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Exercise sheet 2

Exercise 1 : Simpson’s method

1. Recall the error estimate for the trapezoid method obtained in the lecture : Let I1 be
the result of a numerical integration obtained with N1 steps, and I2 the result obtained
with N2 = 2N1 steps, then the error ε2 on I2 is approximately given by

ε2 ≈
1

3
(I2 − I1) .

Show that for Simpson’s method, the same reasoning leads to the error estimate

ε2 ≈
1

15
(I2 − I1) .

2. Write a function int_simpson(f, a, b, N) similar to the function int_trapez of
the lecture, but which uses Simpson’s method.

3. Compute

I =

∫ π

0
x2 sinx dx

with the trapezoid method and with Simpson’s method for N = 10, 100, 1000, 2000,
and compare with the exact analytic result I = π2−4. For N1 = 1000 and N2 = 2000,
estimate the errors on I2 using the above formulas, and compare with the actual errors
I − I2.

4. Implement an adaptive version of Simpson’s method, similar to the one of the lecture
for the trapezoid method.

Hints : Define

Si =
f(a)

3
+
f(b)

3
+

2

3

∑
2≤k≤Ni−2
k even

f(a+ khi) , Ti =
2

3

∑
1≤k≤Ni−1
k odd

f(a+ khi)

and show that Si = Si−1 + Ti−1 and that Ii = hi(Si + 2Ti). This recurrence relation
allows to use the result of the previous iteration to efficiently compute the contribution
to Ii from even-index points Si, just as in the adaptive trapezoid method. Only the
new points in Ti have to be added explicitly.

Exercise 2 : Gauss-Legendre quadrature

In the Debye model, the heat capacity of a solid is given by

CV = 9nV kB

(
T

ΘD

)3 ∫ ΘD/T

0

x4 ex

(ex − 1)2
dx

where V is the volume, n is the number density, kB = 1.38 · 10−23 JK−1 is Boltzmann’s
constant, T is the temperature, and ΘD is a material-dependant constant called the Debye
temperature.



1. Write a function CV(T) which calculates CV as a function of temperature for an
aluminium cube of 10 × 10 × 10 cm3 (n = 6.022 · 1028 m−3, ΘD = 428 K). Use
Gaussian quadrature with N = 50 nodes.

2. Plot CV (T ) between T = 5 K and T = 500 K.

Exercise 3 : The Lennard-Jones potential in the WKB approximation

In quantum mechanics, the Lennard-Jones potential can be used to phenomenologically model
the attraction between two atoms or molecules. In one dimension it is given by

V (x) = ε

((x0

x

)12
− 2

(x0

x

)6
)

where ε and x0 are constants. The energy levels En of the bound states in this potential are
negative numbers, En < 0. They can be computed numerically using the semi-classical WKB
approximation, in which the En are implicitly given as the solutions of the equations

W (En) = ~π
(
n+

1

2

)
, n ∈ N .

Here W (En) is defined by an integral :

W (En) =

∫ x−

x+

√
2m (En − V (x′)) dx′ , x± = x0

(
1±

√
1 +

En
ε

)−1/6

.

Compute the energies E0, E1 and E2 in units where x0 = 1, m = 1, ~ = 1 and ε = 100. To
do so, numerically find the zeros of the functions f(En) = W (En)−~π

(
n+ 1

2

)
by one of the

root-finding methods of exercise sheet 1, with the integrals W (En) computed by Gaussian
quadrature. It may be useful to plot these functions first (e.g. for values of En between −100
and −1) in order to get an idea about the approximate locations of their zeros.

Exercise 4 : Numerical derivatives

1. Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− 1

12
h2 f ′′′′(x) +O(h3) .

2. (a) Write a function f(x) which returns f(x) = 1
2 (1 + tanh(x)) (use the pre-defined

function numpy.tanh). Plot its graph on the interval [−3, 3].

(b) Calculate f ′(x) analytically.

(c) On the interval [−3, 3], plot the difference between the exact analytic function
f ′(x) and the numerical derivative of f(x). To evaluate the latter, use central
differencing with h = 10−4, h = 10−5 et h = 10−6. Compare the three graphs and
explain what you observe.


