Quantum Field Theory, problem sheet 3

Solutions to be discussed on 04/10/2023

Problem 1: The free scalar field and causality

Recall from quantum mechanics that, if two observables are represented by operators \mathcal{O}_{1} and \mathcal{O}_{2} with $\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \neq 0$, then a measurement of \mathcal{O}_{1} will influence a subsequent measurement of \mathcal{O}_{2}. However, in a Lorentz invariant quantum field theory, two events with spacelike separation should not affect each other in order to preserve causality.

Show that for any spacelike four-vector x there exists a proper orthochronous Lorentz transformation sending $x^{0} \rightarrow 0$. Conclude that

$$
\Delta(x, y)=0 \quad \text { whenever } \quad(x-y)^{2}<0 .
$$

Here $\Delta(x, y)=[\phi(x), \phi(y)]$ and ϕ is a free real scalar field. What is the corresponding statement for a complex scalar field?

Problem 2: The residue theorem

To obtain the electrostatic potential of a point particle in Exercise 3.4 on Problem Sheet 1, you were given the identity

$$
\int_{0}^{\infty} \mathrm{d} k \frac{k \sin (k x)}{k^{2}+m^{2}}=\frac{\pi}{2} e^{-m x} \quad(x>0) .
$$

Prove this formula with the help of the residue theorem.

Problem 3: Propagators

You have seen in the lecture that the expression

$$
D_{\mathcal{C}}(x-y)=\int_{\mathcal{C}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}} e^{-i k \cdot(x-y)}
$$

depends on the curve \mathcal{C} in the plane of complex k^{0} along which the poles at $\pm \omega$ are avoided. For example, choosing to circumvent the pole at $k^{0}=-\omega$ in the lower half-plane and the pole at $k^{0}=+\omega$ in the upper half-plane yields the Feynman propagator

$$
\begin{aligned}
D_{F}(x-y) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}=\langle 0| \mathrm{T} \phi(x) \phi(y)|0\rangle \\
& =\Theta\left(x^{0}-y^{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle+\Theta\left(y^{0}-x^{0}\right)\langle 0| \phi(y) \phi(x)|0\rangle .
\end{aligned}
$$

1. Show that any $i D_{\mathcal{C}}(x-y)$ is a Green function for the Klein-Gordon operator $\square+m^{2}$:

$$
\left(\square_{x}+m^{2}\right) D_{\mathcal{C}}(x-y)=-i \delta^{4}(x-y) .
$$

2. Express $D_{R}(x-y)$ and $D_{A}(x-y)$ in terms of Θ functions and of vacuum expectation values of products of $\phi(x)$ and $\phi(y)$. Here $D_{R}(x-y)$ is defined to avoid both poles in the upper half-plane, and $D_{A}(x-y)$ is defined to avoid both poles in the lower half-plane.
3. Starting from the expression of the lecture

$$
D_{F}(x-y)=\left.\int \widetilde{\mathrm{d} k}\left(e^{-i k(x-y)} \Theta\left(x^{0}-y^{0}\right)+e^{i k(x-y)} \Theta\left(y^{0}-x^{0}\right)\right)\right|_{k^{0}=\omega_{\vec{k}}}
$$

and evaluating the integral, write the Feynman propagator for $(x-y)^{2} \neq 0$ explicitly in terms of the modified Bessel function of the second kind $K_{1}(z)$. You can use the identity (see Gradshteyn \& Ryzhik, "Table of integrals, series and products", eq. 3.914/9)

$$
\int_{0}^{\infty} \frac{x e^{-\beta \sqrt{\gamma^{2}+x^{2}}}}{\sqrt{\gamma^{2}+x^{2}}} \sin b x \mathrm{~d} x=\frac{\gamma b}{\sqrt{\beta^{2}+b^{2}}} K_{1}\left(\gamma \sqrt{\beta^{2}+b^{2}}\right) .
$$

