Simulation - Lecture 3 - Rejection Sampling Lecture version: Tuesday 4th February, 2020, 12:12

Robert Davies

Part A Simulation and Statistical Programming

Hilary Term 2020

Part A Simulation. HT 2020. R. Davies. 1 / 28

Recap from previous lecture

- Monte Carlo is useful to calculate e.g. integrals when distributions are analytically difficult to work with. But we need iid rvs
- Assume we can always generate $U_i \sim \mathcal{U}[0,1]$
- Last time, we looked at two easy ways to get iid $X \sim P$
- ▶ Inversion method. Invert CDF, return $X_i = F_X^{-1}(U_i)$
- ► Transformation method. Find new distribution Q and function φ such that X = φ(Y) ~ P. Then draw Y_i ~ Q, and return X = φ(Y_i)
- Today: Rejection sampling method. Draw random variables from larger space defined by proposal pdf, and "reject" those not in region defined by target pdf

Idea

- Let X be a continuous r.v. on Ω with pdf f_X
- Consider a continuous rv variable U > 0 such that the conditional pdf of U given X = x is

$$f_{U|X}(u|x) = \begin{cases} \frac{1}{f_X(x)} & \text{if } u < f_X(x) \\ 0 & \text{otherwise} \end{cases}$$

• The joint pdf of (X, U) is

$$f_{X,U}(x,u) = f_X(x) \times f_{U|X}(u|x)$$

= $f_X(x) \times \frac{1}{f_X(x)} \mathbb{I}(0 < u < f_X(x))$
= $\mathbb{I}(0 < u < f_X(x))$

• Uniform distribution on the set $\mathcal{A} = \{(x, u) | 0 < u < f_X(x), x \in \Omega\}$

Fundamental Theorem of simulation

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Ω with pdf or pmf f_X . Simulating X is equivalent to simulating

 $(X, U) \sim \text{Unif}(\{(x, u) | x \in \Omega, 0 < u < f_X(x)\})$



Part A Simulation. HT 2020. R. Davies. 4 / 28

Rejection sampling idea

- Direct sampling of (X, U) uniformly over the set A is in general challenging
- Consider some superset S such that A ⊆ S, such that simulating uniform rv on S is easy
- Therefore, a uniform distribution on A can be obtained by drawing from a uniform distribution on S, and rejecting samples in S not in A
- Rejection sampling technique:
 - 1. Simulate $(Y, V) \sim \text{Unif}(\mathcal{S})$, with simulated values y and v
 - 2. if $(y, v) \in \mathcal{A}$ then stop and return X = y, U = v,
 - 3. otherwise go back to 1.
- The resulting rv (X, U) is uniformly distributed on \mathcal{A}
- X is marginally distributed from f_X

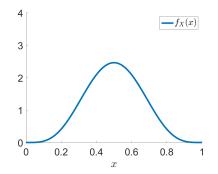
Example: Beta density

• Let $X \sim \text{Beta}(5,5)$ be a continuous rv with pdf

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1$$

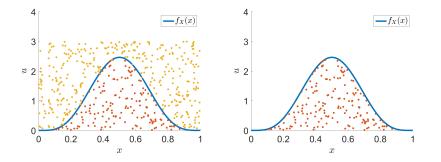
where $\alpha = \beta = 5$.

• $f_X(x)$ is upper bounded by 3 on [0, 1].



Example: Beta density

- Let $S = \{(y, v) | y \in [0, 1], v \in [0, 3]\}$
 - 1. Simulate $Y \sim \mathcal{U}([0,1])$ and $V \sim \mathcal{U}([0,3]),$ with simulated values y and v
 - 2. If $v < f_X(x)$, return X = x
 - 3. Otherwise go back to Step 1.
- Only requires simulating uniform random variables and evaluating the pdf pointwise



Rejection sampling more precisely

- Consider X a random variable on Ω with a pdf/pmf f(x), a target distribution
- We want to sample from f using a proposal pdf/pmf q which we can sample.
- Proposition. Suppose we can find a constant M such that $f(x)/q(x) \leq M$ for all $x \in \Omega$.
- The following 'Rejection' algorithm returns $X \sim f$.

