
Simulation - Lecture 3 - Rejection Sampling
Lecture version: Tuesday 4th February, 2020, 12:12

Robert Davies

Part A Simulation and Statistical Programming

Hilary Term 2020

Part A Simulation. HT 2020. R. Davies. 1 / 28



Recap from previous lecture

I Monte Carlo is useful to calculate e.g. integrals when distributions are
analytically difficult to work with. But we need iid rvs

I Assume we can always generate Ui ∼ U [0, 1]

I Last time, we looked at two easy ways to get iid X ∼ P
I Inversion method. Invert CDF, return Xi = F−1

X (Ui)

I Transformation method. Find new distribution Q and function ϕ
such that X = ϕ(Y ) ∼ P . Then draw Yi ∼ Q, and return X = ϕ(Yi)

I Today: Rejection sampling method. Draw random variables from
larger space defined by proposal pdf, and “reject” those not in region
defined by target pdf
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Idea
I Let X be a continuous r.v. on Ω with pdf fX
I Consider a continuous rv variable U > 0 such that the conditional pdf

of U given X = x is

fU |X(u|x) =

{ 1
fX(x) if u < fX(x)

0 otherwise

I The joint pdf of (X,U) is

fX,U (x, u) = fX(x)× fU |X(u|x)

= fX(x)× 1

fX(x)
I(0 < u < fX(x))

= I(0 < u < fX(x))

I Uniform distribution on the set A = {(x, u)|0 < u < fX(x), x ∈ Ω}
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Fundamental Theorem of simulation

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Ω with pdf or pmf fX . Simulating X is equivalent to
simulating

(X,U) ∼ Unif({(x, u)|x ∈ Ω, 0 < u < fX(x)})

Part A Simulation. HT 2020. R. Davies. 4 / 28



Rejection sampling idea

I Direct sampling of (X,U) uniformly over the set A is in general
challenging

I Consider some superset S such that A ⊆ S, such that simulating
uniform rv on S is easy

I Therefore, a uniform distribution on A can be obtained by drawing
from a uniform distribution on S, and rejecting samples in S not in A

I Rejection sampling technique:

1. Simulate (Y, V ) ∼ Unif(S), with simulated values y and v
2. if (y, v) ∈ A then stop and return X = y,U = v,
3. otherwise go back to 1.

I The resulting rv (X,U) is uniformly distributed on A
I X is marginally distributed from fX
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Example: Beta density
I Let X ∼ Beta(5, 5) be a continuous rv with pdf

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

where α = β = 5.

I fX(x) is upper bounded by 3 on [0, 1].
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Example: Beta density
I Let S = {(y, v)|y ∈ [0, 1], v ∈ [0, 3]}

1. Simulate Y ∼ U([0, 1]) and V ∼ U([0, 3]), with simulated values y and
v

2. If v < fX(x), return X = x
3. Otherwise go back to Step 1.

I Only requires simulating uniform random variables and evaluating the
pdf pointwise
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Rejection sampling more precisely

I Consider X a random variable on Ω with a pdf/pmf f(x), a target
distribution

I We want to sample from f using a proposal pdf/pmf q which we can
sample.

I Proposition. Suppose we can find a constant M such that
f(x)/q(x) ≤M for all x ∈ Ω.

I The following ‘Rejection’ algorithm returns X ∼ f .
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Rejection sampling method

Algorithm 1 Rejection sampling
I Identify proposal distribution Q that is easy to simulate from, with

pdf qQ, and find M such that fX(x)/qQ(x) ≤M for all x ∈ Ω

I Simulate Yi ∼ Q, and Ui ∼ U [0, 1]

I For Ui ≤ f(Yi)/q(Yi)/M , return an Xi = Yi, otherwise do not return
a value
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Rejection Sampling: Proof for discrete rv
I We have

Pr (X = x) =

∞∑
n=1

Pr (reject n− 1 times, draw Y = x and accept it)

=

∞∑
n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

I We have

Pr (draw Y = x and accept it)

= Pr (draw Y = x) Pr (accept Y |Y = x)

= q(x) Pr

(
U ≤ f(Y )

q(Y )
/M

∣∣∣∣Y = x

)
=

f(x)

M
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I The probability of having a rejection is

Pr (reject Y ) =
∑
x∈Ω

Pr (draw Y = x and reject it)

=
∑
x∈Ω

q(x) Pr

(
U ≥ f(Y )

q(Y )
/M

∣∣∣∣Y = x

)
=

∑
x∈Ω

q(x)

(
1− f(x)

q(x)M

)
= 1− 1

M

I Hence we have

Pr (X = x) =

∞∑
n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

=

∞∑
n=1

(
1− 1

M

)n−1 f(x)

M
= f(x).

I Note the number of accept/reject trials has a geometric distribution
of success probability 1/M , so the mean number of trials is M .
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Rejection Sampling: Proof for continuous scalar rv

I Here is an alternative proof given for a continuous scalar variable X,
the rejection algorithm still works but f, q are now pdfs.

