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Preface

A major challenge in writing a book on mathematics for economists is to select
the appropriate mathematical topics and present them with the necessary clarity.
Another challenge is to motivate students of economics to study these topics by
convincingly demonstrating their power to deal with economic problems. All this
must be done without sacrificing anything in terms of the rigor and correctness of
the mathematics itself.

A problem lies in the difference between the logic of the development of the
mathematics and the way in which economics progresses from models of indi-
vidual consumer and firm, through market models and general equilibrium, to
macroeconomic models. The primary building blocks, the models of consumer
and firm behavior, are based on methods of constrained optimization that, mathe-
matically speaking, are already relatively advanced. In this book we have chosen
instead to follow the logic of the mathematics. After a review of fundamentals,
concerned primarily with sets, numbers, and functions, we pay careful attention
to the development of the ideas of limits and continuity, moving then to the calcu-
lus of functions of one variable, linear algebra, multivariate calculus, and finally,
dynamics. In the treatment of the mathematics our goal has always been to give
the student an understanding of the mathematical concepts themselves, since we
believe this understanding is required if he or she is to develop the ability and
confidence to tackle problems in economic analysis. We have very consciously
sought to avoid a “cookbook” approach.

We have tried to develop the student’s problem-solving skills and motivation
by working through a large number of examples and economic applications, far
more than is usual in this type of book.Although the selection of these, and the order
in which they are presented, was determined by the logic of the development of the
mathematics rather than that of an economics course, in the end the student will
have covered virtually all of the standard undergraduate mathematical economics
syllabus.

Many people helped us in the preparation of this book and it is a pleasure to
acknowledge our debt to them here. The following individuals read early versions
of the manuscript and offered helpful suggestions, a large number of which were
freely used:
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Richard Anderson Texas A&M University
Paul Anglin University of Guelph
Walter Bossert University of Waterloo
Zhiqi Chen Carleton University
Peter Coughlin University of Maryland at College Park
Swapan DasGupta Dalhousie University
Eric Davis Carleton University
Allan DeSerpa Arizona State University
Richard Fowles University of Utah
Ian Irvine Concordia University
Roger Latham York University
Chenghu Ma McGill University
Catherine Schneider Boston College
Paul Segerstrom Michigan State University
James A. Stephenson Iowa State University
Ruqu Wang Queen’s University
Steven Williams University of Illinois

Drafts of the book, at various stages, have been used in classes at the Uni-
versity of Guelph. We thank the many students involved for their cooperation in
finding their way around incomplete manuscripts, and we thank Louise Grenier
for helping them do just that. For assistance in preparing answers to the exercises
and for helpful comments on the text, we would like to thank Mattias Polborn,
Mathias Kifmann, Markus Wagner, Erich Kolger, Tina Färber, Ursula Bachmann,
and Andreas Wildermuth.

A number of individuals who used the first edition suggested many useful
changes and we thank them for that. We especially thank Nancy Bower and Asha
Sadanand for their numerous contributions.
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Chapter 1 Introduction

Almost for as long as economics has existed as a subject of study, mathematics
has played a part in both the exploration and the exposition of economic ideas.1

It is not simply that many economic concepts are quantifiable (examples include
prices, quantities of goods, volume of money) but also that mathematics enables us
to explore relationships among these quantities. These relationships are explored
in the context of economic models, and how such models are developed is one of
the key themes of this book. Mathematics possesses the accuracy, the rigor, and
the capacity to deal clearly with complex systems, which makes it highly valuable
as a method for analyzing economic issues.

This book covers a wide range of mathematical techniques and outlines a
large number of economic problems to which these techniques may be applied.
However, mathematical modeling in economics has some unifying features and
conventions that we will summarize here at the outset. Although model details are
problem-specific, there are some basic principles in the modeling process that are
worth spelling out.

1.1 What Is an Economic Model?
At its most general, a model of anything is a representation. As such, a model
differs from the original in some way such as scale, amount of detail, or degree of
complexity, while at the same time preserving what is important in the original in
its broader or most salient aspects. The same is true of an economic model, though
unlike model airplanes, our models do not take a physical form. Instead, we think
of an economic model as a set of mathematical relationships between economic
magnitudes. Knowing how to distill the important aspects of an economic problem
into an abstract simplification is part of the formal training of an economist. The
model must be convincing and must be capable of addressing the questions that
the researcher has set. We now set out the central features of an economic model.

1The more famous early works in economics with a mathematical exposition include A. Cournot,
Récherches sur les principes mathématiques de la théorie des richesses (1838), W. S. Jevons, The The-
ory of Political Economy (1874), L. Walras, Eléments d’́economie politique pure (1874), A. Marshall,
Principles of Economics (1890), and V. Pareto, Cours d’́economie politique (1896).
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Quantities, Magnitudes, and Relationships

We can start by thinking of how we measure things in economics. Numbers repre-
sent quantities and ultimately it is this circumstance that makes it possible to use
mathematics as an instrument for economic modeling. When we discuss market
activity, for example, we are concerned with the quantity traded and the price at
which the trade occurs. This is so whether the “quantity” is automobiles, bread,
haircuts, shares, or treasury bills. These items possess cardinality, which means
that we can place a definite number on the quantity we observe. Cardinality is
absolute but is not always necessary for comparisons. Ordinality is also a property
of numbers but refers only to the ordering of items. The difference between these
two number concepts may be illustrated by the following two statements.

1. Last year, the economy’s growth rate was 3%.
2. The economy’s output last year was greater than the year before.

Both of these statements convey quantitative information. The first of these
is a cardinal property of the change in output. We are able to measure the change
and put a definite value on it. The second is an ordinal statement about economic
activity in the past year. Last year’s output is higher than the year before. This
of course is an implication of the first statement, but the first statement cannot be
inferred from the second statement.

However, there is a greater difference between cardinality and ordinality, be-
cause we can also decide on a ranking of items based on their qualitative properties
rather than on their quantifiable ones. Most statements about preferences are ordi-
nal in this sense, so to say: “I prefer brand A to brand B, and brand B to brand C”
is an ordinal statement about how one person subjectively evaluates three brands
of a good. If we let larger numbers denote more preferred brands, then we could
associate brand A with the number 3, brand B with the number 2, and brand C with
the number 1. However, the numbers 10, 8, and 0 would serve equally well in the
absence of any other information. This statement may provide useful information,
and certain logical and mathematical consequences may follow from it, but it is
not a statement about quantities.

Variables and Parameters

When we start to build an economic model, we know that we are not going to be
able to explain everything. Some things must be treated as given or as data for our
problem. These are the exogenous variables and the parameters of the model. The
endogenous variables, then, are those that are going to be explained by the model.
A simple example will illustrate.

Suppose that we are trying to determine the equilibrium price and quantity in
a market for a homogeneous good. We hypothesize that the quantity demanded of
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some good may be represented as

qD = a − bp + cy (1.1)

which is a simple linear demand function. Each time price, p, increases by one
dollar, the quantity demanded, qD , falls by b times one dollar. A rise in income, y,
of one dollar increases quantity demanded by c units. This demand curve may be
chosen purely for simplicity, or it may be known, by looking at market data, that
the demand curve for this good does take this simple form. Now suppose that the
supply of this good is fixed at some amount which we will call q̄

S , and suppose
that we believe that the prevailing price in this market is the price that equates
demand with supply. Then

qD = q̄
S implies p = a − q̄

S + cy

b
(1.2)

So here, p is the endogenous variable, a and b are the exogenously given parame-
ters, and q̄

S and y are exogenous variables. For instance, demand is determined by
tastes, weather, and many other environmental and social factors, all of which are
captured here by a, b, and c. All supply-side considerations are, in this particularly
simple case, summarized by the quantity q̄

S . Parameters may also incorporate the
effects of exogenous variables, which we do not wish to specify explicitly. For
example, a may incorporate the effects of prices of other goods on the demand
for this one. Finally, in this example, there is one further endogenous variable.
Since quantity demanded, qD , depends partly on p (which is endogenous) it too
is endogenous: therefore qD is only known when the price is known. Substituting
equation (1.2) into equation (1.1) gives simply qD = q̄

S as the value of demand.
In general, as in this simple example, we can use relationships between eco-

nomic variables and background parameters to reach conclusions or predictions
based upon the mathematical solutions of those relationships.

Behavior and Equilibrium

As we have just seen, a further step in building an economic model is to identify the
behavioral equations, or the equations that describe the economic environment,
and to identify the equilibrium conditions. In the simple supply-and-demand exam-
ple above, the behavioral equations are the demand and supply functions describing
the relationships between the endogenous variables and exogenous variables. The
equilibrium condition determines what the values of the endogenous variables will
be. In this case the condition is that supply equals demand. The specification of the
equilibrium condition is based on our understanding of how the part of the economy
in question works, and embodies the crucial hypothesis of how the endogenous
variables are determined.



6 CHAPTER 1 INTRODUCTION

Behavioral equations contain hypotheses about the way the individual, market,
or economy works. One of the key strengths of mathematical analysis in economics
is that it forces us to be precise about our assumptions. If the implications of those
behavioral equations prove to be unsubstantiated or ridiculous, then the natural
course of action is to look more closely at the assumptions and to attempt to
identify those responsible for throwing us off course.

Single-Equation Models and Multiple-Equation Models

Although sometimes the problem we are trying to analyze may be captured in a
single-equation model, there are many instances where two or more equations are
necessary. Interactions among a number of economic agents or among different
sectors of the economy typically cannot be captured in a single equation, and a
system of equations must be specified and solved simultaneously. We can extend
our earlier example to illustrate this.

Consider first the demand and supply of two goods. We denote the demands
by qD

1 and qD
2 , and the supplies by qS

1 and qS
2 , where the subscripts 1 and 2 identify

which good we are referring to. Now, as before, we may specify how demands and
supplies are related to the prices of the two goods, but this time recognizing that
the demand for and supply of good 1 may depend on both its own price and on the
price of good 2. Recognition of this fact gives rise to an interdependence between
the two markets. For simplicity, suppose that the demand for each good depends
on both prices, while the supply of each good depends only on the good’s own
price. The question we are asking is: If the interdependence between two goods
takes this form, what are the consequences for the equilibrium price and quantity
traded in each market in equilibrium? Again, as before, we will restrict ourselves
to linear relationships only. We may write

qD
1 = a − b1p1 + b2p2, b1, b2 > 0 (1.3)

and

qD
2 = α − β1p2 + β2p1, β1, β2 > 0 (1.4)

Notice that in addition to incorporating the usual negative relationship between
the demand for a good and its own price, we have included a specific assumption
about the cross-price effects, namely that these goods are substitutes. If the price of
good 1 increases, the demand for good 2 increases, and vice versa. Setting supply
equal to an exogenous amount in each market gives us
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p1 = a + b2p2 − q̄
s
1

b1
(1.5)

p2 = α + β2p1 − q̄
s
2

β1
(1.6)

and solving gives

p1 =
β1

(
a − q̄

s
1

)+ b2
(
α − q̄

s
2

)
b1β1 − b2β2

(1.7)

p2 =
β2

(
a − q̄

s
1

)+ b1
(
α − q̄

s
2

)
b1β1 − b2β2

(1.8)

Notice that the solutions here express the two prices in terms only of the exogenous
variables and the parameters—these are the reduced-form solutions. We are now
set to consider the implications of our initial model.

Statics and Dynamics

In introductory treatments of economics the time dimension of the problem is often
ignored, or supressed for simplicity. In reality, the time dimension is always present.
In the examples of market equilibrium already discussed, we should think of the
quantities as flows per period of time, so that qD is the quantity demanded of a good
per period, however short or long that period may be in terms of calendar time.
Models where we explicitly or implicitly consider a situation within a single period
of time we refer to as static models. The economic activities studied in static models
do not take into account the history of these activities and do not consider the future
consequences of these activities. Static problems are solved independently of the
passage of time. Put this way, it seems that the static framework for economic anal-
ysis is extremely restrictive. However, many useful models of economic behavior
have been developed in the static framework, and we will be studying several such
examples in the book. Many problems, though, are necessarily dynamic in nature.
The theories of economic growth, inflation, and resource depletion, for example,
are impossible to model without explicit consideration of the time dimension.

Explicit consideration of time opens up new challenges as well as new oppor-
tunities for the modeler, and in the later chapters of the book we will develop the
more important techniques for studying dynamic models. It is useful at this point,
however, to highlight some important concepts that emerge when we explicitly
account for the passage of time.

Quantities and values that recur each period in a dynamic model continue to
be referred to as flows. Income, investment, saving, production, worker hires, and
purchase and consumption of goods are examples. Some of these flows may be
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stored or accumulated into stocks. Flows of investment in machinery become the
accumulated capital stock. Accumulated savings are assets.

Accumulated hires are the workforce. Unsold production accumulates into
inventories. Accumulated deficits are total debt, and so on.

Mathematically we must specify the relationships between the flows and the
stocks as part of any dynamic model. The relationship between investment and the
capital stock is a useful example. Denote by It the amount of investment during
period t , and denote the capital stock at the begining of period t by Kt . Then we can
define the flow of investment in terms of the change in the capital stock between
periods (ignoring the depreciation of capital):

It = Kt+1 −Kt

The flow of investment is simply the change in the stock of capital. Note that we
use time subscripts to date the stocks and the flows that we are interested in.

From the modeling point of view, we have certain choices when we are decid-
ing on the appropriate mathematical structure for a dynamic model. One of these is
the modeling of time itself. So far we have thought of time as being divided up into
intervals or “periods.” In these models of discrete time, all relevant economic fac-
tors are allowed to change between periods but not within periods. Of course, since
the length of a period is arbitrary, this condition is not very restrictive. Different
mathematical techniques are required if we wish to think of time as evolving con-
tinuously. In continuous time models, we date the stocks and flows by instants in
time, and we can invoke calculus to define the relationships between flows and suc-
cessive instantaneous values of stocks. We show how this is done later in the book.

1.2 How to Use This Book
The book is intended to be comprehensive in its coverage of mathematical methods
for undergraduate economics programs. The arrangement of the material follows
the logic of the development of the mathematical ideas rather than those of eco-
nomics. Examples and exercises relate both to purely mathematical techniques and
to their applications in economics. The book also contains extended discussions
of some economic applications. Chapters, sections, exercises, examples, and eco-
nomic applications that we regard as advanced or that might otherwise be omitted
are indicated by an asterisk.

Important concepts are highlighted. Key theorems and definitions are dis-
played, while keywords are set in bold type. Each section ends with exercises,
and each chapter ends with a chapter review, consisting of a list of key concepts,
questions for discussion or review, and review exercises. Answers to the odd-
numbered questions are given at the end of the book.

The third edition of this book is intended to be used along side the book’s
website at http://mitpress.mit.edu/math econ3.
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We decided to place some of the material from the second edition, such as
some proofs and examples, on the website and to add examples and explanations.
This improves the balance of the book and allows us to add material without adding
to the length of the book, which keeps costs down. The Web materials are intended
to be an integral part of the book. The book may be used alone, but we strongly
recommend use of the Web materials and for reason of this integration, we cite
examples and figures available on the website in the book.

With the two formats combined, we have reduced the length of the hard copy,
preserved useful material from the second edition, and added new examples and
explanations. Each topic is self-explanatory for both instructors and students. This
enhances the value of the book as a reference, since it has models and examples
that are likely to come up in a student’s future courses (e.g., the Hotelling location
model if the student takes a course in Industrial Organization). Some of the mate-
rial represents extra examples that a student can use for practice or an instructor
might feel is important, whereas some of the material is probably more advanced
and/or detailed than most (if not all) instructors would think appropriate (e.g., the
intermediate value theorem).

To the Instructor . . .

There is clearly more material here than can be covered in a one-semester course.
A first course is unlikely to progress beyond chapter 13 or possibly chapter 14.
Chapter 16, on integration, is positioned here as a preparation for the chapters on
dynamic methods, though it could be brought forward if integration techniques
are to be given a higher priority in the single-semester course. A second-semester
course could be built around chapter 15 onward.

To the Student . . .

In any course, you will need to attempt exercises, and other material, that have not
been covered in class. The only way to learn mathematics and economics is to do
mathematics and economics. We have provided many examples and exercises in
order to encourage independent study.

1.3 Conclusion
The aim of this book is to present the key mathematical concepts that most fre-
quently prove helpful in analyzing economic problems. However, the approach we
take is not simply to provide a recipe book of results and procedures. Our aim is to
take students through the model-building process by working out a large number
of economic examples. By the end of the book, in addition to acquiring particular
mathematical skills, we hope that the student will have some knowledge of the
main economic models and their properties.





Chapter 2 Review of Fundamentals

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Some Examples of Power Sets
• Proof of Theorem 2.1.
• The Completeness Property of R

• Proofs, the Necessary and Sufficient Conditions
• Practice Exercises

In this chapter we give a concise overview of some fundamental concepts that
underlie everything we do in the rest of the book.

In section 2.1 we present the basic elements of set theory. We then go on
to discuss the various kinds of numbers, ending with a concise treatment of the
properties of real numbers, and the dimensions of economic variables. We then
introduce the idea of point sets, beginning with the simplest case of intervals of
the real line, and define their most important properties from the point of view
of economics: closedness, boundedness, and convexity. Next we give the general
definition of a function, and set out the main properties of the types of functions
most frequently encountered in economics. We also define the important properties
of concavity, convexity, and quasiconcavity and quasiconvexity. Finally, there is a
short discussion of the meaning of necessary conditions and sufficient conditions,
and of how proofs are formulated, in the context of an economic example.

2.1 Sets and Subsets
A set is any collection of items thought of as a whole. The collection is treated
as a single object, to which mathematical operations may be applied. One way of
defining a particular set is by enumeration: we simply list the items included in
the set—the elements of the set. Alternatively, we can state a specific property.
If an item possesses that property, it is an element of the set, but if it does not, it
is excluded from the set. This latter method is far more generally used because
defining a set by enumeration is often very cumbersome and sometimes impossible.



12 CHAPTER 2 REVIEW OF FUNDAMENTALS

For example, consider the set of even numbers between 1 and 11. In the
standard notation for describing sets, we could write

S = {x : x is an even number between 1 and 11} (2.1)

or, equivalently,

S = {2, 4, 6, 8, 10} (2.2)

The first way of writing S corresponds to definition by property (the “:” should be
read as “given that”); the second to definition by enumeration. The key aspects of
this notation are as follows:

• A capital letter denoting the set, here S.
• A lowercase letter denoting a typical element of the set, here x.
• Braces, {. . .}, that enclose the elements of the set and emphasize that we treat

them as a single entity.

In general, a lowercase letter such as x denotes items that may or may not be
elements of some particular set. For example, here x can represent any number
whatsoever. Then, if x takes on a value that is in the set, we write

x ∈ S

and if it takes on a value that is not in the set, we write

x /∈ S

Also, in general, the definition of a set by property may be written

X = {x : P(x)}

where P is a property that x may or may not have, so P(x) is equivalent to the
statement “x possesses the property P .”

Consider now three further sets of numbers:

Z+ = {x : x is a positive integer} (2.3)

A = {x ∈ Z+ : x ≤ 11} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (2.4)

B = {x ∈ A : x/2 ∈ Z+} = {2, 4, 6, 8, 10} (2.5)

Note that in the case of A and B we have extended the notation slightly by writing
the set to which x must belong (a property of A and B) to the left of the colon.
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Example 2.1 Define the set Z+ in equation (2.3) by enumeration.

Solution

The difficulty here is that the set of positive integers is very large. The way around
this is to have a notation to stand for “and so on” once a pattern has been established
so that there is little ambiguity about what follows. One suggestion in this example
might be

Z+ = {1, 2, 3, 4, . . .}

where “. . .” stands for “and so on.” Notice, however, that this notation only
suggests the nature of Z+, since any infinitely long sequence of integers could
follow 4.

We observe also that all the elements of A are also elements of Z+ and that all
the elements of B are also elements of A. This observation leads to the following
important definition:

D e f in i t i o n 2 . 1 If all the elements of a set X are also elements of a set Y , then X is a subset of Y ,
and we write

X ⊆ Y

where ⊆ is the set-inclusion relation.

In our examples we have B ⊆ A and A ⊆ Z+. Note also that these two facts lead
to B ⊆ Z+. Since A contains B and Z+ contains A, then Z+ must contain B.

Is Z+ a subset of A? Clearly not, because there exist numbers x ≥ 12 that are
in Z+ but not in A. This observation leads to

D e f in i t i o n 2 . 2 If all the elements in a set X are in a set Y , but not all the elements of Y are in X,
then X is a proper subset of Y , and we write

X ⊂ Y

So, for our examples, we certainly have A ⊂ Z+. It must then also be true that
B ⊂ Z+, since B ⊆ A. Now consider the relationship between A and B. Is B a
proper subset of A? Clearly, B ⊂ A because the odd integers 1, 3, . . . , 11 are in
A but not in B.

The equality between two sets is defined by
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D e f in i t i o n 2 . 3 Two sets X and Y are equal if they contain exactly the same elements, and we
write

X = Y

Note that the equality of two sets means that they are identical, as is the case with S

and B defined earlier. Formally, we demonstrate that two sets are equal by showing
that they are both subsets of each other. That is,

X ⊆ Y and Y ⊆ X ⇔︸︷︷︸
implies and is implied by

X = Y

So far we have considered examples that are sets of numbers. It is important to
emphasize, though, that we can talk of a huge variety of things that we can collect
into sets. Some economic examples are as follows:

• The set of all the firms in an economy.
• The set of firms producing a particular good, usually referred to as the industry

for that good.
• The set of buyers and sellers of a good, usually referred to as the market for

that good.
• The set of quantities of goods and services that a consumer is physically capable

of consuming, usually called the consumption set for the consumer.
• The set of bundles of goods and services that a consumer can afford to buy,

usually called the budget set of the consumer.
• The set of output quantities a firm is technologically capable of producing and

the input quantities required to produce these, usually called the production
set for the firm.
• The set of output quantities technologically capable of being produced in an

economy given the available resources, usually called the production possi-
bility set for an economy.

Set Operations

We are now going to define operations on sets that can be thought of as roughly
analogous to the basic operations of addition, subtraction, multiplication, and di-
vision that we carry out on numbers. To avoid some logical problems that can arise
if we continue to assume that we are dealing with any kinds of sets whatsoever,
we take it that we have some given set of items of some specific kind, called the
universal set, U , and we define the set-theoretic operations in terms of subsets
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A

B

(a) (b)

X
Y

U U

Figure 2.1 Venn diagrams

of U . A Venn diagram, shown in figure 2.1, is a useful device for illustrating the
relationships between sets and subsets. The rectangle represents the universal set,
U , so that any point in U is an item x. The sets we are interested in are shown
by collections of points such as A and B or X and Y . Note that this is a purely
schematic representation, and U should be thought of as a set of items in gen-
eral, not necessarily as points in a plane. When we think about the relationship
between the sets, we notice a difference between the cases shown in (a) and (b) of
figure 2.1. In (b), X and Y overlap, whereas in (a), A and B do not.

D e f in i t i o n 2 . 4 The intersection, W , of two sets X and Y is the set of elements that are in both X

and Y . We write

W = X ∩ Y = {x : x ∈ X and x ∈ Y }

Thus the intersection is the set of common elements. The expression X ∩ Y

is read “the intersection of X and Y .” What about the intersection of the sets
A and B in figure 2.1 (a)? Clearly, it does not exist, since there are no com-
mon elements shared by A and B. This leads to the idea of a set that has no
elements.

D e f in i t i o n 2 . 5 The empty set or the null set is the set with no elements. The empty set is always
written ∅.
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Since there are no common elements shared by A and B, we can write

A ∩ B = ∅ (2.6)

and these two sets are said to be disjoint. Since all the sets under discussion are
in U , we have ∅ ⊆ U . We can also think about the total of elements in a number
of sets.

D e f in i t i o n 2 . 6 The union of two sets A and B is the set of elements in one or other of the sets.
We write

C = A ∪ B = {x : x ∈ A or B}

The expression A ∪ B is read “the union of A and B.” In figure 2.1 (a), C

simply consists of the points in A and the points in B thought of now as a single
set. If we let R = X∪Y , then, in figure 2.1 (b), R is the set shaped something like
“∞.” Note that we must have

X ∩ Y ⊂ R, where R = X ∪ Y

and if we now define ∅ to be a proper subset of any nonempty subset of U , we can
also write

A ∩ B ⊂ C, where C = A ∪ B

So we see that intersections of sets are always contained in their unions.

Example 2.2 Take as our universal set the set of positive integers, Z+, and let

X = {x ∈ Z+ : x ≤ 20 and x/2 ∈ Z+}

Y = {x ∈ Z+ : 10 ≤ x ≤ 24 and x/2 ∈ Z+}

What are X ∩ Y and X ∪ Y ?

Solution

The simplest way to answer this question is by enumeration. We have

X = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Y = {10, 12, 14, 16, 18, 20, 22, 24}
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Then

X ∩ Y = {10, 12, 14, 16, 18, 20}
= {x ∈ Z+ : 10 ≤ x ≤ 20 and x/2 ∈ Z+}

X ∪ Y = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}
= {x ∈ Z+ : x ≤ 24 and x/2 ∈ Z+}

Note that when we take the union, we do not count the common elements
twice.

Example 2.3 What are X ∩ Z+, X ∪ Z+, Y ∩ Z+, Y ∪ Z+?

Solution

By referring to figure 2.1 (b) with Z+ as the universal set, we can quickly establish
that

X ∩ Z+ = X, X ∪ Z+ = Z+

Y ∩ Z+ = Y, Y ∪ Z+ = Z+

This suggests an immediate generalization. If, for two sets S and V we have S ⊆ V ,
then S ∩ V = S and S ∪ V = V . This result is illustrated in figure 2.2.

V

U

S

Figure 2.2 S ∩ V = S and
S ∪ V = V when S ⊆ V

It is useful to define as a set the elements that are not in some given set X.

D e f in i t i o n 2 . 7 The complement of a set X is the set of elements of the universal set U that are

not elements of X, and it is written X̄ . Thus

X̄ = {x ∈ U : x /∈ X}

In figures 2.1 and 2.2 the complement of any set is simply the area outside the area
denoting the set. Note that we must have

Ū = ∅, ∅̄ = U

Example 2.4 Given Z+, X, and Y as defined in example 2.2, what are their complements? What
are the complements of X ∩ Y and X ∪ Y , written X ∩ Y and X ∪ Y ? What are
X ∩ Z+ and X ∪ Z+?
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Solution

Since Z+ is the universal set in this example, we have Z̄+ = ∅. Taking our earlier
descriptions of X and Y , we have

X̄ = {1, 3, . . . , 19, 21, 22, . . .}
= {x ∈ Z+ : x ≤ 20 and x/2 /∈ Z+, or x > 20}

Ȳ = {1, 2, . . . , 9, 11, 13, . . . , 25, 26, . . .}
= {x ∈ Z+ : x < 10, or x > 24, or 10 ≤ x ≤ 24 and x/2 /∈ Z+}

X ∩ Y = {1, . . . , 9, 11, 13, . . . , 21, 22, . . .}
= {x ∈ Z+ : x < 10, or x > 20, or 10 ≤ x ≤ 20 and x/2 /∈ Z+}

X ∪ Y = {1, 3, 5, . . . , 23, 25, 26, . . .}
= {x ∈ Z+ : x ≤ 24 and x/2 /∈ Z+, or x > 24}

Since X∩Z+ =X, we have X ∩ Z+ = X̄ . Since X∪Z+ =Z+, we have X ∪ Z+ =
Z̄+ =∅.