Rejection sampling method

Algorithm 1 Rejection sampling

- ldentify proposal distribution Q that is easy to simulate from, with pdf q_Q , and find M such that $f_X(x)/q_Q(x) \leq M$ for all $x \in \Omega$
- Simulate $Y_i \sim Q$, and $U_i \sim \mathcal{U}[0,1]$
- For U_i ≤ f(Y_i)/q(Y_i)/M, return an X_i = Y_i, otherwise do not return a value

Rejection Sampling: Proof for discrete rv

We have

$$\Pr(X = x) = \sum_{n=1}^{\infty} \Pr(\text{reject } n - 1 \text{ times, draw } Y = x \text{ and accept it})$$
$$= \sum_{n=1}^{\infty} \Pr(\text{reject } Y)^{n-1} \Pr(\text{draw } Y = x \text{ and accept it})$$

We have

 $\Pr (\operatorname{draw} Y = x \text{ and accept it})$ $= \Pr (\operatorname{draw} Y = x) \Pr (\operatorname{accept} Y | Y = x)$ $= q(x) \Pr \left(U \le \frac{f(Y)}{q(Y)} / M \middle| Y = x \right)$ $= \frac{f(x)}{M}$

Part A Simulation. HT 2020. R. Davies. 10 / 28

The probability of having a rejection is

$$\Pr(\text{reject } Y) = \sum_{x \in \Omega} \Pr(\text{draw } Y = x \text{ and reject it})$$
$$= \sum_{x \in \Omega} q(x) \Pr\left(U \ge \frac{f(Y)}{q(Y)} / M \middle| Y = x\right)$$
$$= \sum_{x \in \Omega} q(x) \left(1 - \frac{f(x)}{q(x)M}\right) = 1 - \frac{1}{M}$$

Hence we have

 $\Pr(X = x) = \sum_{n=1}^{\infty} \Pr(\operatorname{reject} Y)^{n-1} \Pr(\operatorname{draw} Y = x \text{ and accept it})$ $= \sum_{n=1}^{\infty} \left(1 - \frac{1}{M}\right)^{n-1} \frac{f(x)}{M} = f(x).$

▶ Note the number of accept/reject trials has a geometric distribution of success probability 1/M, so the mean number of trials is M.

Rejection Sampling: Proof for continuous scalar rv

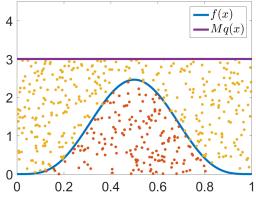
- Here is an alternative proof given for a continuous scalar variable X, the rejection algorithm still works but f, q are now pdfs.
- ▶ We accept the proposal Y whenever $(U, Y) \sim f_{U,Y}$ where $f_{U,Y}(u, y) = q(y)\mathbb{I}_{(0,1)}(u)$ satisfies $U \leq f(Y)/(Mq(Y))$.

We have

$$\begin{aligned} \Pr\left(X \le x\right) &= & \Pr\left(Y \le x | U \le f(Y) / Mq(Y)\right) \\ &= & \frac{\Pr\left(Y \le x, U \le f(Y) / Mq(Y)\right)}{\Pr\left(U \le f(Y) / Mq(Y)\right)} \\ &= & \frac{\int_{-\infty}^{x} \int_{0}^{f(y) / Mq(y)} f_{U,Y}(u, y) du dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y) / Mq(y)} f_{U,Y}(u, y) du dy} \\ &= & \frac{\int_{-\infty}^{x} \int_{0}^{f(y) / Mq(y)} q(y) du dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y) / Mq(y)} q(y) du dy} = \int_{-\infty}^{x} f(y) dy. \end{aligned}$$

Example for target is beta, proposal is uniform

- f(x) is the pdf of a Beta(5,5) rv
- Proposal density q is the pdf of a uniform rv on [0,1]



x

Calculating a minimal M

• Assume you have for $\alpha, \beta \geq 1$

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1$$

which is upper bounded on [0, 1].

