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Recap from previous lecture

» Monte Carlo can estimate integrals when we can simulate random
variables

> We have seen how inversion, transformation, and rejection sampling
can generate random variables for different distributions, conditional
on being able to draw random uniforms

» Today, we have our first of two lectures on Importance Sampling
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Importance Sampling

> We want to estimate
0 = E(o(X))
where X is a rv with pdf or pmf p and ¢ : Q@ — R.

» The Monte Carlo estimator uses samples from p to estimate 6, but
this choice is in general suboptimal

» Importance sampling uses samples from another distribution ¢, called
importance or proposal distribution, and reweight them

» It is also useful when we need to make an accurate estimate of the
probability that a random variable exceeds some very high threshold.

» In this context it is referred to as a variance reduction technique.
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Importance Sampling Identity

Importance sampling identity

Let Y ~ g and X ~ p be continuous or discrete rv on 2. Assume
p(z) > 0= q(z) > 0, then for any function ¢ : QO — R we have

Ep(¢(X)) = Eqg(6(Y)w(Y))

where w : Q — R* is the importance weight function
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Importance Sampling Identity

» Proof: We have

Ey(6(X)) = / (2)p(a)d

» Similar proof holds in the discrete case.
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Importance Sampling Estimator

Definition

Let ¢ and p be pdfs or pmfs on Q. Assume p(z)p(x) # 0 = g(x) > 0. Let
¢:Q — Rand X ~ psuch that § = E,(¢(X)) exists.

Let Y7,...,Y,, be a sample of independent random variables distributed
according to ¢q. The importance sampling estimator is defined as

The IS estimator is
> Unbiased: E[§/5] = ¢
» (Weakly and strongly) consistent: é,'f — 6 a.s. as n — oo.

Part A Simulation. HT 2020. R. Davies. 6 / 23



Importance Sampling Estimator

» Proof.

Let Z; = o(Y))w(Y;). Zy,...,Z, are iid with mean
E(Z;) = E(¢(Yi)w(Y;)) = 6. From the strong law of large numbers

1 n
—ZZi—>0 a.s. asn — o0
n

=1
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Target and Proposal Distributions

> Target: p(z) = Le Il

» Proposal: ¢(z) = 1/v/2m ¢~
22
» Weight function: w(z) = /7/2 e lzl+
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Target and Proposal Distributions
> Target: p(z) = Le Il
» Proposal: ¢(z) = 1/(m(1 + %))
» Weight function: w(z) = /2 (1 + x2) ezl

0.5¢
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Example: Gamma Distribution

» Say we have simulated Y; ~Gamma(a,b) and we want to estimate
E,(¢(X)) where X ~Gamma(a, ).

» Recall that the Gamma(a, ) density is

p(x) = @x exp( px)

SO

» Hence

gs _ 5a 1 Z¢ ) Y;omae (B-0)i

n

is an unbiased and consistent estimate of E,(¢(X)).
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Variance of the Importance Sampling Estimator

> Proposition. Assume 6 = E,(¢(X)) and E,(w(X)¢?(X)) are finite.
Then 6! satisfies

E ((9;; _ e)2> = v (85) = 1V, (w(¥1)é(11))
2
(2<Y1>¢2( D) - 4 (§iem) )

» Each time we do IS we should check that this variance is finite,
otherwise our estimates are somewhat untrustworthy! We check

E,(w(X)¢*(X)) is finite.
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Variance of the Importance Sampling Estimator
> Target: p(x) = %e"’”'
22
» Proposal: () =1/v2m ¢ 2

> w(@) = /a/2 e T g(a) =
> B, (w(X)63(X)) = o0
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Variance of the Importance Sampling Estimator
> Target: p(z) = Le Il
» Proposal: ¢(z) = 1/(n(1 + %))
> w(z) =m/2 (1+2%) e, ¢(z) ==
> E,(w(X)¢*(X)) < 0o
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o
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Variance of the Importance Sampling Estimator

> If V,(¢(X)) is finite, a sufficient condition is that w is a bounded
function: there is M such that w(z) = % < M for all x € Q

> Note that this is the same condition as for rejection sampling,

» For IS it is enough just for M to exist—we do not have to work out
its value.