These examples show that if we have a set X ⊆ U or X = {x ∈ U : P(x)}
so that elements x in X have the property P , then the complement of X is the set
of x-values that do not possess property P or X̄ = {x ∈ U : notP (x)}.

We can think of the complement of a set X ⊆ U as the difference between
the sets X and U . This can be generalized to indicate the difference between any
two sets.

D e f in i t i o n 2 . 8 The relative difference of X and Y, denoted X − Y, is the set of elements of X

that are not also in Y

X − Y = {x ∈ U : x ∈ X and x /∈ Y }

As the Venn diagram in figure 2.1 (b) shows, we can think of X− Y as the part of
X remaining when we take out the intersection of X and Y, so we may write

X − Y = X ∩ Ȳ

Example 2.5 If X = Y , show that X − Y = Y −X = ∅.
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Solution

If X = Y , then X−Y = X−X = X∩ X̄ = ∅. If X = Y , then Y −X = Y −Y =
Y ∩ Ȳ = ∅, since no element of a set can be an element of its complement, and
vice versa.

Example 2.6 If X ∩ Y = ∅, show that X − Y = X.

Solution

First note that if X ∩ Y = ∅, then X ∩ Ȳ = X. It then follows immediately that

X − Y = X ∩ Ȳ = X

We have considered only individual subsets of the universal set U .We now consider
two important collections of subsets.

D e f in i t i o n 2 . 9 A partition of the universal set U is a collection of disjoint subsets of U , the union
of which is U .

Thus, if we have n subsets Xi , i = 1, . . . , n, such that

Xi ∩Xj = ∅, i, j = 1, . . . , n

and

X1 ∪X2 ∪X3 ∪ . . . ∪Xn = U

then these n subsets form a partition of U . This result is illustrated in figure 2.3.
The key point is that each element of U lies in one and only one of the subsets. Let
S denote this collection of subsets, and let the union of the n subsets be denoted
by

⋃n
i=1 Xi . Then we have

S =
{

Xi ⊆ U :
n⋃

i=1

Xi = U and Xi ∩Xj = ∅, i, j = 1, . . . , n, i �= j

}

is a partition of U .

Example 2.7 Show that {X, X̄}, for X ⊆ U , is a partition of U .
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U

X1

X2

X5 X6

X7

X3

X4

X8

Figure 2.3 A partition of U

Solution

By the definition of a complement, we know that X∪X̄ = U . But also, X∩X̄ = ∅.
Thus {X, X̄} is a partition of U .

Example 2.8 Do the sets X and Y of example 2.2 form a partition of Z+?

Solution

No, since X ∩ Y �= ∅ and X ∪ Y ⊂ Z+.

Example 2.9 Consider the collection of subsets of Z+ defined as follows:

Xi = {x ∈ Z+ : 10(i − 1) < x ≤ 10i, i ∈ Z+}

Does the collection of these Xi form a partition of Z+?

Solution

The first three subsets are

X1 = {x ∈ Z+ : 0 < x ≤ 10}

X2 = {x ∈ Z+ : 10 < x ≤ 20}

X3 = {x ∈ Z+ : 20 < x ≤ 30}
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Our intuition immediately tells us that this collection does form a partition of Z+.
A proof goes as follows: First, we have to prove that the subsets are disjoint, so we
take Xi and Xj with j > i (and j ≥ i + 1). If x ∈ Xi , then x ≤ 10i ≤ 10(j − 1),
and so x /∈ Xj . If x ∈ Xj , then x > 10(j − 1) ≥ 10i and so x /∈ Xi . Thus
the subsets are disjoint. To prove that any element of Z+ is in one of these sets,
take any x ∈ Z+ and note that either x is a multiple of 10 or it is not. If it is, let
i = x/10. Then we have x ∈ Xi . If it is not, x/10 can be written a + (b/10),
where a ∈ Z+ and (b/10) < 1. Then set i = a + 1, and it is straightforward to
show that x ∈ Xi .

D e f in i t i o n 2 . 10 The power set of a set X is the set of all subsets of X; it is written P(X). That is,
P(X) = {A : A ⊆ X}.

Example 2.10 Find the power set of X = {1, 2, 3}.

Solution

Note first that ∅ is a subset of every set X ⊆ U . By convention, we take X to be a
subset of X. We also have {1}, {2}, {3}, and the sets of pairs to give

P(X) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X,∅}

Note that P(X) in this example has exactly 23 = 8 elements. For any set X with
a finite number n of elements, it can be shown that its power set has exactly 2n

elements. In other words, a set with n elements has 2n subsets.

E X E R C I S E S

1. Explain the difference between the statements

x ∈ X

and

A ⊂ X, where A = {x}
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2. Define the relationships (⊆,⊂,=), if any, among the following sets:

A = {x : 0 ≤ x ≤ 1}

B = {x : 0 < x < 1}

C = {x : 0 ≤ x < 1}

D = {x : 0 ≤ x2 ≤ 1}

E = {x : 0 ≤ x < 1/2 and 1/2 ≤ x ≤ 1}

3. Given the set S = {1, 2, 3, 4, 5}, define all its possible subsets. How many
of them are there?

4. Given any set X, it must be true that X ⊆ X (though not X ⊂ X). Explain the
difference between the statement “X is a subset of itself” and the statement
“X is an element of itself.”

5. Are the two sets {1, 2, 3} and {3, 1, 2} equal?

6. Prove that the set X = {x : x3 > 0 and x < 0} equals the empty set.

7. A consumer’s consumption set is given by

C = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}

and her budget set is given by

B = {(x1, x2) : p1x1 + p2x2 ≤ M}

where x1 and x2 are quantities of goods, p1, p2 > 0 are prices, and M > 0
is income.

Illustrate in a diagram the sets

(a) B, C

(b) B ∪ C

(c) B ∩ C

and interpret each of these.

8. Given two subsets X and Y of a universal set U , prove that

(a) X ∩ Y = X̄ ∪ Ȳ

(b) X ∪ Y = X̄ ∩ Ȳ
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(c) X − Y = X ∩ Ȳ

(d) X ⊆ Y implies Ȳ ⊆ X̄

(e) X ⊆ Y implies X ∪ (Y −X) = Y

(f) X − Y ⊆ X ∪ Y

(g) X ∩ Y = ∅ implies Y ∩ X̄ = Y

Illustrate each case on a Venn diagram.

9. A firm’s production set is given by

P = {(x, y) : 0 ≤ y ≤ √x, 0 ≤ x ≤ x̄}

where y is output and x is labor input. Sketch and interpret P in economic
terms. How would you interpret x̄?

10. Prove that for subsets X, Y , and Z of a given universal set U

(a) X − Y = X − (X ∩ Y ) = (X ∪ Y )− Y

(b) (X − Y )− Z = X − (Y ∪ Z)

(c) X − (Y − Z) = (X − Y ) ∪ (X ∩ Z)

(d) (X ∪ Y )− Z = (X − Z) ∪ (Y − Z)

(e) X − (Y ∪ Z) = (X − Y ) ∩ (X − Z)

Illustrate each case on a Venn diagram.

2.2 Numbers
The most basic and familiar kinds of numbers are natural numbers, the elements
of the set

Z+ = {1, 2, 3, . . .}

They arise naturally in counting objects of all kinds. What does it mean to count a
set of objects, say a pile of dollar bills? When we count dollar bills, we take each
element in the set of dollar bills and pair it with an element of Z+, starting with 1
and moving successively through the set. When we have exhausted the elements
of the first set (of dollar bills), the element of Z+ that we have reached in this
process gives us the number of dollar bills. This number is called the cardinality
of the set of dollar bills: the cardinality of a set is the number of objects it contains.
As we saw in section 2.1, Z+ has an infinite number of elements. Given any
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positive integer, we can always find a larger one. We now define some properties
of natural numbers and show that other types of numbers arise from the operations
of addition, multiplication, subtraction, and division.

Consider the addition or multiplication of any two elements, a and b, of Z+.
These two operations are closely related, since multiplying a and b is simply adding
a to itself b times or b to itself a times. The first thing we note is that the result of
this is itself always an element of Z+:

a + b ∈ Z+, ab ∈ Z+

This is formally expressed by saying that the set Z+ is closed under the operations
of addition and multiplication.

Is Z+ closed under the operations of subtraction and division? Clearly not. If
a ≤ b, we have

a − b ≤ 0 /∈ Z+

so Z+ is not closed under subtraction. It is easy to find cases where a/b is not an
integer.

–∞ –4 –3 –2 –1 0 1 2 3 4 ∞

Figure 2.4 The set Z

The fact that Z+ is not closed under subtraction leads naturally to the definition
of the set of integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

where the three dots indicate that we go out to infinity in each direction. Z is a
somewhat more abstract set than Z+, since it is hard to imagine observing a set
containing, say −3 objects. Nevertheless, it is impossible in general to consider
solving the simplest kind of equation

x + b = a

unless we have negative numbers available. Intuitively we can think of a negative
number as “something owing”—a kind of debt. It is also useful to represent Z as
in figure 2.4. Along a horizontal line we mark off intervals of equal length, choose
a central point to represent zero, and measure the positive integers in ascending
value to the right and negative integers in descending value to the left (so that
−a < −b if a > b > 0). It is also clear that Z+ ⊂ Z.

The set of integers is closed under addition, subtraction, and multiplication.
However, neither Z nor Z+ is closed under division, since, for example, a/b /∈ Z

if a = −2 and b = 3, though both a and b are in Z. This means, for example, that
we could not in all cases find x ∈ Z such that

bx = a, a, b ∈ Z
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This leads to the definition of the set Q of rational numbers

Q =
{

a

b
: a ∈ Z, b ∈ Z − {0}

}

Note that Z⊂Q, since we could clearly choose a = kb for k ∈ Z. Note also
that we rule out division by zero. We say that any expression involving zero in the
denominator is undefined.The reason for this can be seen from the equation bx = a.
If b = 0, then no x exists such that bx = a for any a �= 0, and so ruling out division
by zero recognizes this fact. (The term “rational number” comes from the fact these
numbers are ratios of integers.) Figure 2.5 shows the set of rational numbers and
indicates that these include points between the integers. Take any two points on
the line that give distinct rational numbers. There is an infinity of other rational
numbers between those points. To see this, consider the two rational numbers 1
and 2, and note that 1+ (2−1)/c with c ∈ Z+, must be a rational number between
1 and 2. Each value of c gives a different rational number, and since Z+ has an
infinite number of elements, there must be an infinite number of rational numbers
between 1 and 2. Replacing 1 by a and 2 by b > a, where a and b are any elements
in Q, shows that this must be true in general.

–∞ –3 –2 –1 3 ∞210

9
4

– 5
4

– 3
4

– 1
2

7
4

9
4

Figure 2.5 The set Q

An important observation is that the segment between the numbers 1 and 2 (or
between any two rational numbers) is not entirely composed of rational numbers.
Other numbers exist. In figure 2.6 we have constructed a right-angle triangle with
sides A and B of length 1 and hypotenuse of length L lying along the line. From
the Pythagorean theorem we know that the square of the distance L along the line
is given by

L2 = 12 + 12 = 2

–∞ 0 1 2 ∞1.41L

11
A B

= √⎯2

Figure 2.6
√

2 is irrational

so L=√2. The following theorem, the proof of which was well known to the
ancient Greeks, shows that

√
2 is not a rational number. This tells us that Q is

not closed under the operation of taking square roots. Alternatively, it tells us that
there must be numbers other than rational numbers. These are irrational numbers,
which cannot be expressed as the ratio of two integers.
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Theorem 2.1 The number
√

2 is not a rational number, that is,
√

2 /∈ Q.

The proof can be found on the website.

The Real Numbers and Their Properties

The union of the sets of rational and irrational numbers is the set of real numbers.
We think of the set of real numbers, R, as extending along a line to infinity in
each direction having no breaks or gaps, as in figure 2.7. We refer to this as the
real line.

–∞ 0 ∞

Figure 2.7 The set of real
numbers, R The properties of R define the basic operations that we can carry out on the

elements of R. Consider three (not necessarily distinct) elements of R: a, b, and c.
We can postulate the following properties:

1. Closure If a, b ∈ R, then a + b ∈ R and ab ∈ R. So R is closed under
addition and multiplication.

2. Commutative laws For all a, b ∈ R

a + b = b + a and ab = ba

which simply says that the order in which we add or multiply two real numbers
does not affect the outcome.

3. Associative laws For all a, b, c ∈ R,

a + (b + c) = (a + b)+ c and a(bc) = (ab)c

so that the order in which we add or multiply three real numbers does not matter.

4. Distributive law For all a, b, c ∈ R,

a(b + c) = ab + ac

5. Zero The element 0 ∈ R is defined as having the property that for all a ∈ R,

a + 0 = a and a0 = 0

6. One The element 1 ∈ R is defined as having the property that

1(a) = a
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7. Negation For each a ∈ R, there is a number −a ∈ R defined as having the
property

a + (−a) = 0

8. Reciprocals For each element a ∈ R − {0}, there is an element 1/a ∈ R

defined as having the property

a

(
1

a

)
= 1

For a = 0, the reciprocal is undefined.

Example 2.11 For all a, b ∈ R, if a + b = 0, show that b = −a.

Solution

Start with a + b = 0 and add −a to both sides to obtain

−a + a + b = −a

(−a + a)+ b = −a (from property 3)

0+ b = −a (from property 7)

b = −a (from property 5)

The following are also the more obvious consequences of these properties:

(a) For all a ∈ R, −a = (−1)a.
(b) For all a, b ∈ R, −(a + b) = (−a)+ (−b).
(c) For all a ∈ R, −(−a) = a.
(d) For all a, b ∈ R, (−a)(−b) = ab.

Indeed all the standard rules of algebra follow from properties 1 through 8.

The Order Properties of R

First we define two important subsets of R.

D e f in i t i o n 2 . 11 The set R++ ⊂ R consists of the strictly positive real numbers with the character-
istics that

(i) R++ is closed under addition and multiplication.
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(ii) For any a ∈ R, exactly one of the following is true:

a ∈ R++ or a = 0 or −a ∈ R++

D e f in i t i o n 2 . 12 The set R+ = R++ ∪ {0} is the set of nonnegative real numbers.

Diagrammatically, the set R++ is the right half of the real line in figure 2.7, ex-
cluding zero, while R+ is that half including zero. We may similarly identify the
left half of the real line, excluding zero, as the complement R̄+ (note that this is
not closed under multiplication) and including zero as R̄++ = R̄+ ∪ {0}.

The inequality symbols “>” and “≥” may be given formal meaning in terms
of R++ and R+.

D e f in i t i o n 2 . 13 Given any a, b ∈ R:

(i) If a − b ∈ R++, then a > b.
(ii) If −(a − b) ∈ R++, then b > a.

(iii) If a − b ∈ R+, then a ≥ b.
(iv) If −(a − b) ∈ R+, then b ≥ a.

We refer to “>” as the strict inequality and “≥” as the weak inequality, since it per-
mits a= b. The properties of these inequalities are stated in the following theorem.

Theorem 2.2 For any a, b, c ∈ R:

(i) Completeness Exactly one of the following is true:

a > b or a = b or a < b

(ii) Transitivity If a > b and b > c then a > c, and if a≥ b and b≥ c then
a≥ c.

(iii) Reflexivity a ≥ a

(iv) Equality If a ≥ b and b ≥ a then a = b.
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Dimensions of Economic Variables

The variables in economic models are usually represented by real numbers corres-
ponding to quantities such as cost, profit, and price or to amounts of goods and
services such as coal, bread, and haircuts. These variables are measured in par-
ticular kinds of units that we refer to as the dimensions of these variables. For
example, cost, revenue, and profit are measured in units of money (dollars); a price
is measured in terms of units of money per physical unit of a good (dollars/unit
quantity); coal, potatoes, wine will be measured by weight (pounds, kilograms) or
volume (liters, gallons), and so on.

Economists, unlike engineers and physicists, are often rather careless about
defining the way in which their variables are measured. The standard rules of
arithmetic apply not only to the variables themselves but also to the units in which
they are measured—you cannot add apples and pears! Take, as an example, total
revenue measured in dollars. This is the product of the total sales of physical
output, whose units depend on the output concerned, say tons, and the price per ton.
Thus, corresponding to the identity

Revenue = price× quantity

we have the identity in terms of dimensions

Dollars = dollars

ton
× tons

An equation involving economic variables that does not satisfy the arithmetic re-
lationship among the dimensions of the variables cannot be a valid equation. For
example, suppose that after a complicated bit of mathematical analysis we derive
the solution

Revenue=marginal cost

Since revenue is measured in dollars and marginal cost in dollars per unit, we are
proposing the equation

Dollars=dollars

ton

which cannot be true. Maybe what we should have obtained was

Marginal revenue=marginal cost

Dimensionally, this equation is correct, with units of dollars per ton on each side.
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A pure number is a number that does not have a dimension. For example,
consider profit expressed as a rate of return on sales revenue:

Rate of return= profit

revenue

Since both profit and revenue are measured in dollars, the rate of return has di-
mension dollars/dollars and so is a pure number.

E X E R C I S E S

1. Demonstrate the boundedness or unboundedness of the following sets:

(a) Z+ = {1, 2, 3, . . .}
(b) Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
(c) R+ = {x ∈ R : x ≥ 0}
(d) R̄+ = R− R+ = {x ∈ R : x < 0}
(e) S = {x ∈ R : 0 < x <

√
2}

2. We could state a “completeness property” for Q as: Every nonempty subset
of Q that has an upper bound has a supremum in Q.

Show by choosing a suitable counterexample that this statement is false.

3. Give the dimension of the variable λ in each of the following expressions:

(a) wage rate
marginal product = λ

(b) change in national income = λ× change in investment

(c) profit
amount of labor used = λ

(d) tax per unit of a good = 1

λ
× elasticity of demand for the good

(e) change in profit
change in import quota of a good = λ

4. Give the dimensions of the following economic quantities:

(a) gross national product

(b) average cost of producing a good

(c) marginal propensity to consume
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(d) demand for a good

(e) rate of inflation

(f) marginal product of capital in producing a good

5. A subset of R has a maximum if it contains its supremum. This supremum
is then the maximum of the set. Give examples of subsets of R (including
bounded subsets) that do and do not have a maximum.

6. The interest on a loan of $1 is the amount of money that must be paid after a
specified period of time over and above the repayment of the $1 loan. Show
that the rate of interest is a number expressed only in time units, varying
inversely with time. How would you express a rate of interest per year as a
rate of interest per week?

2.3 Some Properties of Point Sets in R
n

In section 2.2 we saw that a point on the real line always corresponds to a real
number. We now place two real lines at right angles so that they intersect at the
number 0, as in figure 2.8. Any point in the coordinate system formed by these
two lines can be defined as an ordered pair of numbers (x, y) by assigning to
x the real number vertically below it on the horizontal axis, and assigning to y

the real number horizontally across from it on the vertical axis. The figure shows
some examples. The two axes, which go off to infinity in the four directions, can
be thought of as defining an entire space of points or ordered pairs (x, y), a two-
dimensional space that we refer to as R

2. Note that we refer to these points as
ordered pairs because the order of the numbers in the pair is essential. The pair, or
point (2, 3) is quite different from the point (3, 2), as figure 2.8 makes clear.

x

y

x0

x1

x2

y1

y0

y2

(x2, y2)

(x0, y0)

(x1, y1)

0

Figure 2.8 R
2
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This idea can be put more formally as follows. The Cartesian product of
two sets X and Y , written X ⊗ Y , is the set of ordered pairs formed by taking in
turn each element in X and associating with it each element in Y . For example,
the Cartesian product of the sets {1, 2, 3} and {a, b} is

{1, 2, 3} ⊗ {a, b} = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We can then define the Cartesian product of the set of real numbers R with itself
as the set of ordered pairs:

R⊗ R = {(x, y) : x ∈ R, y ∈ R} = R
2

Then figure 2.8 gives a picture of R
2.

But why stop there? We can define the set of ordered triples

R⊗ R⊗ R = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R} = R
3

and a picture of this is shown in figure 2.9.

x

y

x0

(x2, y2, z2)

0

z

x1

x2

y1

y0

y2

(x0, y0, z0)

(x1, y1, z1)

Figure 2.9 R
3

Although figures 2.8 and 2.9 exhaust the set of possibilities for diagrammatic
representation, we can define the general set of ordered n-tuples

R⊗ R⊗ · · · ⊗ R = {(x, y, . . . , z) : x ∈ R, y ∈ R, . . . , z ∈ R} = R
n

of which R, R2, and R
3 are special cases. In chapter 10 we will consider the algebra

of these n-tuples, or vectors. Here we are interested only in some properties of
subsets of R

n, which we refer to as point sets.
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Some important point sets of R are intervals. Given a, b ∈ R with b > a, we
define

• the closed interval: [a, b] = {x ∈ R : a ≤ x ≤ b}
• the half-open interval: [a, b) = {x ∈ R : a ≤ x < b}
• the half-open interval: (a, b] = {x ∈ R : a < x ≤ b}
• the open interval: (a, b) = {x ∈ R : a < x < b}

The defining characteristic of the closed interval is that it contains both its
boundary points a and b, while the open interval contains neither of these points.
Note the convention for using “round” brackets for “open” and “square” brackets
for “closed.” All the above four intervals are bounded, in contrast to which we
have the intervals

[a,∞) = {x ∈ R : a ≤ x}
(a,∞) = {x ∈ R : a < x}

which are unbounded above, and

(−∞, b] = {x ∈ R : x ≤ b}
(−∞, b) = {x ∈ R : x < b}

which are unbounded below. An interval is bounded if it is impossible to go off
to infinity while remaining inside it, and it is unbounded otherwise. Notice that
closedness and boundedness are separate ideas. The intervals [a,∞) and (−∞, b]
are closed because they contain those boundary points they possess, even though
they are unbounded.An interval that is both closed and bounded is called compact.
Of the above intervals, only [a, b] is compact.

We can distinguish between an interior point and a boundary point of an
interval such as [a, b] in the following way. It is clearly true of a boundary point
such as b that every interval around it, however small, must contain points that are
in [a, b], and points that are not. For example, consider the interval (b− ε, b+ ε)

shown in figure 2.10. The points that satisfy b− ε < x < b lie inside [a, b], while
points that satisfy b < x < b + ε lie outside [a, b] no matter how small ε. In the
case of an interior point, on the other hand, it will always be possible to find an
interval around it that is entirely in [a, b]. For example, if x0 is an interior point
of [a, b], then the interval (x0 − ε, x0 + ε) certainly lies completely inside [a, b],
if we choose ε to be the smaller of (x0 − a)/2 and (b − x0)/2. Because of the
completeness property of R, such an ε can always be defined, however close x0 is
to a or b. Figure 2.10 illustrates this result.

a x0 – ε
R

x0 x0 + ε b  – ε b b  + ε

Figure 2.10 Boundary and interior points
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Finally, we consider the property of convexity in this simple context of in-
tervals of R. A property that the interval in figure 2.10 clearly possesses is the
following: Take any two points in the interval, say x0 and b, and note that all the
points on the line segment between these two points also lie in the interval. This is
the property of convexity of the interval. More formally, note that if x and x ′ are
any two points in an interval with x < x ′, then the number

x̄ = λx + (1− λ)x ′, λ ∈ [0, 1]

corresponds to a point lying between x and x ′. For λ∈ (0, 1), x̄ lies strictly between
x and x ′. Perhaps the easiest way to see this is to rewrite the equation as

x̄ = x ′ − λ(x ′ − x), λ ∈ [0, 1]

Thus we find x̄ by subtracting some proportion λ of the difference between x and
x ′ from the higher value x ′. The lowest value x̄ can therefore take is x and the
highest value is x ′. As λ varies from 1 to 0, it generates all the points in [x, x ′].

We call x̄ the convex combination of x and x ′, and the property of convexity of
an interval can be stated as follows: Ifx,x ′ belong to some intervalX⊂R, then their
convex combination x̄= λx+ (1− λ)x′, λ ∈ [0, 1], also belongs to this interval.

x

y

a2

0

b2

a1 b1

a

b

c

Figure 2.11 Euclidean distance
in R

2

We now want to extend these ideas of boundedness, closedness, and convexity
to points in R

2 (ordered pairs), in R
3 (ordered triples), or R

n (ordered n-tuples).
To do so we need to introduce the idea of the distance between two points in R

n.
In R we think intuitively of the distance between two points a and b with a < b,
simply as the difference b − a. In R

2 we use the concept of Euclidean distance
between two points, defined as the length of a line segment between those two
points (see figure 2.11).

To find an expression for the length of the line segment ab, we note that it is
the hypotenuse of the right-angled triangle abc. By the Pythagorean theorem we
then have

(ab)2 = (ac)2 + (bc)2 = (a1 − b1)
2 + (a2 − b2)

2

We denote the distance between a and b by d(a, b), and so

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2

(taking always the positive square root). This is called the Euclidean distance
function in R

2.
The concept of distance generalizes readily. Given any two points a, b ∈ R

n,
n ≥ 1, we have
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D e f in i t i o n 2 . 14 Given points a = (a1, . . . , an) and b = (b1, . . . , bn) in R
n, n ≥ 1, the Euclidean

distance between them is

d(a, b) =
√√√√ n∑

i=1

(ai − bi)2

Example 2.12 Find the Euclidean distances between the following points:

(i) 2 and 3 in R

(ii) (2, 3) and (4, 1) in R
2

(iii) (2, 3, 4) and (4, 1,−5) in R
3

(iv) (2, 3, 4, 5) and (−2, 4, 1,−5) in R
4

Solution

(i) d(2, 3) =
√

(2− 3)2 = 1
(ii) d[(2, 3), (4, 1)] =

√
(2− 4)2 + (3− 1)2 = √8 = 2.83

(iii)

d[(2, 3, 4), (4, 1,−5)] =
√

(2− 4)2 + (3− 1)2 + (4− (−5))2

=
√

89 = 9.43
(iv)

d[(2, 3, 4, 5), (−2, 4, 1,−5)]

=
√

(2− (−2))2 + (3− 4)2 + (4− 1)2 + (5− (−5))2

=
√

126 = 11.22

Given this definition of distance, we can now generalize the ideas of openness,
closedness, boundedness, and convexity to points sets in general. First we define
an ε-neighborhood.

D e f in i t i o n 2 . 15 An ε-neighborhood of a point x0 ∈ R
n is given by the set Nε(x0) = {x ∈ R

n :
d(x0, x) < ε}. Simply, Nε(x0) is the set of points lying within a distance ε of x0.

