QFT, sOLUTIONS TO PROBLEM SHEET 3

Problem 1: The free scalar field and causality

Show that for any spacelike four-vector x there exists a proper orthochronous Lorentz transformation sending $x^{0} \rightarrow 0$. Conclude that

$$
\Delta(x, y)=0 \quad \text { whenever } \quad(x-y)^{2}<0
$$

Here $\Delta(x, y)=[\phi(x), \phi(y)]$ and ϕ is a free real scalar field. What is the corresponding statement for a complex scalar field?
Let $x=(t, \vec{x})$ be a space-like four-vector, $x_{\mu} x^{\mu}<0$. By a rotation we can always transform $\vec{x} \rightarrow\left(\begin{array}{c}x^{1} \\ 0 \\ 0\end{array}\right)$. Here $\left|x^{1}\right|>|t|$ because x is spacelike. By a boost in the x^{1} direction, we can then transform

$$
\binom{t}{x^{1}} \rightarrow\left(\begin{array}{cc}
\gamma & \beta \gamma \\
\beta \gamma & \gamma
\end{array}\right)\binom{t}{x^{1}}=\binom{0}{x^{\prime 1}}
$$

by choosing $\beta=-\frac{t}{x^{1}}$; this is permissible because $\left|x^{1}\right|>|t|$ and therefore $|\beta|<1$.
Now let $(x-y)$ be spacelike and choose a Lorentz frame where $x^{0}=y^{0}$. Then we have $[\phi(x), \phi(y)]=0$ according to the canonical commutation relations.
The corresponding statement for a complex free scalar field is

$$
\langle 0|\left[\phi^{\dagger}(x), \phi(y)\right]|0\rangle=\left[\phi^{\dagger}(x), \phi(y)\right]=0 \quad \text { if }(x-y)^{2}<0 .
$$

Problem 2: The residue theorem

To obtain the electrostatic potential of a point particle in Exercise 3.4 on Problem Sheet 1, you were given the identity

$$
\int_{0}^{\infty} \mathrm{d} k \frac{k \sin (k x)}{k^{2}+m^{2}}=\frac{\pi}{2} e^{-m x} \quad(x>0) .
$$

Prove this formula with the help of the residue theorem.
Given the real positive constants x and m, we define the meromorphic functions $f_{ \pm}(z)$ by

$$
f_{ \pm}(z)=\frac{z e^{ \pm i z x}}{z^{2}+m^{2}}
$$

Both these functions have poles at $z=i m$ and at $z=-i m$. Moreover, $f_{+}(z)$ decreases exponentially as $|z| \rightarrow \infty$ in the upper half-plane, and $f_{-}(z)$ decreases exponentially as $|z| \rightarrow \infty$ in the lower half-plane. We therefore have

$$
\int_{-\infty}^{\infty} f_{+}(k) \mathrm{d} k=\oint_{\gamma_{+}} f_{+}(z) \mathrm{d} z=2 \pi i \operatorname{res}\left(f_{+}, z=i m\right)=\left.2 \pi i \frac{z e^{i z x}}{z+i m}\right|_{z=i m}=\pi i e^{-m x}
$$

where γ_{+}is a curve along the real axis and closed along the arc at infinity in the upper half-plane (which includes the pole at $z=i m$), and

$$
\int_{-\infty}^{\infty} f_{-}(k) \mathrm{d} k=\oint_{\gamma_{-}} f_{-}(z) \mathrm{d} z=-2 \pi i \operatorname{res}\left(f_{-}, z=-i m\right)=-\left.2 \pi i \frac{z e^{-i z x}}{z-i m}\right|_{z=-i m}=-\pi i e^{-m x}
$$

where γ_{-}is a curve along the real axis and closed along the arc at infinity in the lower half-plane (which includes the pole at $z=-i m$). It follows that

$$
\int_{0}^{\infty} \frac{1}{2 i}\left(f_{+}(k)-f_{-}(k)\right) \mathrm{d} k=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2 i}\left(f_{+}(k)-f_{-}(k)\right) \mathrm{d} k=\frac{\pi}{2} e^{-m x}
$$

which is the desired identity.

