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Recap from previous lecture

v

Monte Carlo is useful to calculate e.g. integrals when distributions are
analytically difficult to work with. But we need iid rvs

Assume we can always generate U; ~ U[0, 1]
Last time, we looked at two easy ways to get iid X ~ P
Inversion method. Invert CDF, return X; = F);l(UZ-)

vVvyyvyy

Transformation method. Find new distribution ) and function ¢
such that X = ¢(Y') ~ P. Then draw Y; ~ @, and return X = ¢(Y;)
Today: Rejection sampling method. Draw random variables from
larger space defined by proposal pdf, and “reject” those not in region
defined by target pdf

\4

Part A Simulation. HT 2020. R. Davies. 2 / 28



Idea

> Let X be a continuous r.v. on 2 with pdf fx

» Consider a continuous rv variable U > 0 such that the conditional pdf
of U given X =z is

1 .
fuix (ulz) ={ U< fx(@)

0 otherwise

» The joint pdf of (X,U) is
fxu(z,u) = fx(x) x fux(ulr)
— fx(@) x fxl(x)]l(o <u< fx(@)

=I(0 <u < fx(z))

» Uniform distribution on the set A = {(x,u)|0 < u < fx(x),x € Q}
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Fundamental Theorem of simulation

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Q with pdf or pmf fx. Simulating X is equivalent to
simulating

(X,U) ~ Unif({(z,u)|z € Q,0 <u < fx(x)})

Part A Simulation. HT 2020. R. Davies. 4 / 28



Rejection sampling idea

» Direct sampling of (X, U) uniformly over the set A is in general
challenging

» Consider some superset S such that A C S, such that simulating
uniform rv on S is easy

» Therefore, a uniform distribution on A can be obtained by drawing
from a uniform distribution on S, and rejecting samples in S not in A

P> Rejection sampling technique:

1. Simulate (Y, V) ~ Unif(S), with simulated values y and v
2. if (y,v) € A then stop and return X = y,U = v,
3. otherwise go back to 1.

The resulting rv (X, U) is uniformly distributed on A
> X is marginally distributed from fx

v
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Example: Beta density
» Let X ~ Beta(5,5) be a continuous rv with pdf
Lla+B) o B—1

=————z* (1-2)",0<z<1
N T

where o = 5 = 5.
» fx(x) is upper bounded by 3 on [0, 1].

|—/x(@)
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Example: Beta density

> Let S ={(y,v)|ly € [0,1],v € [0,3]}
1. Simulate Y ~ 4(]0,1]) and V' ~ U(]0, 3]), with simulated values y and
v

2. fv< fx(z), return X =z
3. Otherwise go back to Step 1.
» Only requires simulating uniform random variables and evaluating the
pdf pointwise

4 4
|— Fx(=)| |—Fx(=)|
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Rejection sampling more precisely

» Consider X a random variable on Q with a pdf/pmf f(z), a target
distribution

» We want to sample from f using a proposal pdf/pmf ¢ which we can
sample.

» Proposition. Suppose we can find a constant M such that
f(x)/q(x) < M for all z € Q.

» The following ‘Rejection’ algorithm returns X ~ f.
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Rejection sampling method

Algorithm 1 Rejection sampling
» ldentify proposal distribution () that is easy to simulate from, with
pdf gg, and find M such that fx(x)/qq(xz) < M for all z €
» Simulate Y; ~ @, and U; ~ U]0, 1]
» For U; < f(Yi)/q(Yi)/M, return an X; =Y;, otherwise do not return
a value
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Rejection Sampling: Proof for discrete rv

> We have

oo
Pr(X=2) = Z Pr (reject n — 1 times, draw Y = x and accept it)
n=1
oo
= ZPr (reject Y)" ' Pr(draw Y = 2 and accept it)

n=1

> We have

Pr (draw Y = z and accept it)

= Pr(draw Y = z)Pr(accept Y|Y = x)
= ¢(x)Pr JY) =z
= oy (v <180y =)

f@)
M
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» The probability of having a rejection is

Pr (reject Y)

» Hence we have

n=1
)

-3

n=1

(

1— —

Z Pr(draw Y = 2 and reject it)

gqm<w )y 2.
o) (1= ) =1 o

o
Z Pr (reject Y)" ' Pr(draw Y =  and accept it)

1 >“ f](;)

N = ().

