 C

ar
lo

 e
st

im
at

e

Cauchy
Uniform
Straight line

I Here we can see importance sampling is substantially more efficient
than regular Monte Carlo for rare events

I What’s more, we see as we try to make our proposal more similar to
our target, we are becoming more efficient

I This is true more generally for trying to make our proposal look like
the product of the target by φ, as we see in the next slidesPart A Simulation. HT 2020. R. Davies. 18 / 23



Choice of the Importance Sampling Distribution

I While p is given, q needs to cover pφ (i.e. p(x)φ(x) 6= 0⇒ q(x) > 0)
and be simple to sample.

I The requirement V
(
θ̂ISn

)
<∞ further constrains our choice: we need

Ep
(
w(X)φ2(X)

)
<∞.

I If Vp(φ(X)) is known finite then, it may be easy to get a sufficient
condition for Ep

(
w(X)φ2(X)

)
<∞; e.g. w(x) ≤M . Further

analysis will depend on φ.
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Choice of the Importance Sampling Distribution

I What is the choice qopt of q that actually minimizes the variance of
the IS estimator? Consider for now φ : Ω→ [0,∞) then

qopt (x) =
p(x)φ(x)

Ep (φ(X))
⇒ V(θ̂ISn ) = 0.

I This optimal zero-variance estimator cannot be implemented as

w(x) = p(x)/qopt (x) = Ep (φ(X)) /φ(x)

where Ep (φ(X)) is the quantity we are trying to estimate! This can
however be used as a guideline to select q.
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Choice of the Importance Sampling Distribution

I For general function φ : Ω→ R, the optimal importance distribution is

qopt (x) =
p(x)|φ(x)|
Ep (|φ(X)|)

with variance

V(θ̂ISn ) =
1

n

(
Ep (|φ(X)|)2 − θ2

)
.
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Choice of the Importance Sampling Distribution

I Proof:

Ep
(
w(X)φ2(X)

)
= Eq

(
p2 (Y1)

q2 (Y1)
φ2(Y1)

)
= Vq

(
p (Y1)

q (Y1)
|φ(Y1)|

)
+

(
Eq
(
p (Y1)

q (Y1)
|φ(Y1)|

))2

≥
(
Eq
(
p (Y1)

q (Y1)
|φ(Y1)|

))2

= (Ep (|φ(X)|))2

where the lower bound does not depend on q. This lower bound is
achieved for q = qopt

Ep
(

p(X)

qopt(X)
φ2(X)

)
= (Ep (|φ(X)|))2
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Recap

I Importance sampling uses draws from a proposal and re-weights them
according to a weight that is the ratio of the target and proposal
pdfs/pmfs

I It is unbiased and consistent

I Importance sampling can be used in place of procedures like rejection
sampling when direct sampling is difficult

I Intelligent choice of the proposal can lead to Monte Carlo estimators
with lower variance as a function of n, making them more efficient
and generally more desirable
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