M2 Cosmos, Champs et Particules - Faculté des sciences de Montpellier

QFT, solutions to PROBLEM Sheet 5

Problem 1: The interaction picture

1. Show that $\dot{\phi}_{I}(t, \vec{x})=\pi_{I}(t, \vec{x})$.

By the product rule,

$$
\begin{align*}
\dot{\phi}_{I}(t, \vec{x}) & =i H_{0} e^{i H_{0} t} \phi(0, \vec{x}) e^{-i H_{0} t}+e^{i H_{0} t} \phi(0, \vec{x}) e^{-i H_{0} t}\left(-i H_{0}\right) \tag{1}\\
& =e^{i H_{0} t} i\left[H_{0}, \phi(0, \vec{x})\right] e^{-i H_{0} t} .
\end{align*}
$$

In the commutator, only the π-dependent part of H_{0} contributes because $[\phi, \phi]=0$ at equal times. Using the canonical commutation relations:

$$
\left[H_{0}, \phi(0, \vec{x})\right]=\int \mathrm{d}^{3} y \frac{1}{2}\left[\pi^{2}(0, \vec{y}), \phi(0, \vec{x})\right]=\pi(0, \vec{x})
$$

Inserting into (1) gives the result.
2. Starting from an expression for $\ddot{\phi}_{I}$, show that ϕ_{I} obeys the Klein-Gordon equation, and hence is a free field.
We have

$$
\begin{aligned}
\ddot{\phi}_{I}(t, \vec{x}) & =\partial_{t} \pi_{I}(t, \vec{x})=e^{i H_{0} t} i\left[H_{0}, \pi(0, \vec{x})\right] e^{-i H_{0} t} \\
& =e^{i H_{0} t}\left(\frac{i}{2} \int \mathrm{~d}^{3} y\left(\left[(\vec{\nabla} \phi)^{2}(0, \vec{y}), \pi(0, \vec{x})\right]+m^{2}\left[\phi^{2}(0, \vec{y}), \pi(0, \vec{x})\right]\right)\right) e^{-i H_{0} t}
\end{aligned}
$$

Here we have used that $[\pi, \pi]=0$ at equal times. With

$$
\left[(\vec{\nabla} \phi)^{2}(0, \vec{y}), \pi(0, \vec{x})\right]=2 i(\vec{\nabla} \phi(0, \vec{y})) \cdot \vec{\nabla} \delta^{(3)}(\vec{x}-\vec{y})
$$

and with the action of the differential operator $\vec{\nabla}$ on the distribution $\delta^{(3)}(\vec{x}-\vec{y})$ defined by integration by parts, i.e. $(\vec{\nabla} \phi(0, \vec{y})) \cdot \vec{\nabla} \delta^{(3)}(\vec{x}-\vec{y})=$ $-\left(\nabla^{2} \phi(0, \vec{x})\right) \delta^{(3)}(\vec{x}-\vec{y})$, this becomes

$$
\ddot{\phi}_{I}(t, \vec{x})=\nabla^{2} \phi_{I}(t, \vec{x})-m^{2} \phi_{I}(t, \vec{x})
$$

which is the Klein-Gordon equation.
3. Show that $U(t) \equiv e^{i H_{0} t} e^{-i H t}$ is unitary, and that $\phi(x)=U^{\dagger}(t) \phi_{I}(x) U(t)$.

This is straightforward:

$$
\begin{gathered}
U^{\dagger}=e^{i H t} e^{-i H_{0} t} \Rightarrow U^{\dagger} U=e^{i H t} e^{-i H_{0} t} e^{i H_{0} t} e^{-i H t}=\mathbb{1} . \\
U^{\dagger} \phi_{I}(x) U=e^{i H t} \underbrace{e^{-i H_{0} t} \phi_{I}(x) e^{i H_{0} t}}_{\phi(0, \vec{x})} e^{-i H t}=\phi(x) .
\end{gathered}
$$

4. We would like to express $U(t)$ entirely in terms of ϕ_{I}. To this end, start by showing that $U(t)$ obeys the Schrödinger equation