Example 2.13 Describe the following ε-neighborhoods:

(i) Nε(2)

(ii) Nε[(2, 3)]
(iii) Nε[(2, 3, 1)]
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2 + ε0 2 – ε 21

N
ε
(2)

R

Figure 2.12 Nε(2)

Solution

(i) Nε(2) = {x ∈ R :
√

(x − 2)2 < ε}. This is the open interval (2− ε, 2+ ε),
as figure 2.12 illustrates.

(ii) Nε[(2, 3)] = {(x, y) ∈ R
2 :

√
(x − 2)2 + (y − 3)2 < ε}. This is the set of

points in R
2 lying inside a circle centered on (2, 3), and with radius ε. See

figure 2.13.

x

y

0 1 2 3

1

2

3

4

(2, 3)

ε

4

Figure 2.13 Nε[(2, 3)]

(iii) Nε[(2, 3, 1)] = {(x, y, z) ∈ R
3 :

√
(x − 2)2 + (y − 3)2 + (z− 1)2 < ε}.

This is the set of points lying within a sphere centered at (2, 3, 1) and with
radius ε. Figure 2.14 illustrates this neighborhood.

x

y

0

z

1

2

3

–1

–2

1
2

3

1

4

2
3

4

–1
–2

–1
–2

ε

Figure 2.14 Nε[(2, 3, 1)]

D e f in i t i o n 2 . 16 A set X ⊂ R
n is open if, for every x ∈ X, there exists an ε such that Nε(x) ⊂ X.

Thus a set is open if it is possible at every point within it to find an ε-neighborhood
of that point that lies entirely within the set.

D e f in i t i o n 2 . 17 A boundary point of a set X ⊂ R
n is a point x0 such that every ε-neighborhood

Nε(x0) contains points that are in and points that are not in X.

Given these two definitions, it is clear that an open set does not contain any bound-
ary points it may have.
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D e f in i t i o n 2 . 18 A set X ⊂ R
n is closed if its complement X̄ ⊂ R

n is an open set.

Quite simply, a closed set is one that contains its boundary points.

D e f in i t i o n 2 . 19 A set X ⊂ R
n is bounded if, for every x0 ∈ X, there exists an ε < ∞ such that

X ⊂ Nε(x0).

In other words, a set is bounded if it can be enclosed in a (sufficiently large)
ε-neighborhood of any of its points.

To formalize the definition of convexity of a set in R
n, we need first to gener-

alize the idea of a convex combination.

D e f in i t i o n 2 . 20 Given two points x, x ′ ∈ R
n, their convex combination is the set of points x̄ ∈ R

n

for some λ ∈ [0, 1], given by

x̄ = λx + (1− λ)x ′

= [λx1 + (1− λ)x ′1, . . . , λxn + (1− λ)x ′n]

Example 2.14 Find the convex combinations of the points

(i) (2, 1) and (−3, 2)

(ii) (2, 1, 0) and (−3, 2, 1)

(iii) (2, 1, 0,−2) and (−3, 2, 1, 5)

Solution

(i) x̄ = λ(2, 1)+ (1−λ)(−3, 2) = [2λ− 3(1−λ), λ+ 2(1−λ)]. For example,
if λ = 1/2, x̄ = (−1/2, 3/2).

(ii) x̄ = λ(2, 1, 0) + (1 − λ)(−3, 2, 1) = [2λ − 3(1 − λ), λ + 2(1 − λ), 0 +
(1− λ)]. For example, if λ = 1/4, x̄ = (−7/4, 7/4, 3/4).

(iii) x̄ = λ(2, 1, 0,−2) + (1 − λ)(−3, 2, 1, 5) Or x̄ = [2λ − 3(1 − λ), λ +
2(1 − λ), 0 + (1 − λ),−2λ + 5(1 − λ)]. For example, if λ = 2/3, x̄ =
(1/3, 4/3, 1/3, 1/3).

In definition 2.20, we have implicitly introduced the idea of adding points in
R

n by adding their corresponding coordinates. This is a first step in developing
linear algebra, which we will take up in detail in chapters 7 to 10.
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Intuitively in R
2 and R

3 the convex combination of two points consists of the
set of points lying on the line segment between those points, as figures 2.15 and
2.16 illustrate.

x1' x1

x2

x1

x2

x2'

x

x'

x = λx + (1 – λ)x'

λx1 + (1 – λ)x1'

λx2 + (1 – λ)x2'

Figure 2.15 Convex combination in R
2

x1

x1'

0
(x1, x2, x3)

x3

x2

(x1', x2', x3')

x1

x2'
x2

Figure 2.16 Convex combination in R
3

D e f in i t i o n 2 . 21 A set X ⊂ R
n is convex if for every pair of points x, x ′ ∈ X, and any λ ∈ [0, 1],

the point

x̄ = λx + (1− λ)x ′

also belongs to the set X.
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In words, a set is convex if every point on the line segment between every pair
of points in the set is also in the set. In (a) of figure 2.17 we show some convex
sets in R

2, and in (b) some nonconvex sets. Although the idea of convexity is a
very simple one geometrically, it is extremely important.

D e f in i t i o n 2 . 22 An interior point of a set X ⊂ R
n is a point x0 ∈ X for which there exists an ε

such that Nε(x0) ⊂ X.

Thus we can always find an ε-neighborhood of an interior point that lies entirely
within the set. Then we have

D e f in i t i o n 2 . 23 A set X ⊂ R
n is strictly convex, if for every pair of points x, x ′ ∈ X, and every

λ ∈ (0, 1), we have that x̄ is an interior point of X, where

x̄ = λx + (1− λ)x ′

In figure 2.17 (a), only the sets A and B are strictly convex. Note that in the
definition we exclude the cases λ = 0 and λ = 1 because x or x ′ could be a
boundary point of a set.

x

y

0

A

B

x

y

0

(a) (b)

Figure 2.17 Convex and nonconvex sets in R
2
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E X E R C I S E S

1. Form the Cartesian products of the following sets:

(a) {1, 2, 3, 4, 5, 6} and {7, 8, 9}
(b) Z+ and Z+

(c) The set of even elements of Z+ and the set of odd elements of Z+

Illustrate these product sets in R
2.

2. The consumption set of a consumer is

C = {(x, y) ∈ R
2
+ : x ≥ x ′ > 0, y ≥ y ′ > 0}

Illustrate this set. Is it closed? bounded? convex? How would you interpret
x ′ and y ′?

3. A consumer’s budget set is

B = {(x, y) ∈ R
2
+ : p1x + p2y ≤ m}

where p1, p2 > 0 are prices and m > 0 is income. Illustrate this set. Is it
closed? bounded? convex?

Consider the set X = B ∩C where C is defined in exercise 2. Sketch this set.
How would you interpret the case X = ∅? Is X closed? bounded? convex?

4. Aconsumer’s preferences over bundles of two goods (x, y) are represented by
the smooth, convex-to-the-origin indifference curves of standard economics
textbooks. Take the consumption bundle (x ′, y ′) and define the better set

B(x ′, y ′) = {(x, y) ∈ R
2
+ : (x, y) is preferred or indifferent to (x ′, y ′)}

Is this set closed? bounded? convex?

5. Find the Euclidean distance between the following pairs of points:

(a) 4 and −5 in R

(b) (−6, 2) and (8,−1) in R
2

(c) (5,−3, 0, 8) and (12,−6, 3, 1) in R
4

6. Prove that

(a) an ε-neighborhood is an open set

(b) an open set does not contain its boundary points
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(c) the intersection of two closed sets is closed

(d) the Cartesian product of two closed sets is closed

(e) the intersection of two convex sets is convex

(f) (from definitions 2.15, 2.16, and 2.17) a closed set contains its boundary
points

(g) the union and intersection of two bounded sets is bounded

7. For ε = 0.1 and ε = 10, describe the ε-neighborhoods:

(a) Nε(−1)

(b) Nε(−1, 1)

(c) Nε(−1, 1,−1)

8. Prove that the set

X = [1, 2] ∪ [3, 4] ⊂ R

is not convex.

2.4 Functions
We define a function as follows:

D e f in i t i o n 2 . 24 Given two sets X and Y , a function from X to Y is a rule that associates with each
element of X, one and only one element of Y .

The set X is called the domain of the function, Y is called the codomain, and the
set of elements in Y (which may or may not be the whole of Y ) associated with
the elements of X by the function is called the range of the function. Denoting the
rule for associating the elements of the two sets by f , we can write the function as

f : X �→ Y

or as

y = f (x), x ∈ X

where y is often referred to as the image of x or the value of the function f at x. In
this book, we will be mainly concerned with cases in which Y is R, the set of real
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numbers, and X ⊆ R
n, n ≥ 1, while the rule f is a standard algebraic expression.

For example, we have the functions

y = a + bx, x ∈ R

y = axα
1 x

β

2 , (x1, x2) ∈ R
2
+

y = log x, x ∈ R+

y = aex, x ∈ R

each of which we will be examining in some detail below. However, definition
2.27 is more general than these examples, since it applies to sets X and Y and
rules of association f of any kind. To emphasise this generality, we also use the
term mapping as a synonym for function. We refer to the above examples, then,
as real-valued functions or mappings.

The range of a function can be written as the image set

f (X) = {y ∈ Y : y = f (x), x ∈ X}

that is, as the entire set of y’s that we obtain when we substitute into the function
the entire set of x’s. If f (X) ⊂ Y , we say that f maps X into Y , while if f (X) = Y ,
we say that f maps X onto Y . In the first case not every y ∈ Y is an image of an
x ∈ X; in the second case it is.

It may be the case that a given y may be the image of more than one x. An
extreme case of this would be the constant mapping f (X) = y0, a single element
of Y . On the other hand, it may be that each x has as its image a different element
of Y , in which case the mapping is said to be one-to-one. A mapping that is both
one-to-one and onto is called a one-to-one correspondence. Corresponding to
each x there is a distinct element of Y and all the elements of Y are images of
points x in X.

Given y = f (x), we may often want to invert this function and write x as a
function of y, written as x = f −1(y). Clearly, this can only be done if f is one-to-
one (into or onto), since otherwise for some y we would have more than one x as
the image, and this condition violates the definition of a function. If f is one-to-one
onto, then the domain of the inverse function will be Y , and (f −1)−1 = f .

Example 2.15 Find the inverse of y = x2, x ∈ R.

Solution

As figure 2.18 shows, this function does not possess an inverse, since, for every
nonzero value of y, there are two x’s—the positive and the negative square roots.
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However, if we had two functions

y = x2, x ∈ R+

y = x2, x ∈ R̄++

then each of these is a one-to-one correspondence and their inverses exist.
x

y

0

Figure 2.18 Graph of y = x2 If the mappingf is one-to-one into (i.e., not onto), then we can still define an inverse
function, but we must take care with its domain. Let Y ′ = f (X)⊂Y denote the
image set of f . Then we can define Y ′ as the domain of the inverse function.

Finally, we can define the composite mapping of two mappings f : X→ Y

and g : Y → Z as

g ◦ f : X→ Z

or

z = g[f (x)]

We substitute each x ∈ X into f and then substitute the resulting image y into g to
obtain an element z ∈ Z so that overall we have a mapping from X to Z. Note that,
for a composition of mappings to be possible, the range of the first mapping (f )
must be a subset of the domain of the second mapping (g), as figure 2.19 makes
clear.

X
Y Z

g ° f

g ° f

g

gf

f

g[ f (x2)]

g[ f (x1)]f (x1)

f (x2)

x1

x2

Figure 2.19 Composition of mappings
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We will be concerned exclusively with real-valued functions, and we now
describe some common types of functions encountered in economics along with
some of their properties.

Linear Functions

The function

y = ax, x ∈ R (2.7)

where a is some real number, is graphed in figure 2.20. In (a) of the figure the
parameter a is positive, and in (b) it is negative.

x

y

0

a

1 x

y

0

a

1

(a) (b)

Figure 2.20 Linear functions

The reason for calling this function linear is obviously that its graph is a
straight line. The steepness of the line is determined by the absolute value of a.
Taking two x-values, we can write

y1 = ax1, y2 = ax2

implying that

y2 − y1 = a(x2 − x1)

or

a = y2 − y1

x2 − x1
= �y

�x
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where �y is read “the change in y,” and likewise for �x. The ratio �y/�x is
called the slope of the line and so a is the slope coefficient. Note that the line
y = ax is fully determined once a is chosen.

x

y

0

b

Figure 2.21 Linear function with
a positive intercept

In equation (2.7) y is often referred to as the dependent variable and x as
the independent variable. This terminology suggests that often we will have a
particular causality in mind when writing down the relationship between variables,
such as “a change in x causes a change in y.” When both x and y can serve
as dependent or independent variables (i.e., where the causation is unknown or
unimportant), we can write the equation as an implicit function:

f (x, y) = 0

The lines so far have passed through the origin. We can displace them, so that
their position changes but not their slope, by adding the intercept term b ∈ R.
Thus, if we write

y = ax + b, x ∈ R

then, since y = b when x = 0, the line cuts the y-axis at b, as figure 2.21 shows.
Varying b generates a whole family of parallel lines.

We can express the same idea in the implicit form as

a1x + a2y − c = 0, x, y ∈ R

where we now have b = c/a2. Varying c with a1 and a2 fixed again generates a
family of parallel lines. Setting y = 0 allows us to obtain the intercept of the line
on the x-axis simply as

c

a1
= ba2

a1
= −b

a

Note that if (x1, y1) and (x2, y2) are any two points on a line, then we have a =
(y2 − y1)/(x2 − x1). Now, since for all x,

y = ax + b

we have

y − y1 = (y2 − y1)

(x2 − x1)
(x − x1)

as a general equation for the line.This is the algebraic form of the obvious geometric
fact that any two points fully determine a line.
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Finally, we consider further the important concept, already introduced in
section 2.3, of a convex combination of points. To start, suppose that we have
two numbers x ′, x ′′ ∈ R, with x ′ < x ′′. Then we can define the set of numbers

x̄ = λx ′ + (1− λ)x ′′, for λ ∈ [0, 1]

Clearly, x ′ ≤ x̄ ≤ x ′′, and writing

x̄ = x ′′ − λ(x ′′ − x ′)

we have

(x ′′ − x̄)

(x ′′ − x ′)
= λ

Thus λ gives us the difference between x ′′ and x̄ as a proportion of the entire
interval [x ′, x ′′].

This idea generalizes to R
2. Take any two distinct points (x ′, y ′) and (x ′′, y ′′),

and define their convex combination (x̄, ȳ) as

(x̄, ȳ) = λ(x ′, y ′)+ (1− λ)(x ′′, y ′′)
= [λx ′ + (1− λ)x ′′, λy ′ + (1− λ)y ′′], λ ∈ [0, 1]

Then, as figure 2.22 illustrates, the points (x̄, ȳ) all lie on the line joining (x ′, y ′) and
(x ′′, y ′′). In fact we can think of the convex combination as giving an expression

x'' x

y

0 x' x = λx' + (1 – λ)x''

y''

y'

y = λy' + (1 – λ)y''

(x', y' )

(x'', y'' )

Figure 2.22 A convex combination
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for the line joining two points. To see this, we can show that if (x ′, y ′) and (x ′′, y ′′)
lie on a line, then ȳ is the y-value on this line corresponding to an x-value of x̄.
Suppose that the line is y = ax + b; then we must have

y ′ = ax ′ + b

and

y ′′ = ax ′′ + b

Multiplying the first expression by λ and the second by (1− λ) gives

ȳ = λy ′ + (1− λ)y ′′ = λ(ax ′ + b)+ (1− λ)(ax ′′ + b)

= a[λx ′ + (1− λ)x ′′]+ b

= ax̄ + b

as required. This is called a convex combination because the set of points {(x̄, ȳ)}
is a convex set, as can be seen in figure 2.22. If we now lift the restriction that
λ ∈ [0, 1] and allow any λ ∈ R, then the expression

(x, y) = λ(x ′, y ′)+ (1− λ)(x ′′, y ′′)

defines the entire line through (x ′, y ′) and (x ′′, y ′′). Thus we have

x = λx ′ + (1− λ)x ′′ = x ′′ + λ(x ′ − x ′′)

y = λy ′ + (1− λ)y ′′ = y ′′ + λ(y ′ − y ′′)

From the first equation we obtain

λ = (x − x ′′)
(x ′ − x ′′)

Substituting this expression into the second equation and rearranging, we have

y − y ′′ = (y ′ − y ′′)
(x ′ − x ′′)

(x − x ′′)

which is exactly the two-point characterization of a line we obtained earlier.
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Quadratic Functions

We can write a quadratic function in explicit form as

y = ax2 + bx + c, x ∈ R, a �= 0

As figure 2.23 shows, this is a useful function in economics because in its con-
vex form, with a > 0, it could be used to depict a typical U-shaped average or
marginal-cost curve, while in its concave form, with a < 0, it could depict a typical
total-revenue or total-profit curve. (Note that in these examples the domain of the
function must be restricted to R+, since negative outputs are not allowed.) The
unique minimum (in the convex case) or maximum (in the concave case) always
occurs at the point x∗ = −b/2a. Thus, if we want a function to have a maximum at
a positive value of x, we must choose b > 0, while if we want a function to have a
minimum at a positive value of x, we must choose b < 0. Finally, the value of c will
determine whether y is positive, negative, or zero at this maximum or minimum.

x

y

–b/2a

c

(a)

x

y

–b/2a

c
(b)

Figure 2.23 Quadratic functions

x

y

0

Figure 2.24 Rectangular
hyperbola

Rectangular Hyperbola

A rectangular hyperbola may be written

xy = α or y = α

x
, x ∈ R− {0}

for some positive constant α. The name stems from the fact that every rectangle
drawn to the curve has the same area α. Note that the graph of the function in
figure 2.24 has two parts, one entirely in the positive quadrant and the other entirely
in the negative quadrant. In economics we often restrict x to R+, so only the upper
curve is relevant.Asx tends to zero, the curve approaches they-axis asymptotically,
and as x tends to infinity, it approaches the x-axis asymptotically. Increasing α

shifts the curve outward, while retaining the general shape.
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Power, Exponential, and Logarithmic Functions

When a number a is multiplied by itself n times, we write an, where n is called
the exponent. This leads to the rules of exponents:

anam = an+m

(an)m = anm

an

am
= an−m

an

an
= a0 = 1

Intuitively, we may think of n as an integer, but in fact n could be any real number.
The power function takes the form

y = axb, x ∈ R, a > 0

(Note that the rectangular hyperbola is a special form of the power function with
b = −1. The linear function is also a special case with b = 1. The quadratic may
be thought of as the sum of two power functions.)

Figure 2.25 shows two power functions for x ∈ R+ where b > 1 and b < −1.

x

y

(a)

x

y

(b)

b > 1 b < –1

Figure 2.25 Power functions axb : R+ → R+

x

y

a

Figure 2.26 Exponential function
aex : R→ R

If we take the exponent as the variable in the function, we then obtain the expo-
nential function

y = abx

where b is called the base of the function. In many applications this base is taken to
be the number e

.= 2.718. For a > 0 the general shape of the exponential function
is shown in figure 2.26.
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x

y

(a)

x

y

(b)

b < 1

1 1

b > 1

Figure 2.27 The logarithmic function logb x : R+ → R

If x = by , then we say that y is the logarithm of x to base b, and we write

y = logb x

This expression defines y as a logarithmic function of x. We define the domain
of this function to be R+, and we choose b > 0. Moreover, since 1 raised to any
power is still 1, we exclude b = 1. As figure 2.27 shows, if b < 1, the function
is decreasing and convex, while if b > 1, it is increasing and concave. Very often
the base, b, is chosen to be e so that x = ey . The corresponding logarithm is called
the natural logarithm, and we write

y = ln x

(i.e., ln x = loge x). By combining the definition of the logarithm with the rules
of exponents, we have

x = blogb x and z = blogb z

which implies that

xz = blogb xblogb z = blogb x+logb z

so

logb(xz) = logb x + logb z
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Similarly

logb

(
x

z

)
= logb x − logb z

Moreover we have

xa = (blogb x)a

which implies that

logb(x
a) = a logb x

x

y

0 x' x''

f (x)

x

f (x'')

f (x)

f

f (x')

Figure 2.28 Strict concavity

Concavity, Convexity, Quasiconcavity, Quasiconvexity

In our description of some specific functions we used the terms “convexity” and
“concavity.” Visually the meaning should be clear, but we now present a formal
definition. Figure 2.28 shows how we proceed in the case of a concave function.
First we must assume that the domain of the function is a convex set, because we
want convex combinations of points in the domain to be in the domain. Take any
two points x ′ and x ′′ in the domain of the function and the corresponding function
values f (x ′) and f (x ′′). The key characteristic of a concave function is that it
“arches above” the line joining these two function values. That is, the value of the
function at an x between x ′ and x ′′ is higher than the point on the line immediately
above that x value. Thus we have

x̄ = λx ′ + (1− λ)x ′′, λ ∈ [0, 1]

Since the point on a line joining x ′ and x ′′ has the y-coordinate value

f̄ = λf (x ′)+ (1− λ)f (x ′′), λ ∈ [0, 1]

at x̄, strict concavity can be expressed as the property f (x̄) > d̄ . This is apparent
from figure 2.28 and is summarized in

D e f in i t i o n 2 . 25 The function f is concave if

f (x̄) ≥ λf (x ′)+ (1− λ)f (x ′′)

where x̄ = λx ′ + (1 − λ)x ′′ and λ ∈ [0, 1]. It is strictly concave if the strict
inequality holds when λ ∈ (0, 1).
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Note that the curve in figure 2.28 is strictly concave while the linear function is
concave but not strictly concave.

By a similar argument we obtain

D e f in i t i o n 2 . 26 The function f is convex if

f (x̄) ≤ λf (x ′)+ (1− λ)f (x ′′)

where x̄= λx ′+(1−λ)x ′′ and λ∈ [0, 1]. It is strictly convex if the strict inequality
holds when λ ∈ (0, 1).

A convex function “bends below” a line joining any two function values. This is
illustrated in figure 2.29. Clearly, f is (strictly) convex if−f is (strictly) concave.
From these definitions it follows that a linear function is both convex and concave
but strictly neither.

Example 2.16 The point x̄ in definitions 2.25 and 2.26 is a convex combination of the two points
x ′ and x ′′. Suppose that the function is f (x) = x2. Then, if we choose λ = 0.4,
x ′ = 2, and x ′′ = 5, we have

x̄ = (0.4)2+ (0.6)5 = 3.8

so

f (x̄) = f (3.8) = (3.8)2 = 14.44

is the height of the function at the point x̄. This is shown in figure 2.30. Now, from
the convex combination, we can obtain a straight line connecting the two function
values f (x ′) and f (x ′′):

λf (x ′)+ (1− λ)f (x ′′)

or

0.4(22)+ 0.6(52) = 16.6

which is the height of a straight line connecting the points (2, 4) and (5, 25) at x=
3.8 in figure 2.30. Clearly, f (x)= x2 is strictly convex between these two points.

x

y

0 x' x''

f (x)

x

f (x'')

f (x)

f

f (x')

Figure 2.29 Strict convexity

To show generally that f (x) = x2 is strictly convex, we need to show that

f (x̄) < λf (x ′)+ (1− λ)f (x ′′)
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for any pair of x ′ and x ′′ with x̄ = λx ′ + (1− λ)x ′′ and λ ∈ (0, 1). The left-hand
side of the inequality is

f (x̄) = [λx ′ + (1− λ)x ′′]2 = λ2(x ′)2 + 2(1− λ)λx ′x ′′ + (1− λ)2(x ′′)2

The right-hand side of the inequality is

λ(x ′)2 + (1− λ)(x ′′)2

Hence we have

λ2(x ′)2 + 2(1− λ)λx ′x ′′ + (1− λ)2(x ′′)2 < λ(x ′)2 + (1− λ)(x ′′)2

(λ2 − λ)(x ′)2 + 2(1− λ)λx ′x ′′ + [(1− λ)2 − (1− λ)](x ′′)2 < 0

−λ(1− λ)(x ′)2 + 2(1− λ)λx ′x ′′ − λ(1− λ)(x ′′)2 < 0

(x ′)2 − 2x ′x ′′ + (x ′′)2 = (x ′ − x ′′)2 > 0

To develop the idea of quasiconcavity, we first define the notion of a level set of
a function of n variables.

D e f in i t i o n 2 . 27 A level set of the function y = f (x1, x2, . . . , xn) is the set

L = {(x1, . . . , xn) ∈ R
n : f (x1, x2, . . . xn) = c}

for some given number c ∈ R.

x

y

0

y = x2

2 3.8 5

4

14.44

16.6

25

Figure 2.30 The function
f (x) = x2 is strictly convex

x1 x2

y

Figure 2.31 The function
y = 2x1 + 3x2

In other words, the level set shows the set of points in the domain of the function
that gives equal values of the function. As special cases we take two functions of
two variables, the linear function

y = a1x1 + a2x2, (x1, x2) ∈ R
2
+, a1, a2 > 0

and an example of a power function, called in economics the Cobb-Douglas
function,

y = xa
1 xb

2 , (x1, x2) ∈ R
2
+, a, b > 0, a + b > 1

The three-dimensional graphs of these functions are shown in figures 2.31 and
2.32 for particular parameter values.
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x1

x2

0

y

Figure 2.32 The function y = x2
1x

2
2

Applying the definition of a level set gives

a1x1 + a2x2 = c or x2 = c

a2
−

(
a1

a2

)
x1

and

xa
1 xb

2 = c or x2 =
(
cx−a

1

)1/b

The level sets can be graphed in two dimensions, with each curve representing a
different value of c. Examples from figures 2.31 and 2.32 are shown in figures 2.33
and 2.34. In economics, level sets are encountered in consumer theory (where they
are called indifference curves), producer theory (where they are called isoquants),
and a large range of other applications.

Quasiconcavity is essentially concerned with the shapes of the level sets of
a function. First, define the better set of a point x0

1 , x0
2 , . . . , x0

n in the domain
X ⊆ Rn of the function f (x1, x2, . . . , xn).

x1
0

c3
c2

c1

c0

x2

x0

Figure 2.33 Level sets of the
function y = 2x1 + 3x2

x10

c2
c1c0

x2

x0

Figure 2.34 Level sets of the
function y = x2

1x
2
2

D e f in i t i o n 2 . 28 The better set of the point
(
x0

1 , x0
2 , . . . , x0

n

)
is

B
(
x0

1 , x0
2 , . . . , x0

n

)
= {

(x1, x2, . . . , xn) ∈ X : f (x1, x2, . . . xn) ≥ f
(
x0

1 , x0
2 , . . . , x0

n

)}
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That is, the better set of a point is simply the set of points in the domain that yields
at least as large a function value. In figures 2.33 and 2.34 the better sets of the
point x0 are shaded.

D e f in i t i o n 2 . 29 A function f with domain X ⊆ R
n is quasiconcave if, for every point in X, the

better set B of that point is a convex set. It is strictly quasiconcave if B is strictly
convex.

Thus we see that the linear function shown in figure 2.33 is quasiconcave but not
strictly quasiconcave, while the Cobb-Douglas function shown in figure 2.34 is
strictly quasiconcave.