We have the proposal q(x) = I_(0,1)(x) the uniform density on [0,1].
 We need to find a bound M s.t. f(x)/q(x) ≤ M ⇔ f(x) ≤ M. We therefore want to set M = max_{0<x<1} f(x) and we obtain by solving for f'(x) = 0

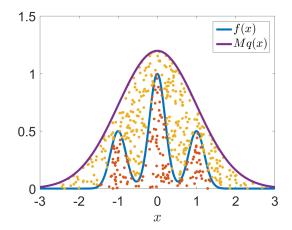
$$M = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \underbrace{\left(\frac{\alpha - 1}{\alpha + \beta - 2}\right)^{\alpha - 1} \left(\frac{\beta - 1}{\alpha + \beta - 2}\right)^{\beta - 1}}_{M'}$$

which gives

$$\frac{f(y)}{Mq(y)} = \frac{y^{\alpha - 1}(1 - y)^{\beta - 1}}{M'}.$$

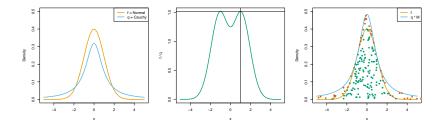
Illustrations for multimodal distribution

- $X \in \mathbb{R}$ with multimodal pdf
- Proposal density q is the pdf of a standardized normal



Normal example

- Let $X \sim N(0,1)$, with pdf $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$
- ► Consider as a proposal distribution $Y \sim q$ the Cauchy distribution, with pdf $q(x) = \frac{1}{\pi(1+x^2)}$
- We can work out that $\frac{f_X(x)}{q_Y(x)} \leq M$ for $M = \sqrt{2\pi}e^{-\frac{1}{2}}$
- We can generate Y from U using inversion $Y = \tan(\pi(U \frac{1}{2}))$

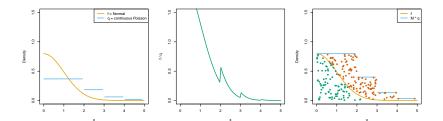


Normal from Cauchy code

```
f_X <- function(x) { 1 / sqrt(2 * pi) * exp(-0.5 * x ** 2)}
f_Y <- function(x) { 1 / pi / (1 + x ** 2)}
M \le sqrt(2 * pi) * exp(-1 / 2)
set.seed(914)
n <- 10000
x <- array(NA, n)
i <- 1 ## index
while(i <= n) {</pre>
    U1 <- runif(1)
    Xp <- tan(pi * (U1 - 0.5)) ## proposed
    U2 <- runif(1)
    if (U2 <= (f_X(Xp) / f_Y(Xp) / M)) {
        x[i] <- Xp
        i <- i + 1
    }
}
c(mean(x), var(x)) ## 0.007508397 0.985407347
```

Using a block uniform discrete proposal with a continuous target

- Let X = |Z|, with $Z \sim N(0, 1)$, *i.e.* $f_X(x) = \frac{2}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ for x > 0
- Consider bounding it by Y from a continuous analog of a Poisson(1) pmf
- Then using inversion for a discrete rv, we can sample from a *Poisson* the normal way, sampling the continuous version using another random uniform



Code for inverse of a Poisson with rate 1

```
F_inverse_poisson <- function() {</pre>
    U <- runif(1)
    j <- 0
    done <- FALSE
    pL <- pU <- 0
    while(!done) {
        pU <- pU + exp(-1) / factorial(j)</pre>
         if ((pL <= U) & (U < pU)) {
             done <- TRUE
        } else {
             pL <- pU
            j <- j + 1
        }
    }
    return(j)
}
```