I We accept the proposal Y whenever (U, Y ) ∼ fU,Y where
fU,Y (u, y) = q(y)I(0,1)(u) satisfies U ≤ f(Y )/(Mq(Y )).

I We have

Pr (X ≤ x) = Pr (Y ≤ x|U ≤ f(Y )/Mq(Y ))

=
Pr (Y ≤ x, U ≤ f(Y )/Mq(Y ))

Pr (U ≤ f(Y )/Mq(Y ))

=

∫ x
−∞

∫ f(y)/Mq(y)
0 fU,Y (u, y)dudy∫∞

−∞
∫ f(y)/Mq(y)

0 fU,Y (u, y)dudy

=

∫ x
−∞

∫ f(y)/Mq(y)
0 q(y)dudy∫∞

−∞
∫ f(y)/Mq(y)

0 q(y)dudy
=

∫ x

−∞
f(y)dy.
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Example for target is beta, proposal is uniform

I f(x) is the pdf of a Beta(5, 5) rv

I Proposal density q is the pdf of a uniform rv on [0, 1]
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Calculating a minimal M
I Assume you have for α, β ≥ 1

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

which is upper bounded on [0, 1].
I We have the proposal q(x) = I(0,1)(x) the uniform density on [0, 1].
I We need to find a bound M s.t. f(x)/q(x) ≤M ⇐⇒ f(x) ≤M .

We therefore want to set M = max0<x<1 f(x) and we obtain by
solving for f ′(x) = 0

M =
Γ (α+ β)

Γ (α) Γ (β)

(
α− 1

α+ β − 2

)α−1( β − 1

α+ β − 2

)β−1

︸ ︷︷ ︸
M ′

which gives
f(y)

Mq(y)
=
yα−1(1− y)β−1

M ′
.
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Illustrations for multimodal distribution

I X ∈ R with multimodal pdf

I Proposal density q is the pdf of a standardized normal
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Normal example

I Let X ∼ N(0, 1), with pdf fX(x) = 1√
2π
e
−x2

2

I Consider as a proposal distribution Y ∼ q the Cauchy distribution,
with pdf q(x) = 1

π(1+x2)

I We can work out that fX(x)
qY (x) ≤M for M =

√
2πe−

1
2

I We can generate Y from U using inversion Y = tan(π(U − 1
2))
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Normal from Cauchy code

f_X <- function(x) { 1 / sqrt(2 * pi) * exp(-0.5 * x ** 2)}

f_Y <- function(x) { 1 / pi / (1 + x ** 2)}

M <- sqrt(2 * pi) * exp(-1 / 2)

set.seed(914)

n <- 10000

x <- array(NA, n)

i <- 1 ## index

while(i <= n) {

U1 <- runif(1)

Xp <- tan(pi * (U1 - 0.5)) ## proposed

U2 <- runif(1)

if (U2 <= (f_X(Xp) / f_Y(Xp) / M)) {

x[i] <- Xp

i <- i + 1

}

}

c(mean(x), var(x)) ## 0.007508397 0.985407347
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Using a block uniform discrete proposal with a continuous
target

I Let X = |Z|, with Z ∼ N(0, 1), i.e. fX(x) = 2√
2π
e
−x2

2 for x > 0

I Consider bounding it by Y from a continuous analog of a Poisson(1)
pmf

I Then using inversion for a discrete rv, we can sample from a Poisson
the normal way, sampling the continuous version using another
random uniform
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Code for inverse of a Poisson with rate 1

F_inverse_poisson <- function() {

U <- runif(1)

j <- 0

done <- FALSE

pL <- pU <- 0

while(!done) {

pU <- pU + exp(-1) / factorial(j)

if ((pL <= U) & (U < pU)) {

done <- TRUE

} else {

pL <- pU

j <- j + 1

}

}

return(j)

}

Part A Simulation. HT 2020. R. Davies. 19 / 28



Code for truncated normal

set.seed(41)

n <- 10000

x <- array(NA, n)

i <- 1

M <- sqrt(2 / pi) * exp(1)

while(i <= n) {

Xp <- F_inverse_poisson() + runif(1)

f <- 2 / (sqrt(2 * pi)) * exp( - 0.5 * Xp**2)

q <- exp(-1) / factorial(floor(Xp))

if (runif(1) <= f / q / M) {

x[i] <- Xp

i <- i + 1

}

}

c(mean(x), var(x)) ## 0.7981175 0.3605557

y <- abs(rnorm(n))

c(mean(y), var(y)) ## 0.7951576 0.3681160
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Dealing with Unknown Normalising Constants

I In most practical scenarios, we only know f(x) and q(x) up to some
normalising constants; i.e.

f(x) = f̃(x)/Zf and q(x) = q̃(x)/Zq

where f̃(x), q̃(x) are known but Zf =
∫

Ω f̃(x)dx, Zq =
∫

Ω q̃(x)dx are
unknown/expensive to compute.

I Rejection can still be used: Indeed f(x)/q(x) ≤M for all x ∈ Ω iff
f̃(x)/q̃(x) ≤ M̃ , with M̃ = ZfM/Zq.