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t} U(t)=H_{I}(t) U(t)
$$

where H_{I} is the interaction Hamiltonian in the interaction picture, $H_{I}(t)=$ $e^{i H_{0} t} H_{\text {int }} e^{-i H_{0} t}$, with the boundary condition $U(0)=\mathbb{1}$.
It is obvious that $U(0)=e^{0}=\mathbb{1}$. Moreover,

$$
\begin{aligned}
i \frac{\mathrm{~d}}{\mathrm{~d} t} U(t) & =i \frac{\mathrm{~d}}{\mathrm{~d} t} e^{i H_{0} t} e^{-i H t}=i e^{i H_{0} t}\left(i H_{0}\right) e^{-i H t}+i e^{i H_{0} t}(-i H) e^{-i H t} \\
& =e^{i H_{0} t} H_{\mathrm{int}} e^{-i H t}=\underbrace{e^{i H_{0} t} H_{\mathrm{int}} e^{-i H_{0} t}}_{H_{I}(t)} \underbrace{e^{i H_{0} t} e^{-i H t}}_{U(t)}
\end{aligned}
$$

Then show that, for $t>0$,

$$
U(t)=\mathrm{T} \exp \left(-i \int_{0}^{t} \mathrm{~d} t^{\prime} H_{I}\left(t^{\prime}\right)\right)
$$

also solves this Schrödinger equation and satisfies the same boundary condition. Therefore both expressions must be equal.
We have

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t} U=i \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{~T} \exp \left(-i \int_{0}^{t} \mathrm{~d} t^{\prime} H_{I}\left(t^{\prime}\right)\right)=\mathrm{T} H_{I}(t) \exp \left(-i \int_{0}^{t} \mathrm{~d} t^{\prime} H_{I}\left(t^{\prime}\right)\right)
$$

and since t is the latest time appearing on the right-hand side, we can pull the factor $H_{I}(t)$ to the left of the time-ordering symbol:

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t} U=H_{I}(t) \mathrm{T} \exp \left(-i \int_{0}^{t} \mathrm{~d} t^{\prime} H_{I}\left(t^{\prime}\right)\right)=H_{I}(t) U
$$

Again, $U(0)=\mathbb{1}$ is trivially satisfied.
5. Define $U\left(t_{2}, t_{1}\right)=U\left(t_{2}\right) U^{\dagger}\left(t_{1}\right)$. By a similar argument as used in 4., show that, for $t_{2}>t_{1}$,

$$
U\left(t_{2}, t_{1}\right)=\mathrm{T} \exp \left(-i \int_{t_{1}}^{t_{2}} \mathrm{~d} t^{\prime} H_{I}\left(t^{\prime}\right)\right) .
$$

This follows from the fact that both expressions for $U\left(t_{2}, t_{1}\right)$ satisfy the Schrödinger equation

$$
i \frac{\partial U\left(t_{2}, t_{1}\right)}{\partial t_{2}}=H_{I}\left(t_{2}\right) U\left(t_{2}, t_{1}\right)
$$

and the boundary condition $U\left(t_{1}, t_{1}\right)=\mathbb{1}$. The calculation is the same as in 4 .
6. Show that $U\left(t_{1}, t_{3}\right)=U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right)$, and that $U^{\dagger}\left(t_{1}, t_{2}\right)=U\left(t_{2}, t_{1}\right)$.

This is again straightforward:

$$
\begin{aligned}
U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right) & =e^{i H_{0} t_{1}} e^{-i H\left(t_{1}-t_{2}\right)} e^{-i H_{0} t_{2}} e^{i H_{0} t_{2}} e^{-i H\left(t_{2}-t_{3}\right)} e^{-i H_{0} t_{3}} \\
& =e^{i H_{0} t_{1}} e^{-i H\left(t_{1}-t_{3}\right)} e^{i H_{0} t_{3}}=U\left(t_{1}, t_{3}\right) . \\
U^{\dagger}\left(t_{1}, t_{2}\right) & =e^{i H_{0} t_{2}} e^{-i H\left(t_{2}-t_{1}\right)} e^{-i H_{0} t_{1}}=U\left(t_{2}, t_{1}\right) .
\end{aligned}
$$