Problem 3: Propagators

1. Show that any $i D_{\mathcal{C}}(x-y)$ is a Green function for the Klein-Gordon operator $\square+m^{2}$:

$$
\left(\square_{x}+m^{2}\right) D_{\mathcal{C}}(x-y)=-i \delta^{4}(x-y)
$$

$$
\begin{aligned}
& \left(\square_{x}+m^{2}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}} e^{-i k(x-y)}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}}\left(\square_{x}+m^{2}\right) e^{-i k(x-y)} \\
& =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}}\left(-k^{2}+m^{2}\right) e^{-i k(x-y)}=-i \int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k(x-y)}=-i \delta^{(4)}(x-y) .
\end{aligned}
$$

2. Express $D_{R}(x-y)$ and $D_{A}(x-y)$ in terms of Θ functions and of vacuum expectation values of products of $\phi(x)$ and $\phi(y)$. Here $D_{R}(x-y)$ is defined to avoid both poles in the upper half-plane, and $D_{A}(x-y)$ is defined to avoid both poles in the lower half-plane.

We need to calculate the integral

$$
\int_{-\infty}^{\infty} f\left(k^{0}\right) \mathrm{d} k^{0}, \quad f\left(k^{0}\right)=\frac{1}{2 \pi} \frac{i e^{-i k^{0}\left(x^{0}-y^{0}\right)}}{\left(k^{0}-\omega\right)\left(k^{0}+\omega\right)} .
$$

The "retarded" contour \mathcal{C}_{R} avoids both poles in the upper half-plane:

- If $x^{0}>y^{0}$, then $e^{-i k^{0}\left(x^{0}-y^{0}\right)}$ diverges exponentially as $\left|k^{0}\right| \rightarrow \infty$ for $\operatorname{Im} k^{0}>0$, and decays exponentially as $\left|k^{0}\right| \rightarrow \infty$ for $\operatorname{Im} k^{0}<0$. The integration contour therefore needs to be closed in the lower half-plane where $\operatorname{Im} k^{0}<0$, and includes both poles with winding number -1 . We have

$$
\begin{aligned}
& \oint_{\mathcal{C}_{R}} f\left(k^{0}\right) \mathrm{d} k^{0}=2 \pi i(-\operatorname{res}(f, \omega)-\operatorname{res}(f,-\omega)) \\
= & -2 \pi i\left(\frac{i e^{-i \omega\left(x^{0}-y^{0}\right)}}{(2 \pi)(2 \omega)}+\frac{i e^{i \omega\left(x^{0}-y^{0}\right)}}{(2 \pi)(-2 \omega)}\right)=\frac{1}{2 \omega}\left(e^{-i \omega\left(x^{0}-y^{0}\right)}-e^{i \omega\left(x^{0}-y^{0}\right)}\right)
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
& \int_{\mathcal{C}_{R}} \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{i e^{-i k(x-y)}}{k^{2}-m^{2}}=\int \underbrace{\frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega}}_{=\widetilde{\mathrm{dk}}}(e^{-i \omega\left(x^{0}-y^{0}\right)} e^{i \vec{k} \cdot(\vec{x}-\vec{y})}-e^{-i \omega\left(y^{0}-x^{0}\right)} \underbrace{}_{=e^{i \vec{k} \cdot(\vec{y}-\vec{x})} e_{\text {under } \mathrm{d}^{3} k \cdot(\vec{x}-\vec{y})}^{i \vec{~}}}) \\
& =\int \widetilde{\mathrm{d} k}\left(e^{-i k(x-y)}-e^{-i k(y-x)}\right)=D(x-y)-D(y-x)=\langle 0|[\phi(x), \phi(y)]|0\rangle .
\end{aligned}
$$