The precise shapes of the level sets of quasiconcave functions will depend on
the direction in which the function increases. In the examples shown in figures 2.33
and 2.34, the functions are increasing in both variables, so the level sets must have
negative slopes and the convexity of the better sets implies the shapes shown.
However, if the function were increasing in one variable and decreasing in the
other, or decreasing in both variables, then quasiconcavity would imply quite
different shapes for the level sets. Exercise 8 of this section asks you to explore
this situation further.

The terminology in use here may be confusing. Why the term quasiconcavity
when the relevant set must be convex? The reason becomes clear if we recall the
definition of a concave function: f (x) is concave if, given x ′ and x ′′ in its (convex)
domain, we have

f (x̄) ≥ λf (x ′)+ (1− λ)f (x ′′)

where x̄ = λx ′ + (1− λ)x ′′ and λ ∈ [0, 1]. Since this holds for any points x ′ and
x ′′, it must hold for a point x ′′ ∈ B(x ′). This implies that B(x ′) is a convex set and
therefore that any concave function is also quasiconcave. The converse, however,
is not true. For example, the Cobb-Douglas function

y = xa
1 xb

2 , a, b > 0, a + b > 1

(see figure 2.32), is quasiconcave but not concave.
We can proceed in a similar way with the property of quasiconvexity. Given

a function f (x1, x2, . . . , xn) with domain X ⊆ R
n, we can define the worse set of

a point
(
x0

1 , x0
2 , . . . , x0

n

)
in the domain:
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D e f in i t i o n 2 . 30 The worse set of the point
(
x0

1 , x0
2 , . . . , x0

n

)
is

W
(
x0

1 , x0
2 , . . . , x0

n

)
= {

(x1, x2, . . . , xn) ∈ X : f (x1, x2, . . . xn) ≤ f
(
x0

1 , x0
2 , . . . , x0

n

)}

Then we have

D e f in i t i o n 2 . 31 A function f (x1, x2, . . . , xn) with domain X ⊆ R
n is quasiconvex if, for every

(x0
1 , x0

2 , . . . , x0
n) ∈ X, the worse set W(x0

1 , x0
2 , . . . , x0

n) is a convex set. It is strictly
quasiconvex if W is strictly convex.

Again, it is possible to show that any convex function is quasiconvex, and not vice
versa. This topic is further explored in the exercises.

E X E R C I S E S

1. Give equations and sketch graphs of the lines

(a) passing through (0, 1) and having slope −2

(b) passing through (−2, 2) and parallel to y = 2− 5x

(c) passing through (−1, 1) and parallel to

x

−2
+ y

−3
= 1

2. In a class of 120 students, everyone would take two hamburgers if the price
were zero, and no one would buy hamburgers if the price were $4 or more.
Assume that the class demand curve for hamburgers is linear and give its
equation. Explain what this implies about the demand for hamburgers when
the price is $3.99.

3. Find the convex combinations of the following pairs of points and, where
possible, show them graphically:

(a) −2 and 4

(b) (−1, 1) and (3, 4)

(c) (−2, 0, 1) and (1,−2, 2)
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4. Total revenue is price × quantity sold. Show that the total revenue curve
corresponding to the demand curve found in exercise 2 is a quadratic. Is it
convex or concave?At what value of x does its maximum or minimum occur?

5. A firm’s average-cost function is given by the quadratic

y = x2 − 20x + 120

where y is average cost in dollars per unit of output. The output price is $10
per unit, and is the same at all levels of output. Find the output levels at
which the firm just breaks even (i.e., price = average cost).

Sketch the average-cost function and show the solution. Over what range of
prices does the firm make a loss at all output levels?

6. Simplify the following expressions:

(a)
√

a5/a3

(b) a2b3/a2b

(c) bxb−1
1 xc

2/cx
b
1xc−1

2

(d) (x
1/b

1 xc
2)

b/c

(e) 6x0.2 = 5y0.4 (solve for y in terms of x)

(f) x = (2−1/2)−1/2 (solve for x)

(g) y = ax
b1
1 x

b2
2 x

b3
3 (What is log y?)

(h) logb(b
x)

(i) b− logb(1/x)

(j) logb[b(loga a2)]

7. Sketch typical level sets of the following functions and state whether they
are (strictly) quasiconcave or (strictly) quasiconvex. Then say whether the
functions are concave, convex, or neither.

(a) y = 2x2
1 − x1x2 + 2x2

2

(b) y = (0.5x2
1 + 0.5x2

2)1/2

(c) y = 2x
1/2
1 x

1/2
2

8. (a) Given the strictly quasiconcave function y = f (x1, x2), sketch a typ-
ical level set in each of the following cases:

(i) The function is increasing in x1 and decreasing in x2.

(ii) The function is decreasing in x1 and increasing in x2.

(iii) The function is decreasing in both variables.
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(Hint: First determine which way the curve of the level set must slope,
then identify the area that gives the better set, and then find how the
curvature must look to make the better set convex.)

(b) Repeat part (a), assuming that the function is strictly quasiconvex, and
illustrate the level set in each case.

9. Construct an example of a strictly quasiconcave function that is not a concave
function.

10. Using the points x ′ = 1, x ′′ = 9, and λ = 5/8, illustrate definition 2.25 for
the concave function y = x1/2, x > 0. Use a graph in your answer.

11. Show that the function y = x1/2, x > 0, is strictly concave according to
definition 2.25.

12. Show that the function f (x1, x2) = x2
1 + x2

2 , is strictly convex according to
definition 2.26.

C H A P T E R R E V I E W
Key Concepts base

better set
boundary point
bounded
cardinality
Cartesian product
Cobb-Douglas function
closed interval
codomain
compact
complement
completeness property
composite mapping
concavity
convex combination
convexity
coordinate system
dependent variable
dimensions
disjoint
distance
domain
exponent

exponential function
elements
empty set
Euclidean distance
function
image
image set
implicit function
independent variable
indifference curves
infimum
integers
intercept term
interior numbers
interior point
intersection
intervals
irrational numbers
isoquants
level set
linear function
logarithmic function
mapping
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natural logarithm
natural numbers
neighborhood
nonnegative numbers
one-to-one correspondence
ordered pair
partition
point sets
power function
power set
proper subset
pure number
quasiconcavity
quasiconvexity
rational numbers
range

rectangular hyperbola
real line
real numbers
real-valued functions
relative difference
set
singleton
slope
slope coefficient
subset
supremum
union
universal set
Venn diagram
worse set

Review Questions 1. How does a Venn diagram help to illustrate the possible relationships between
sets and subsets?

2. What is meant by “the real line”?

3. What is a supremum? What is an infimum?

4. What is a point set? What is a convex set?

5. Distinguish between closedness and boundedness of a point set.

6. Distinguish between concavity and convexity of a function.

7. Distinguish between quasiconcavity and concavity.

8. Distinguish between quasiconvexity and convexity.

9. What is the difference between a necessary condition and a sufficient condi-
tion?

Review Exercises 1. Write out the convex combinations of the following pairs of points:

(a) −2 and 2 in R

(b) (−2, 2) and (−3, 3) in R
2

(c) (0, 0) and (x1, x2) in R
2

(d) (−2, 2, 5) and (−3, 3, 8) in R
3
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In cases (b) and (c), draw a graph to show that the convex combination lies
on the line segment between two points in R

2.

2. A firm’s production set is

Y = {(x, y) ∈ R
2
+ : y ≤ √x}

Sketch this set in R
2. Is it closed? bounded? convex? Explain why we would

interpret a boundary point of the set as “efficient” and an interior point as
“inefficient.”

3. Give the equation and sketch the graph of the line

(a) passing through (−1, 20) and having slope 2

(b) passing through (−2, 1) and parallel to 3x − 4y = 2

4. Find the convex combinations of the pair of points (0,−2, 1,−1) and
(−1, 3, 1,−2).

5. Simplify the following expressions:

(a) (ab)3/a2b

(b) a(b/a)q

(c) 10x0.25 = 2y1/8 (solve for y in terms of x)

(d) logb(b
x)3

6. Sketch typical level sets of the function

y = 10x
1/4
1 x

1/2
2

and state whether it is (strictly) quasiconcave or (strictly) quasiconvex. Is the
function concave, convex, or neither?

7. Show that the function y = 10−x2 is strictly concave according to definition
2.28.

8. By using the points x ′ = 2, x ′′ = 6, and λ = 1/2, illustrate definition 2.25
for the concave function y = 10− x2. Use a graph to demonstrate this.

9. Show that the function f (x1, x2) = (x1 + x2)
1/2, x1, x2 > 0 is concave

according to definition 2.25.



Chapter 3 Sequences, Series, and Limits

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• More Applications of Series
• The Keynesian Multiplier
• St. Petersburg Paradox
• Practice Exercises

Studying sequences and series is the best way to gain intuition about the rather
perplexing notions of arbitrarily large numbers (infinity) and infinitesimally small
(but nonzero) numbers. We gain such understanding by using the idea of the limit
of a sequence of numbers. Thus, from a mathematical perspective, this chapter
provides very useful background to the important property of continuity of a func-
tion, which we will explore fully in chapter 4. There are also some interesting eco-
nomic applications of series and sequences, in particular the notion of discounting a
future stream of payments or receipts, which is a critical aspect of judging the value
of an investment by a business or a government.

3.1 Definition of a Sequence
A sequence is simply a succession of numbers. For example, the sequence of
numbers 1, 4, 9, 16, . . . appears to consist of the squares of the natural numbers
(i.e., 12, 22, 32, 42, . . .). It is common to see questions on IQ or mathematical
aptitude tests asking one to fill in the next number in a sequence, which involves
figuring out or guessing the formula that generates the numbers of the given terms
of the sequence. We could write that formula for the sequence above as

f (n) = n2, n = 1, 2, 3, 4, . . .

Then the “next” term in the given sequence of numbers is 52 = 25.
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Example 3.1 Find a function or formula that corresponds to the first three terms of the sequence

1, 4, 7, . . .

Solution

One function that works is

f (n) = 3n− 2, n = 1, 2, . . . (3.1)

Another is

f (n) = (n− 2)3 + 2n, n = 1, 2, . . . (3.2)

Example 3.1 illustrates the general result that for any n numbers intended to de-
scribe a sequence, there is more than one function that can be used to generate the
sequence of numbers given. In fact there are an infinite number of possibilities.
Therefore such questions on IQ tests requesting one to fill in the next number of
a sequence are poorly designed. If the respondent considering example 3.1 had in
mind the equation (3.1), then she would offer 10 as the “next number” while if
she had in mind the equation (3.2), she would offer 16 as the “next number.” Both
responses are correct.

A formal definition of a sequence follows, along with several examples.

D e f in i t i o n 3 . 1 A sequence is a function whose domain is the positive integers.

The following are examples of sequences:

1. f (n) = 2n or 2, 4, 6, 8, 10, . . . (figure 3.1)
2. f (n) = 1/n or 1, 1/2, 1/3, 1/4, 1/5, . . . (figure 3.2)
3. f (n) = −1/n or −1,−1/2,−1/3,−1/4,−1/5, . . . (figure 3.3)
4. f (n) = (−1)n or −1, 1,−1, 1,−1, . . . (figure 3.4)
5. f (n) = −n2 or −1,−4,−9,−16,−25, . . . (figure 3.5)
6. f (n) = (−2)n or −2, 4,−8, 16,−32, . . . (figure 3.6)

It is clear that the terms in the sequences for examples 2 and 3 above are getting
smaller in absolute value and closer and closer to zero. We say that such sequences
have a limit, and in these two cases the limit is the same (zero) even though no
two elements of the sequences equal each other and no term in either sequence
ever actually takes on the value zero. The terms in the other sequences do not tend
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to approach a single, finite value, and so they do not have a limit. In examples 1
and 5 we can see that the values of the sequence become either arbitrarily large
or arbitrarily small, and so we say the sequences are not bounded. The sequence
in example 4 is bounded, but still the elements don’t become arbitrarily close to
any single value, and so we also say it has no limit. The idea of limits is presented
more formally in the following section.

n

f (n)

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Figure 3.1 The first five terms of the
sequence f (n) = 2n

n

f (n)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

Figure 3.2 The first five terms of the
sequence f (n) = 1/n

n

f (n)

–1
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1 1 2 3 4 5

0

Figure 3.3 The first five terms of the
sequence f (n) = −1/n

n

f (n)

–1

1 2 3 4 5

1

0

Figure 3.4 The first five terms of the
sequence f (n) = (−1)n



64 CHAPTER 3 SEQUENCES, SERIES, AND LIMITS

n

f (n)

–25

–20

–15

–10

–5

1 2 3 4 5

0

Figure 3.5 The first five terms of the
sequence f (n) = −n2

n

f (n)

–40

1

2

3

4

5

15
20

5
10

–35
–30
–25
–20
–15
–10
–5

Figure 3.6 The first five terms of the
sequence f (n) = (−2)n

E X E R C I S E S

1. Determine the first 10 terms of each of the following sequences. In each case,
draw a graph such as those in figures 3.1 to 3.6.

(a) f (n) = 5+ 1/n

(b) f (n) = 5n/(2n)

(c) f (n) = (n2 + 2n)/n

2. Determine the first 10 terms of each of the following sequences. In each case,
draw a graph such as those in figures 3.1 to 3.6.

(a) f (n) = 5− 1/n

(b) f (n) = n/(n+ 1)

(c) f (n) = c + [(−1)n(1/n)] for c constant

3. Show how the sequence of terms f (n) = 2n, n = 0, 1, 2, . . . can be written
using the domain n = 1, 2, 3, . . . .

4. Show how the sequence of terms f (n) = n2, n = 5, 6, 7, . . . can be written
using the domain n = 1, 2, 3, . . . .

5. Show how to write all terms beginning with the 26th term of the sequence
f (n) = (1+ r)n, n = 1, 2, 3, . . . using the same domain, n = 1, 2, 3, . . . .
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3.2 Limit of a Sequence
It is convenient to refer to each term of a sequence by an where an= f (n),
n= 1, 2, 3, . . . , corresponding to definition 3.1. The intuitive notion of a limit
for a sequence is that the terms an “get close" to some unique and finite value as
n gets “large.” If a sequence does have a limit, we say it is convergent, while if it
does not, we say it is divergent.

D e f in i t i o n 3 . 2 A sequence is said to have the limit L if, for any ε > 0, however small, there is
some value N such that |an −L|< ε whenever n > N . Such a sequence is said to
be convergent, and we write its limit as limn→∞ an = L.

In less formal language, the definition above states that a sequence has a
limit L provided that all values of the sequence “beyond some term” can be made
as close to L as one wishes (i.e., the condition |an−L|< ε can be met for as small
a positive number ε as one likes by choosing a sufficiently large value of N ). For
example, consider the sequence an = 1/n (figure 3.2), which has the limit L = 0.
We see that |an − 0|< 0.01 for any choice of N > 100, while |an − 0|< 0.002
for any choice of N > 500. More generally, |1/n − 0|< ε requires a choice of
N > 1/ε. One can think of N as formally being a function of ε and so write
N(ε).

As is also the case for functions in general (see chapter 2), a sequence may be
bounded or unbounded. In particular, we say that a sequence is bounded if there
is some finite value K > 0 such that for some N it follows that

an < K for all n > N bounded above

and

an >−K for all n > N bounded below

and is not bounded if one or both of these conditions fails to hold. For example,
the sequence

f (n) = 2n, n = 1, 2, 3, . . .

illustrated in figure 3.1 is unbounded because it is not bounded above, while the
sequence

f (n) = −n2, n = 1, 2, 3, . . .
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illustrated in figure 3.5 is unbounded because it is not bounded below. A sequence
may also be unbounded because it is neither bounded above nor below, as in the
sequence

f (n) = (−2)n, n = 1, 2, 3, . . .

which is illustrated in figure 3.6.
It is quite easy to see that a sequence that grows without bound cannot have

a limit and so doesn’t satisfy definition 3.2 for convergence. The sequence an =
(−1)n (figure 3.4) illustrates another type of sequence that is not convergent. The
terms do not grow without bound, yet there is no limit because all terms of the
sequence beyond the N th term must satisfy definition 3.2 if the sequence is to
have a limit. It is clear that whatever choice of L is made, terms of an for n greater
than any N will include the values+1 and−1, and so all terms beyond aN cannot
be made arbitrarily close to any single value L. Thus a bounded sequence is not
necessarily convergent.

D e f in i t i o n 3 . 3 If a sequence has no limit, it is divergent.

We can classify divergent sequences in two ways, either as definitely divergent
or simply as divergent. For example, the sequence an = 2n (figure 3.1) is divergent,
since there is no (finite) number L which the terms of the sequence approach.
However, the terms grow without bound in a positive direction, and so we say the
sequence approaches positive infinity (+∞). This is an example of what is called
a definitely divergent sequence.

D e f in i t i o n 3 . 4 Adivergent sequence is said to be definitely divergent if either one of the following
conditions holds:

(i) If for any (arbitrarily large) value of K there is an N sufficiently large that
an > K for all n > N , then we say the sequence is definitely divergent and
limn→∞ an = ∞.

(ii) If for any (arbitrarily large) value of K there is an N sufficiently large that
an < −K for all n > N , then we say the sequence is definitely divergent and
limn→∞ an = −∞.

Notice that the sequences in figures 3.1, 3.4, 3.5, and 3.6 are all divergent but only
the ones in figure 3.1 and 3.5 are definitely divergent. Also note that the sequence
in figure 3.6 is not bounded yet its terms do not approach either +∞ or −∞.
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The following set of examples illustrates how one can show formally that a
sequence either converges or diverges, as the case may be.

Example 3.2 Show that the sequence f (n) = 1/n, n = 1, 2, 3, . . . , has the limit zero; that is,
limn→∞ 1/n = 0, and so converges to zero.

Solution

According to definition 3.2 we need to show that for any ε > 0 there must be some
value N such that

∣∣∣∣1

n
− 0

∣∣∣∣< ε

for every n > N . In other words, we need to find an N such that 1/n < ε for every
n > N .

By multiplying both sides of this inequality by n, we have that the condition
becomes

1 < εn

or

εn > 1

or

n >
1

ε

Thus, if we choose N to be the next integer greater than 1/ε, we will satisfy the
condition.

Example 3.3 Show that the sequence f (n) = (−1)n, n = 1, 2, 3, . . . is divergent.

Solution

According to definition 3.3 a sequence is divergent if it has no limit, L. It is easy
to illustrate diagrammatically that there is no value L such that all the terms in
the sequence f (n) = (−1)n, n > N , lie within distance ε of L for every ε > 0, no
matter how large we choose N to be. The reason is that no matter how large we
choose N , the terms of the sequence f (n) = (−1)n, n > N will include both the
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values −1 and +1. So, if we take ε = 1/2, for example, there is no number L

which lies within 1/2 of a unit of both −1 and +1. We see this in figure 3.7.

–1 –1 1
2

0– 1 11
2

1
2

1
2

I2} }I1

Figure 3.7 Illustration that
f (n) = (−1)n has no limit
(example 3.3)

For the limit L to be within ε = 1/2 of the number −1, it must lie in the
interval marked I1 while for the limit L to be within ε = 1/2 of the number +1,
it must lie in the interval I2. Since these two intervals do not intersect, there is
no value L that satisfies both conditions (i.e., no number lies in both of these
intervals). Algebraically, for L to be a limit of this sequence, it must satisfy both
of the following conditions for every ε > 0:

Condition A, |−1− L| < ε

Condition B, |+1− L| < ε

For ε = 1/2, for example, condition A requires that

|−1− L|< 1

2

which will not hold if L > 0, since in that case |−1−L| = 1+L which is greater
than 1/2, while condition B requires that

|+1− L|< 1

2

which will not hold if L < 0, since in that case |+1− L| = 1+ |L| which is also
greater than 1/2.

Therefore, since L cannot be both negative and positive, there can be no limit
to this sequence.

Example 3.4 Show that the sequence an = 2n, n = 1, 2, 3, . . . is definitely divergent.

Solution

By definition 3.4, a sequence is definitely divergent if either limn→∞ an = +∞ or
limn→∞ an = −∞. The first of these two cases holds for the sequence an = 2n.
To see this formally, we need to show that for any (arbitrarily large) value K , one
can always find an N large enough that an > K for every n > N . This is clearly
the case for an = 2n, since for any K we have

2n > K

provided n > K/2. Therefore, we need only choose our value for N to be the next
integer greater than K/2 in order to satisfy the condition.



3.3 PRESENT-VALUE CALCULATIONS 69

E X E R C I S E S

1. Using definition 3.2, show that each of the following sequences has the limit
as specified:

(a) limn→∞
n

n+ 1
= 1

(b) limn→∞ 5+ 1

n
= 5

(c) limn→∞

(
−1

2

)n

= 0

2. Determine the limit for each of the following sequences, and prove that your
choice is correct according to definition 3.2:

(a) limn→∞
1

n2 + 2

(b) limn→∞
n

(n+ 1)2

3. Show that each of the following sequences is divergent. If the sequence is
definitely divergent, show this to be the case according to definition 3.4.

(a) limn→∞ n2

(b) limn→∞(−n)3

(c) limn→∞(−c)n (c a constant and c �= 0)

3.3 Present-Value Calculations
An important economic application of sequences is the determination of the present
value of a sum of money to be received at some point in the future. This computa-
tion is the inverse of determining how much money one would have in the future
upon investing a certain amount now. Suppose, for example, that one had $90.91
to invest currently at an annual interest rate of 10%. Then the amount of money
received at the end of one year would be $90.91(1 + 0.1) = $100. In general,
investing $X today at an annual rate of return r will generate V = X(1+ r) at the
end of one year. Therefore it is equivalent to say that the present value of amount
V to be received in one year’s time is X = V/(1 + r), where r is the rate of
return (or rate of interest). For the example above the present value of $100 to be
received at the end of one year is $90.91 if the annual interest rate is 10%. The
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reason is that $90.91 is precisely the amount required to be invested now in order
to generate $100 in one year’s time given the interest rate of 10%.

The same rationale can be used to value an amount received any number of
periods into the future. If one received $Y now and could invest at 10% per year,
with compounding (i.e., the accumulation and reinvestment of interest payments)
at the end of each year, then the $Y would be worth Y (1 + 0.1) at the end of
the first year and, after reinvesting (including interest payments), would be worth
[Y (1+ 0.1)](1+ 0.1) = Y (1+ 0.1)2 at the end of the second year. Therefore the
present value of $100 to be received in two years’ time is Y , where Y (1+ 0.1)2 =
100 or Y = $100/(1 + 0.1)2 = $82.64 (approximately). Following this line of
argument leads to the following formula, which determines the present value PVt

of amount V to be received t periods from now when the interest rate is r per
period and compounding occurs at the end of each period:

PVt = V

(1+ r)t
(3.3)

Notice that for r > 0 the denominator of (1+ r)t becomes larger as t becomes
larger, and thus PVt gets smaller. In other words, receiving a certain sum in the
future has a lower present value the longer one has to wait for the payment. This
is natural since the further in the future one receives the fixed amount V , the less
one would need to invest now to replicate that future payment. For this reason
economists refer to the discounting of future benefits and the value 1/(1 + r) is
referred to as the discount rate, or discount factor. Moreover (1 + r)t grows
without bound as t →∞, and so PVt → 0 as t →∞. The proof of this statement
is left as an exercise at the end of this section.

Example 3.5 Compute the present value of $500 to be received in one year’s time given the
interest rate of 8%.

Solution

According to equation (3.3) we have

PV1 = V

(1+ r)1
= V

1+ r
= 500

1+ 0.08
= 500

1.08
= $462.96

One can readily check that this is correct since if one had $462.96 presently to
invest at an interest rate of 8% for one year, then at the end of the year one would
have $462.96(1+ 0.08) = $500.
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Example 3.6 Compute the present value of receiving $1 million at the end of each of the next
three years given the interest rate of 12%.

Solution

PV of $1 million at the end of the first year = $1,000,000

1.12

= $892,857.14

PV of $1 million at the end of the second year = $1,000,000

(1.12)2

= $797,193.88

PV of $1 million at the end of the third year = $1,000,000

(1.12)3

= $711,780.25

Total: $2,401,831.27

So the present value of the sum of these three annual payments of $1 million is
$2,401,831.27.

Example 3.7 Given an interest rate of 12%, guaranteed for the next three years, how much
money would one need to be given presently as a lump sum in order to finance
expenditures of $1 million to occur at the end of each of the next three years?

Solution

From example 3.6 we can see immediately that the answer to this question is
$2,401,831.27.

To see that this is so, suppose that we start with $2,401,831.27, invested at
12% for one year, thus generating

$2,401,831.27× 1.12 = $2,690,051.02

at the end of the first year. After spending $1 million, we have $1,690,051.02 left
over to invest for the second year, thus generating

$1,690,051.02× 1.12 = $1,892,857.14

at the end of the second year. After spending $1 million, we have $892,857.14 to
invest for the third and final year, thus generating
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$892,857.14× 1.12 = $1,000,000.00

as required for expenditures at the end of that year.

Continuous Compounding

Although it is conventional to quote interest rates on the basis of annual payments,
it is not unusual to see a different length of time used to determine the compounding
of interest earned or owed. For example, it is not unusual to have interest earned
in a savings account accrue and be automatically reinvested (compounded) on a
monthly basis. The result of doing this is that more money is earned than in the
case of only a single instance of coumpounding at the end of the full year. This
result is developed below through the use of an example.

Suppose that the annual rate of interest on money in a savings account is 12%
(r = 0.12) and an individual places $1,000 into her account. No withdrawals are
made until the end of the year. If interest is compounded on an annual basis, the
amount in her account at the end of one year will be $1,000×(1+ 0.12) = $1,120.
Alternatively, suppose that the bank computes its interest payments on a half-yearly
basis and deposits the appropriate sum into their customers’ savings accounts
accordingly. This means that interest is compounded semiannually. Since an annual
interest rate of 12% implies a semiannual interest rate of 6%, this means that the
$1,000 on deposit earns $1,000× 0.06 = $60 interest in the first half-year. When
deposited into the account, this means that the principal for the second half-year is
$1,060 which earns $1,060×0.06 = $63.60 and so the total value of the deposit at
the end of the year is $1,000+$60+$63.60 = $1,123.60. A more mathematically
convenient way to express this is to note that after the first half-year there is
$1,000× (1+0.06) in the account and this amount earns 6% interest in the second
half-year, implying that at the end of the year

[$1,000× (1+ 0.06)]× (1+ 0.06) = $1,000(1.06)2 = $1,123.60

is the amount in the account.
Suppose that the bank instead decides to offer compounding every three

months (i.e., each quarter of a year). The interest rate for a quarter of a year is
3% and compounding quarterly means the value of $1,000 at the end of a year
will be

$1,000(1+ 0.03)(1+ 0.03)(1+ 0.03)(1+ 1.03) = $1,000(1.03)4 = $1,125.51

If the bank offered compounding monthly, the relevant interest rate is 1% (per
month) and the value of $1,000 at the end of a year becomes
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$1,000 (1+ 0.01)(1+ 0.01) . . . (1+ 0.01)︸ ︷︷ ︸
12 times

= $1,000(1.01)12 = $1,126.82

Not surprisingly, the more frequently interest payments are compounded, the
greater is the value of the savings at the end of the year.

