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Exercise sheet 2

Exercise 1 : Simpson’s method

1. Recall the error estimate for the trapezoid method obtained in the lecture : Let I; be
the result of a numerical integration obtained with N; steps, and Is the result obtained
with No = 2 N7 steps, then the error e on I is approximately given by

1
e~ —(Ir, —I).
2 3( 2 1)
Show that for Simpson’s method, the same reasoning leads to the error estimate
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2. Write a function int_simpson(f, a, b, N) similar to the function int_trapez of
the lecture, but which uses Simpson’s method.
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with the trapezoid method and with Simpson’s method for N = 10, 100, 1000, 2000,
and compare with the exact analytic result I = 72 —4. For N; = 1000 and No = 2000,
estimate the errors on Is using the above formulas, and compare with the actual errors
11— 1.

4. Implement an adaptive version of Simpson’s method, similar to the one of the lecture
for the trapezoid method.

3. Compute
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and show that S; = S;_1 + T;—1 and that I; = h;(S; + 27;). This recurrence relation
allows to use the result of the previous iteration to efficiently compute the contribution
to I; from even-index points .5;, just as in the adaptive trapezoid method. Only the
new points in T; have to be added explicitly.

Exercise 2 : Gauss-Legendre quadrature
In the Debye model, the heat capacity of a solid is given by
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where V is the volume, n is the number density, kg = 1.38 - 10723 JK~! is Boltzmann’s
constant, 1" is the temperature, and ©p is a material-dependant constant called the Debye
temperature.



1. Write a function CV(T) which calculates Cy as a function of temperature for an
aluminium cube of 10 x 10 x 10 ecm® (n = 6.022 - 102 m=3, ©p = 428 K). Use
Gaussian quadrature with N = 50 nodes.

2. Plot Cy(T) between T'=5 K and 7' = 500 K.

Exercise 3 : The Lennard-Jones potential in the WKB approximation

In quantum mechanics, the Lennard-Jones potential can be used to phenomenologically model
the attraction between two atoms or molecules. In one dimension it is given by
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where € and zg are constants. The energy levels E, of the bound states in this potential are
negative numbers, F, < 0. They can be computed numerically using the semi-classical WKB
approximation, in which the F, are implicitly given as the solutions of the equations
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Here W(E),) is defined by an integral :
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Compute the energies Fy, 1 and Fy in units where x9o = 1, m = 1, h = 1 and ¢ = 100. To
do so, numerically find the zeros of the functions f(E,) = W(E,) — i (n + 1) by one of the
root-finding methods of exercise sheet 1, with the integrals W (E,) computed by Gaussian
quadrature. It may be useful to plot these functions first (e.g. for values of E,, between —100
and —1) in order to get an idea about the approximate locations of their zeros.

Exercise 4 : Numerical derivatives

1. Show that
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2. (a) Write a function £ (x) which returns f(z) = 3 (1 + tanh(xz)) (use the pre-defined
function numpy.tanh). Plot its graph on the interval [—3, 3.
(b) Calculate f’(z) analytically.

(c) On the interval [—3, 3], plot the difference between the exact analytic function
f'(z) and the numerical derivative of f(z). To evaluate the latter, use central
differencing with h = 107*, h = 107 et h = 107%. Compare the three graphs and
explain what you observe.