7. We would like to find a relation between the free vacuum $|\emptyset\rangle$ and the interacting vacuum $|0\rangle$. Let E_{0} be the vacuum energy of the interacting theory, $H|0\rangle=$ $E_{0}|0\rangle$. Show that (assuming $\langle 0 \mid \emptyset\rangle \neq 0$):

$$
|0\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{e^{-i H T}|\emptyset\rangle}{e^{-i E_{0} T}\langle 0 \mid \emptyset\rangle}=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{U(0,-T)|\emptyset\rangle}{e^{-i E_{0} T}\langle 0 \mid \emptyset\rangle} .
$$

and that

$$
\langle 0|=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{\langle\emptyset| U(T, 0)}{e^{-i E_{0} T}\langle\emptyset \mid 0\rangle} .
$$

The reasoning is similar to the lecture for the path integral derivation of the generating functional. We inset a complete set of eigenstates of the interacting theory $\{|n\rangle\}$:

$$
e^{-i H T}|\emptyset\rangle=e^{-i H T} \sum_{n}|n\rangle\langle n \mid \emptyset\rangle=e^{-i E_{0} T}|0\rangle\langle 0 \mid \emptyset\rangle+\sum_{n \neq 0} e^{-i E_{n} T}|n\rangle\langle n \mid \emptyset\rangle
$$

As $T \rightarrow \infty(1-i \epsilon)$, the terms in the sum on the RHS are exponentially decaying, and only the vacuum contributes:
$\lim _{T \rightarrow \infty(1-i \epsilon)} e^{-i H T}|\emptyset\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} e^{-i E_{0} T}|0\rangle\langle 0 \mid \emptyset\rangle \quad \Rightarrow \quad|0\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{e^{-i H T}|\emptyset\rangle}{e^{-i E_{0} T}\langle 0 \mid \emptyset\rangle}$
where

$$
e^{-i H T}|\emptyset\rangle=\underbrace{U(0)}_{\mathbb{1}} e^{i H(-T)} \underbrace{e^{-i H_{0}(-T)}|\emptyset\rangle}_{|\emptyset\rangle}=U(0,-T)|\emptyset\rangle .
$$

The calculation for the other identity is similar.
8. Finally, use the results of 5., 6. and 7. to show that

$$
\langle 0| \mathrm{T} \phi(x) \phi(y)|0\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{\langle\emptyset| \mathrm{T} \phi_{I}(x) \phi_{I}(y) e^{-i \int_{-T}^{T} \mathrm{~d} H_{I}(t)}|\emptyset\rangle}{\langle\emptyset| \mathrm{T} e^{-i \int_{-T}^{T} \mathrm{~d} t H_{I}(t)}|\emptyset\rangle} .
$$

We take $x^{0}>y^{0}$ without loss of generality (otherwise reverse the roles of x and y):

$$
\begin{aligned}
& \langle 0| \phi(x) \phi(y)|0\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{1}{e^{-2 i E_{0} T}|\langle\emptyset \mid 0\rangle|^{2}}\langle\emptyset| U(T, 0) \phi(x) \phi(y) U(0,-T)|\emptyset\rangle \\
& =\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{1}{e^{-2 i E_{0} T|\langle\emptyset \mid 0\rangle|^{2}}\langle\emptyset| U(T, 0) U\left(0, x^{0}\right) \phi_{I}(x) U\left(x^{0}, 0\right) U\left(0, y^{0}\right) \phi_{I}(y) U\left(y^{0}, 0\right) U(0,-T)|\emptyset\rangle} \\
& =\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{1}{e^{-2 i E_{0} T}|\langle\emptyset \mid 0\rangle|^{2}}\langle\emptyset| U\left(T, x^{0}\right) \phi_{I}(x) U\left(x^{0}, y^{0}\right) \phi_{I}(y) U\left(y^{0},-T\right)|\emptyset\rangle \\
& =\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{1}{e^{-2 i E_{0} T}|\langle\emptyset \mid 0\rangle|^{2}}\langle\emptyset| \mathrm{T} \phi_{I}(x) \phi_{I}(y) U(T,-T)|\emptyset\rangle .
\end{aligned}
$$

In the last equality we have used that $x^{0}>y^{0}$, so all the operators in the next-to-last line are in time order. Plugging in the normalization condition

$$
1=\langle 0 \mid 0\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{1}{e^{-2 i E_{0} T}|\langle\emptyset \mid 0\rangle|^{2}}\langle\emptyset| U(T,-T)|\emptyset\rangle
$$

and representing $U(T,-T)$ by the expression derived in 5 ., one finally obtains the Gell-Mann-Low formula.