- If $x^{0}<y^{0}$, then $e^{-i k^{0}\left(x^{0}-y^{0}\right)}$ diverges exponentially as $\left|k^{0}\right| \rightarrow \infty$ for $\operatorname{Im} k^{0}<0$, and decays exponentially as $\left|k^{0}\right| \rightarrow \infty$ for $\operatorname{Im} k^{0}>0$. The integration contour therefore needs to be closed in the upper half-plane, and does not include any pole. Hence

$$
\oint_{\mathcal{C}_{R}} f\left(k^{0}\right) \mathrm{d} k^{0}=0 .
$$

- Altogether we find the following expression for the retarded propagator:

$$
D_{R}(x-y)=\theta\left(x^{0}-y^{0}\right)\langle 0|[\phi(x), \phi(y)]|0\rangle .
$$

The "advanced" contour \mathcal{C}_{A} avoids both poles in the lower half-plane:

Following the same line of reasoning, one finds

$$
D_{A}(x-y)=-\theta\left(y^{0}-x^{0}\right)\langle 0|[\phi(x), \phi(y)]|0\rangle .
$$

3. Starting from the expression of the lecture

$$
D_{F}(x-y)=\left.\int \widetilde{\mathrm{d} k}\left(e^{-i k(x-y)} \Theta\left(x^{0}-y^{0}\right)+e^{i k(x-y)} \Theta\left(y^{0}-x^{0}\right)\right)\right|_{k^{0}=\omega_{\vec{k}}}
$$

and evaluating the integral, write the Feynman propagator for $(x-y)^{2} \neq 0$ explicitly in terms of the modified Bessel function of the second kind $K_{1}(z)$. You can use the identity (see Gradshteyn ξ Ryzhik, "Table of integrals, series and products", eq. 3.914/9)

$$
\int_{0}^{\infty} \frac{x e^{-\beta \sqrt{\gamma^{2}+x^{2}}}}{\sqrt{\gamma^{2}+x^{2}}} \sin b x \mathrm{~d} x=\frac{\gamma b}{\sqrt{\beta^{2}+b^{2}}} K_{1}\left(\gamma \sqrt{\beta^{2}+b^{2}}\right) .
$$

Assume that $x^{0}>y^{0}$ (otherwise exchange x and y). With $z \equiv x-y$ we then have $z^{0}>0$, and
$D_{F}(z)=\int \widetilde{\mathrm{d} k} e^{-i k z}=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 \omega} e^{-i \omega z^{0}+i \vec{k} \cdot \vec{z}}=\int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2 \pi} \frac{k^{2} \mathrm{~d} k \mathrm{~d} \cos \theta \mathrm{~d} \phi}{(2 \pi)^{3} 2 \omega} e^{-i \omega z^{0}+i k z \cos \theta}$
where in the last term, and from now on, k and z no longer denote four-vectors but $k \equiv|\vec{k}|$ and $z \equiv|\vec{z}|$. The $\mathrm{d} \phi$ integral gives a factor 2π, whereas the $\mathrm{d} \cos \theta$ integral gives
$\ldots=\frac{1}{8 \pi^{2}} \int_{0}^{\infty} \mathrm{d} k \frac{k^{2}}{\omega} \frac{1}{i k z}\left(e^{i k z}-e^{-i k z}\right) e^{-i \omega z^{0}}=\frac{1}{4 \pi^{2} z} \int_{0}^{\infty} \mathrm{d} k \frac{k}{\sqrt{k^{2}+m^{2}}} \sin (k z) e^{-i \sqrt{k^{2}+m^{2} z^{0}}}$
Using the given representation of K_{1} with $\beta=i z^{0}, \gamma=m$, and $b=z$, this is

$$
\ldots=\frac{1}{4 \pi^{2} z} \frac{m z}{\sqrt{-\left(z^{0}\right)^{2}+z^{2}}} K_{1}\left(m \sqrt{-\left(z^{0}\right)^{2}+z^{2}}\right)
$$

and finally plugging back the original variables gives

$$
D_{F}(x-y)=\frac{m}{4 \pi^{2} \sqrt{-(x-y)^{2}}} K_{1}\left(m \sqrt{-(x-y)^{2}}\right) .
$$

Note the exponentially decaying behaviour for $(x-y)^{2}<0$, while for timelike separations $(x-y)$ the Feynman propagator is complex-valued and oscillatory.