» Note the number of accept/reject trials has a geometric distribution
of success probability 1/M, so the mean number of trials is M.
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Rejection Sampling: Proof for continuous scalar rv

P> Here is an alternative proof given for a continuous scalar variable X,
the rejection algorithm still works but f, ¢ are now pdfs.

» We accept the proposal Y whenever (U,Y) ~ fi7y where
foy (u,y) = q(y)Lo,1)(u) satisfies U < f(Y)/(Mq(Y)).
> We have

Pr(X<z) = Pr(Y <z|U<[f(Y)/MqY))
Pr(Y <z, U< f(Y)/Mq(Y))
Pr(U < f(Y)/Mq(Y))
f j‘f(y)/Mq ) fU,Y(u y)dudy

[, Jeaw fw(u y)dudy
ff(y)/Mq (v)

_ f dudy
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Example for target is beta, proposal is uniform

» f(x) is the pdf of a Beta(5,5) rv
» Proposal density ¢ is the pdf of a uniform rv on [0, 1]

, | | =@ |
4 — Mq(z)
3
2 L
1 L
0

0 1
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Calculating a minimal M

» Assume you have for a, 5 > 1
I'a+pB) go-1
L(e)I'(B)
which is upper bounded on [0, 1].

f(z) = 1-z)to<z<1

> We have the proposal ¢(x) = I(g 1)(x) the uniform density on [0, 1].
» We need to find a bound M s.t. f(z)/q(x) < M < f(x) < M.
We therefore want to set M = maxg<,<1 f(x) and we obtain by

solving for f/(x) =0

- F TS (ﬁ%ig)a—l (@)B

M/

which gives

fly) oyt =yt
Mq(y) M '
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[llustrations for multimodal distribution

> X € R with multimodal pdf
» Proposal density ¢ is the pdf of a standardized normal

1.5

— @)
— Mq(x)
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Normal example

_x2
> Let X ~ N(0,1), with pdf fx(z) = ——=e 2

Var©
> Consider as a proposal distribution Y ~ ¢ the Cauchy distribution,

» We can work out that fX(( )) < M for M = ome 2

> We can generate Y from U using inversion Y = tan(n(U — 1))

oF

EH
15
B
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Normal from Cauchy code

f_X <- function(x) { 1 / sqrt(2 * pi) * exp(-0.5 * x **x 2)}
f_Y <- function(x) { 1 / pi / (1 + x **x 2)}
M <- sqrt(2 * pi) * exp(-1 / 2)
set.seed(914)
n <- 10000
x <- array(NA, n)
i <- 1 ## index
while(i <= n) {
Ul <- runif(1)
Xp <- tan(pi * (Ul - 0.5)) ## proposed
U2 <- runif (1)
if (U2 <= (£_X(Xp) / £_YXp) / M) {
x[i] <- Xp
i<-1i+1

}
c(mean(x), var(x)) ## 0.007508397 0.985407347
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Using a block uniform discrete proposal with a continuous
target

g2
> Let X = |Z|, with Z ~ N(0,1), i.e. fx(z)= \/%67 for z > 0

» Consider bounding it by Y from a continuous analog of a Poisson(1)
pmf

» Then using inversion for a discrete rv, we can sample from a Poisson
the normal way, sampling the continuous version using another
random uniform

ER ER [
M*q
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Code for inverse of a Poisson with rate 1

F_inverse_poisson <- function() {

U <- runif (1)

j <=0

done <- FALSE

pL <- pU <- 0

while(!done) {
pU <- pU + exp(-1) / factorial(j)
if ((pL <= U) & (U < pO)) {

done <- TRUE
} else {
pL <- pU
j<-3j+1
}
}
return(j)
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Code for truncated normal

set.seed(41)
n <- 10000
X <- array(NA, n)
i<-1
M <- sqrt(2 / pi) * exp(1)
while(i <= n) {
Xp <- F_inverse_poisson() + runif(1)
f <- 2/ (sqrt(2 * pi)) * exp( - 0.5 * Xpx*2)
q <- exp(-1) / factorial(floor(Xp))
if (runif(1) <= f / q/ M) {
x[i] <- Xp
i<<-1i+1

}

c(mean(x), var(x)) ## 0.7981175 0.3605557
y <- abs(rnorm(n))

c(mean(y), var(y)) ## 0.7951576 0.3681160
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Dealing with Unknown Normalising Constants

» In most practical scenarios, we only know f(z) and g(x) up to some
normalising constants; i.e.

f(x) = f(2)/Z and q(z) = 4(2)/Z,

where f(z),G(z) are known but Z; = [, f(z)dz, Z; = [, d(x)dx are
unknown /expensive to compute.

