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QFT, solutions to problem sheet 5

Problem 1: The interaction picture

1. Show that φ̇I(t, ~x) = πI(t, ~x).
By the product rule,

φ̇I(t, ~x) = iH0 e
iH0tφ(0, ~x)e−iH0t + eiH0tφ(0, ~x)e−iH0t(−iH0)

= eiH0ti [H0, φ(0, ~x)]e−iH0t .
(1)

In the commutator, only the π-dependent part of H0 contributes because
[φ, φ] = 0 at equal times. Using the canonical commutation relations:

[H0, φ(0, ~x)] =

∫
d3y

1

2
[π2(0, ~y), φ(0, ~x)] = π(0, ~x)

Inserting into (1) gives the result.

2. Starting from an expression for φ̈I , show that φI obeys the Klein-Gordon equa-
tion, and hence is a free field.
We have

φ̈I(t, ~x) = ∂tπI(t, ~x) = eiH0ti[H0, π(0, ~x)]e−iH0t

= eiH0t

(
i

2

∫
d3y

(
[(~∇φ)2(0, ~y), π(0, ~x)] +m2[φ2(0, ~y), π(0, ~x)]

))
e−iH0t .

Here we have used that [π, π] = 0 at equal times. With

[(~∇φ)2(0, ~y), π(0, ~x)] = 2i (~∇φ(0, ~y)) · ~∇ δ(3)(~x− ~y)

and with the action of the differential operator ~∇ on the distribution
δ(3)(~x − ~y) defined by integration by parts, i.e. (~∇φ(0, ~y)) · ~∇ δ(3)(~x − ~y) =
−(∇2φ(0, ~x)) δ(3)(~x− ~y), this becomes

φ̈I(t, ~x) = ∇2φI(t, ~x)−m2φI(t, ~x)

which is the Klein-Gordon equation.

3. Show that U(t) ≡ eiH0te−iHt is unitary, and that φ(x) = U †(t)φI(x)U(t).
This is straightforward:

U † = eiHte−iH0t ⇒ U †U = eiHte−iH0teiH0te−iHt = 1 .

U †φI(x)U = eiHt e−iH0tφI(x)eiH0t︸ ︷︷ ︸
φ(0,~x)

e−iHt = φ(x) .

4. We would like to express U(t) entirely in terms of φI . To this end, start by
showing that U(t) obeys the Schrödinger equation

i
d

dt
U(t) = HI(t)U(t)



where HI is the interaction Hamiltonian in the interaction picture, HI(t) =
eiH0tHinte

−iH0t, with the boundary condition U(0) = 1.
It is obvious that U(0) = e0 = 1. Moreover,

i
d

dt
U(t) = i

d

dt
eiH0te−iHt = ieiH0t (iH0) e

−iHt + ieiH0t (−iH) e−iHt

= eiH0tHinte
−iHt = eiH0tHinte

−iH0t︸ ︷︷ ︸
HI(t)

eiH0te−iHt︸ ︷︷ ︸
U(t)

Then show that, for t > 0,

U(t) = T exp

(
−i
∫ t

0

dt′HI(t
′)

)
also solves this Schrödinger equation and satisfies the same boundary condi-
tion. Therefore both expressions must be equal.
We have

i
d

dt
U = i

d

dt
T exp

(
−i
∫ t

0

dt′HI(t
′)

)
= T HI(t) exp

(
−i
∫ t

0

dt′HI(t
′)

)
and since t is the latest time appearing on the right-hand side, we can pull the
factor HI(t) to the left of the time-ordering symbol:

i
d

dt
U = HI(t) T exp

(
−i
∫ t

0

dt′HI(t
′)

)
= HI(t)U .

Again, U(0) = 1 is trivially satisfied.

5. Define U(t2, t1) = U(t2)U
†(t1). By a similar argument as used in 4., show that,

for t2 > t1,

U(t2, t1) = T exp

(
−i
∫ t2

t1

dt′HI(t
′)

)
.

