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Simulation and Statistical Programming

I Lectures on Simulation (Prof. R. Davies):
Tuesdays 2-3pm Weeks 1-8. LG.02, the IT suite

I Computer Lab on Statistical Programming (Prof. R. Davies):
Friday 9-11am Weeks 3-8 LG.02, the IT suite

I Departmental problem classes: Weeks 3, 5, 7. Wednesday 9am,
4-5am, Thursday 10-11am, 11am-12pm. Various locations

I Hand in problem sheet solutions by Monday noon of same week for all
classes

I Webpage: http://www.stats.ox.ac.uk/~rdavies/teaching/

PartASSP/2020/index.htm

I This course builds upon the notes and slides of Julien Berestycki,
Geoff Nicholls, Arnaud Doucet, Yee Whye Teh and Matti Vihola.
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Monte Carlo Simulation Methods

I Computational tools for the simulation of random variables and the
approximation of integrals/expectations.

I These simulation methods, aka Monte Carlo methods, are used in
many fields including statistical physics, computational chemistry,
statistical inference, genetics, finance etc.

I The Metropolis algorithm was named the top algorithm of the 20th
century by a committee of mathematicians, computer scientists &
physicists.

I With the dramatic increase of computational power, Monte Carlo
methods are increasingly used.
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Objectives of the Course

I Introduce the main tools for the simulation of random variables and
the approximation of multidimensional integrals:
I Integration by Monte Carlo,
I inversion method,
I transformation method,
I rejection sampling,
I importance sampling,
I Markov chain Monte Carlo including Metropolis-Hastings.

I Understand the theoretical foundations and convergence properties of
these methods.

I Learn to derive and implement specific algorithms for given random
variables.
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Computing Expectations
I Let X be either

I a discrete random variable (r.v.) taking values in a countable or finite
set Ω, with p.m.f. fX

I or a continuous r.v. taking values in Ω = Rd, with p.d.f. fX

I Assume you are interested in computing

θ = E (φ(X))

=

{ ∑
x∈Ω φ(x)fX(x) if X is discrete∫

Ω φ(x)fX(x)dx if X is continuous

where φ : Ω→ R.

I It is impossible to compute θ exactly in most realistic applications.

I Even if it is possible (for Ω finite) the number of elements may be so
huge that it is practically impossible

I Example: Ω = Rd, X ∼ N (µ,Σ) and φ(x) = I
(∑d

k=1 x
2
k ≥ α

)
.

I Example: Ω = Rd, X ∼ N (µ,Σ) and φ(x) = I (x1 < 0, ..., xd < 0) .
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Example: Queuing Systems
I Customers arrive at a shop and queue to be served. Their requests

require varying amount of time.
I The manager cares about customer satisfaction and not excessively

exceeding the 9am-5pm working day of his employees.
I Mathematically we could set up stochastic models for the arrival

process of customers and for the service time based on past
experience.

I Question: If the shop assistants continue to deal with all customers
in the shop at 5pm, what is the probability that they will have served
all the customers by 5.30pm?

I If we call X ∈ N the number of customers in the shop at 5.30pm then
the probability of interest is

P (X = 0) = E (I(X = 0)) .

I For realistic models, we typically do not know analytically the
distribution of X.
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Example: Particle in a Random Medium

I A particle (Xt)t=1,2,... evolves according to a stochastic model on
Ω = Rd.

I At each time step t, it is absorbed with probability 1−G(Xt) where
G : Ω→ [0, 1].

I Question: What is the probability that the particle has not yet been
absorbed at time T?

I The probability of interest is

P (not absorbed at time T ) = E [G(X1)G(X2) · · ·G(XT )] .

I For realistic models, we cannot compute this probability.
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Example: Ising Model
I The Ising model serves to model the behavior of a magnet and is the

best known/most researched model in statistical physics.

I The magnetism of a material is modelled by the collective
contribution of dipole moments of many atomic spins.

I Consider a simple 2D-Ising model on a finite lattice
G ={1, 2, ...,m} × {1, 2, ...,m} where each site σ = (i, j) hosts a
particle with a +1 or -1 spin modeled as a r.v. Xσ.

