
HAP708P “Modelling and simulation in physics”, Montpellier University, 2023

Exercise sheet 1

Exercise 1: Programming in Python

The Bethe-Weizsäcker formula is a semi-empirical formula for estimating the nuclear binding
energy B of an atomic nucleus:

B = av A− asA2/3 − ac Z(Z − 1)A−1/3 − aa
(A− 2Z)2

A
+ apA

−1/2 .

Here A is the atomic mass number (the total number of nucleons), Z is the atomic number
(the number of protons), and the as are found to be, in units of MeV,

av = 15.7 , as = 17.2 , ac = 0.714 , aa = 23.2 , ap =

0 A odd
11.2 A even, Z even
−11.2 A even, Z odd

Write a Python function which determines the most stable isotope for a given Z (i.e. the
value of A between A = Z and A = 3Z which maximizes the specific binding energy B/A).
Test your function in a program for Z = 34 (selenium), which should yield 76

34Se as the most
stable isotope with B/A = 8.91 MeV.

Exercise 2: Root-finding methods

ba

f x

x

()

c
c

c

c1

2

3

4 ba

f x

x

()

x
1

x
2

x
0

ba

f x

x

()

x x
0 2

x
1

x
3

Left, bisection method; center, Newton’s method; right, secant method.

Let f : R → R a continuous function which has a zero on the interval [a, b] (this is guaranteed
if the signs of f(a) and f(b) are different, i.e. f(a)f(b) < 0). Write three Python functions
which find a zero numerically with accuracy ε by three different methods:

1. Bisection: Assume that f(a)f(b) < 0. Divide [a, b] into two halves [a, c] and [c, b], where
c = (a + b)/2. If f(a)f(c) < 0, continue with the left half, [a, b] ← [a, c]. Otherwise,
continue with the right half, [a, b] ← [c, b]. Repeat until the length of the interval has
shrunk to < 2ε and return its midpoint.

2. Newton’s method : Assume that f is differentiable and that its derivative is known.
Choose an arbitrary x0 ∈ [a, b]. Calculate xn+1 = xn − f(xn)/f ′(xn) (initially for
n = 0) and repeat as long as |xn+1 − xn| > ε. Once |xn+1 − xn| ≤ ε, return xn+1.

3. Secant method : Choose two arbitrary x0 and x1 in [a, b]. Repeatedly calculate xn+1 =
xn−1f(xn)−xnf(xn−1)

f(xn)−f(xn−1)
(initially for n = 1) until |xn+1 − xn| < ε. Return xn+1.

Your functions’ call signatures should be bisection(f, a, b, epsilon=1.E-3) for the
bisection method, newton(f, fprime, x0, epsilon=1.E-3) for Newton’s method, and
secant(f, x0, x1, epsilon=1.E-3) for the secant method. Test your functions using
f(x) = sin(x) and [a, b] = [2, 4].

Exercise 3: Legendre polynomials

1. The Legendre polynomials Pn(x) can be defined by the recurrence relation

P0(x) = 1 , P1(x) = x , Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x) .

Write a Python function P(n, x) returning Pn(x).

2. Write a program which finds the zeros of P5(x) by Newton’s method with an accuracy
≤ δ = 10−5.

Hints:

� The n-th Legendre polynomial Pn has n non-degenerate zeros, all lying in the
interval (−1, 1). To find the five zeros of P5 by Newton’s method, one needs
to choose five suitable starting values x0. A possible strategy is to first plot P5

in order to obtain a rough estimate of the zeros’ locations, and then use these
estimates as starting values.

� Implement an auxiliary function dP(n, x) which calculates P ′n(x) from the recur-
rence relation

P ′n(x) =
nx

x2 − 1
Pn(x)− n

x2 − 1
Pn−1(x) .

Exercise 4: Numerical data types in Python

Write two versions of a program which calculates the factorial of a given natural number. In
the first versions, all variables and constants are of the type int, and in the second version,
of the type float. What does one obtain for 200! with both programs? Explain what you
observe.

Exercise 5: Numerical error

1. Write two programs which calculate a numerical approximation of the Euler-Mascheroni
constant γ = 0.577 215 664 901 532 860 . . . using the formulas

γ =

∞∑
k=1

(
1

k
− ln

(
1 +

1

k

))
, γ = lim

n→∞

(
2n

exp(2n)

∞∑
m=0

(
2mn

(m+ 1)!

m∑
k=0

1

k + 1

)
− n ln 2

)
.

What kind of error is the dominant one? Which of the two methods is more efficient?

2. (a) Write a program which calculates the roots of the quadratic equation ax2+bx+c =
0 using the standard formula

x =
−b±

√
∆

2a
, ∆ = b2 − 4ac .

What do you obtain for a = c = 0.001 and b = 1000?

(b) Show that the roots can equivalently be written as

x =
2c

−b∓
√

∆
.

Modify your program to calculate the roots avec this second formula, and run it
with a = c = 0.001 et b = 1000. What do you obtain? What is the explanation for
the difference with the result of (a)? Which one of the formulas is better suited
for calculating which one of the roots? Why?

Exercise 6: Analysis of algorithms

1. Show that, for positive constants a, b, c, one has Θ(log(xa)) ∼= Θ(logb x) ∼= Θ(log(cx)) ∼=
Θ(log(x)).

2. The following code tests if some given integer n is a prime number. Make sure you
understand how exactly the program achieves this, then analyze its complexity: What
is the asymptotic growth of T (n) in the worst case?

def is_prime(n):

k = 2

while k**2 <= n:

if n % k == 0:

return False

k += 1

return True

3. Reminder: The matrix product A ·B of two n×n matrices is (A ·B)ij =
∑n

k=1AikBkj .

Analyze the time complexity of a program which calculates A ·B with this formula as
a function of n .

4. Consider the root-finding methods of exercise 2. What is the time complexity to find
a zero with n-digit precision for the bisection method (assuming that the time it takes
to evaluate the function f is negligible)?