If we let r represent the annual interest rate and n the number of times per
year that interest is compounded, then the relevant per period interest rate is r/n,
and so in each period we need to apply the factor (1+ r/n) to determine the value
of each dollar at the end of that period. It follows that the value of $P invested at
an annual rate of interest r compounded n times per year is worth

P

(
1+ r

n

)(
1+ r

n

)
. . .

(
1+ r

n

)
︸ ︷︷ ︸

n times

= P

(
1+ r

n

)n

at the end of a year. (Try this formula for the example developed above where
n = 1, 4, and 12 for annual, quarterly, and monthly compounding respectively.)

By continuous compounding we mean that interest is compounded instanta-
neously or, in effect, n→∞. Thus we can treat the term (1+ r/n)n in the formula
above as a sequence with its limit limn→∞(1 + r/n)n, giving us the factor to be
applied to the principal P in order to determine the value of $P invested for a
year with continuous compounding. It turns out that for the special case of r = 1
(100% interest rate), we get

lim
n→∞

(
1+ 1

n

)n

= e

where e is the so-called natural number first introduced in chapter 2. Recall that it
has approximate value e

.= 2.71828.
Although interesting, this formula in itself has little application, since interest

rates are rarely 100% per year. If the interest rate is r , then the relevant calculation
for continuous compounding becomes

lim
n→∞

(
1+ r

n

)n

In order to develop a usable formula for this expression, we first introduce the new
variable s where s ≡ n/r . Then r/n = 1/s and n = sr . Upon substituting these
values for r/n and n into the formula above, and noting that as n → ∞ so does
s →∞, we get
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lim
n→∞

(
1+ r

n

)n

= lim
s→∞

(
1+ 1

s

)sr

= lim
s→∞

[(
1+ 1

s

)s]r

Ignoring the term r for a moment, we see that

lim
s→∞

[(
1+ 1

s

)s]
= e

since it is exactly the same expression as before except for a change in variable
names. It follows that

lim
s→∞

[(
1+ 1

s

)s]r

= er

Thus $P invested for one year at an interest rate of r with continuous compounding
takes on the value

P lim
s→∞

[(
1+ 1

s

)s]r

= Per

at the end of one year. For our example with P = $1,000 and r = 0.12, this
value is

Per = $1,000e0.12 = $1,127.50

All that remains to be able to apply generally the idea of compounding interest
payments is to consider what happens when the investment period differs from one
year. In the case of compounding n times per year, where n is finite and r is the
annual rate of interest, the following formula indicates the value of $P invested
for t years:

V = P

[(
1+ r

n

)n]t

= P

(
1+ r

n

)nt

This formula is derived by noting that the factor (1+ r/n) must be applied n times
each year for each of t years, which implies that the exponent in this expression
is nt . For our own example this means that if the $1,000 were left in the savings
account for two years, it would be worth

V = $1,000(1+ 0.12)2 = $1,254.40 with annual compounding
V = $1,000(1+ 0.06)4 = $1,262.48 with semiannual compounding
V = $1,000(1+ 0.01)24 = $1,269.73 with monthly compounding
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An analogous result applies to the case of continuous compounding with the value
of $P invested at interest rate r for t periods being worth

V = P(er)t = Pert

at the end of t periods. For our example, the value of $1,000 invested for two years
at interest rate 12%, compounded continuously will be

V = $1,000e0.12×2 = $1,000e0.24 = $1,271.25

It is worth noting that even if the process of continuous compounding seems
implausible in a real-world context, it may nonetheless be a sufficiently accurate
and useful approximation. Notice that the difference in the value of $1,000 invested
for two years with interest compounded monthly, compared to the case of interest
being compounded continuously, is minimal. Since the formula for continuous
compounding is much easier to work with, economists often assume that they can
apply it even if it is not exactly correct.

Since computing the present value of a payment to be received in the future
means determining how much money one would need now to generate this fu-
ture amount, it follows that the frequency with which money invested now could
be compounded must be factored into present-value calculations. For example,
$1,000 received one year from now has present value $909.09 if the interest rate
is 10% and interest is compounded annually; that is, since

$909.09(1.10) = $1,000 or
$1,000

(1.10)
= $909.09

However, if interest were compounded twice annually, the $909.09 would generate
more than $1,000 after one year. It would generate

$909.09(1+ 0.05)2 = $1,002.27

and so the present value of $1,000 received in one year’s time is worth less than
$909.09 in this scenario. The correct computation is

$1,000

(1.05)2
= $907.03

To check the intuition, note that $907.03 invested at interest rate 10% (per year)
with compounding on a semiannual basis generates $907.03(1.05)2 = $1,000.

In general terms, if $V is to be received t years from now and the interest rate
is r (per year) with compounding n times per year, then one would need $X now
to generate this future value, where
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X

(
1+ r

n

)nt

= V or X = V

[1+ (r/n)]nt

Thus the appropriate discounting formula for finding the present value PVt of a
future amount V when discounting occurs n times per year is

PVt = V

[1+ (r/n)]nt

Similarly, if interest is compounded continuously, the amount ($X) needed
now to generate $V in t years’ time is determined by the relationship

Xert = V or X = V

ert
= V e−rt

and so the appropriate discounting formula under continuous discounting is

PVt = V e−rt

All of these results are illustrated in the following two examples. Note that
a case where compounding occurs a finite number of times per year is referred
to as discrete compounding, while if n → ∞, it is referred to as continuous
compounding.

Example 3.8 Determine how much money an investment of $10,000 will generate in the fol-
lowing situations. In each case assume that the annual interest rate is 3%.

(i) At the end of one year given semiannual compounding
(ii) At the end of five years given semiannual compounding

(iii) At the end of one year given monthly compounding
(iv) At the end of five years given monthly compounding
(v) At the end of one year given continuous compounding

(vi) At the end of five years given continuous compounding

Solution

Using the formulas

V = P

(
1+ r

n

)nt

for discrete compounding

V = Pert for continuous compounding
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we get

(i) V = $10,000

(
1+ 0.03

2

)2

= $10,000(1.015)2 = $10,302.25

(ii) V = $10,000

(
1+ 0.03

2

)10

= $10,000(1.015)10 = $11,605.41

(iii) V = $10,000

(
1+ 0.03

12

)12

= $10,000(1.0025)12 = $10,304.16

(iv) V = $10,000

(
1+ 0.03

12

)60

= $10,000(1.0025)60 = $11,616.17

(v) V = $10,000e0.03 = $10,000(1.030454) = $10,304.54
(vi) V = $10,000e0.15 = $10,000(1.161834) = $11,618.34

Example 3.9 Determine the present value of $25,000 to be received in the future in the following
situations. In each case, assume the interest rate is 8%.

(i) Payment is received at the end of one year’s time given annual compounding
(ii) Payment is received at the end of 20 years’ time given annual compounding

(iii) Payment is received at the end of one year’s time given quarterly compound-
ing (i.e., every three months)

(iv) Payment is received at the end of 20 years’ time given quarterly compounding
(v) Payment is received at the end of one year’s time given continuous com-

pounding
(vi) Payment is received at the end of 20 years’ time given continuous com-

pounding

Solution

Using the formulas

PVt = V

[1+ (r/n)]nt
for discrete compounding

PVt = V e−rt for continuous compounding

we get

(i)
$25,000

1+ 0.08
= $25,000

1.08
= $23,148.15

(ii)
$25,000

(1+ 0.08)20
= $25,000

(1.08)20
= $5,363.70
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(iii)
$25,000

[1+ (0.08/4)]4
= $25,000

(1.02)4
= $23,096.14

(iv)
$25,000

[1+ (0.08/4)]80
= $25,000

(1.02)80
= $5,127.74

(v) $25,000e−0.08 = $25,000(0.9231163) = $23,077.91
(vi) $25,000e−1.6 = $25,000(0.2018965) = $5,047.41

As the applications above indicate, computing the present value of streams of
payments or periodic payments can be quite tedious. These computations, however,
are essential to banks and other financial institutions that need to determine the
equivalence of a stream of payments to a fixed current amount. Some further
techniques and formulas for this purpose are developed in section 3.5.

E X E R C I S E S

1. Find the present value of $100 to be received three years from now, assuming
annual compounding of interest, given an interest rate of 12%.

2. If the interest rate is 10% how much money would one need to receive now
to be equivalent to $1 million received two years from now if:

(a) Interest is compounded annually?

(b) Interest is compounded semiannually?

(c) Interest is compounded monthly?

(d) Interest is compounded continuously?

3. Suppose that the interest rate (r) is such that the present value of receiving
$V2 in t2 years from now is the same as the present value of receiving $V1 in
t1 years from now, t2 > t1. Assume that interest is compounded annually.

(a) Show that V2 > V1.

(b) Show that the present value of receiving $V2, (t2 + k) years from now
is also equal to the present value of receiving $V1, (t1 + k) years from
now for any value of k. (That is, it is the absolute difference between
time periods that matter.)

4. Prove, according to definition 3.2, that the present value of an amount of
money, V , received t periods from now and evaluated at an interest rate r > 0
approaches zero as t →∞.
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5. Suppose a country with a current population of 100 million is expected to
experience a population growth rate of 2% per year for the next 50 years. As-
suming continuous compounding, what is the expected size of the population:

(a) 5 years from now

(b) 10 years from now

(c) 20 years from now

6. Making use of the same situation and assumptions as in question 5 above,
find the length of time required for the population in this country to double.

3.4 Properties of Sequences
The following results concerning convergent sequences are straightforward and
so are given without proof.

Theorem 3.1 Suppose that an and bn are convergent sequences with limits La and Lb respec-
tively. It follows that:

(i) limn→∞ can = cLa for c any constant
(ii) limn→∞(an ± bn) = La ± Lb

(iii) limn→∞(an)(bn) = LaLb

(iv) limn→∞(an/bn) = La/Lb provided that Lb �= 0

The usefulness of theorem 3.1 lies in the fact that it is sometimes easier to
determine independently the limits of certain parts of the terms of a sequence.
Consider, for example, the sequence formed by the terms

⎛
⎜⎜⎝α + 2

n2 + 3

β + 1

n

⎞
⎟⎟⎠

To expand this and determine the limit as n → ∞ would be a tedious exercise.
However, it is clear that the limit of the numerator is α and the limit of the denom-
inator is β. Thus one can apply result (iv) of theorem 3.1 to see that the limit of
the expression is α/β. The following two examples illustrate the first two results
of theorem 3.1.
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Example 3.10 Use the result that limn→∞ 1/n = 0 and theorem 3.1 (i) to find the limit of the
sequence f (n) = 2/n, n = 1, 2, 3, . . . .

Solution

Since

2

n
= 2

(
1

n

)

we can write

lim
n→∞

2

n
= lim

n→∞ 2
1

n
= 2

(
lim

n→∞
1

n

)
= 2(0) = 0

Example 3.11 Use the results that limn→∞ 1/n = 0 and, limn→∞ 1/(n + 1) = 0, and theo-
rem 3.1 (ii) to find the limit of the sequence

f (n) = 2n+ 1

n2 + n
, n = 1, 2, 3, . . .

Solution

Since

2n+ 1

n2 + n
= n+ n+ 1

n(n+ 1)
= n

n(n+ 1)
+ n+ 1

n(n+ 1)
= 1

n+ 1
+ 1

n

we can write

lim
n→∞

2n+ 1

n2 + n
= lim

n→∞

[
1

n+ 1
+ 1

n

]
= lim

n→∞
1

n+ 1
+ lim

n→∞
1

n
= 0+ 0 = 0

Theorem 3.2 provides some simple and useful results when we are faced
with algebraic combinations of definitely divergent sequences in conjunction with
convergent sequences. An analogous set of results applies for the case where bn

has limit −∞.
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Theorem 3.2 Suppose that an is a convergent sequence with limit La , bn is a definitely divergent
sequence with limit +∞, and c is a constant. It follows that:

(i) limn→∞ cbn = +∞ for c > 0 and −∞ for c < 0
(ii) limn→∞(an + bn) = +∞

(iii) limn→∞(an − bn) = −∞
(iv) limn→∞(an)(bn) = +∞ for La > 0 and −∞ for La < 0
(v) limn→∞(an/bn) = 0

and, as a special case,

lim
n→∞

c

bn

= 0 for c constant

An analogous set of results applies for the case where bn has limit −∞.
The following examples illustrate results (i) and (iv) of theorem 3.2.

Example 3.12 Use the result that limn→∞ n=+∞ and result (i) of theorem 3.2 to find
limn→∞ n/2.

Solution

lim
n→∞

n

2
= lim

n→∞
1

2
n = 1

2

[
lim

n→∞ n
]

and so limn→∞ n/2 = +∞.

Example 3.13 Use the results that

lim
n→∞

n+ 3

n
= 1, lim

n→∞
n2 − 1

n
= +∞

and result (iv) of theorem 3.2 to find

lim
n→∞

(n+ 3)(n2 − 1)

n2

Solution

Since

(n+ 3)(n2 − 1)

n2
=

(
n+ 3

n

)(
n2 − 1

n

)
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we can write

lim
n→∞

(n+ 3)(n2 − 1)

n2
= lim

n→∞
n+ 3

n
lim

n→∞
n2 − 1

n
= +∞

Another useful application of this theorem concerns the present-value formula
developed in section 3.3:

PVt = V

(1+ r)t

Theorem 3.2 provides a proof of the claim that, if r > 0, then PVt→ 0 as
t→∞. Since the denominator is a definitely divergent sequence (if r > 0) and
the numerator is a constant, then part (v) of theorem 3.2 establishes the result.

Since sequences are functions with their domains being the set of positive
integers, one can define characteristics of monotonicity and boundedness in an
analogous manner as was done for general functions in chapter 2. This is done
formally below. (The property of boundedness was addressed informally earlier
in this chapter.)

D e f in i t i o n 3 . 5 A sequence is monotonically increasing if a1 < a2 < a3 < . . . and is monoton-
ically decreasing if a1 > a2 > a3 > . . . . In either case the sequence is said to be
monotonic.

D e f in i t i o n 3 . 6 A sequence is bounded if and only if it has a lower bound and an upper bound.

The following theorem is of obvious use in determining whether certain sequences
are convergent.

Theorem 3.3 A monotonic sequence is convergent if and only if it is bounded.

Example 3.14 Use theorem 3.3 to show that the sequence an = 1/2n, n = 1, 2, 3, . . . , is conver-
gent.
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Solution

The sequence an = 1/2n is monotonically decreasing. To see this, note that

an+1 = 1

2n+1
= 1

2n

1

2
, an = 1

2n
, and so an+1 < an

Moreover this sequence is bounded, since

0 <
1

2n
< 1 for every n = 1, 2, 3, . . .

Therefore the sequence is convergent.

Example 3.15 Use theorem 3.3 to show that the sequence an = −2n, n = 1, 2, 3, . . . , is diver-
gent.

Solution

The sequence is monotonically decreasing. To see this, note that

an+1 = −2(n+ 1) = −2n− 2, an = −2n

and so an+1 < an. Moreover this sequence is unbounded since for every K > 0, no
matter how large,

−2n < −K for every n >
K

2

That is, this sequence is not bounded below. Therefore the sequence is
divergent.

We can see from these two examples that, for the case of a monotonic sequence,
it can be much easier to check for convergence or divergence using theorem 3.3
than by using definitions 3.2, 3.3, and 3.4. If a sequence is not monotonic, then
theorem 3.3 is not of any use. The following two sequences illustrate this fact.
Both the sequence

an = (−1)n, n = 1, 2, 3, . . .

and the sequence

an =
(
−1

2

)n

, n = 1, 2, 3, . . .
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are bounded and neither is monotonic; yet the first is not convergent while the
second one is.

E X E R C I S E S

1. Use theorem 3.3 to show that the sequence PVt = V/(1+ r)t is convergent
when r ≥ 0 and divergent when −1 < r < 0.

2. Prove result (i) of theorem 3.2.

3. Prove result (iii) of theorem 3.2.

3.5 Series
A series is a special type of sequence. Consider, for example, the sequence at =
1/(t2 + t), t = 1, 2, 3, . . . . By summing the first n terms of this sequence, we
generate another sequence:

sn =
n∑

t=1

at =
n∑

t=1

1

(t2 + t)
= 1− 1

(n+ 1)
= n

(n+ 1)

To see how to derive this result, note that

at = 1

(t2 + t)
= 1

t
− 1

(t + 1)

By taking the right-hand side of this equality to the common denominator t (t + 1),
we get

1

t
− 1

(t + 1)
= (t + 1)− t

t (t + 1)
= 1

t2 + t

Therefore we can rewrite sn as

sn =
n∑

t=1

(
1

t
− 1

t + 1

)

=
(

1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

+
(

1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
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The second term of every pair combined with the first term of the subsequent pair
is always zero. So we are left with

sn = 1− 1

n+ 1

The sum sn is itself a sequence. Since the sequence is the sum of the first n terms
of some other sequence, it is called a series.

A simpler example is that sn= n is the series associated with the constant
sequence at = 1. Thus we have the following definition:

D e f in i t i o n 3 . 7 If at , t = 1, 2, 3, . . . is a sequence, then sn =
∑n

t=1 at , n = 1, 2, 3, . . . , is called
a series.

Since a series is just a specific type of sequence, any results derived for se-
quences also apply to series. For example, if a series is monotonic and bounded,
then it has a limit (theorem 3.3). However, due to the particular property of series,
as specified in definition 3.7, there are some further useful results that can be gen-
erated. The following theorem, for example, is very useful in determining whether
a series converges:

Theorem 3.4 If sn =
∑n

t=1 at is the series associated with sequence at and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

it follows that:

(i) if L < 1, then the series sn converges
(ii) if L > 1, then the series sn diverges

(iii) if L = 1, then the series sn may converge or diverge

Theorem 3.4 offers a simple test for determining whether a series converges
or diverges. It is based on the ratio of the absolute value of successive terms of
the underlying sequence that is summed in order to obtain the series. If this ratio
eventually exceeds 1, that is,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1



86 CHAPTER 3 SEQUENCES, SERIES, AND LIMITS

then this means that the series is generated by adding numbers of increasing size,
and so it is not surprising that the series diverges. Alternatively, if this ratio is less
than 1, then the series is generated by adding successively smaller numbers, and
so it converges. For a case where this ratio equals 1, the test is not informative, and
so more effort is required to determine whether the series in question converges
or diverges.

Example 3.16 The Geometric Series

One of the most important series in mathematics and in economics is the geometric
series. It provides us with an excellent example of the usefulness of the test for
convergence given in theorem 3.4. To see this, consider the sequence at = aρt−1

for a and ρ constants. The series formed from this sequence,

sn =
n∑

t=1

aρt−1 = a + aρ + aρ2 + aρ3 + · · · + aρn−1

is the geometric series. Upon forming the ratio

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ aρn

aρn−1

∣∣∣∣ = |ρ|
we see from theorem 3.4 that this series converges if |ρ|< 1 and diverges if |ρ|> 1.
It is also easy to see that if |ρ| = 1 we get at = a and sn = na, which diverges for
any a �= 0. The following example provides another case in which Theorem 3.4
fails to determine whether a series converges.

Example 3.17 The series constructed from the sequence an = 1/n, called the harmonic series,
does not converge even though limn→∞ an = 0. (This is left as an exercise.) The
intuition is that if a series is to converge, the nth term (an) of its associated sequence
must approach zero “quickly enough" that the sum of the terms is finite even as
n→∞. This is the rationale of the condition stated in theorem 3.4, that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1

which ensures that a series is convergent. Note that for the harmonic sequence

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1/(n+ 1)

1/n
= 1
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For the case of |ρ|< 1, it is fairly easy to derive the limit of the geometric
series,

lim
n→∞ sn = a

1− ρ

This is done by noting that upon multiplying each term in the expression for sn by
ρ, we get

ρsn = aρ + aρ2 + aρ3 + · · · + aρn−1 + aρn

where

sn = a + aρ + aρ2 + aρ3 + · · · + aρn−1

We can see from the two expressions above that

sn − ρsn = a − aρn

This allows us to write the sum sn as

sn = a

(
1− ρn

1− ρ

)
(3.4)

Since for |ρ|< 1 we get ρn→ 0 as n→∞, it follows that

lim
n→∞ sn = a

1− ρ
(3.5)

Both equation (3.4), the formula for the sum of a finite geometric series, and
equation (3.5), the formula for the sum of an infinite geometric series, have many
uses in economics. In this chapter we focus on applications of series that involve
evaluating streams of money payments or receipts, such as in an investment project
or a mortgage. See the Web page http://mitpress.mit.edu/math econ3 for some
additional applications as well as a discussion of the classic problem referred to
as the Achilles paradox.

Present Value of a Stream of Payments

Earlier we saw how PVt = V/(1+ r)t (see equation 3.3) represents the present
value of an amount of money V received t periods into the future. In many
economic settings we need to compute the equivalent present value of a series
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(i.e., the sum total) of such amounts. For example, a mortgage or other long-term
loan represents a current sum of money loaned to an individual or institution in
return for a stream of future payments. Thus, if an individual makes annual pay-
ments at the end of each year in amount V for T years, with the interest rate being
r , then the present value of this stream of payments is

PT =
T∑

t=1

V

(1+ r)t
= V

(1+ r)1
+ V

(1+ r)2
+ · · · + V

(1+ r)T
(3.6)

Note that expression (3.6) is simply a geometric series as described earlier
in this section in example 3.16. Replace the first term (a) from that series with
V/(1 + r) and the multiplicative factor ρ with 1/(1 + r), where ρ is referred to
as the discount factor. For finite valued T , equation (3.4) can be used to recast
equation (3.6) as

PT = V

(1+ r)

{
1− [1/(1+ r)]T

1− [1/(1+ r)]

}
(3.7a)

In the limit as T →∞, equation (3.5) would be recasted as

P∞ = lim
T→∞

PT = lim
T→∞

PT

V

(1+ r)

(
1− (

1
1+r

)T

1− (
1

1+r

)
)

Although this expression is a little messy, it can easily be simplified by noting that
1− 1/(1+ r) = r/(1+ r) and by applying a little algebra to get

P∞ = V

r
(3.7b)

So, for example, the present value of a stream of payments or receipts of
$8,000 occurring at the end of each of 50 years over the future at an interest rate of
8% (i.e., V = $8,000, r = 0.08, and T = 50) would be computed using equation
(3.7a) to obtain the value P50 = $97,867.88. If this stream is continued forever
(T →∞), it will be worth P∞ = $100,000. This second result is straightforward
as $100,000 invested at an annual interest rate of 8% will sustain a flow of income
of $8,000 forever.

What may be surprising is that the flow of $8,000 a year forever is worth only
slightly more than if the flow stops after the 50th year. The reason is that all the
income received after the end of the 50th year in the case of T → ∞ must be
discounted heavily. In fact, the value of $8,000 a year received forever from (end
of ) year 50 onward is also worth, at the beginning of the 50th year, $100,000. To
find what this is worth currently, one must discount this value by the rate 1/(1+r)50
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to obtain its present value. This gives the amount of $100,000/(1 + 0.08)50 =
$2,132.12. This is precisely the difference between P∞ and PT (with T = 50) in
this example (i.e. $100,000− $97,867.88 = $2,132.12).

In many circumstances we want to do the reverse of the exercise above. For
example, a bank lending $100,000 for a mortgage at an annual interest rate of 8%
to a homeowner who will make the same payment value V at the end of each
year needs to compute this value V . If the payments were to be made forever
(in perpetuity) it would be a trivial exercise to compute V by inverting equation
(3.7b); that is,

V = P∞ · r = $100,000 · (0.08) = $8,000

If, however, the payments are expected to be made for only 50 years, one must
invert equation (3.7a) to obtain

V = PT · (1+ r)(
1−[1/(1+r)]T

1−[1/(1+r)]

) = $100,000 · (1.08)(
1−[1/1.08]50

1−[1/1.08]

) = $8,174.29

Note that the payment level required for a 50-year period is not mush different than
that for an infinite period (i.e., $8,174.29 vs. $8,000.00). This is because payments
made beyond 50 years into the future are discounted heavily in present-value
calculations at least for a relatively high interest rate of 8% per year.

Example 3.18 Suppose that a stream of equal payments of amount $10,000 per year at the end of
each year is to continue in perpetuity. At the interest rate of 6% compute

(i) the present value of this entire stream of benefits
(ii) the present value of the benefits beginning at the end of the 51st year

(iii) the present value of the first 50 years of benefits

Solution

(i)

P∞ = lim
T→∞

PT =
∞∑
t=1

$10,000

(1.06)t
= $10,000

0.06
= $166,666.67

(ii) as of the end of the 50th year the present value of $10,000 per year in perpetuity
is $166,666.67, as computed in part (i). Since this is in effect received at
the end of the 51st year, its current (i.e., as of now) present value must be
discounted so that it becomes
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$166,666.67

(1.06)50
= $9,048.06

(iii) The present value of the first 50 payments is simply the answer in (i) less that
in (ii):

$166,666.67− $9,048.06 = $157,618.61

Note that we can also compute the value in (iii) using equation (3.7a); that is,

P50 = 10,000

1.06

(
1− (1/1.06)50

1− (1/1.06)

)
= 157,618.61

The examples above all deal with the problem of determining the present
value of a series of equal payments. In general, however, one can evaluate the
present value of any pattern of payments. Suppose, for example, that a business
firm is considering the possibility of making a current (and immediate) investment
of $C, the payoff of which will be the sales revenue of a product whose sales will
increase over time. Let us assume that the production process will begin at the end
of one year and that net profit from sales of the product is $π(1+ g) the first year
(as measured assuming it accrues at the end of the year) and will grow at a rate of
g each subsequent year. Thus the profit for period t will be at = π(1 + g)t , and
the (undiscounted) value of the stream of benefits (gross benefits) will be

GB = lim
T→∞

T∑
t=1

at = lim
T→∞

T∑
t=1

π(1+ g)t

which is a divergent series if π and g are positive. The discounted or present value
of the stream of benefits is

PV B = lim
T→∞

T∑
t=1

π(1+ g)t

(1+ r)t
(3.8)

which is just a geometric series, with a=π(1+ g)/(1+ r) and ρ= (1+ g)/

(1+ r), so that PV B = π(1 + g)/(r − g) and is finite valued if and only if
g < r (i.e., |ρ|< 1). To decide whether the investment is profitable, one merely
needs to determine whether PV B > C or PV B < C. This illustrates how dis-
counting is used in assessing the net benefits of a project. In most instances the
costs are heavily concentrated in the early periods with the benefits spread out over
a longer time horizon.
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Example 3.19 Suppose that a stream of payments arising from some business venture begins
with an amount of $20,000 immediately and grows at the rate of 4% per annum
thereafter, forever. Given an interest rate of 8%, find the present value of this
stream of payments.

Solution

From the formula given in equation (3.8), we have that the present value of the
stream of payments, beginning at the end of one year, is

PV B = lim
T→∞

T∑
t=1

$20,000(1+ 0.04)t

(1+ 0.08)t

= lim
T→∞

T∑
t=1

$20,000

(
1.04

1.08

)t

This is an example of a geometric series, with a= $20,000(1.04/1.08) and ρ =
(1.04/1.08). Using the formula given in equation (3.5) for finding the sum of an
infinite geometric series, we get

PV B = a

1− ρ
= $520,000

Upon adding the initial payment of $20,000 the final answer is $540,000.