I The distribution of X = {Xσ}σ∈G on {−1, 1}m2
is given by

π(x) =
exp(−βU(x))

Zβ

where β > 0 is the inverse temperature and the potential energy is

U(x) = −J
∑
σ∼σ′

xσxσ′

I Physicists are interested in computing E [U(X)] and Zβ.
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Example: Ising Model

Sample from an Ising model for m = 250.
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Example: Statistical Genetics
I At variable sites in the genome in a population, we can represent

represent one chromosome as a haplotype as a vector of binary 0/1s.
We humans are diploid so have two copies of each chromosome

I We often acquire data as “reads”, observing those 0/1s along the
genome

I We may be interested in trying to determine the haplotypes of an
individual given some set of observed sequencing reads where we
observe some of the underlying haplotypes, from one of an individuals
two haplotypes.

I Let Lr ∈ {1, 2} represent whether a read came from the maternal or
paternal haplotype

I Then we might be interested in P (Hi, Hj |O) ∝ P (O|Hi, Hj) =∑
L1,L2,...

P (O|Hi, Hj , L1, L2, ...)P (L1, L2, ...)

I Naively, for M sequencing reads, this has computational cost 2M ,
which is unfeasible for realistic M

I Monte Carlo methods allow us to estimate P (Hi, Hj |O) and similar
calculations, and are used frequently in genetics
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Bayesian Inference
I Suppose (X,Y ) are both continuous r.v. with a joint density
fX,Y (x, y).

I Think of Y as data, and X as unknown parameters of interest
I We have

fX,Y (x, y) = fX(x) fY |X(y|x)

where, in many statistics problems, fX(x) can be thought of as a
prior and fY |X(y|x) as a likelihood function for a given Y = y.

I Using Bayes’ rule, we have

fX|Y (x|y) =
fX(x) fY |X(y|x)

fY (y)
.

I For most problems of interest,fX|Y (x|y) does not admit an analytic
expression and we cannot compute

E (φ(X)|Y = y) =

∫
φ(x)fX|Y (x|y)dx.
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Monte Carlo Integration

Definition (Monte Carlo method)

Let X be either a discrete r.v. taking values in a countable or finite set Ω,
with p.m.f. fX , or a continuous r.v. taking values in Ω = Rd, with p.d.f.
fX . Consider

θ = E (φ(X)) =

{ ∑
x∈Ω φ(x)fX(x) if X is discrete∫

Ω φ(x)fX(x)dx if X is continuous

where φ : Ω→ R. Let X1, ..., Xn be i.i.d. r.v. with p.d.f. (or p.m.f.) fX .
Then

θ̂n =
1

n

n∑
i=1

φ(Xi),

is called the Monte Carlo estimator of the expectation θ.

I Monte Carlo methods can be thought of as a stochastic way to
approximate integrals.
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Monte Carlo Integration

Algorithm 1 Monte Carlo Algorithm
I Simulate independent X1, ..., Xn with p.m.f. or p.d.f. fX
I Return θ̂n = 1

n

∑n
i=1 φ(Xi).
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Computing Pi with Monte Carlo Methods

I Consider the 2× 2 square, say S ⊆R2 with inscribed disk D of radius
1.
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A 2× 2 square S with inscribed disk D of radius 1.
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Computing Pi with Monte Carlo Methods
I We have ∫ ∫

D dx1dx2∫ ∫
S dx1dx2

=
π

4
.

I How could you estimate this quantity through simulation?∫ ∫
D dx1dx2∫ ∫
S dx1dx2

=

∫ ∫
S
I ((x1, x2) ∈ D)

1

4
dx1dx2

= E [φ(X1, X2)] = θ

where the expectation is w.r.t. the uniform distribution on S and

φ(X1, X2) = I ((X1, X2) ∈ D) .

I To sample uniformly on S = (−1, 1)× (−1, 1) then simply use

X1 = 2U1 − 1, X2 = 2U2 − 1

where U1, U2 ∼ U(0, 1).
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Computing Pi with Monte Carlo Methods

n <- 1000

x <- array(0, c(2,1000))

t <- array(0, c(1,1000))

for (i in 1:1000) {

# generate point in square

x[1,i] <- 2*runif(1)-1

x[2,i] <- 2*runif(1)-1

# compute phi(x); test whether in disk

if (x[1,i]*x[1,i] + x[2,i]*x[2,i] <= 1) {

t[i] <- 1

} else {

t[i] <- 0

}

}

print(sum(t)/n*4)
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Computing Pi with Monte Carlo Methods
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A 2× 2 square S with inscribed disk D of radius 1 and Monte Carlo
samples.
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Computing Pi with Monte Carlo Methods

0 100 200 300 400 500 600 700 800 900 1000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−3

θ̂n − θ as a function of the number of samples n.
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Computing Pi with Monte Carlo Methods
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θ̂n − θ as a function of the number of samples n, 100 independent
realizations.
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Applications
I Toy example: simulate a large number n of independent r.v.
Xi ∼ N (µ,Σ) and

θ̂n =
1

n

n∑
i=1

I

(
d∑

k=1

X2
k,i ≥ α

)
.

