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QFT, SOLUTIONS TO PROBLEM SHEET 3

Problem 1: The free scalar field and causality

Show that for any spacelike four-vector x there exists a proper orthochronous Lorentz
transformation sending ° — 0. Conclude that

Az,y) =0 whenever (z—y)*> <0.

Here A(z,y) = [¢(x), ¢(y)] and ¢ is a free real scalar field. What is the corresponding
statement for a complex scalar field?

Let z = (¢, Z) be a space-like four-vector, z,2* < 0. By a rotation we can always
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transform # — 0 |. Here |z'| > |¢| because x is spacelike. By a boost in the
0

2! direction, we can then transform

()= (2 ) ()= ()

by choosing # = —-; this is permissible because |z'| > |¢| and therefore |3| < 1.
Now let (x — y) be spacelike and choose a Lorentz frame where 2° = ¢°. Then we
have [¢(x), ¢(y)] = 0 according to the canonical commutation relations.

The corresponding statement for a complex free scalar field is

(Ol[¢" (@), 6()]I0) = [¢"(x),6(x)] =0 if (x —y)* < 0.

Problem 2: The residue theorem

To obtain the electrostatic potential of a point particle in Exercise 3.4 on Problem
Sheet 1, you were given the identity
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Prove this formula with the help of the residue theorem.

Given the real positive constants x and m, we define the meromorphic functions
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Both these functions have poles at z = im and at z = —im. Moreover, f.(z)

decreases exponentially as |z|] — oo in the upper half-plane, and f_(z) decreases
exponentially as |z| — oo in the lower half-plane. We therefore have
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where v, is a curve along the real axis and closed along the arc at infinity in the
upper half-plane (which includes the pole at z = im), and
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where v_ is a curve along the real axis and closed along the arc at infinity in the
lower half-plane (which includes the pole at z = —im). It follows that

/0 %(ﬂr(k) — f-(k)) dk = %/ i (f+(k) — f_(K)) dk = gefmz
which is the desired identity.

Problem 3: Propagators

1. Show that any iD¢(x — y) is a Green function for the Klein-Gordon operator
O+ m?:
(O, +m?)De(z — y) = —id*(z —y) .
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2. Express Dr(x —y) and Da(z — y) in terms of © functions and of vacuum
expectation values of products of ¢(x) and ¢(y). Here Dr(x — y) is defined to
avoid both poles in the upper half-plane, and Da(x —y) is defined to avoid both
poles in the lower half-plane.

We need to calculate the integral
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The “retarded” contour Cr avoids both poles in the upper half-plane:
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o If 2° > 3°, then e=*°(*~¥") diverges exponentially as [k°| — oo for Im k° > 0,
and decays exponentially as |k°| — oo for Im k° < 0. The integration contour
therefore needs to be closed in the lower half-plane where Im £ < 0, and
includes both poles with winding number —1. We have
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and it follows that
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o If 20 < 3°, then e~*°*~¥") diverges exponentially as [k°| — oo for Im k° < 0,

and decays exponentially as |k°| — oo for Im k° > 0. The integration contour
therefore needs to be closed in the upper half-plane, and does not include any
pole. Hence

f(k’o) dk®=0.
Cr

e Altogether we find the following expression for the retarded propagator:
Dp(z —y) = 0(z" — y°) (0[[6(x), 6(»)][0) -
The “advanced” contour C4 avoids both poles in the lower half-plane:

A
Im k©

Following the same line of reasoning, one finds

Da(z —y) = —0(y" — 2°) (0][¢(x), ¢(y)]]0) -

3. Starting from the expression of the lecture
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and evaluating the integral, write the Feynman propagator for (x — y)* # 0
explicitly in terms of the modified Bessel function of the second kind K;(z).
You can use the identity (see Gradshteyn € Ryzhik, “Table of integrals, series
and products”, eq. 3.914/9)
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Assume that 2° > y° (otherwise exchange z and y). With z = x — y we then have
20 >0, and
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where in the last term, and from now on, & and z no longer denote four-vectors but
k = |k| and z = |Z]. The d¢ integral gives a factor 2w, whereas the d cosf integral
gives
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Using the given representation of K; with 8 = i2°, v = m, and b = 2, this is
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and finally plugging back the original variables gives

Dr(e—y) = 42 —an —y)? a <m ~(@- y)2> '

Note the exponentially decaying behaviour for (z — y)? < 0, while for timelike
separations (z — y) the Feynman propagator is complex-valued and oscillatory.