This illustration leads us into a more general and very powerful application
of present-value calculations in the area of project evaluation. Many investment
plans or projects involve costs and benefits that occur disproportionately over
time. It is often the case that a larger fraction of the costs are incurred early on
(up front) while benefits are more evenly spread over a long interval of time.
Construction of a hydroelectric project is a stark example of this phenomenon. In
order to compare many of the front-end costs to the stream of benefits that will
occur later, it is standard procedure to compare all costs and benefits evaluated
in present-value terms. The following example shows how one can creatively use
present-value calculations to ascertain whether a project is worthwhile.

Example 3.20 Suppose that a profit-minded public utility is trying to decide whether to expand
its hydroelectric capacity by building a new dam. The project has the following
costs and benefits:

Building costs $200 million Immediately
$100 million At the end of each of

the next three years
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Operating costs $5 million Beginning at the end of
the fourth year and
continuing thereafter forever

Revenue $30 million Beginning at the end of
the fourth year and
continuing thereafter forever

The interest rate is 6%. Should the utility proceed with this expansion?

Solution

PV of building costs = 200m+ 100m

(1+ 0.06)
+ 100m

(1+ 0.06)2
+ 100m

(1+ 0.06)3

= 200m+ 100m

1.06
+ 100m

1.1236
+ 100m

1.1910

= 200m+ 94,339,623+ 88,999,644+ 83,961,928

= 467,301,195

Revenue and operating costs occur over the same time period, and so the value
of the stream of net operating revenue (i.e., revenue net of operating costs but not
net of building costs) is

∞∑
t=1

25,000,000

(1+ 0.06)t
= 25,000,000

0.06
= 416,666,667

from the perspective of the end of the third year. It follows that we must discount
this figure accordingly to compare it to the present value of building costs evaluated
from today’s perspective. Therefore

PV of net operating revenue = 416,666,667

(1+ 0.06)3

= 416,666,667

1.191016
= 349,841,368

Since the present value of building costs ($467,301,195) exceeds that of net
operating revenues $349,841,368.21, the utility should not proceed with the
project.

The following simple example explains clearly the economic rationale for
discounting revenues and costs using net present-value formulas in order to decide
on the economic viability of an investment. As the example illustrates, the present-
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value approach is an appropriate framework regardless of whether the funds needed
to finance the costs must be borrowed.

Example 3.21 An investment project that requires immediate costs of $200,000 generates net
revenues of $15,000 per year beginning at the end of the first year and continuing
forever.

(i) Find the net present value of this investment if the interest rate is 9%.
(ii) Illustrate why this investment is not worthwhile if the investor must borrow

the money at an interest rate of 9%.
(iii) Illustrate why this investment is not worthwhile if the investor doesn’t need

to borrow the money but can invest any financial capital at a rate of 9%.

Solution

(i) The present value of the revenue stream is

P∞ = 15,000

0.09
= 166,666.67

while the present value of costs is $200,000. Since the present value of costs
exceeds the present value of revenues, this is not a worthwhile scheme.

(ii) If the investor must borrow the funds at r = 9%, then the interest cost will
be $200,000× 0.09 = $18,000 per year, which exceeds the annual revenues.

(iii) If the investor has the financial capital available, she could simply invest that
money at 9% and generate more money ($18,000 per year) than by investing
in the project ($15,000 per year).

In situations as in the preceding example, it is useful to compute the internal
rate of return of the investment. This is the implicit rate of return earned on the
funds invested. If it exceeds the market rate of interest, then it is a financially
worthwhile project and not otherwise. For the example above, since an immediate
investment of $200,000 generates a stream of payments of $15,000 per year forever,
it follows that the internal rate of return is

15,000

200,000
= 0.075 or 7.5%

This concept is defined more generally below.

D e f in i t i o n 3 . 8 The internal rate of return of a project or investment is the rate of interest that
equates the present value of benefits and costs.
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The single calculation of the internal rate of return is useful in that it implicitly
determines the set of interest rates under which the investment is economically
viable. Notice that for the investment described in example 3.21, if the market
interest rate exceeds 7.5% (the internal rate of return of the project), then it is
not an economically viable project. As the next example illustrates, this rate of
return is not always found so easily, and often computer simulation is required to
calculate it.

Example 3.22 Find the internal rate of return for the following investment project:

Initial costs (immediate) $100,000
Subsequent costs (end of one year and continuing forever) $50,000 annually
Revenues (from end of year 6 and continuing forever) $70,000 annually

Solution

The internal rate of return is that value of the interest rate, r̂ , which when used in
the net present-value calculations will exactly balance costs against revenues (i.e.,
lead to a net present value of zero). Therefore this value for r̂ is the solution to the
following equation:

$100,000+
∞∑
t=1

$50,000

(1+ r̂)t︸ ︷︷ ︸
PV of costs

=
∞∑
t=6

$70,000

(1+ r̂)t︸ ︷︷ ︸
PV of revenues

The right side of this equation represents the amount $70,000 every year in per-
petuity beginning six years from now. As of the beginning of year 6 (i.e., end of
year 5), this has a present value of $70,000/r̂ , and so discounting this number
means that it has a current value of

($70,000/r̂)

(1+ r̂)5

It is not easy to solve analytically for r̂ in this relationship, which can be written

$100,000+ $50,000

r̂︸ ︷︷ ︸
PV of costs

= ($70,000/r̂)

(1+ r̂)5︸ ︷︷ ︸
PV of benefits

By using a computer to try several values for r , we find the solution to be r̂ = 0.05.
Values less than r̂ = 0.05 give a higher present value for benefits than costs, while
values greater than r̂ = 0.05 give a higher present value for costs than for benefits.
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The reason for this is that the benefits of this project accrue relatively further in
the future and so are reduced to a greater extent than are costs as the interest rate
rises. Table 3.1 illustrates this point.

Table 3.1

Interest rate (r) PV of costs PV of benefits

0.04 $1,350,000 $1,438,000
0.05 $1,100,000 $1,100,000
0.06 $933,300 $871,800

Further examples of using the formulas to understand various economic models
and concepts are provided on the Web page http://mitpress.mit.edu/math econ3.

E X E R C I S E S

1. Consider the trivial sequence an = c, c > 0 a constant. Show that this is an
example of a sequence for which

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

and the series generated by it diverges (see theorem 3.4).

2. Show that the harmonic series

sn =
n∑

i=1

ai, ai = 1

i

diverges. [Hint: Group terms from i = 2k + 1 to 2k+1, k = 1, 2, 3, . . . ,

and note that the sum in each group is greater than 1/2.] Show that this is
an example of a sequence for which limn→∞ |an+1/an| = 1 and the series
generated by it diverges.

3. By writing out and expanding expressions for sn and ρ2sn, prove that for
|ρ|< 1,

lim
n→∞ sn = lim

n→∞

n∑
t=1

aρ2t−1 = aρ

1− ρ2
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4. Evaluate the net present value of the following streams of income:

(a) V = $1,000 per year at an interest rate of 5% in perpetuity

(b) V = $1,000 per year at an interest rate of 12% in perpetuity

(c) V = $1 million per year at an interest rate of 10% in perpetuity

(d) Vt = $1 million per year in perpetuity, but not begining until year t = 5
at an interest rate of 15%

5. Suppose that a project has an immediate cost of $10 million and running costs
of $1 million per year beginning at the end of a one-year construction period.
At the end of this year, annual gross revenue from the project of $1.5 million
per year is generated in perpetuity. (You may assume that the running costs
and revenues accrue at the end of each year.)

(a) Is the project profitable in a net present-value sense if the interest rate
is 8%?

(b) For what range of interest rates (nonnegative) is the present value of net
revenues (including the immediate cost of $10 million) positive?

6. A power company can develop a hydroelectric project at one of two capacity
levels, one megawatt or two megawatts, at the cost of $1 billion or $1.75 billion
respectively. Construction in either case takes one year’s time with the cost
being incurred immediately. If the smaller capacity is chosen, it is not possible
to increase capacity at a later date. The company can sell the capacity from
one megawatt on a contractual basis for a net revenue of $200 million per
year (in perpetuity) with payments beginning in two years’ time (i.e., one
year after the construction period.) No customer will currently purchase the
second megawatt of capacity, but a second party (e.g., another state or country)
will contract to purchase the second megawatt of power for $300 million per
year in perpetuity beginning 10 years from now (with first payment at the end
of that year).

(a) Find the net present value of building for each capacity level if the
interest rate is 5%. Should the power company invest in 0, 1, or 2
megawatts of capacity?

(b) Do the same as in part (a) for interest rates of 10% and 15%.
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C H A P T E R R E V I E W
Key Concepts bounded above

bounded below
bounded sequence
continuous compounding
convergent sequence
definite divergence
divergent sequence
discrete compounding
geometric series

harmonic series
internal rate of return
limit
monotonically decreasing
monotonically increasing
present value
sequence
series
unbounded sequence

Review Questions 1. Explain and provide the notation describing a sequence.

2. What does it mean for a sequence to be bounded?

3. What does it mean for a sequence to have a limit?

4. What does it mean for a sequence to be monotonically decreasing or increas-
ing?

5. Why is boundedness not sufficient for a sequence to have a limit unless the
sequence is monotonically increasing or decreasing?

6. What is the difference between an unbounded sequence that is definitely
divergent and one that is not? Give an example.

7. Explain the relationship between a sequence and a series.

8. Write out the formula for a finite geometric series.

9. Write out a formula for an infinite geometric series.

10. Why is it that when computing the present value of a project yielding fixed
payments, received periodically over a long period of time, it is often as-
sumed that the payments continue in perpetuity?

11. What does continuous compounding mean?

Review Exercises 1. Determine the first five terms of each of the following sequences. In each
case, draw a graph such as those in figures 3.1 to 3.6.

(a) f (n) = 1/n2

(b) f (n) = 2+ [(−1)n (1/n)]
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(c) f (n) = n/(3n+ 2)

(d) f (n) = −n2

(e) f (n) = (n2 + 2n+ 1)/(n+ 1)

(f ) f (n) = 5+ 1/n

(g) f (n) = 5− 1/n

2. Determine the limit, if one exists, for each sequence given in question 1. If
a sequence is divergent, determine whether it is definitely divergent. [Hint:
Use definitions 3.2 and 3.4.]

3. (a) Compute the present value of the following amounts of money, given
an interest rate of 8%.

(i) $100 received one year from now

(ii) $150 received five years from now

(b) Suppose an individual can earn a rate of return of 8% or can borrow
money at this same rate. Explain intuitively why the resulting ranking
of the alternatives given in part (a) should correspond to the relative
present values.

4. *Prove result (iv) of theorem 3.2.

5. Evaluate the net present values of the following streams of income:

(a) V = $100 per year in perpetuity at an interest rate of 10%

(b) V = $100 per year at an interest rate of 10% for 25 years

(c) V = $100 per year beginning after 25 years at an interest rate of 10%
for 25 years

6. Suppose that an investment project has an immediate cost of $100 million
followed by costs of $50 million at the end of one year and a further $25 million
at the end of two years. Net revenues (i.e., revenues in excess of operating
costs) accrue in the amount of $16 million at the end of each year beginning in
three years’ time. Find the net present value of this investment project given
an interest rate of 9%.

7. A student in economics has completed her undergraduate degree and has been
accepted into a one-year postgraduate business program. Upon completion of
this degree she will earn an additional $2,000 a year for each of the next 40
years. She will give up $18,000 income that she would otherwise earn and
sustain additional costs of $2,000 for educational materials such as books.
She cares only about the financial implications of her decisions.
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(a) If the interest rate for borrowing and investing is the same, at amount
8%, should she accept the offer into the business program? Explain.

(b) What is the internal rate of return of attending this business program?
How does your answer indicate conditions for which it is worthwhile to
attend this program?

(c) Do your answers to parts (a) and (b) depend on whether this individual
would need to borrow money or use any savings she has? Explain.

(d) How does this example explain the phenomenon that attendance in post-
secondary programs tends to rise when the unemployment rate rises?
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Chapter 4 Continuity of Functions

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Revenue Function, Cost Function, and Profit Function for a Perfectly
Competitive Firm
• Hotelling’s Location Model
• Intermediate-Value Theorem
• Practice Exercises

The idea of continuity of a function is extremely important in mathematics. Many
convenient techniques of analysis can be used if a function is continuous but
not if it is discontinuous. In modeling economic problems, we often assume that
we can represent various economic concepts by continuous functions (e.g., the
relationship between the quantity of some commodity produced by the firm and
its profit level). Thus it is important to know precisely what is the content of this
assumption, especially since in many instances there is a natural reason to believe
that the function will not be continuous everywhere, and in some cases this turns
out to be an important consideration from an economic standpoint. As we will
see in this and the subsequent chapter, both continuity and differentiability can be
conveniently defined in terms of the existence of certain limits.

4.1 Continuity of a Function of One
Variable

The intuitive notion of continuity can be explained easily with the aid of a graph.
A function is continuous if the graph of the function has no breaks or jumps in it.
On the following pages figures 4.1 and 4.2 present graphs of continuous functions,
while figures 4.3 to 4.6 present graphs of discontinuous functions. We first define
the continuity of a function y = f (x), x ∈ R, at a specific point, say x = a. This
approach is, not surprisingly, referred to as pointwise continuity. We then say that
a function is continuous on a set of points if it is continuous at each point of that
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set. If the function is continuous at each point in the domain, we simply say that
the function is continuous. Before giving this definition of continuity formally, it
is useful to give the definitions for left- and right-hand limits of a function at a
given point.

D e f in i t i o n 4 . 1 The left-hand limit of a function f (x), which is defined to the left of a, at the
point x = a, exists and is equal to LL, written

lim
x→a−

f (x) = LL

if for any ε > 0, however small, there exists some δ > 0, such that |f (x)−LL|< ε,

∀ x, satisfying a − δ < x < a.

This definition states that if it is always possible to find some (possibly very small)
range of values of x to the left of a (i.e., strictly less than a) for which the function
values f (x) can be made to be arbitrarily close to some value LL, then we say
that the left-hand limit of f (x) at x = a exists and is equal to LL.

Example 4.1 Provide a specific example of a sequence of x-values that approaches the point
x = a from the left (x → a−).

Solution

An example of a sequence of x-values that approaches x= a from the left is
xn= a− (1/n), n= 1, 2, 3, . . . . Choosing a value of δ sufficiently small to satisfy
the condition |f (x)− LL| < ε is equivalent to choosing n sufficiently large (i.e.,
a− δ < xn < a for n > 1/δ). In fact, if the left-hand limit is LL, then the sequence
of values fn= f (xn) must converge to the value LL for xn= a − (1/n).

This example of a sequence of values xn that approaches x= a from the left
illustrates the relationship between limits of functions and limits of sequences (see
chapter 3) and also explains why the notation x → a− is used to denote a left-hand
limit (x = a minus some small positive value). One must realize, however, that
for the left-hand limit of the function to exist and equal LL, it must be the case that
any sequence of xn values approaching a from the left must induce a sequence of
function values fn = f (xn), which converges to the limit LL.

A similar definition applies for the right-hand limit, namely that if there is
always some (possibly very small) range of values of x to the right of a (i.e.,
strictly greater than a) for which the function values f (x) can be made arbi-
trarily close to some value LR , then we say that the right-hand limit of f (x) at
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x= a exists and is equal to LR . An example of a sequence of x-values that ap-
proaches x = a from the right is xn= a+1/n, n= 1, 2, 3, . . . . Hence we have the
notation

lim
x→a+

f (x)

for the right-hand limit.

D e f in i t i o n 4 . 2 The right-hand limit of a function f (x) which is defined to the right of x = a, at
the point x = a, exists and is equal to LR , written

lim
x→a+

f (x) = LR

if for any ε > 0, however small, there exists some δ > 0, such that |f (x)−LR| <
ε, ∀x, satisfying a < x < a + δ.

Suppose that a function is defined on some open interval including the point a.
We say that the limx→a f (x) exists at a if the left- and right-hand limits exist and
are equal to each other. We can now offer two equivalent definitions of pointwise
continuity.

D e f in i t i o n 4 . 3 A function f (x) defined on an open interval including the point x = a is contin-
uous at that point if

(i)

lim
x→a

f (x)

exists; that is,

lim
x→a−

f (x) = lim
x→a+

f (x)

and
(ii)

lim
x→a

f (x) = f (a)
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D e f in i t i o n 4 . 4 A function f (x), defined on an open interval including the point x = a is contin-
uous at that point if there is some δ > 0 such that |f (x) − f (a)|< ε, whenever
|x − a| < δ for any ε > 0.

A function that is not continuous is said to be discontinuous. Definition 4.3 is
the more useful definition when trying to show that a function is discontinuous at
a certain point. This will become clear when discussing why the examples of the
functions illustrated in figures 4.3 to 4.6 are discontinuous. Each case demonstrates
a distinct property that is the cause of the discontinuity. Together the cases exhaust
the reasons why a function may be discontinuous.

It is often simpler, however, to use definition 4.4 to show that a function is
continuous, as will be seen for the examples of continuous functions illustrated in
figures 4.1 and 4.2. Definition 4.4 illustrates the similarity between the definition
of continuity of a function and that of the limit of a sequence (definition 3.2). Ac-
cording to definition 4.4, a function f (x) is continuous at the point x = a if f (x)

is arbitrarily close to f (a) for all values of x close to x = a (i.e., for |x−a| < δ),
while a sequence f (n) has limit value L if f (n) is arbitrarily close to L for all
values n beyond some value that is sufficiently large (i.e., n > N).

x

f (x)

3

6
6 + ε

6 – ε

3 + δ3 – δ

y = 2x

f (x)  = 2x

Figure 4.1 Function y = 2x (with
demonstration that it is continuous at
x = 3)

Example 4.2 Show that the linear function f (x) = 2x is continuous.

Solution

Take the function f (x) = 2x. This function is continuous at every point x ∈ R.
To see this, consider the point x = 3 in figure 4.1. The function value at x = 3
is f (3) = 6. According to definition 4.4, this function is continuous at this point
if, no matter how small a number ε > 0 we choose, there is some value δ > 0
(possibly very small) such that all the function values defined on the set of x

values (3− δ, 3+ δ) lie within the set (6− ε, 6+ ε). Intuitively this means that the
function values defined at points near x = 3 are all close to f (3). For example,
if we choose ε = 0.01, then by choosing δ = 0.002, we find that all function
values f (x) defined on the set x ∈ (3 − 0.002, 3 + 0.002) lie within distance
ε of f (3). That is, f (x) ∈ (f (3 − 0.002), f (3 + 0.002)), which implies that
f (x) ∈ (6 − 0.004, 6 + 0.004). All of these values are within distance ε = 0.01
of f (3) = 6. This would be true for any choice of δ ≤ 0.005. More generally, we
see that at any value x = a we can be assured that f (x) will lie within distance ε

of f (a) as long as we choose δ < ε/2. That is, for x ∈ (a− ε/2, a+ ε/2), we get
f (x) ∈ (2a − ε, 2a + ε).

Informally then, a function is continuous at a point x = a if the function is
defined at that point (i.e., f (a) exists) and you can meet the following challenge. No
matter how small a value ε > 0 is chosen, it is always possible to find a sufficiently
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small but positive δ such that for all the x-values within distance δ of the point
x = a, the function values fall within distance ε of f (a).

Example 4.3 Show that the polynomial function f (x) = x3−2x2+1 is continuous at the point
x = 1/2.

Solution

The graph for the polynomial function f (x) = x3−2x2+1 is drawn in figure 4.2.
At x= 1/2, we see that the function takes on the value f (1/2) = 5/8. It is clear
from the diagram that if for any ε > 0 we can find a value δ such that for x ∈ (1/2−
δ, 1/2+ δ), the function values will lie within the set f (x) ∈ (5/8− ε, 5/8+ ε).
In this case the actual choice for δ for any given ε is not so easy to ascertain. Some
reasonably straightforward cases are given in the exercises following this section.

x

f (x)

1
2

+ ε

– ε

 + δ – δ

y = x3 – 2x2 + 1

1
2

1
2

1

5
85

8

5
8

1

1 +   5
2

1 –   5
2

Figure 4.2 Function y = x3 − 2x2 + 1 (with demonstration that it is continuous at
x = 1/2)

Example 4.4 Show that the function below is discontinuous:

f (x) =
{+1, x ≤ 0

−1, x > 0

x

f (x)

1

–1

f (x)  = +1, x ≤ 0
–1, x > 0

Figure 4.3 Function in
example 4.4 (which is discontinuous
at x = 0)

Solution

This function is graphed in figure 4.3. Notice that the function has an obvious
“break” or “jump” at the point x = 0. As one approaches the point x = 0 from
the left, the value of the function is +1, while as one approaches x = 0 from
the right, the value of the function is −1. In other words, the left-hand limit,
limx→0− f (x) = +1, is not equal to the right-hand limit, limx→0+ f (x) = −1.
Thus condition (i) of definition 4.3 is not satisfied at the point x = 0, and so the
function is not continuous at x = 0.

We can also use definition 4.4 to see that this function is discontinuous at the
point x = 0. Suppose that we try to find an interval (open set) of x-values including
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the point x = 0 such that for all x-values in this interval, the function value is
within distance ε = 0.5 of f (0). We will fail. No matter how small a value δ > 0
we choose, we will always find that f (x) will take on both the values +1 and −1
for some x ∈ (−δ, δ).

Before considering further examples of functions which are discontinuous, it is
useful to introduce the concept of the asymptote of a function.

D e f in i t i o n 4 . 5 If the value of a function f (x), x ∈ R, becomes unbounded as x approaches some
value x= a either from the left or the right, then we say the line x = a is an
asymptote of the function.

In such cases the function is not continuous. If any one or more of the following
possibilities holds, we say that the line x = a is a vertical asymptote.

lim
x→a+

f (x) = +∞, lim
x→a+

f (x) = −∞,

lim
x→a−

f (x) = +∞, or lim
x→a−

f (x) = −∞.

Example 4.5 Show that although the function f (x) = 1/x2 has the same left-hand and right-
hand asymptotic limits at the point x = 0, it is not continuous.

Solution

The line x = 0 is a vertical asymptote for the function f (x) = 1/x2 because the
left-hand and right-hand limits of f (x) at x = 0 are both +∞:

lim
x→0−

f (x) = lim
x→0+

f (x) = +∞

We say that the asymptotic limit of the function at x = 0 is +∞. This possibility
is similar to the idea of a sequence being definitely divergent, as discussed in
chapter 3. Although the left- and right-hand limits of the function are the same,
the function is not continuous because f (0) is not defined. Thus condition (ii) of
definition 4.3 is violated. The same holds true for definition 4.4 which requires
that f (x) must be defined on some open interval including the point x = 0 for it
to be continuous at x = 0 (see figure 4.4).

x

f (x)

f (x)  = 1/x2

Figure 4.4 The function
f (x) = 1/x2 (which is discontinuous
at x = 0 since 1/x2 is undefined there)

Example 4.6 Find an example of a function that has different left-hand and right-hand asymptotic
limits at a point and so is not continuous at that point.
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Solution

The function f (x)= 1/(x − 1) has different left-hand and right-hand asymptotic
limits at the pointx= 1. Forx slightly less than 1, it follows thatx− 1 is a small neg-
ative number, and so 1/(x− 1) is negative but large in absolute value. For x slightly
greater than 1, it follows that (x− 1) is a small positive number, and so 1/(x− 1)

is a large positive number. Thus limx→1−f (x)=−∞, while limx→1+f (x)=+∞,
as illustrated in figure 4.5. As was the case for example 4.5, this function is not de-
fined at the point in question (x = 1) and so is not continuous at x= 1. In this case
there is the additional problem that the left- and right-hand limits are not the same.

x

f (x)

f (x)  = 1/(x – 1)

1

Figure 4.5 Function f (x) = 1/(x − 1) (which is discontinuous at x = 1 since
1/(x − 1) is undefined there)

Example 4.7 Show that a function with a hole in it is not continuous.

Solution

Consider the function

f (x) =
{

3x, ∀ x ∈ R, x �= 2

3, x = 2

which is graphed in figure 4.6. Despite the fact that this function is defined at f (2)

and its left- and right-hand limits are equal at x = 2, the function is not continuous
here because condition (ii) of definition 4.3 is not satisfied.

x

f (x)

f (x)  = 3x , x ≠ 2
3, x = 2

2

3

6

Figure 4.6 Function in example
4.7 (which is discontinuous at x = 2)

We can also see formally that this function is not continuous by using defi-
nition 4.4. At the point x = 2 we have f (x) = 3. However, consider the value
ε = 1. It is not possible to find an interval of x-values, (2 − δ, 2 + δ), for which
the function values are within distance ε of f (2) for every x in this interval. This
is true no matter how small a value for δ(δ > 0) is chosen.
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The following results, which summarize some useful properties of continuous
functions, are intuitively straightforward. We provide a proof for only one of them,
which should give the flavor of the rest of the results.

Theorem 4.1 Suppose that f (x) and g(x) are continuous functions and that c �= 0 is a constant.
The following are also continuous:

(i) cf (x)

(ii) f (x)+ c

(iii) f (x)± g(x)

(iv) f (x)g(x)

(v) f (x)/g(x) for g(x) �= 0
(vi) f −1(x), if it exists

Proof of Part (i)

Since it is assumed that f (x) is continuous, we know from definition 4.3 that for
any x = a, limx→a f (x) exists and is equal to f (a). That is, limx→a− f (x) =
limx→a+ f (x) = f (a). Thus, letting h(x) = cf (x), we get

lim
x→a−

h(x) = lim
x→a−

cf (x) = c lim
x→a−

f (x) = cf (a)

Similarly limx→a+ h(x) = cf (a) and h(a) = cf (a). Thus all of the conditions for
continuity are satisfied for the function h(x) = cf (x).

There are many instances in economics where the domain of a function is
not the entire real line but is a proper subset of it. For example, in considering the
amount of labor L for a firm to employ, it does not make sense to consider negative
values. Thus the relevant domain of a production function q = Q(L) involves a
lower bound or boundary, and we would write L ≥ 0 or L ∈ [0,∞). When
considering continuity of the function Q(L) at the point L = 0, it does not make
sense to think about an open interval containing that point. In other instances the
domain may have an upper bound or both a lower and upper bound. For example,
in the short run a firm is constrained by its existing capital stock, say K ≤ K̄ , and
so the relevant set of values for capital to choose from would be K ∈ [0, K̄ ].

To deal with cases where the domain has boundary points, we make use of
the concepts of right-hand and left-hand limits as given in definitions 4.1 and
4.2. Thus suppose that the function f (x) is defined only on the closed interval
x ∈ [a, b], a≤ x ≤ b. Since x cannot be less than a, we cannot define the left-hand
limit of f (x) as x → a−, and since x cannot be greater than b, we cannot define
the right-hand limit of f (x) as x → b+. However, as long as f (x) is continuous
at every point strictly within the interval [a, b], meaning for a < x < b, and is
continuous as x → a+ (from the right) and x → b− (from the left), we say that
the function f (x) is continuous on the closed interval [a, b].
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D e f in i t i o n 4 . 6 Let f (x) be defined on the closed interval [a, b], x ∈ R and a < b. We say that

(i) f (x) is continuous from the right at the point x = a if limx→a+f (x) exists,
f (a) exists, and limx→a+f (x) = f (a).