Code for truncated normal

```
set.seed(41)
n <- 10000
x <- array(NA, n)
i <- 1
M \leq sqrt(2 / pi) * exp(1)
while(i <= n) {</pre>
    Xp <- F_inverse_poisson() + runif(1)</pre>
    f <- 2 / (sqrt(2 * pi)) * exp( - 0.5 * Xp**2)
    q <- exp(-1) / factorial(floor(Xp))</pre>
    if (runif(1) <= f / q / M) {
        x[i] <- Xp
        i <- i + 1
    }
}
c(mean(x), var(x)) ## 0.7981175 0.3605557
y <- abs(rnorm(n))</pre>
c(mean(y), var(y)) ## 0.7951576 0.3681160
```

Dealing with Unknown Normalising Constants

In most practical scenarios, we only know f(x) and q(x) up to some normalising constants; i.e.

$$f(x) = {\widetilde f}(x)/Z_f$$
 and $q(x) = {\widetilde q}(x)/Z_q$

where $\tilde{f}(x), \tilde{q}(x)$ are known but $Z_f = \int_{\Omega} \tilde{f}(x) dx$, $Z_q = \int_{\Omega} \tilde{q}(x) dx$ are unknown/expensive to compute.

- Rejection can still be used: Indeed $f(x)/q(x) \leq M$ for all $x \in \Omega$ iff $\tilde{f}(x)/\tilde{q}(x) \leq \tilde{M}$, with $\tilde{M} = Z_f M/Z_q$.
- ▶ Practically, this means we can ignore the normalising constants from the start: if we can find \tilde{M} to bound $\tilde{f}(x)/\tilde{q}(x)$ then it is correct to accept with probability $\tilde{f}(x)/(\tilde{M}\tilde{q}(x))$ in the rejection algorithm. In this case the mean number N of accept/reject trials will equal $Z_q \tilde{M}/Z_f$ (that is, M again).

Example without normalization: gamma random variables

We want to simulate a random variable X ~Gamma(α, β) which works for any α ≥ 1 (not just integers);

$$f(x) = \frac{x^{\alpha - 1} \exp(-\beta x)}{Z_f} \text{ for } x > 0, \quad Z_f = \Gamma(\alpha) / \beta^{\alpha}$$

so $\tilde{f}(x) = x^{\alpha-1} \exp(-\beta x)$ will do as our unnormalised target.

- We saw that for $\alpha = a$ a positive integer we can simulate $X \sim \text{Gamma}(a, \beta)$ by adding a independent $\text{Exp}(\beta)$ variables, $Y_i \sim \text{Exp}(\beta)$, $X = \sum_{i=1}^{a} Y_i$.
- So we can sample densities "close" in shape to Gamma(α, β) since we can sample Gamma([α], β). Perhaps we can use this as a proposal density?

Gamma rvs bound

Let a = ⌊α⌋ and let's try to use Gamma(a, b) as the proposal, so Y ~ Gamma(a, b) for integer a ≥ 1 and some b > 0. The density of Y is

$$q(x) = \frac{x^{a-1}\exp(-bx)}{Z_q} \text{ for } x > 0, \quad Z_q = \Gamma(a)/b^a$$

so we can use $\tilde{q}(x) = x^{a-1} \exp(-bx)$.

• We have to check whether the ratio $\tilde{f}(x)/\tilde{q}(x)$ is bounded over \mathbb{R}_+ where

$$f(x)/\tilde{q}(x) = x^{\alpha-a} \exp(-(\beta-b)x).$$

Consider (a) x → 0 and (b) x → ∞. For (a) we need a ≤ α so a = ⌊α⌋ is indeed fine. For (b) we need b < β (not b = β since we need the exponential to kill off the growth of x^{α-a}).