» Proof:
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Example: Gamma Distribution

» Let us check that the variance of élls in previous Example is finite if
0 =E,(¢(X)) and V,(¢(X)) are finite.

> It is enough to check that E,, (w(Y1)¢?(Y1)) is finite.

» The normalisation constants are finite so we can ignore those, and
begin with

w(@)¢(z) o 22~9e=B-DX g2(z),
> The expectation of interest is
E, (w(X)#*(X)) oB, (X7 7H¥ 2 (X))
= [ pla)a exp((5 — b)a)) o) do
<M/ 2 4z = ME,(¢*(X)).
where M = maxy-0 2 exp(— (8 — b)z) is finite if a < a and b <

(see rejection sampling section).
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» Since 0 = E,(¢(X)) and V,(¢(X)) are finite, we have
E,(¢*(X)) < oo if these conditions on a, b are satisfied. If not, we
cannot conclude as it depends on ¢.

» These same (sufficient) conditions apply to our rejection sampler for
Gamma(a, B).
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Estimate probability random variable is in a range

| 2

Let X be a random variable from a Cauchy distribution with

Ix (@) = wam

Consider that we are interested in P(X € [3,5]), i.e. that ¢(X) is an
indicator function

We can calculate this analytically to yield X (tan~1(5) — tan~!(3))
Let’s consider the performance of three different estimators: one
using normal Monte Carlo, and two using Importance sampling, with
different simple proposals
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Proposals that looks like the target times ¢ look promising
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» Here we can see importance sampling is substantially more efficient
than regular Monte Carlo for rare events

> What's more, we see as we try to make our proposal more similar to
our target, we are becoming more efficient

» This is true more generally for trying to make our proposal look like

the product of the target by ¢, as we see ip,the next, slidgs, & pavies 1 /23



Choice of the Importance Sampling Distribution

» While p is given, ¢ needs to cover po (i.e. p(z)p(z) # 0 = q(x) > 0)
and be simple to sample.

» The requirement V (91?) < oo further constrains our choice: we need
E, (w(X)¢*(X)) < oc.
> If V,(¢(X)) is known finite then, it may be easy to get a sufficient

condition for E,, (w(X)¢?(X)) < oo; e.g. w(z) < M. Further
analysis will depend on ¢.
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Choice of the Importance Sampling Distribution

» What is the choice gopt of ¢ that actually minimizes the variance of
the IS estimator? Consider for now ¢ : 2 — [0, 00) then

Gopt () = ple)dle) V(0% = 0.

Ey (9(X))

P This optimal zero-variance estimator cannot be implemented as

w(x) = p(x)/gopt (x) = Ep (9(X)) /()

where [E,, (¢(X)) is the quantity we are trying to estimate! This can
however be used as a guideline to select q.
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Choice of the Importance Sampling Distribution

» For general function ¢ : 2 — R, the optimal importance distribution is

sa)oial
Gort (1) = & 116(X)))

with variance

VOE) = (B (16(X)])* — 6%)

S
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Choice of the Importance Sampling Distribution

i) =2 (2050)
i A
(e 2000)

= (B, (|o(X)])*

» Proof:

where the lower bound does not depend on ¢. This lower bound is
achieved for ¢ = gopt

E( P (x >):<Ep<\¢<x>r>>2

qcpt( )
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Recap

» Importance sampling uses draws from a proposal and re-weights them
according to a weight that is the ratio of the target and proposal
pdfs/pmfs

P It is unbiased and consistent

» Importance sampling can be used in place of procedures like rejection
sampling when direct sampling is difficult

» Intelligent choice of the proposal can lead to Monte Carlo estimators
with lower variance as a function of n, making them more efficient
and generally more desirable
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