I Queuing: simulate a large number n of days using your stochastic
models for the arrival process of customers and for the service time
and compute

θ̂n =
1

n

n∑
i=1

I (Xi = 0)

where Xi is the number of customers in the shop at 5.30pm for ith
sample.

I Particle in Random Medium: simulate a large number n of particle
paths (X1,i, X2,i, ..., XT,i) where i = 1, ..., n and compute

θ̂n =
1

n

n∑
i=1

G(X1,i)G(X2,i) · · ·G(XT,i)
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Monte Carlo Integration: Properties
I Proposition: Assume θ = E (φ(X)) exists. Then the Monte Carlo

estimator θ̂n has the following properties
I Unbiasedness

E
(
θ̂n

)
= θ

I Strong consistency

θ̂n → θ almost surely as n→∞

I Proof: We have

E
(
θ̂n

)
=

1

n

n∑
i=1

E (φ(Xi)) = θ.

Strong consistency is a consequence of the strong law of large
numbers applied to Yi = φ(Xi) which is applicable as θ = E (φ(X))
is assumed to exist.
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Monte Carlo Integration: Central Limit Theorem
I Proposition: Assume θ = E (φ(X)) and σ2 = V (φ(X)) exist then

E
(

(θ̂n − θ)2
)

= V
(
θ̂n

)
=
σ2

n

and √
n

σ

(
θ̂n − θ

)
d→ N (0, 1).

I Proof. We have E
(

(θ̂n − θ)2
)

= V
(
θ̂n

)
as E

(
θ̂n

)
= θ and

V
(
θ̂n

)
=

1

n2

n∑
i=1

V (φ(Xi)) =
σ2

n
.

The CLT applied to Yi = φ(Xi) tells us that

Y1 + · · ·+ Yn − nθ
σ
√
n

d→ N (0, 1)

so the result follows as θ̂n = 1
n (Y1 + · · ·+ Yn) .
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Monte Carlo Integration: Variance Estimation
I Proposition: Assume σ2 = V (φ(X)) exists then

S2
φ(X) =

1

n− 1

n∑
i=1

(
φ(Xi)− θ̂n

)2

is an unbiased sample variance estimator of σ2.
I Proof. Let Yi = φ(Xi) then we have

E
(
S2
φ(X)

)
=

1

n− 1

n∑
i=1

E
((
Yi − Y

)2)
=

1

n− 1
E

(
n∑
i=1

Y 2
i − nY 2

)

=
n
(
V (Y ) + θ2

)
− n

(
V
(
Y
)

+ θ2
)

n− 1
= V (Y ) = V (φ(X)) .

where Y = φ(X) and Y = 1
n

∑n
i=1 Yi.
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How Good is The Estimator?
I Chebyshev’s inequality yields the bound

P
(∣∣∣θ̂n − θ∣∣∣ > c

σ√
n

)
≤

V
(
θ̂n

)
c2σ2/n

=
1

c2
.

I Another estimate follows from the CLT for large n

√
n

σ

(
θ̂n − θ

)
d
≈ N (0, 1)⇒ P

(∣∣∣θ̂n − θ∣∣∣ > c
σ√
n

)
≈ 2 (1− Φ(c)) .

I Hence by choosing c = cα s.t. 2 (1− Φ(cα)) = α, an approximate
(1− α)100%-CI for θ is(

θ̂n ± cα
σ√
n

)
≈
(
θ̂n ± cα

Sφ(X)√
n

)
.
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Monte Carlo Integration

I Whatever being Ω; e.g. Ω = R or Ω = R1000, the error is still in
σ/
√
n.

I This is in contrast with deterministic methods. The error in a product
trapezoidal rule in d dimensions is O(n−2/d) for twice continuously
differentiable integrands.

I It is sometimes said erroneously that it beats the curse of
dimensionality but this is generally not true as σ2 typically depends of
dim(Ω).
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Recap

I Monte Carlo is a method to evaluate an integral / sum

I Widely used in high dimensional statistical problems

I It is computationally straightforward

I It has desirable limit properties

I Hard part is often sampling of X

I Some art required for tough X, but beyond scope of this course
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