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QFT, SOLUTIONS TO PROBLEM SHEET 5

Problem 1: The interaction picture

1. Show that ¢;(t, ) = m;(t, T).
By the product rule,

G1(t, Z) = i Hy et p(0, 7)e ot 4 tHot (0, Z)e ™ Hot(—; Hy)

= ¢ [Ho, 6(0, 7)]e "ot o

In the commutator, only the m-dependent part of Hj contributes because
[, ¢] = 0 at equal times. Using the canonical commutation relations:

(Ho,600.3)] = [ &y 5[x2(0,5),0(0.9) = 7(0.5)

Inserting into (1) gives the result.

2. Starting from an expression for ¢r, show that ¢; obeys the Klein-Gordon equa-
tion, and hence is a free field.
We have

o1(t, 7) = Oymy(t, T) = M4 [Hy, 7 (0, Z)]e " Hot
= e (5 [ @y (1090200070, + w620, 50, ]) ) "
Here we have used that [7,7] = 0 at equal times. With
[(V6)*(0,5), w(0,3)] = 2i (Vo(0,7)) - V8 (7 — §)

and with the action of the differential operator V on tlle distribution
§@)(# — ¢) defined by integration by parts, i.e. (V¢(0,7)) - VIO (F — 7) =
—(V2¢(0, %)) 8 (& — /), this becomes

O1(t, &) = V2o (1, ) — m>¢;(t, &)

which is the Klein-Gordon equation.

3. Show that U(t) = eolte=Ht js ynitary, and that ¢(x) = UT(t)d(x)U(t).
This is straightforward:

U’[ — elHtef’LHot = UTU — etheszotezHgteszt =1.

UT¢](ZL‘)U — 6th e—iHotqu(x)eiHot e—z’Ht — ¢($> )

¢(0,%)

4. We would like to express U(t) entirely in terms of ¢;. To this end, start by
showing that U(t) obeys the Schrédinger equation

d

i—U(t) = Hi()U(})



where Hj is the interaction Hamiltonian in the interaction picture, Hy(t) =
e Hot F e 0t wyith the boundary condition U(0) = 1.
It is obvious that U(0) = €® = 1. Moreover,

d ) ) ) )
_U(t) Z-dtezHot6 tHt ,L-ezHot (ZH()) e—th + iezHot (—ZH) e—th

— ezHotHinte—th — ezHotHinte—zHot ezHote—th

Hy(t) U(t)

Then show that, fort > 0,

U(t) =T exp <—i /Ot dt’ Hf(t’))

also solves this Schrodinger equation and satisfies the same boundary condi-
tion. Therefore both expressions must be equal.

We have

¢ t
d —U = zi T exp / dt' Hi(t") | =T Hy(t) exp —i/ dt’ Hy(t")
IR TARAY ; :

and since t is the latest time appearing on the right-hand side, we can pull the
factor H;(t) to the left of the time-ordering symbol:

Z%U Hi(t) T exp (—z'/ot dt H,(t’)) = H(t)U.

Again, U(0) = 1 is trivially satisfied.

. Define Ul(ty, t1) = U(to)UT(t1). By a similar argument as used in 4., show that,

fO’I" to > 11,
to
Ulty, t1) =T exp (—Z/ dt’ H[(t,)) :
t1

This follows from the fact that both expressions for U(ty,t;) satisfy the
Schrédinger equation

8U(t2, t1)

o, H(ty) U(ta, th)

and the boundary condition U(t,t;) = 1. The calculation is the same as in 4.

. Show that U(tl, t3) = U(tl, tg)U(tg, tg), and that UT(tl, tg) == U(tg, tl)
This is again straightforward:

U(tl, t2>U(t2, tg) — e’LHotle—lH(tl —tz)e—’LH()tz ezHotze—lH(tQ—t3)€—2H()t3

— eiHotle—iH(tl—t3)eiH0t3 — U(t]_, tg) .
UT(tl, t2) — eiHotzefiH(tgftl)efiHotl — U(tQ, tl) )

. We would like to find a relation between the free vacuum |) and the interacting
vacuum |0). Let Ey be the vacuum energy of the interacting theory, H|0) =
Fo|0). Show that (assuming (0|0) #0):

B gy U0,=T)|0)
|0> _T—J)lor(ri i) €7 ’LE0T<O‘@> T—>Lo(l ie) €7 ZE0T<O‘®>



and that
(0|U(T,0)

T—)oo(l i€) € _iE0T<®|0> .
The reasoning is similar to the lecture for the path integral derivation of the
generating functional. We inset a complete set of eigenstates of the interacting

theory {|n)}:

e—zHT|® —zHTZ|n nm _6—zE0T|O 0|® +Z —zEnT|n <n|®>
n#0

(0] =

As T — ool — i€), the terms in the sum on the RHS are exponentially
decaying, and only the vacuum contributes:

lim e TPy =  lLim e T|0)0[) = [0)= lim e
T — oo(1—ie) T — oo(1—ie) T — oo(1—ie) e~ 0T (0|))
where

e—iHTlm — U(O) eiH(_T) e_iHO(_T)|®> = U(07 _T)|(Z)> ’
el )

The calculation for the other identity is similar.

. Finally, use the results of 5., 6. and 7. to show that

e OIT dr)dn(y) e Oy
(O]T p(x)p(y)|0) = T_}gﬁ_ig) O[T e zfdetHI(t)W» '

We take 2° > 9° without loss of generality (otherwise reverse the roles of
and y):

OO0 = | lim s 01U (T.0) 6(a)o(s) V(0. ~T)[0)

- s O U0V 0.6)6, @)U U0, (U o U 0. ~T)}0)
1 0 0,0 0o

:T%Llor(% ie) e 2@E0T|<®|0>|2 <®’U(T,l‘ )¢](ZE>U(ZE Y )¢I<y)U(y ) T)|®>

= lim 0] T 61(@)1 (9)U (T, ~T)[6)

T — co(1—i€) €~ 22E0T|<®|0>|2

In the last equality we have used that z° > 1°, so all the operators in the
next-to-last line are in time order. Plugging in the normalization condition

1=(0/0) = lim . ! 0|U(T,-1)|0)

T — oo(1—ie) e~ 2ET [(()|0)]?

and representing U(T, —T') by the expression derived in 5., one finally obtains
the Gell-Mann-Low formula.



