HAP708P "Modelling and simulation in physics", Montpellier University, 2023

Exercise sheet 2

Exercise 1 : Simpson's method

1. Recall the error estimate for the *trapezoid method* obtained in the lecture : Let I_1 be the result of a numerical integration obtained with N_1 steps, and I_2 the result obtained with $N_2 = 2 N_1$ steps, then the error ϵ_2 on I_2 is approximately given by

$$\epsilon_2 \approx \frac{1}{3}(I_2 - I_1) \,.$$

Show that for Simpson's method, the same reasoning leads to the error estimate

$$\epsilon_2 \approx \frac{1}{15}(I_2 - I_1) \,.$$

- 2. Write a function int_simpson(f, a, b, N) similar to the function int_trapez of the lecture, but which uses Simpson's method.
- 3. Compute

$$I = \int_0^\pi x^2 \sin x \, \mathrm{d}x$$

with the trapezoid method and with Simpson's method for N = 10, 100, 1000, 2000, and compare with the exact analytic result $I = \pi^2 - 4$. For $N_1 = 1000$ and $N_2 = 2000$, estimate the errors on I_2 using the above formulas, and compare with the actual errors $I - I_2$.

4. Implement an adaptive version of Simpson's method, similar to the one of the lecture for the trapezoid method.

Hints: Define

$$S_{i} = \frac{f(a)}{3} + \frac{f(b)}{3} + \frac{2}{3} \sum_{\substack{2 \le k \le N_{i} - 2\\k \text{ even}}} f(a + kh_{i}), \qquad T_{i} = \frac{2}{3} \sum_{\substack{1 \le k \le N_{i} - 1\\k \text{ odd}}} f(a + kh_{i})$$

and show that $S_i = S_{i-1} + T_{i-1}$ and that $I_i = h_i(S_i + 2T_i)$. This recurrence relation allows to use the result of the previous iteration to efficiently compute the contribution to I_i from even-index points S_i , just as in the adaptive trapezoid method. Only the new points in T_i have to be added explicitly.

Exercise 2 : Gauss-Legendre quadrature

In the Debye model, the heat capacity of a solid is given by

$$C_V = 9 \, n \, V \, k_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 \, e^x}{(e^x - 1)^2} \, \mathrm{d}x$$

where V is the volume, n is the number density, $k_B = 1.38 \cdot 10^{-23} \text{ JK}^{-1}$ is Boltzmann's constant, T is the temperature, and Θ_D is a material-dependent constant called the Debye temperature.

- 1. Write a function CV(T) which calculates C_V as a function of temperature for an aluminium cube of $10 \times 10 \times 10$ cm³ ($n = 6.022 \cdot 10^{28}$ m⁻³, $\Theta_D = 428$ K). Use Gaussian quadrature with N = 50 nodes.
- 2. Plot $C_V(T)$ between T = 5 K and T = 500 K.

Exercise 3 : The Lennard-Jones potential in the WKB approximation

In quantum mechanics, the Lennard-Jones potential can be used to phenomenologically model the attraction between two atoms or molecules. In one dimension it is given by

$$V(x) = \varepsilon \left(\left(\frac{x_0}{x}\right)^{12} - 2\left(\frac{x_0}{x}\right)^6 \right)$$

where ε and x_0 are constants. The energy levels E_n of the bound states in this potential are negative numbers, $E_n < 0$. They can be computed numerically using the semi-classical WKB approximation, in which the E_n are implicitly given as the solutions of the equations

$$W(E_n) = \hbar \pi \left(n + \frac{1}{2} \right), \qquad n \in \mathbb{N}.$$

Here $W(E_n)$ is defined by an integral :

$$W(E_n) = \int_{x_+}^{x_-} \sqrt{2m \left(E_n - V(x')\right)} \, \mathrm{d}x', \qquad x_{\pm} = x_0 \left(1 \pm \sqrt{1 + \frac{E_n}{\varepsilon}}\right)^{-1/6}.$$

Compute the energies E_0, E_1 and E_2 in units where $x_0 = 1, m = 1, \hbar = 1$ and $\varepsilon = 100$. To do so, numerically find the zeros of the functions $f(E_n) = W(E_n) - \hbar \pi \left(n + \frac{1}{2}\right)$ by one of the root-finding methods of exercise sheet 1, with the integrals $W(E_n)$ computed by Gaussian quadrature. It may be useful to plot these functions first (e.g. for values of E_n between -100 and -1) in order to get an idea about the approximate locations of their zeros.

Exercise 4 : Numerical derivatives

1. Show that

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}h^2 f''''(x) + \mathcal{O}(h^3)$$

- 2. (a) Write a function f(x) which returns $f(x) = \frac{1}{2}(1 + \tanh(x))$ (use the pre-defined function numpy.tanh). Plot its graph on the interval [-3, 3].
 - (b) Calculate f'(x) analytically.
 - (c) On the interval [-3, 3], plot the difference between the exact analytic function f'(x) and the numerical derivative of f(x). To evaluate the latter, use central differencing with $h = 10^{-4}$, $h = 10^{-5}$ et $h = 10^{-6}$. Compare the three graphs and explain what you observe.