(ii) f (x) is continuous from the left at the point x = b if limx→b−f (x) exists,
f (b) exists, and limx→b−f (x) = f (b).

(iii) f (x) is continuous on the closed interval [a, b] if it is continuous at every
point x strictly within the interval (i.e., a < x < b), is continuous from the
right at x = a and is continuous from the left at x = b.

Examples of functions relevant to economics that are discontinuous, including
some that are defined only on proper closed subsets of the real numbers, are
provided in the next section.

E X E R C I S E S

1. For each of the following functions, generate the sequence of function values
associated with the sequence of x-values, xn = 2 − 1/n, n = 1, 2, 3, . . . .

Show that the sequence of function values converges in each case and find the
limit. In each case, what does this suggest about the left-hand limit of f (x)

at x = 2, namely limx→2− f (x)?

(a) f (x) = 5x (b) f (x) = −3x + 4

(c) f (x) = mx + b for m and b constant (d) f (x) = x2

2. For the same functions as in question 1 above, generate the sequence of
function values associated with the sequence of x-values, xn = 2 + 1/n,
n = 1, 2, . . . . Show that the sequence of function values converges in each
case and find the limit. In each case, what does this suggest about the right-
hand limit of f (x) at x = 2, that is, limx→2+ f (x)?

3. For each of the following functions, indicate at which point(s) the function
is discontinuous and explain which of the conditions of definition 4.3 is not
satisfied. In each case, graph the function. (The domain is R in each case.)

(a) f (x) =
{

2x + 3, x < 1

x + 5, x ≥ 1

(b) f (x) = 1/x

(c) f (x) = 1/(x − 3)2

(d) f (x) = (x − 2)/(x2 − x − 2) [Hint: Factor the denominator.]
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4. For each of the following functions, indicate at which point(s) the function
is discontinuous and explain which of the conditions of definition 4.3 is not
satisfied. In each case, graph the function. (The domain is R in each case.)

(a) f (x) =
{−3x + 12, x < 4

−2x + 10, x ≥ 4

(b) f (x) = 1/2x

(c) f (x) = 1/(x − b)2 for b constant

(d) f (x) = (x − 1)/(x2 + 2x − 3) [Hint: Factor the denominator.]

5. Prove that according to definition 4.4, the following functions are continuous
at every point x ∈ R:

(a) f (x) = 4x + 3

(b) f (x) = mx + b

6. Prove that according to definition 4.6, the function, f (x) = 2x − 5, defined
on the interval [0, 1] is continuous. Pay special attention to the points x = 0
and x = 1.

7. Suppose that we break up the interval [0, 10] into subintervals, each of length
1, in the following way:

{[0, 1), [1, 2), [2, 3), . . . , [8, 9), [9, 10]}

Define the function f (x) as

f (x) = k for x ∈ [k − 1, k); k = 1, 2, 3, . . . , 9

f (x) = 10 for x ∈ [9, 10]

Plot this function. Notice that the function values are a series of steps. For
this reason it is called a step function. Discuss the continuity properties of this
function in terms of definition 4.3. Also discuss the continuity properties of
this function on each subinterval in terms of definition 4.6.

8. This question introduces a general definition of a step function. Suppose that
we take the following set of points from the interval [a, b]:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

We can use these points to break up the interval [a, b] into k subintervals:

{[x0, x1), [x1, x2), [x2, x3), . . . , [xn−2, xn−1), [xn−1, xn]}
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Suppose that the function f (x) takes on one value, θi , in the subinterval
[xi−1, xi), i = 1, 2, . . . , n− 1 and the value θn in the subinterval [xn−1, xn]).
Discuss the continuity properties of this function in terms of definition 4.3.
Also discuss the continuity properties of this function on each subinterval in
terms of definition 4.6.

4.2 Economic Applications of Continuous
and Discontinuous Functions

There are many natural examples of discontinuities from economics. In fact eco-
nomists often adopt continuous functions to represent economic relationships when
the use of discontinuous functions would be a more literal interpretation of reality.
It is important to know when the simplifying assumption of continuity can be
safely made for the sake of convenience and when it is likely to distort the true
relationship between economic variables too much. Our first example illustrates
a class of situations where it is usual to use a model with continuous functions
even though this is a distortion of reality in a literal sense. In most such cases the
assumption is not a harmful one. However, as some of the other examples illus-
trate, the idea of discontinuity may be inherent in an economic model, with the
solution hinging entirely on the existence of some point of discontinuity of the
relevant function.

Divisibility and the Production Function

The first step in modeling the decisions of a firm is usually an analysis of the
available technology. This relationship between inputs used and outputs generated
is generally presumed to be represented by some production function. In the case
of one input, call it x, and one output, call it y, we can write y = f (x).

What does it mean to say that this function is continuous on some range of
values (usually x ≥ 0, x ∈ R)? In the first place, to assume that f (x) is continuous
at a point x = a implies that f (x) is defined on some open interval of real numbers
containing the point a. This means that x must be infinitely divisible. That is, one
can choose x to be a value that deviates even by infinitesimal amounts from x = a.

An example of an input (and an output) that would not be infinitely divisible
would be bolts used in the production of an automobile. Since one would not use
a fraction like a half of a bolt, it would only make literal sense to treat bolts as
integer valued. Therefore it does not make sense to contemplate an open interval
of points including some value x = a bolts. However, if a manufacturer produces
20,000 vehicles per year using 1,050 bolts in each vehicle, it seems reasonable to
simply treat bolts and vehicles as infinitely divisible and represent the relationship
between them as y = x/1,050, where x is the number of bolts used and y is the
number of vehicles produced. (Of course, we have ignored all the other inputs.)
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x

f (x)

y  = (1/1,050)x

1,050 2,100 3,150

1

2

3

Figure 4.7 The function
y = (1/1,050)x

Figure 4.7 illustrates this function, but the true relationship would include only
the points (1,050, 1), (2,100, 2), (3,150, 3), and so forth. If one uses the continuous
function y = (1/1,050)x in the process of solving some decision problem for the
firm and discovers the solution involves some value of x that is not a multiple of
1,050, then using the closest value that is a multiple of 1,050 would probably be
reasonably accurate. Thus, even if a commodity is not infinitely divisible, we can
often assume that it is, without distorting reality very much.

A Salary Schedule with a Bonus Payment

Suppose that a salesperson receives a salary according to a contract that establishes
a relationship between pay and the level of sales made by the salesperson. In
particular, suppose that the contract stipulates that the salesperson’s monthly salary
will be composed of three parts: (i) a basic amount of $800, (ii) a commission of
10%, and (iii) a lump-sum bonus of $500 if the salesperson’s sales for the month
reach or exceed $20,000. From this description, one can see that her salary will
jump by $500 if the critical level of $20,000 worth of sales is achieved. This
implies a discontinuity in her salary schedule. Letting S represent sales per month
and P represent the salesperson’s pay for the month, it follows that the function
describing her salary-sales relationship is

P =
{

$800+ 0.1S, S < $20,000

$1,300+ 0.1S, S ≥ $20,000

which is illustrated in figure 4.8.

S

P

1,600

2,400

3,200

800

20,000

P = 800 + 0.1S, 
S < 20,000

P = 1,300 + 0.1S, 
S ≥ 20,000

Figure 4.8 A salary schedule with a bonus payment
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The fact that the bonus of $500 is achieved once S reaches the critical value
of $20,000 leads to the result that the left-hand limit of the salary function at
S = $20,000 is $2,800 while the right-hand limit is $3,300. The existence of
this discontinuity has interesting economic implications. Consider the following
scenario. There are three salespersons, called A, B, and C. Their cumulative sales
for the month, not including the last day, are $26,000 for A, $18,500 for B, and
$6,000 for C. The 10% commission on sales will give each a similar incentive to
make extra sales on the last day of the month. But will the $500 bonus possibility
have a different effect on the three salespersons? Assuming that it is plausible to
generate a few thousand dollars worth of sales in a day but virtually impossible
to create more than $10,000 worth of sales, one would expect that salesperson B
will try harder on the last day to increase sales than will the other two.

A Discontinuous Income Support Program

Many welfare programs or “income support programs” offer individuals who are
not employed a fixed or lump-sum monthly payment that is made only if the
individual does not earn any income. Once an individual earns any income what-
soever, the payment is stopped. Consider the following hypothetical example.
Suppose that a single parent of two preschool-aged children can collect a monthly
welfare payment of $750 provided she does not enter the labor market; once she
earns any positive amount of income, the welfare payment stops. Assume that she
can earn $15 per hour at some job for which the number of hours worked per month
is entirely flexible. The income of this person, Y , as a function of hours worked,
h, is given below:

Y (h) =
{

750, h = 0

15h, h > 0

The graph depicting this person’s income as a function of hours worked is provided

in figure 4.9. It is clearly discontinuous at h = 0 hours worked.

h

Y (h)
750, h = 0
15h, h > 0

50

750

Y (h) = {

Figure 4.9 A discontinuous
income support function

This type of discontinuity, which is a property of many “all or nothing” income
support programs, has been the subject of a great deal of debate. One can see that a
person in such a program would have to work 50 hours per month just to match the
income earned from the support payments. Since the person would face childcare
and other costs of working, the “all or nothing” property of this program presents
a serious deterrent to the incentive to work.

An alternative scheme would be to allow a person in this situation to keep
a certain fraction of income earned in addition to the $750 monthly payment.
Suppose, for example, that the person were allowed to retain 50% of any earnings,
with the other 50% representing a payback of the income support up to the level
where the entire $750 is paid back. A person facing a wage rate of $15 per hour
will have paid back the full $750 only after working 100 hours or more per month
(0.5× 100× 15 = 750). For 0 ≤ h < 100, the effective wage rate is 50% of $15
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(or $7.50), and so net income for this range of hours worked is Y (h) = 7.5h. After
this amount of earnings, the individual would keep any excess. Therefore under
this program the person’s income schedule would be the following:

Y (h) =
{

750+ 7.5h, 0 ≤ h ≤ 100

15h, h > 100

The graph for this income schedule is provided in figure 4.10. Notice that it
is continuous. [Check that limh→100− Y (h) = limh→100+ Y (h) = Y (100).]

h

750

1,500

100

Y (h)
750 + 7.5h,  h ≤ 100
15h, h > 100

Y (h) =

Figure 4.10 A continuous income-support function

Many economists prefer this second plan because it avoids the discontinuity of
the first plan. In the first plan there is effectively a large penalty for working at all,
since income drops from $750 per month to almost zero if the individual chooses
only a few hours of work. Under the second plan the person always earns more
income by choosing to work more.The result is that the person will be more likely to
choose some positive hours of work under the second plan making himself/herself
better off and also reducing the cost of the program to the government.

Continuous Marginal-Product Functions

The marginal product of an input is the amount by which output increases as
a result of an additional unit of that input being used, given fixed amounts of
other inputs available. This concept is useful in economics when analyzing the
decision-making problem of firms in the short run when the level of some inputs
can be altered (variable inputs) but other input levels are fixed (fixed inputs).
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Afull treatment of the marginal product of an input will be taken up in the following
chapter on derivatives. However, there are some interesting problems concerning
the continuity of marginal-product functions that are useful to consider here. For
example, suppose that the function y = 10L relates the amount of output produced,
y, to the amount of labor input employed, L, for given fixed levels of other inputs.
One can then see that an increase in L of one unit always leads to an increase
in output of 10 units. Thus the marginal product of labor function is the constant
function y = 10 and so is continuous on the interval [0,∞).

Notice that this marginal-product function has the rather unrealistic property
that more output is generated by using more labor even for very large values of
labor. Since the amounts of all other inputs are fixed, one might anticipate that
it makes more sense to imagine that as L increases, the added output generated
begins to fall and may even become zero or negative. The following discussion
shows that this phenomenon may occur in such a way that the marginal-product
function should be modeled as a discontinuous function.

Marginal-Product Function with a Capacity Constraint

In many production processes the maximum output that can be produced by in-
creasing the amount of a variable input depends on the amount of the other (fixed)
inputs available. A good example is a coal-fired electricity generating station.
There will always be some absolute maximum amount of power that can be gen-
erated from a single station. This maximum is generally referred to as the capac-
ity of the station. For example, if a station has a 1,500-megawatt capacity, this
means that no matter how much coal or other inputs are available, the maximum
amount of energy that can be generated in a twenty-four hour period (per day) is
36,000 megawatt-hours (i.e., 24× 1,500).

Suppose that we want to determine the marginal product of coal for a case
in which there is enough of all inputs other than coal to keep a 1,500-megawatt
power plant operating at capacity. Assume that it takes 250 pounds of coal to
generate one megawatt-hour of energy, and so one ton of coal will generate eight
megawatt-hours of energy. Therefore the marginal product (per day) of coal is eight
megawatt-hours (per ton) as long as capacity has not been reached. Once capacity
has been reached, however, the marginal product of coal drops to zero. Thus, once
4,500 tons of coal have been used in a day to generate electricity, the generating
station will have reached capacity (4,500×8 = 36,000). If we let x represent tons
of coal used per day and y the marginal product of coal in megawatt-hours, then
the marginal product of coal is given by the function

y =
{

8, 0 ≤ x ≤ 4,500

0, x > 4,500

This is illustrated in figure 4.11. The function is discontinuous at x = 4,500.
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x tons of coal

8

4,500

8,    0 ≤ x ≤ 4,500
0,    x > 4,500

y = {

y  megawatt-hours of electricity per ton of coal

Figure 4.11 Marginal product of an input under a capacity constraint

The Bertrand Model of Price Competition

If there is more than one producer/seller in a market but not so many as to make
the perfectly competitive model applicable, we say that the market structure is
oligopolistic. The word oligopoly means “few sellers.” One model that describes
the possible behavior of firms in this setting is the so-called Bertrand model. To
make matters simple, we assume that there are two firms in the market, although
the qualitative nature of the outcome of the model is not altered if we assume that
there are more than two firms.

In the Bertrand model the two firms are assumed to compete in prices. That
is, each firm sets a price and then meets whatever demand exists for its product
at that price. Assuming that the firms produce identical commodities, if one firm
charges a lower price than the other, then all the consumers will purchase from that
producer. If the two firms charge the same price, then we assume that consumers’
purchases will be split evenly between the two producers. Thus we need to think
about how revenue for each firm changes as prices are altered. To see how firms
will behave in this situation, consider the following simple numerical example:
Let the demand function be y = 20− 2p, and let the marginal cost (i.e., the cost
of producing one more unit of output) be the constant value c = 4 for each firm.
That is, C(y) = 4y is the cost function for each firm. Note that as long as the
price exceeds 4, each firm can make an excess profit on each unit it sells. If the
price equals 4, each firm can only earn normal (or zero economic) profit, and if
the price falls below 4, either firm would incur a loss if it produces any output.
Therefore each firm would produce zero output if the price falls below 4.

We begin the analysis by determining how firm 1’s revenue changes for alter-
native prices given that a specific price has been set by firm 2, say p2 = 7. Given
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that firm 2 is charging the price p2 = 7, it follows that if firm 1 charges a price
above 7, its sales will be zero and so will its revenue. If it charges a price equal
to 7, it will share the market with firm 2. To find total market demand, note that at
a market price of 7 we have

y = 20− 2(7) = 6

Since the two firms share the market equally when they charge the same price, we
have y1 = y2 = 3, and so firm 1’s revenue is

R1(p1) = p1y1 = 7(3) = 21

implying a profit level of

π1 = R1(p1)− C1(y1) = p1y1 − 4y1 = 7(3)− 4(3) = 9

As noted, if firm 1 charges a price even slightly above 7, it loses all of its market
share to firm 2 and so its revenue and profit drop to 0. If firm 1 charges a price
even slightly less than 7, however, firm 1 will capture the entire market and so its
revenue will jump accordingly. To see this, let p1 = 7 − ε, with ε positive but
small. Since p1 is less than the price charged by the other firm, firm 1’s sales will
be determined by the total market demand. Thus firm 1 sells output level

y1 = 20− 2p1 = 20− 2(7− ε) = 6+ 2ε

and so earns revenue

R1 = p1y1 = (7− ε)(6+ 2ε) = 42+ 8ε − 2ε2

and profit

π1 = R1(p1)− C1(y1) = (42+ 8ε − 2ε2)− 4(6+ 2ε) = 18− 2ε2

For ε small (i.e., ε → 0), we find that firm 1 earns revenue R1 = 42 and that profit
π1 = 18.

In fact, for any price p1 < 7, firm 1 captures the entire market and so its revenue
and profit functions become that of a simple monopolist. We can therefore write
firm 1’s revenue function as

R1(p1) =

⎧⎪⎨
⎪⎩

p1(20− 2p1), p1 < 7

21, p1 = 7

0, p1 > 7
(4.1)
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Firm 1’s profit function is

π(p1) =

⎧⎪⎨
⎪⎩

p1(20− 2p1)− 4(20− 2p1), p1 < 7

9, p1 = 7

0, p1 > 7
(4.2)

The revenue and profit functions are illustrated in figure 4.12. Looking at the
revenue function and returning to the conditions for continuity given in defini-
tion 4.3, we see that this is a particularly interesting case mathematically. At the
point p1 = 7, the left-hand limit of the revenue function is 42, the right-hand limit is
0, and the value of the function itself is 21. Thus we see that limp1→7− R1(p1) = 42,
limp1→7+ R1(p1) = 0, and R1(7) = 21. Since these are all different, the function
is not continuous at this point. A similar result holds for the profit function.

P1
7

21

42

R1(P1)

P1
7

9

Π1(P1)

18

4

–80

Figure 4.12 Revenue and profit functions of firm 1 for the model of Bertrand
competition

From an economic perspective this discontinuity is also extremely important,
since what happens at the point of discontinuity drives the model to its solution. To
see this, consider any particular price, p̄2, that firm 2 may charge. As long as some
profit can be made by charging the same price, firm 1 will never charge a higher
price as that would mean no sales and zero profit. If firm 1 charges the same price,
p1 = p̄2, then the firms share the market. However, if firm 1 charges a slightly
lower price than firm 2, it will capture the entire market and its profits will jump
to a higher value. Thus, whatever price firm 2 charges, as long as it exceeds 4,
firm 1 will always undercut it in order to capture the entire market. It follows that
the revenue and profit functions, which are drawn in figure 4.13, are

R1(p1) =

⎧⎪⎨
⎪⎩

p1(20− 2p1), p1 < p̄2(
1
2

)
p1(20− 2p1), p1 = p̄2

0, p1 > p̄2

(4.3)
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P1

R1(P1)

P1

Π1(P1)

P2

P2

4

–80

Figure 4.13 Revenue and profit functions of firm 1 for any price set by firm 2,
p2 = p̄2 > 4

The profit function is

π1(p1) =

⎧⎪⎨
⎪⎩

p1(20− 2p1)− 4(20− 2p1), p1 < p̄2(
1
2

)
(p1(20− 2p1)− 4(20− 2p1)), p1 = p̄2

0, p1 > p̄2

(4.4)

If firm 2 sets its price at p̄2 > 4, firm 1 will always have an incentive to set its
price slightly below firm 2’s price in order to capture the entire market. Of course,
the same applies to firm 2. It will always have an incentive to undercut firm 1’s
price slightly as long as firm 1 is charging a price above $4. Beginning at any
price above $4 charged by either firm, we will expect the two firms to engage in a
process of undercutting each other’s price until the price both firms are charging
is $4 and they share the market equally. At this price both firms would earn zero
economic profit and have no incentive to reduce the price further.

Thus, by concentrating on the discontinuity of the revenue or profit function,
we can determine the final outcome of the model. Of course, one must realize
that this type of competition will occur only under rather special assumptions.
First, the result requires that consumers would immediately switch to buying
from another firm if it offers a lower price. Thus consumers must always be
fully aware of the prices the two firms are charging and must not care about
any other characteristics of the firms, like convenience of location. It must also
be the case that a firm can always supply whatever level of product is demanded
by the market upon cutting the price below its rival’s. This requires rather large
inventories or a very quick response time for production. An example of when this
outcome occurs would be if firms have excess capacity. This may explain why
airline companies in the United States have frequently engaged in price wars since
deregulation.
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E X E R C I S E S

1. Given the production function Q(L)= bL, b > 0, defined on [0,+∞),
derive the cost function, C(Q), and the profit function, π(Q) for a perfectly
competitive firm. Let fixed costs be c0, and let w be the unit price of L. Prove
that the production function is continuous (according to definition 4.4) and
then use theorem 4.1 to show that the cost function and the profit function
are continuous.

2. Given production function Q(L) = L2, defined on [0,+∞), derive the
cost function, C(Q), and the profit function, π(Q), for a perfectly compet-
itive firm. Given that the production function is continuous (according to
definition 4.4), use theorem 4.1 to show that the cost function and the profit
function are continuous.

3. Suppose that a salesperson earns a basic monthly salary of $800 plus a com-
mission and possible bonuses based on her level of sales. Suppose that the
commission rate is 15% and the possible bonuses are a lump-sum amount
of $1,000 if her monthly sales exceed $10,000 and a further lump sum of
$2,500 if her monthly sales exceed $15,000. Find the function that relates
sales to earnings for this salesperson and graph it. At which points is the
function discontinuous? By explicitly stating the left- and right-hand limits
of the function at these points, show why these are points of discontinuity
according to definition 4.3. What do these properties imply about the in-
centives created by this pay scheme? (Let S be monthly sales and P be the
salesperson’s pay.)

4. Suppose that a salesperson earns a basic monthly salary of $500 plus a
commission of 10% on sales if her monthly sales do not exceed $20,000 for
the month but receives a commission of 20% (on all sales) if her monthly
sales do exceed $20,000. Find the function that relates sales to earnings for
this salesperson and graph it. Are there any points of discontinuity? If so,
find them and indicate why, according to definition 4.3, each is a point of
discontinuity. (Let S be monthly sales and P be the salesperson’s pay.)

5. Suppose that the government has been taxing each person’s income at a
marginal rate of 0.25 for every dollar in excess of $20,000. That is, the first
$20,000 earned is not taxed. The government decides to generate extra tax
revenue but wishes to avoid increasing the tax burden on low- or middle-
income earners. Therefore the government decides to impose a lump-sum
surtax of $1,000 on every person who earns $60,000 or more. Write out and
graph income after the tax, y, as a function of income before the tax, x.
Indicate why, according to definition 4.3, the function has a point of discon-
tinuity at x = $60,000. Discuss any incentive effects on hours worked that
may arise due to this discontinuity in the tax schedule.
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6. In this question we consider two plans, each of which combines the effects
of an income-support plan with an income-tax program. Let earned income
(before tax) be x and income after taxes and any government transfers be y.

Plan A In this plan an individual who earns zero income (x = 0) receives
a tax-free government transfer (income support) of $6,000 annually. No
income support is received by anyone with positive income (x > 0). Those
who earn income in excess of $6,000 pay income tax at the marginal rate of
20% on each dollar earned in excess of the $6,000.
Plan B In this plan everyone receives a basic supplement of $6,000. This
is called a demogrant. Each person then pays income tax at the rate of 40%
for every dollar of earned income (i.e., not including the $6,000 demogrant).

(a) Define after-tax income, y, as a function of earned income, x, for both
plans, and graph on the same diagram.

(b) Which tax system is more favorable from the point of view of the
taxpayer? How does your answer depend on the individual’s level of
earned income?

(c) Which plan provides the greater incentive for an individual to earn in-
come? Does the answer depend on the range of possible earnings of the
individual? What role, if any, do discontinuities have in your answer?

7. A car production plant has a capacity to produce 100 cars per hour using
2,000 workers. The plant can operate around the clock, including weekends,
using three shifts of workers. Let h represent the number of worker-hours
used per week and MP the marginal product of workers measured by the
number of cars produced per worker-hour.

(a) Draw a graph of the marginal-product function, MP = MP(h). At what
point is the marginal-product function discontinuous? Discuss in terms
of definitions 4.3 and 4.4.

(b) Suppose that the automobile company earns a profit of $1,000 per car
not including labor costs. The wage for workers is $30 per hour for
any weekday shift but double that, $60 per hour, for weekend shifts.
The company will thus use weekend shifts only if it wants to produce
more cars per week than it can using weekday shifts only. Let π(y) be
profit earned per week as a function of the number of cars produced
per week, y. Find and graph this function. At what point is the function
discontinuous? Explain intuitively.

8. A car production plant has a capacity to produce B cars per hour using N

workers. The plant can operate around the clock, including weekends, using
three shifts of workers. Let h represent the number of worker-hours used per
week and MP the marginal product of workers measured by the number of
cars produced per worker-hour.
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(a) Draw a graph of the marginal-product function, MP = MP(h). At what
point is the marginal-product function discontinuous? Discuss in terms
of definitions 4.3 and 4.4.

(b) Suppose that the automobile company earns a profit of $F per car,
not including labor costs. The wage for workers is $w per hour for
any weekday shift but double that for weekend shifts. The company
will thus use weekend shifts only if it wants to produce more cars
per week than it can using weekday shifts only. Let π(y) be profit
earned per week as a function of the number of cars produced per
week, y. Find and graph this function. At what point is the func-
tion discontinuous? Explain intuitively. At what range of values for F

(profit per car excluding labor costs) would it make sense to produce
cars only during the week?

9. Consider the following example of the Bertrand model of price competition.
The two firms, 1 and 2, set prices p1 and p2, respectively. The firm offering
the lower price captures the entire market. If they charge the same price, then
they share the market equally. Assume that market demand is determined by
the function y = 20−p, and that each firm faces cost function C(yi) = 2yi ,
which implies constant unit cost of $2.

(a) If firm 2 sets a price p2 = 5, find firm 1’s revenue function, R1(p1),
and profit function, π1(p1). Draw a graph of each of these functions,
and explain why each is discontinuous at p1 = 5.

(b) For a general price of p̄2 set by firm 2, where p̄2 > 2, do the same
exercise as for part (a).

(c) Upon considering the above results, why is it the case that the outcome
of each firm setting a price of $2 is the equilibrium for this model?
Explain.

C H A P T E R R E V I E W

Key Concepts asymptote
continuous from the left
continuous from the right
continuous functions
discontinuous functions

left-hand limit
marginal product
right-hand limit
vertical asymptote

Review Questions 1. What is meant by the expression limx→a− f (x)?

2. What is meant by the expression limx→a+ f (x)?
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3. Under what condition does the limit of f (x) as x → a exist?

4. Give two definitions of continuity of a function f (x) at the point x = a.

5. Give two examples of functions that are not continuous.

6. What does it mean to say the line x = a is a vertical asymptote of a function?

7. How do you describe conditions for continuity of a function defined on a
closed interval?

Review Exercises 1. For each of the following functions, indicate at which point(s) the function
is discontinuous and explain which of the conditions of definition 4.3 is not
satisfied. In each case, graph the function. (The domain is R in each case.)