This follows from the fact that both expressions for U(t2, t1) satisfy the
Schrödinger equation

i
∂U(t2, t1)

∂t2
= HI(t2)U(t2, t1)

and the boundary condition U(t1, t1) = 1. The calculation is the same as in 4.

6. Show that U(t1, t3) = U(t1, t2)U(t2, t3), and that U †(t1, t2) = U(t2, t1).
This is again straightforward:

U(t1, t2)U(t2, t3) = eiH0t1e−iH(t1−t2)e−iH0t2eiH0t2e−iH(t2−t3)e−iH0t3

= eiH0t1e−iH(t1−t3)eiH0t3 = U(t1, t3) .

U †(t1, t2) = eiH0t2e−iH(t2−t1)e−iH0t1 = U(t2, t1) .

7. We would like to find a relation between the free vacuum |∅〉 and the interacting
vacuum |0〉. Let E0 be the vacuum energy of the interacting theory, H|0〉 =
E0|0〉. Show that (assuming 〈0|∅〉 6= 0):

|0〉 = lim
T →∞(1−iε)

e−iHT |∅〉
e−iE0T 〈0|∅〉

= lim
T →∞(1−iε)

U(0,−T )|∅〉
e−iE0T 〈0|∅〉

.



and that

〈0| = lim
T →∞(1−iε)

〈∅|U(T, 0)

e−iE0T 〈∅|0〉
.

The reasoning is similar to the lecture for the path integral derivation of the
generating functional. We inset a complete set of eigenstates of the interacting
theory {|n〉}:

e−iHT |∅〉 = e−iHT
∑
n

|n〉〈n|∅〉 = e−iE0T |0〉〈0|∅〉+
∑
n6=0

e−iEnT |n〉〈n|∅〉

As T → ∞(1 − iε), the terms in the sum on the RHS are exponentially
decaying, and only the vacuum contributes:

lim
T →∞(1−iε)

e−iHT |∅〉 = lim
T →∞(1−iε)

e−iE0T |0〉〈0|∅〉 ⇒ |0〉 = lim
T →∞(1−iε)

e−iHT |∅〉
e−iE0T 〈0|∅〉

where
e−iHT |∅〉 = U(0)︸︷︷︸

1

eiH(−T ) e−iH0(−T )|∅〉︸ ︷︷ ︸
|∅〉

= U(0,−T )|∅〉 .

The calculation for the other identity is similar.

8. Finally, use the results of 5., 6. and 7. to show that

〈0|Tφ(x)φ(y)|0〉 = lim
T →∞(1−iε)

〈∅|TφI(x)φI(y) e−i
∫ T
−T dtHI(t)|∅〉

〈∅|T e−i
∫ T
−T dtHI(t)|∅〉

.

We take x0 > y0 without loss of generality (otherwise reverse the roles of x
and y):

〈0|φ(x)φ(y)|0〉 = lim
T →∞(1−iε)

1

e−2iE0T |〈∅|0〉|2
〈∅|U(T, 0)φ(x)φ(y)U(0,−T )|∅〉

= lim
T →∞(1−iε)

1

e−2iE0T |〈∅|0〉|2
〈∅|U(T, 0)U(0, x0)φI(x)U(x0, 0)U(0, y0)φI(y)U(y0, 0)U(0,−T )|∅〉

= lim
T →∞(1−iε)

1

e−2iE0T |〈∅|0〉|2
〈∅|U(T, x0)φI(x)U(x0, y0)φI(y)U(y0,−T )|∅〉

= lim
T →∞(1−iε)

1

e−2iE0T |〈∅|0〉|2
〈∅|TφI(x)φI(y)U(T,−T )|∅〉 .

In the last equality we have used that x0 > y0, so all the operators in the
next-to-last line are in time order. Plugging in the normalization condition

1 = 〈0|0〉 = lim
T →∞(1−iε)

1

e−2iE0T |〈∅|0〉|2
〈∅|U(T,−T )|∅〉

and representing U(T,−T ) by the expression derived in 5., one finally obtains
the Gell-Mann-Low formula.


