
HAP708P “Modelization and simulation in physics”, University of Montpellier, 2022

Exercise sheet 3

Exercise 1: Second-order Runge-Kutta method

Compute the solution of the ODE

dx

dt
= t (x(t)2 + 1)

with the initial condition x(0) = 1 on the interval [0, 1], using the Runge-Kutta method of the
second order. Plot the solution for N = 100. In a separate figure, plot the difference between
your numerical solution for N = 10, 20, 100 and the exact solution x(t) = tan(t2/2 + π/4).

Exercise 2: Lorenz equations

The Lorenz equations were originally written down to describe convective phenomena in fluid
dynamics in a certain approximation. They are famous as an example of chaotic dynamics:

dx

dt
= σ(y(t) − x(t)) ,

dy

dt
= ρ x(t) − y(t) − x(t)z(t) ,

dz

dt
= x(t)y(t) − β z(t) .

1. Solve the Lorenz equations for σ = 10, ρ = 28, β = 8
3 between t = 0 and t = 50, using

the RK4 method. The initial conditions are x = 0, y = 1, z = 0.

2. Plot x(t) and z(x). What do you observe?

Exercise 3: Ballistic trajectory

Consider a spherical cannon ball subject to the gravitational force, Fg = −mgey, and to a
friction force due to air drag,

Fd =
1

2
ρaSbCv

2 .

Here m = 2 kg is the cannon ball’s mass, g = 9.81 m s−2 is the gravitational acceleration,
C = 0.47 is the drag coefficient of a sphere, ρa = 1.22 kg m−3 is the density of air, Sb = πr2b
is the cross-sectional area of a sphere, rb = 4 cm is its radius and v is the velocity. The drag
force is always opposed to the direction of movement.

1. Show that the equations of motion can be written

ẍ = −αẋ
√
ẋ2 + ẏ2 , ÿ = −g − αẏ

√
ẋ2 + ẏ2

where α is a constant. Express α in terms of the given quantities.

2. Transform the equations of motion into a system of four first-order equations.

3. Compute the solution x(t) and y(t) with the RK4 method for an initial velocity of 250
ms−1 and a shooting angle of θ = 20◦. Plot the trajectory y(x).

4. Upon increasing the mass m of the cannon ball while leaving all other parameters
unchanged, how does the range of the cannon change? Why?



Exercise 4: Cometary orbit

The trajectories of comets are ellipses that can be highly excentric. When a comet is close to
the sun, it accelerates; to calculate its orbit numerically with good precision, one therefore
needs rather small time increments. Far away from the sun, the comet is slow and its
acceleration is much smaller, hence the step size can be increased to save computing time.

In this exercise you will use the adaptive RK4 method to compute the trajectory. Neglect
all other celestial objects, as well as the gravitational attraction exercised by the comet on
the sun, and choose coordinates where the sun is at the center and the motion takes place in
the (x, y) plane. Newton’s gravitational constant is G = 6.67408 × 10−11 m3 kg−1 s−2 and
the solar mass is M = 1.989 × 1030 kg.

1. Find the two equations of motion for the Cartesian coordinates x(t) and y(t) of the
comet’s position.

2. Transform them into four first-order equations.

3. Write a program which solves them for the initial conditions x(0) = 4×109 km, y(0) = 0,
ẋ(0) = 0, ẏ(0) = 500 m s−1 with the fixed-step RK4 method. Plot x(y); choose the
increment h sufficiently small, such that the orbit does not visibly change between two
periods.

4. Write a second program doing the same computation but with the adaptive RK4
method. The target accuracy is δ =1 km/year. Compare with the fixed-step method.

Exercise 5: Shooting method

Consider again the cannon of Exercise 3. Write a program to compute the initial shooting
angle θ such that the cannon ball hits a target which is exactly 1200 m away (and at the
same height as the cannon, i.e. on the ground in the plane).

Exercise 6: Gravitational n-body problem (mini-project)

Write a code for solving the equations of motion of an arbitrary number of mass points in
the gravitational field created by themselves. The velocities and positions are assumed to be
given at t = 0. Use the adaptive RK4 method.

Instructions:

� Start by a pen-and-paper calculation to find analytic expressions for the distance be-
tween two mass points with given Cartesian coordinates, and for the gravitational force
exerted by one on the other.

� It is convenient to implement a function returning all of the right-hand sides of the
first-order equations, transformed into standard form, in a NumPy array.

� You might consider using orient-objected programming in order to better organize your
code, if you are familiar with it.

� The desired accuracy will depend on the concrete problem under study.

Applications:

1. Recalculate the cometary orbit of exercise 4.



2. Compute the trajectories of five mass points of mass M = Msun = 2 × 1030 kg. At
t = 0 their positions are randomly chosen between −5 au and 5 au, and their velocities
are random and of the order of 0.01 au / day. Plot the trajectories over a few years
and/or create an animation.

3. Compute the trajectory of Voyager 2, a space probe that was launched on 20/8/1977
and subsequently passed close to Jupiter, Saturn, Uranus and Neptune using the “grav-
itational slingshot” principle of picking up speed by exploiting the planets’ gravitational
fields. The file data.txt contains the initial data for the most relevant celestial objects
as provied by NASA’s public data base HORIZON (use the function numpy.loadtxt to
read it). Plot the (x, y)-plane projection of the trajectories of Earth, the major planets,
and of Voyager 2. According to your computation, does the probe reach Jupiter? Sat-
urn? Uranus? Neptune? If not, what effects could be included to increase the precision
of the computation?

Units: 1 au = 1.495978707 × 1011 m, 1 day = 8.64 × 104 s, G = 1.488136 × 10−34 au3 kg−1

day−2.