> Rejection can still be used: Indeed f(x)/q(x) < M for all z € Q iff

f(x)/G(z) < M, with M = Z;M/Z,,.

> Practically, this means we can ignore the normalising constants from
the start: if we can find M to bound f(x)/q(z) then it is correct to
accept with probability f(z)/(Mg(z)) in the rejection algorithm. In
this case the mean number NV of accept/reject trials will equal
ZyM [ Z; (that is, M again).
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Example without normalization: gamma random variables

» We want to simulate a random variable X ~Gamma(«, ) which
works for any o > 1 (not just integers);

2% L exp(—pBz)

flz) = Z; forx >0, Zy=I(a)/B"

so f(x) = 2z exp(—fFz) will do as our unnormalised target.

> We saw that for o = a a positive integer we can simulate
X ~ Gamma(a, 8) by adding a independent Exp(/3) variables,
Y ~ Exp(B), X = Y0, Vi,

» So we can sample densities “close” in shape to Gamma(a, 3) since
we can sample Gamma(|«/, ). Perhaps we can use this as a
proposal density?
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Gamma rvs bound

» Let a = [« and let’s try to use Gamma(a, b) as the proposal, so Y ~
Gamma(a, b) for integer a > 1 and some b > 0. The density of Y is

2% L exp(—bx)

forx >0, Z;=TI(a)/b"
Zq

q(z) =
so we can use G(z) = 2% exp(—bx).
» We have to check whether the ratio f(z)/G(z) is bounded over R
where

f(@)/i(x) = 2**exp(—(8 — b)).

» Consider (a) x — 0 and (b) x — oco. For (a) we need a < a so
a = |« is indeed fine. For (b) we need b < /3 (not b = 3 since we
need the exponential to kill off the growth of z®~%).
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Gamma rvs bound continued

» Given that we have chosen a = |a] and b < [ for the ratio to be
bounded, we now compute the bound.

> %(f‘(a:)/c_’j(x)) =0atz = (a—a)/(B—0b) (and this must be a
maximum at z > 0 under our conditions on a and b), so
f(z)/q(x) < M for all z > 0 if

M = <Z_Z)aaexp(—(a —a)).

> So accept YV if U < F(Y)/MG(Y) where )
fY)/Mq(Y) =Y "exp(=(8 = b)Y)/M.
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Gamma rvs and the best choice of b

> Any 0 < b < g will do, but is there a best choice of b7

» ldea: choose b to minimize the expected number of simulations of Y
per sample X output.

» Since the number IV of trials is Geometric, with success probability
Zy/(MZ,), the expected number of trials is E(N) = Z,M /Z;. Now
Zr =T'(a)B™ where I' is the Gamma function related to the
factorial.

» Practice: Show that the optimal b solves %(b*a(ﬁ — b)) =0 so
deduce that b = 5(a/«) is the optimal choice.
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Simulating normal random variables, revisited

> Recall f(z) = (27) "2 exp(—122) and g(z) = 1/7/(1 + 22). We have

f(z)
q(x)

which is attained at £1.

— (1+2%) exp (-iﬁ) <2/Ve=M

» Hence the probability of acceptance is

F(Y Z V2
plo<d0) ) Zr _v2m_ [ o
Mq(Y) MZ, 7T 2m
and the mean number of trials to success is approximately
1/0.66 ~ 1.52. (which matches our M from earlier)
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Rejection Sampling in High Dimension

» Consider
- 1 d
f(wla "'7:Ed) = €exp <_2 in>
k=1

and
1 d
(j($17 ...,l’d) = €Xp <_W sz>
k=1
» For o > 1, we have

- d
M:exp <—; (1—0_2)Z$i> SlZM

q(x1; ..., Ta) pt

» The acceptance probability of a proposal for o > 1 is

P(U< f{Xl’“"Xd) S S
Mi(X1,... X)) M2,

» The acceptance probability goes exponentially fast to zero with d.
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Recap

P> Rejection sampling relies on the idea that sampling uniformly from
the area under your target density will return random variables
distributed according to your target density

» To do this, you need a proposal density ¢ that covers your target
density f, where your proposal density is easily to sample from
» Given a bound M with f(x)/q(z) < M Vz, then rejection sampling is

» Draw Y ~ g and U ~ U0, 1]

> Keep X =Y if U < SO0

» Then X ~ f, and M is the expected number of samples per returned
X
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