I Practically, this means we can ignore the normalising constants from
the start: if we can find M̃ to bound f̃(x)/q̃(x) then it is correct to
accept with probability f̃(x)/(M̃ q̃(x)) in the rejection algorithm. In
this case the mean number N of accept/reject trials will equal
ZqM̃/Zf (that is, M again).
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Example without normalization: gamma random variables

I We want to simulate a random variable X ∼Gamma(α, β) which
works for any α ≥ 1 (not just integers);

f(x) =
xα−1 exp(−βx)

Zf
for x > 0, Zf = Γ(α)/βα

so f̃(x) = xα−1 exp(−βx) will do as our unnormalised target.

I We saw that for α = a a positive integer we can simulate
X ∼ Gamma(a, β) by adding a independent Exp(β) variables,
Yi ∼ Exp(β), X =

∑a
i=1 Yi.

I So we can sample densities “close” in shape to Gamma(α, β) since
we can sample Gamma(bαc, β). Perhaps we can use this as a
proposal density?
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Gamma rvs bound

I Let a = bαc and let’s try to use Gamma(a, b) as the proposal, so Y ∼
Gamma(a, b) for integer a ≥ 1 and some b > 0. The density of Y is

q(x) =
xa−1 exp(−bx)

Zq
for x > 0, Zq = Γ(a)/ba

so we can use q̃(x) = xa−1 exp(−bx).

I We have to check whether the ratio f̃(x)/q̃(x) is bounded over R+

where
f̃(x)/q̃(x) = xα−a exp(−(β − b)x).

I Consider (a) x→ 0 and (b) x→∞. For (a) we need a ≤ α so
a = bαc is indeed fine. For (b) we need b < β (not b = β since we
need the exponential to kill off the growth of xα−a).

Part A Simulation. HT 2020. R. Davies. 23 / 28



Gamma rvs bound continued

I Given that we have chosen a = bαc and b < β for the ratio to be
bounded, we now compute the bound.

I d
dx(f̃(x)/q̃(x)) = 0 at x = (α− a)/(β − b) (and this must be a
maximum at x ≥ 0 under our conditions on a and b), so
f̃(x)/q̃(x) ≤ M̃ for all x ≥ 0 if

M̃ =

(
α− a
β − b

)α−a
exp(−(α− a)).

I So accept Y if U ≤ f̃(Y )/M̃ q̃(Y ) where
f̃(Y )/M̃ q̃(Y ) = Y α−a exp(−(β − b)Y )/M̃ .
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Gamma rvs and the best choice of b

I Any 0 < b < β will do, but is there a best choice of b?

I Idea: choose b to minimize the expected number of simulations of Y
per sample X output.

I Since the number N of trials is Geometric, with success probability
Zf/(M̃Zq), the expected number of trials is E(N) = ZqM̃/Zf . Now
Zf = Γ(α)β−α where Γ is the Gamma function related to the
factorial.

I Practice: Show that the optimal b solves d
db(b

−a(β − b)−α+a) = 0 so
deduce that b = β(a/α) is the optimal choice.
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Simulating normal random variables, revisited

I Recall f(x) = (2π)−
1
2 exp(−1

2x
2) and q(x) = 1/π/(1 + x2). We have

f̃(x)

q̃(x)
= (1 + x2) exp

(
−1

2
x2

)
≤ 2/

√
e = M̃

which is attained at ±1.

I Hence the probability of acceptance is

P

(
U ≤ f̃(Y )

M̃ q̃(Y )

)
=

Zf

M̃Zq
=

√
2π

2√
e
π

=

√
e

2π
≈ 0.66

and the mean number of trials to success is approximately
1/0.66 ≈ 1.52. (which matches our M from earlier)
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Rejection Sampling in High Dimension
I Consider

f̃(x1, ..., xd) = exp

(
−1

2

d∑
k=1

x2
k

)
and

q̃(x1, ..., xd) = exp

(
− 1

2σ2

d∑
k=1

x2
k

)
I For σ > 1, we have

f̃(x1, ..., xd)

q̃(x1, ..., xd)
= exp

(
−1

2

(
1− σ−2

) d∑
k=1

x2
k

)
≤ 1 = M̃.

I The acceptance probability of a proposal for σ > 1 is

P

(
U ≤ f̃(X1, ..., Xd)

M̃ q̃(X1, ..., Xd)

)
=

Zf

M̃Zq
= σ−d.

I The acceptance probability goes exponentially fast to zero with d.
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Recap

I Rejection sampling relies on the idea that sampling uniformly from
the area under your target density will return random variables
distributed according to your target density

I To do this, you need a proposal density q that covers your target
density f , where your proposal density is easily to sample from

I Given a bound M with f(x)/q(x) ≤M ∀x, then rejection sampling is

I Draw Y ∼ q and U ∼ U [0, 1]
I Keep X = Y if U ≤ f(Y )

q(Y )M

I Then X ∼ f , and M is the expected number of samples per returned
X
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