Quantum Field Theory, problem sheet 4

Solutions to be discussed on $11 / 10 / 2023$

Problem 1: Asymptotic overlap between wave packets

Consider an interacting theory of a real scalar field with mass m. Let $|\psi\rangle$ be a multi-particle wave packet given by

$$
|\psi\rangle=\int \mathrm{d}^{3} p \psi(\vec{p})\left|\lambda_{p}\right\rangle .
$$

Here $\psi(\vec{p})$ is an enveloping function (e.g. a Gaussian) and $\left|\lambda_{p}\right\rangle$ is a multi-particle state of total 4-momentum $p=\left(p^{0}, \vec{p}\right)$ and invariant mass $\sqrt{p^{2}} \equiv M>m$. With $a_{1}^{\dagger}(t)=\int \mathrm{d}^{3} k f_{1}(\vec{k}) a^{\dagger}(\vec{k}, t)$ defined as in the lecture, show that

$$
\lim _{t \rightarrow \pm \infty}\langle\psi| a_{1}^{\dagger}(t)|0\rangle=0
$$

i.e. the overlap between a one-particle and a multi-particle wave packet tends to zero at $t \rightarrow \pm \infty$.

Hints:

- Express a^{\dagger} in terms of ϕ and write $\phi(x)=e^{i P x} \phi(0) e^{-i P x}$, where P is the 4 -momentum operator.
- Two of the resulting integrals collapse when using $\int \mathrm{d}^{3} x e^{i \vec{q} \cdot \vec{x}}=(2 \pi)^{3} \delta^{3}(\vec{q})$.
- Estimate the remaining integral with the help of the stationary phase approximation: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a suitable test function, $\lambda>0$, and $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a smooth function. Suppose that φ has a single critical point p_{0} and that this critical point is nondegenerate, i.e. the Hessian matrix $H_{\varphi}\left(p_{0}\right)$ is nonsingular. Then, with $\sigma=\operatorname{sgn} H_{\varphi}\left(p_{0}\right)=$ the number of positive minus the number of negative eigenvalues of $H_{\varphi}\left(p_{0}\right)$,

$$
\int \mathrm{d}^{n} p f(p) e^{i \lambda \varphi(p)}=\left|\operatorname{det} H_{\varphi}\left(p_{0}\right)\right|^{-1 / 2} e^{i \lambda \varphi\left(p_{0}\right)+i \pi \sigma / 4}\left(\frac{2 \pi}{\lambda}\right)^{n / 2} f\left(p_{0}\right)+\mathrm{o}\left(|\lambda|^{-n / 2}\right)
$$

Problem 2: Gaussian and oscillatory integrals

We recall the basic Gaussian integral: if $a \in \mathbb{C}$ with $\operatorname{Re} a>0$, then

$$
\int_{-\infty}^{\infty} \mathrm{d} x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}}
$$

1. Let $a, b \in \mathbb{C}$ with $\operatorname{Re} a>0$. Show that:

$$
\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(-\frac{1}{2} a x^{2}+b x\right)=\sqrt{\frac{2 \pi}{a}} \exp \left(\frac{1}{2} \frac{b^{2}}{a}\right) .
$$

2. Let $a \in \mathbb{R}_{+}^{*}$ and $b \in \mathbb{C}$. We define the integral

$$
I=\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(\frac{i}{2} a x^{2}+i b x\right)
$$

by a complex line integral whose curve of integration $\mathcal{C}_{X, \epsilon}$ is the straight line connecting the points $-X(1+i \epsilon)$ and $+X(1+i \epsilon)$:

$$
I=\lim _{\epsilon \searrow 0} \lim _{X \rightarrow \infty} \int_{\mathcal{C}_{X, \epsilon}} \mathrm{~d} z \exp \left(\frac{i}{2} a z^{2}+i b z\right) .
$$

For illustration:

Calculate I. Compare your result with the stationary phase approximation given in exercise 1.
3. Let A be a real symmetric positive definite $n \times n$ matrix. Show that

$$
\int \mathrm{d}^{n} x \exp \left(-\frac{1}{2} x^{T} A x\right)=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}}, \quad \int \mathrm{~d}^{n} x \exp \left(\frac{i}{2} x^{T} A x\right)=e^{i n \pi / 4} \sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}}
$$