Gamma rvs bound continued

- Given that we have chosen a = [α] and b < β for the ratio to be bounded, we now compute the bound.
- $\frac{d}{dx}(\tilde{f}(x)/\tilde{q}(x)) = 0$ at $x = (\alpha a)/(\beta b)$ (and this must be a maximum at $x \ge 0$ under our conditions on a and b), so $\tilde{f}(x)/\tilde{q}(x) \le \tilde{M}$ for all $x \ge 0$ if

$$\tilde{M} = \left(\frac{\alpha - a}{\beta - b}\right)^{\alpha - a} \exp(-(\alpha - a)).$$

► So accept Y if $U \leq \tilde{f}(Y)/\tilde{M}\tilde{q}(Y)$ where $\tilde{f}(Y)/\tilde{M}\tilde{q}(Y) = Y^{\alpha-a}\exp(-(\beta-b)Y)/\tilde{M}.$

Gamma rvs and the best choice of b

- Any 0 < b < β will do, but is there a best choice of b?</p>
- Idea: choose b to minimize the expected number of simulations of Y per sample X output.
- Since the number N of trials is Geometric, with success probability $Z_f/(\tilde{M}Z_q)$, the expected number of trials is $\mathbb{E}(N) = Z_q \tilde{M}/Z_f$. Now $Z_f = \Gamma(\alpha)\beta^{-\alpha}$ where Γ is the Gamma function related to the factorial.
- Practice: Show that the optimal b solves d/db (b^{-a}(β − b)^{-α+a}) = 0 so deduce that b = β(a/α) is the optimal choice.

Simulating normal random variables, revisited

• Recall $f(x) = (2\pi)^{-\frac{1}{2}} \exp(-\frac{1}{2}x^2)$ and $q(x) = 1/\pi/(1+x^2)$. We have $\frac{\tilde{f}(x)}{\tilde{q}(x)} = (1+x^2) \exp\left(-\frac{1}{2}x^2\right) \le 2/\sqrt{e} = \tilde{M}$

which is attained at ± 1 .

Hence the probability of acceptance is

$$\mathbb{P}\left(U \le \frac{\tilde{f}(Y)}{\tilde{M}\tilde{q}(Y)}\right) = \frac{Z_f}{\tilde{M}Z_q} = \frac{\sqrt{2\pi}}{\frac{2}{\sqrt{e}}\pi} = \sqrt{\frac{e}{2\pi}} \approx 0.66$$

and the mean number of trials to success is approximately $1/0.66 \approx 1.52$. (which matches our M from earlier)

Rejection Sampling in High Dimension

Consider

$$\tilde{f}(x_1, ..., x_d) = \exp\left(-\frac{1}{2}\sum_{k=1}^d x_k^2\right)$$

and

$$\tilde{q}(x_1, ..., x_d) = \exp\left(-\frac{1}{2\sigma^2} \sum_{k=1}^d x_k^2\right)$$

For $\sigma > 1$, we have

$$\frac{\tilde{f}(x_1, ..., x_d)}{\tilde{q}(x_1, ..., x_d)} = \exp\left(-\frac{1}{2}\left(1 - \sigma^{-2}\right)\sum_{k=1}^d x_k^2\right) \le 1 = \tilde{M}.$$

• The acceptance probability of a proposal for $\sigma > 1$ is

$$\mathbb{P}\left(U \le \frac{\tilde{f}(X_1, ..., X_d)}{\tilde{M}\tilde{q}(X_1, ..., X_d)}\right) = \frac{Z_f}{\tilde{M}Z_q} = \sigma^{-d}.$$

The acceptance probability goes exponentially fast to zero with d. Part A Simulation. HT 2020. R. Davies. 27 / 28

Recap

- Rejection sampling relies on the idea that sampling uniformly from the area under your target density will return random variables distributed according to your target density
- To do this, you need a proposal density q that covers your target density f, where your proposal density is easily to sample from
- Given a bound M with $f(x)/q(x) \le M \forall x$, then rejection sampling is
 - Draw $Y \sim q$ and $U \sim \mathcal{U}[0,1]$
 - Keep X = Y if $U \leq \frac{f(Y)}{q(Y)M}$

• Then $X \sim f$, and M is the expected number of samples per returned X