Exercise sheet 2

Exercise 1 : Simpson's method

1. Recall the error estimate for the trapezoid method obtained in the lecture : Let I_{1} be the result of a numerical integration obtained with N_{1} steps, and I_{2} the result obtained with $N_{2}=2 N_{1}$ steps, then the error ϵ_{2} on I_{2} is approximately given by

$$
\epsilon_{2} \approx \frac{1}{3}\left(I_{2}-I_{1}\right)
$$

Show that for Simpson's method, the same reasoning leads to the error estimate

$$
\epsilon_{2} \approx \frac{1}{15}\left(I_{2}-I_{1}\right)
$$

2. Write a function int_simpson(f, a, b, N) similar to the function int_trapez of the lecture, but which uses Simpson's method.
3. Compute

$$
I=\int_{0}^{\pi} x^{2} \sin x \mathrm{~d} x
$$

with the trapezoid method and with Simpson's method for $N=10,100,1000,2000$, and compare with the exact analytic result $I=\pi^{2}-4$. For $N_{1}=1000$ and $N_{2}=2000$, estimate the errors on I_{2} using the above formulas, and compare with the actual errors $I-I_{2}$.
4. Implement an adaptive version of Simpson's method, similar to the one of the lecture for the trapezoid method.

Hints : Define

$$
S_{i}=\frac{f(a)}{3}+\frac{f(b)}{3}+\frac{2}{3} \sum_{\substack{2 \leq k \leq N_{i}-2 \\ k \text { even }}} f\left(a+k h_{i}\right), \quad T_{i}=\frac{2}{3} \sum_{\substack{1 \leq k \leq N_{i}-1 \\ k \text { odd }}} f\left(a+k h_{i}\right)
$$

and show that $S_{i}=S_{i-1}+T_{i-1}$ and that $I_{i}=h_{i}\left(S_{i}+2 T_{i}\right)$. This recurrence relation allows to use the result of the previous iteration to efficiently compute the contribution to I_{i} from even-index points S_{i}, just as in the adaptive trapezoid method. Only the new points in T_{i} have to be added explicitly.

Exercise 2: Gauss-Legendre quadrature

In the Debye model, the heat capacity of a solid is given by

$$
C_{V}=9 n V k_{B}\left(\frac{T}{\Theta_{D}}\right)^{3} \int_{0}^{\Theta_{D} / T} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \mathrm{~d} x
$$

where V is the volume, n is the number density, $k_{B}=1.38 \cdot 10^{-23} \mathrm{JK}^{-1}$ is Boltzmann's constant, T is the temperature, and Θ_{D} is a material-dependant constant called the Debye temperature.

1. Write a function $\mathrm{CV}(\mathrm{T})$ which calculates C_{V} as a function of temperature for an aluminium cube of $10 \times 10 \times 10 \mathrm{~cm}^{3}\left(n=6.022 \cdot 10^{28} \mathrm{~m}^{-3}, \Theta_{D}=428 \mathrm{~K}\right)$. Use Gaussian quadrature with $N=50$ nodes.
2. Plot $C_{V}(T)$ between $T=5 \mathrm{~K}$ and $T=500 \mathrm{~K}$.

Exercise 3 : The Lennard-Jones potential in the WKB approximation

In quantum mechanics, the Lennard-Jones potential can be used to phenomenologically model the attraction between two atoms or molecules. In one dimension it is given by

$$
V(x)=\varepsilon\left(\left(\frac{x_{0}}{x}\right)^{12}-2\left(\frac{x_{0}}{x}\right)^{6}\right)
$$

where ε and x_{0} are constants. The energy levels E_{n} of the bound states in this potential are negative numbers, $E_{n}<0$. They can be computed numerically using the semi-classical WKB approximation, in which the E_{n} are implicitly given as the solutions of the equations

$$
W\left(E_{n}\right)=\hbar \pi\left(n+\frac{1}{2}\right), \quad n \in \mathbb{N}
$$

Here $W\left(E_{n}\right)$ is defined by an integral :

$$
W\left(E_{n}\right)=\int_{x_{+}}^{x_{-}} \sqrt{2 m\left(E_{n}-V\left(x^{\prime}\right)\right)} \mathrm{d} x^{\prime}, \quad x_{ \pm}=x_{0}\left(1 \pm \sqrt{1+\frac{E_{n}}{\varepsilon}}\right)^{-1 / 6}
$$

Compute the energies E_{0}, E_{1} and E_{2} in units where $x_{0}=1, m=1, \hbar=1$ and $\varepsilon=100$. To do so, numerically find the zeros of the functions $f\left(E_{n}\right)=W\left(E_{n}\right)-\hbar \pi\left(n+\frac{1}{2}\right)$ by one of the root-finding methods of exercise sheet 1 , with the integrals $W\left(E_{n}\right)$ computed by Gaussian quadrature. It may be useful to plot these functions first (e.g. for values of E_{n} between -100 and -1) in order to get an idea about the approximate locations of their zeros.

Exercise 4 : Numerical derivatives

1. Show that

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}-\frac{1}{12} h^{2} f^{\prime \prime \prime \prime}(x)+\mathcal{O}\left(h^{3}\right)
$$

2. (a) Write a function $\mathrm{f}(\mathrm{x})$ which returns $f(x)=\frac{1}{2}(1+\tanh (x))$ (use the pre-defined function numpy.tanh). Plot its graph on the interval $[-3,3]$.
(b) Calculate $f^{\prime}(x)$ analytically.
(c) On the interval $[-3,3]$, plot the difference between the exact analytic function $f^{\prime}(x)$ and the numerical derivative of $f(x)$. To evaluate the latter, use central differencing with $h=10^{-4}, h=10^{-5}$ et $h=10^{-6}$. Compare the three graphs and explain what you observe.