(a) f (x) =
{

2x, x < 5

x + 6, x ≥ 5

(b) f (x) = (x + 1)/(x2 − 1) [Hint: Factor the denominator.]

2. Prove that according to definition 4.4, the function, f (x) = 3x, is continuous
at every point x ∈ R.

3. Suppose that the government has been taxing each person’s income at a
marginal rate of 0.4 for every dollar in excess of $25,000 with the first $25,000
earned not taxed. In addition the government imposes a lump-sum surtax of
$2,000 on every person who earns $100,000 or more. Write out and graph
income after tax, y, as a function of income before tax, x. Indicate why, accord-
ing to definition 4.3, the function has a point of discontinuity at x = $100,000.
Discuss any incentive effects on hours worked that may arise due to this dis-
continuity in the tax schedule.

4. Lety = x2 be a production function relating inputx to outputy. Let c̄ represent
the unit cost of input x, and assume that total cost equals fixed costs, C0, plus
the cost of input x. Let p̄ be the unit price of y. Find the revenue function,
the cost function, and the profit function for the firm. Given that the function
f (x) = x2 is continuous, are these functions continuous? (Use theorem 4.1
to answer this question.) Discuss.

5. A railway company runs a train from A to B. The wages of the engineer and
guard for one trip total $500. Each carriage on the train holds an absolute
maximum of 50 passengers. The relationships between the cost of the energy
required by the locomotive and the number of carriages it pulls are as follows:

Number Cost ($)
1 carriage 1,000
2 carriages 1,800
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Number Cost ($)
3 carriages 2,400
4 carriages 2,600
5 carriages 3,400
6 carriages 4,600
7 carriages 8,000

It makes no difference to these costs whether the carriages are empty or full.

(a) What is the cost incurred to transport just one passenger from A to B?

(b) What is the increase in cost created by taking a second passenger?

(c) What is the increase in cost created by taking the 51st passenger?

(d) Draw the functions relating:

(i) total costs

(ii) average cost per person

to the total number of passengers, over the range 0 to 350 passengers,
and comment on the continuity properties of these functions.

6. Consider the following example of the Bertrand model of price competition.
Two firms, 1 and 2, set prices p1 and p2, respectively. The firm offering the
lower price captures the entire market. If they charge the same price, then
they share the market equally. Assume that market demand is determined by
the function y = 50 − p, and each firm faces cost function C(yi) = 10yi ,
which implies constant unit cost of $10.

(a) If firm 2 charges a price p2 = 20, find firm 1’s revenue function, R1(p1),
and profit function, π1(p1). Draw a graph of each of these functions and
explain why each is discontinuous at p1 = 20.

(b) For a general price charged by firm 2 of p̄2, where p̄2 > 10, do the same
exercise as for part (a).

(c) Upon considering the results above, why is it the case that the outcome
of each firm charging a price of $10 is the equilibrium for this model?
Explain.



Chapter 5 The Derivative and Differential for
Functions of One Variable

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Marginal Revenue Product of Labor for a Competitive Firm and for a
Monopoly Firm
• Marginal Revenue Product of Labor: Example
• Further Details on the Elasticity Concept
• Finding Elasticities of Demand: Example
• Practice Exercises

The purpose of the derivative is to express in a convenient way how a change in the
level of one variable (e.g., x) determines a change in the level of another variable
(e.g., y). Much of economics is in fact concerned with just this sort of analysis.
For example, we study how a change in a firm’s output level affects its costs and
how a change in a country’s money supply affects the rate of inflation. Although
expressing the relationship between x and y as a function y = f (x) does capture
this idea implicitly, it is much more convenient to relate explicitly how a change in
x, denoted �x, causes a change in y, �y. Using the relationship between �y and
�x allows one to perform what economists refer to as marginal analysis, which is
of central importance in economics. For example, it allows us to derive important
economic propositions such as: “A profit-maximizing firm should expand output
so long as the added or marginal revenue (�R) exceeds the added or marginal cost
(�C).” This and the subsequent chapter contain many economic applications of
the usefulness of the derivative of a function of one variable.

5.1 Definition of a Tangent Line
A tangent to a curve is a straight line that just touches the curve at a given point. For
example, the line lP is the tangent to the curve y = f (x) at point P in figure 5.1.
Notice that this line just touches the curve at the point P without intersecting it at
another point.
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It is easy to see that there will be a different tangent line at each point on
this curve. Letting �y/�x represent the ratio of the change in y and some change
in x, we say that the slope of a curve at a point is equal to this ratio as we take
successively smaller values for �x. For a smooth curve, such as the one drawn
in figure 5.1, the slope of the tangent line is the same as the slope of the curve at
the point where it touches. The slope of the tangent line at P is called the value
of the derivative of the function y= f (x) at point P . The derivative function
gives the value of the slope of the tangent for different points along the function
as determined by the value of x.

x

f (x)

P

lp

y = f (x)

Figure 5.1 Tangent line

Before providing general definitions, it is useful to first consider a simple
example that stresses the idea that the derivative has something to do with rates
of change. Suppose that a person drives her car across a large city to work. Let
y represent miles driven and t time spent driving with y = f (t) indicating how
far she has traveled after t minutes of driving. Suppose that the first 5 miles she
drives takes her 20 minutes. Her average rate of speed over this period is then
�y/�t = 5/20 = 0.25 miles per minute or 15 miles per hour. This is an average
rate of speed and the rate at which she drives at any given point in this time interval
may vary substantially. Suppose, for example, that we wish to consider her speed at
the start of the tenth minute of the trip. Begin by denoting her rate of speed between
the tenth and eleventh minute by �ŷ/�t̂ where �ŷ is the distance traveled in that
interval of time and �t̂ = 1 minute is the length of time. This ratio, however, is still
an average rate of speed. The process of defining an instantaneous speed or rate of
change �y/�t at the beginning of the tenth minute of the trip involves considering
ratios of successively smaller values of �t . We denote this by writing �t → 0
and saying the change in time approaches zero. The ratio �y/�t as �t → 0 is the
instantaneous rate of change of distance over time or, in other words, the speed
of the vehicle. Although this ratio appears to involve a division by zero, this is not
the case as �t is never equal to zero and the associated �y values also become
successively smaller so that �y/�t does not become arbitrarily large even though
the denominator becomes arbitrarily small. The limit of the sequence of ratios
�y/�t as �t approaches zero thus formed (if this limit exists) is the derivative of
the function y= f (t) at the point t . We now develop this idea formally.

To define the derivative of a function at a point, we first define a secant, which
is the straight line connecting two points on the graph of a function. By taking a
sequence of secants formed by connecting some point P to a sequence of points
that comes arbitrarily close to, but is not coincident with, P we generate the tangent
line at point P . In other words, the tangent line is the line through P that has the
same slope as the limit of the sequence of secants thus formed, if this limit exists.
The derivative of a function at point P is then defined as the value of the slope of
this tangent line.

The easiest way to see this is to look at a graph. Consider a function y = f (x)

and two points on the graph of the function represented by P = (x1, f (x1)) and
Q = (x2, f (x2)), as in figure 5.2. We call a line joining any such two points a
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x

f (x)

x2x1

f (x1)

f (x2)
y = f (x)

∆x = x2 – x1

P

Q

∆y = f (x2) – f (x1)

secant line, slope mPQ = ∆y/∆x

Figure 5.2 Secant line

secant line and define its slope as the change in y, written as �y = f (x2)−f (x1),
divided by the change in x, written as �x = x2 − x1; that is,

mPQ = �y

�x
= f (x2)− f (x1)

x2 − x1

D e f in i t i o n 5 . 1 Given two points P = (x1, f (x1)) and Q= (x2, f (x2)), with x2= x1+�x, on the
graph of a function y= f (x), we define the secant line as the straight line joining
these points. The slope of the secant line is

mPQ = f (x2)− f (x1)

x2 − x1
= �y

�x

Suppose that we treat as fixed the point P = (x1, f (x1)) and consider a se-
quence of x2 values such that x2 becomes arbitrarily close to x1. Since x2 =
x1+�x, this can be seen to be equivalent to constructing a sequence of �x values
which become arbitrarily small (�x → 0). If for any sequence of �x values with
�x → 0, a sequence of values for mPQ is generated that converges to some limit
which we will call m∗, then the line which passes through P with slope m∗ is called
the tangent line through P . The sequence of �x values, �x → 0, generates the
sequence of points Q1, Q2, Q3, . . . illustrated in figure 5.3.
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x

f (x)

∆x2

∆x3

P

Q1

tangent line with slope m* = lim ∆y/∆x
∆x → 0

Q2

Q3

∆x1

Figure 5.3 Sequence of secants

D e f in i t i o n 5 . 2 If the function y= f (x) is defined on some open interval including the point
P = (x1, f (x1)) and lim�x→0 mPQ exists, then the line passing through the point P
with slope equal to lim�x→0 mPQ is the tangent line of the function y= f (x) at P .

Consider, for example, the function y= x2 illustrated in figure 5.4. If we com-
pare the points P = (2, 4) and Q= (4, 16), we see that in moving from P to Q the
change in x is �x= 2 and the change in y is �y= 12. Therefore the rate of change
in y with respect to x between these two points is �y/�x= 12/2= 6, the slope
of the secant joining P and Q. If, however, we use the point Q′ = (5, 25) instead
of Q, we get �y/�x = 21/3 = 7. Thus the rate of change in y with respect to x

beginning at some point (P ) depends on the amount by which x changes. In other
words, the rate of change �y/�x changes as one moves along the function. For
this reason we refer to �y/�x as the average rate of change between two points.

If for the function y = x2 we form a sequence of changes in x, �x, with �x →
0, we will find that the resulting sequence of values for the slope of the secant at a
given point P converges (i.e., approaches a single value). For example, consider the
sequence �x = 1/n, n = 1, 2, 3, . . . .As n→∞we have �x → 0. Suppose that
we begin at point P = (2, 4) for the function y = x2 and we use �x = 1/n, which
implies that x+�x = 2+1/n and f (x+�x) = (2+1/n)2. Then from definition
5.1, with x1 written as x and x2 as x +�x, we get the following expression:
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mPQ = f (2+ 1/n)− f (2)

(2+ 1/n)− 2
= (2+ 1/n)2 − 22

1/n
(5.1)

= 4+ 4/n+ 1/n2 − 4

1/n
= 4+ 1

n
(5.2)

As n→∞, we have �x → 0 and the sequence of values for mPQ converges
to the number 4. Therefore the slope of the tangent of the function y = x2 at the
point x = 2 is 4.

In general, the slope of the secant for the function y = x2 between an arbitrary
pair of points P = (x1, f (x1)) and Q = (x2, f (x2)), where x2 = x1 +�x, is

mPQ = f (x2)− f (x1)

x2 − x1
= (x1 +�x)2 − x2

1

�x

= x2
1 + 2(�x)x1 +�x2 − x2

1

�x

= 2(�x)x1 +�x2

�x
= 2x1 +�x

Thus, for any sequence of values for �x, as �x → 0, we have lim�x→0 mPQ =
2x1, which is the slope of the tangent at the point P . For example, at the point

x

f (x)

∆x = 2
P

Q'

slope =      = 7

Q

21
3

slope =      = 612
2

∆x = 3

∆y = 21

∆y = 12

y = x2

1 2 3 4 5

4

16

25

Figure 5.4 Slope of a secant depends on �x
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x

y

P = (2, 4)

y = x2

10

y = 4x – 4

9
8
7
6
5
4
3
2
1

–1
–2
–3
–4
–5

1 2 3 4

Figure 5.5 Tangent line for y = x2 at value x = 2

P = (2, 4), we have x1 = 2 and so the tangent line has the slope 4 (i.e., mPQ =
2x1 = 2(2) = 4). By using the equation y = 4x + b and the fact that the point
P = (2, 4) lies on this line, we can compute the intercept b from 4 = 4(2) + b,
which implies that b = −4. Thus the equation of the tangent line through P is
y = 4x − 4. This is illustrated in figure 5.5. It should be obvious that a different
tangent line is associated with each distinct point on the function.

It is generally the case that a function does not have the same tangent line at
each point, although by coincidence the same line may be tangent to a function at
more than one point, as illustrated in figure 5.6.

x

f (x)

P'' y = f (x)

P'

tangent line for y = f (x) 
at points P' and P''

Figure 5.6 A function with the
same tangent line at two points

A linear function is a very special case in that the secant line between any two
points always coincides with the function itself. To see this, consider the general
linear equation y = mx + b where m and b are constants. The slope of the secant
line between any two points P = (x1, f (x1)) and Q = (x2, f (x2)) is

mPQ = �y

�x
= f (x2)− f (x1)

x2 − x1
where x2 = x1 +�x

= (m(x1 +�x)+ b)− (mx1 + b)

(x1 +�x)− x1
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= mx1 +m�x + b −mx1 − b

x1 +�x − x1

= m�x

�x
= m

a constant. Thus the secant line clearly lies on the line itself, and its slope is inde-
pendent of the size of �x as well as the particular starting point, P , as illustrated
in figure 5.7. Thus for a linear function we can write the relationship between �x

and �y as �y/�x = m or �y = m�x. In other words, a change in the x variable
in amount �x induces a change in the y variable in amount m times �x. Moreover
this relationship holds regardless of the size of the change �x or the location of
the particular point P . This is generally true only for a linear function.

x

f (x)

x2

P

tangent line with slope = ∆y/∆x

Q

x2 – x1 = ∆x

x1

f (x2) = mx2 + b

f (x1) = mx1 + b

= m ∆x /∆x
= m

∆y  = f (x2) – f (x1)

= (mx2 + b) – (mx1 + b)
= m (x2 – x1)
= m ∆x

Figure 5.7 Tangent line on a linear function

E X E R C I S E S

1. Suppose that we choose the point P = (20, 400) on the function y = x2. Find
the ratio �y/�x for each of the line segments (secants) found by connecting
each of the points Q1 = (25, 625), Q2 = (24, 576), Q3 = (23, 529), Q4 =
(22, 484), and Q5 = (21, 441), and arrange in a table as illustrated below.

Qi (25, 625) (24, 576) (23, 529) (22, 484) (21, 441)

�x

�y
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Does the sequence of values look like it will converge as �x → 0? Illustrate
with a graph.

2. As for question 1, compute a sequence of ratios �y/�x for the function
y= x2 with respect to the fixed point P = (20, 400). This time use �xn= 1/n,
n = 1, 2, 3, . . . to generate a sequence of points Qn = ((20 + 1/n), (20 +
1/n)2) and so a sequence of ratios

�yn

�xn

= (20+ 1/n)2 − (20)2

(20+ 1/n)− (20)

Show that as n→∞ (i.e., �xn → 0) this ratio �yn/�xn converges. Using
this result find the tangent line to the function y = x2 through the point
P = (20, 400).

3. The slope of the tangent for the function y = x2 is 2x. Find the equation of
the tangent line at the point x = 3. Illustrate on a graph.

4. The slope of the tangent for the function y = √x is 1/(2
√

x). Find the
equation of the tangent line at the point x = 1. Illustrate on a graph.

5.2 Definition of the Derivative and the
Differential

The derivative of a function y = f (x) at some point in the domain of the function
is simply the slope of the tangent line. The notation used to depict the derivative
at a point, x, in the domain of the function f (x) varies but is usually written
either as dy/dx or f ′(x). Since, as we saw in the previous section, the slope of
the tangent line generally depends on the value of the variable x, then so does
the value of the derivative. Therefore, the derivative function, f ′, is the function
which indicates the value of the derivative of the function at each point of the
domain of f . Only in the case of a linear function, y = mx+ b, is the value of the
derivative independent of the value of x. In this case the derivative is f ′(x) = m at
every point x in the domain and so the derivative function is f ′ = m, the constant
function. (Note that, as in Chapter 4, the domain of a function is assumed to be R

unless otherwise stated.)

D e f in i t i o n 5 . 3 The derivative of a function y = f (x) at the point P = (x1, f (x1)) is the slope
of the tangent line at that point.

f ′(x1) = lim
�x→0

mPQ = lim
�x→0

f (x2)− f (x1)

x2 − x1
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where �x = x2 − x1. We can also write this as

f ′(x1) = lim
�x→0

mPQ = lim
�x→0

f (x1 +�x)− f (x1)

�x

In the previous section, we showed that the slope of the tangent line for
the function y= x2 is 2x and so this is also its derivative; i.e., f ′(x)= 2x or
dy/dx = 2x. From an intuitive perspective, notice that the dy and dx reflect the
idea of changes in y and x, as do �y and �x, respectively. In fact, for a specific
value of dx we can think of dy/dx as an estimate of the ratio �y/�x, and so
dy/dx = 2x can be written as dy = (2x) dx with dy representing an estimate of
�y for the value of dx chosen to be equal to �x. The expression dy = (2x) dx

is known as the differential of the function y = x2. A formal definition for the
differential is given below.

D e f in i t i o n 5 . 4 If f ′(x0) is the derivative of the function y = f (x) at point x0, then the total
differential at a point x0 is

dy = df (x0, dx) = f ′(x0) dx

Thus the differential is a function of both x and dx.

The differential provides us with a method of estimating the effect of a change
in x of amount dx = �x on y, where �y is the exact change in y while dy is the
approximate change in y. Given the definition of the derivative, this is equivalent
to using the tangent line of a function to estimate the impact of a change in x

on y. For the function f (x) = x2, the differential is dy = f ′(x) dx = 2x dx. To
see that this expression represents only an approximation to the true relationship
between the change in x and the change in y, refer to figure 5.8. We see that
from the point P = (2, 4), an increase in x of amount �x = dx = 2 leads to
a change in y of �y = 12. If we use the tangent line at the point P = (2, 4)

to estimate the change in y resulting from a change in x of 2 units, we find that
dy= 8 (i.e., dy = f ′(x) dx = (2x) dx = 4 dx, with dx = 2). In this case, using
the differential leads to an estimate of �y that is too low.

In fact, in either the derivative or differential form, the relationship between dx

and dy can be thought of as an estimate for the true relationship between changes
in x and y (i.e., �x and �y). This is clearer if we think of the relationship in the
following form:

�y = dy + ε (5.3)
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x

f (x)

∆x = 2

P

Thus ∆y = dy + ε

∆y = 12

dy = 8

y = 4x – 4

1 2 3 4 5

4

16

12

y = x2

⇒ ε = 4

ε = 4

Figure 5.8 dy = f ′(x) dx as an approximation to the change in y

where ε is the approximation error. For the example illustrated in figure 5.8 the
error is ε = 4. Thus, as an approximation of the true change in y, the formula
of equation (5.3) is not very impressive. However, one can see that for smaller
changes in x, the expression dy = f ′(x) dx offers a better approximation. For
example, beginning again with x = 2 (i.e., P = (2, 4)), we find that choosing
�x = dx = 1 leads to �y = 5 and dy = 4 (see figure 5.9). Not only is dy closer
to �y in absolute terms, but the percentage error is reduced from 33% (4/12) to
20% (1/5) when going from �x = 2 to �x = 1. Furthermore we can show that

f (x)

P

∆y = 5
dy = 4

y = 4x – 4

1 2 3 4

4

y = x2

ε = 1
8
9

x

Figure 5.9 Accuracy of dy = f ′(x) dx as an approximation to �y
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x

f (x)

x2x1

f (x1)

f (x2)

∆x 

P

∆y 

tangent line

f (x)
dy 

–ε

dy > ∆y 
ε < 0

Figure 5.10 Case where the differential is an overestimate

equation (5.3) can be made arbitrarily accurate (i.e., the percentage error ε/�y

can be made arbitrarily small) by requiring that the change in x be small. Formally
this means that lim�x=dx→0 ε/�y = 0.

Notice that for the example y = x2, using the tangent line or the expres-
sion dy = f ′(x) dx to approximate the impact of a change in x on y led to an
underestimate. It is of course also possible that the use of the tangent line will

x

f (x)

x2

P

tangent line

 ∆x

x1

f (x2) = mx2 + b

f (x1) = mx1 + b

y  = mx + b

∆y  = dy, ε = 0

Figure 5.11 Case where the differential is an exact approximation
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lead to an overestimate of the impact of �x on �y. Such is clearly the case for the
function illustrated in figure 5.10. For the case of a linear function, y = mx+b, the
expression dy = f ′(x) dx = m dx provides an exact approximation of the impact
of a change in x of amount dx or �x on y (i.e., dy = m dx and �y = m�x).
This is illustrated in figure 5.11.

The Total- and Marginal-Cost Functions

A firm’s total-cost function, C = C(y), indicates the cost of producing amount of
output, y. Thus, given C = C(y), the ratio �C/�y = (C(y +�y)− C(y))/�y

reflects the (average) rate of change in cost per added unit of output produced. If
we take the limit of this ratio as �y → 0, we get the instantaneous rate of change,
which is generally referred to as the marginal-cost of production:

lim
�y→0

�C

�y
= lim

�y→0

C(y +�y)− C(y)

�y
= C ′(y)

and is the derivative of the total-cost function.
Let us begin with the simplest type of example, the case of a linear cost

function. In particular, let C= 80y. This function implies that whatever is the
current level of output produced, the cost of producing an extra unit of output is
80 (i.e., since C ′(y) or dC/dy = 80). The differential dC = C ′(y) dy becomes
dC = 80 dy, indicating that any change in y of amount dy leads to a change in cost
of 80 times dy (e.g., producing dy = 3 more units of output leads to an increase
in cost of dC = 80(3) = 240). As indicated earlier in this section (see figure
5.11), in the case of a linear function the differential represents an exact estimate
of the relationship between the actual change in C(i.e.,�C) and the actual change
in y(i.e.,�y). Moreover the fact that the derivative is a constant implies that the
marginal cost of production is independent of the existing amount of output being
produced. This is illustrated by figure 5.12.

y

C (y)

∆C = 240

880

640

400

160

852 11

∆y = 3∆y = 3

∆C = 
240

C = 80y

Figure 5.12 A linear cost function
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A firm will have a linear cost function only if additional units of output require
the same extra amount of inputs even as the scale of production becomes very large.
This is the case of constant returns to scale. This may not be true for all production
processes. It is especially unlikely to be true in the short run, when certain inputs,
such as capital equipment, are fixed in amount. Suppose that we consider labor as
the only variable input used. As the firm uses greater amounts of labor to increase
production, the additional units of labour eventually become less productive due to
the fact that there is less and less capital for each unit of labor to work with. It then
becomes more expensive to produce extra units of output when higher levels of
output are already being produced.The functionC(y) = y2 possesses this property.

The function C(y) = y2 has derivative C ′(y) = 2y (see figure 5.13). Accord-
ing to this derivative function, the marginal cost of production is increasing in y.
For example, if the amount of output being produced is y = 200 units, then the
marginal cost of producing an additional unit of output is C ′(y) = 2(200) = 400,
while if the current level of output is 300, then the marginal cost of producing an
additional unit of output is C ′(y)= 2(300)= 600. Of course, using the derivative to
represent the increased cost of producing an extra discrete unit of output is subject
to error (refer to figures 5.8 and 5.9). For example, if y = 300 and one more unit of
output is produced, then the exact increase in cost is �C = C(301)− C(300) =
90,601− 90,000 = 601.

y

C (y)

1,600

400

300200100

C'(300) = 600

C (y) = y2

600

C'(200) = 400

y

C'(y)

800

200

300200100 400

600

400

C'(y) = 2y

Figure 5.13 Relationship between the marginal and total cost functions for C(y) = y2

Notice that the exact cost of producing a larger additional amount, say 100
more units of output, is �C = C(400)− C(300) = 160,000− 90,000 = 70,000
while using the differential to estimate this increased cost leads to the result dC =
C′(y) dy = 2y dy = 2(300)(100) = 60,000. The error for the larger change is
(10,000/70,000) × 100 = 14.3% while the error for the smaller change is only
(1/600)× 100 = 0.17%. This example demonstrates that as smaller changes in y

are considered (i.e., �y → 0), the percentage error tends to zero.
The basic message of this section is that any function which has a derivative

at a given point can be approximated by a linear function (the graph of which
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is represented by its tangent line) in some suitably small neighborhood of that
point. Since linear functions are relatively easy to understand and work with, this
result is very useful. In particular, by concentrating on some small neighborhood
of a solution for a problem which involves nonlinear functions we are able to
use the simple mathematics of linear functions to generate useful results. Thus
the techniques of linear algebra (chapters 7 through 10) can be used to generate
comparative statics results for systems of relationships which are described by
nonlinear functions. This will become evident in later chapters.

E X E R C I S E S

1. From the definition of the derivative (definition 5.3), find the derivative for
each of the following functions:

(a) f (x) = 3x − 5

(b) f (x) = 8x

(c) y = 3x2

2. From the definition of the derivative (definition 5.3), find the derivative for
each of the following functions:

(a) f (x) = 6x

(b) f (x) = 12x − 2

(c) f (x) = kx2 for k a constant

3. Return to the example in question 1 of exercise 5.1. Note that the derivative
of this function, f (x) = x2, is f ′(x) = 2x. Use the differential to estimate
the changes in y between P = (20, 400) and each of the 5 points Qn, n =
1, 2, 3, 4, 5. Find the percentage error defined as ε = (�y − dy)/(�y)×100
for each case, where dy = f ′(x) dx and dx ≡ �x. Use the following table:

Qi (25, 625) (24, 576) (23, 529) (22, 484) (21, 441)

�x ≡ dx

�y

dy = f ′(x) dx

ε

What does this example suggest about the use of the differential as an estimate
of the actual change in the function value as x changes? Discuss.

4. Return to the example in question 2 of exercise 5.1. Recall (or compute) the
sequence of changes �yn associated with changes �xn with reference to the
point P = (20, 400). Compare the results of this formula for �yn, the actual
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change iny, with the estimated change iny using the differentialdy= f ′(x) dx

where dx=�xn. In particular, compute the percentage error term

εn = �yn − dy

�yn

× 100

What does this formula suggest about the use of the differential as an estimate
of the actual change in the function value as x changes? Discuss.

5.3 Conditions for Differentiability
In section 5.2 we defined the derivative of a function f (x) as

f ′(x) = lim
�x→0

f (x +�x)− f (x)

�x

Therefore the derivative of a function at a point x exists provided this limit exists.
To begin, from our discussion of limits in chapter 4 we know that �x may be either
positive or negative and so existence of f ′(x) requires that f must be defined at
every point in some neighborhood (i.e., open interval) of x. Having established
this condition, we then need to check that lim�x→0 f (x+�x) exists, which means
that the left-hand and right-hand limits

lim
�x→0−

f (x +�x)− f (x)

�x
, lim

�x→0+

f (x +�x)− f (x)

�x

are equal to each other. We refer to these two limits as the left-hand derivative and
right-hand derivative of the function f (x). These conditions are summarized in
the following definition.

D e f in i t i o n 5 . 5 A function f (x), which is defined on an open interval including the point x = a,
is differentiable at that point if

lim
�x→0

f (a +�x)− f (a)

�x

exists and is finite. That is,

lim
�x→0−

f (a +�x)− f (a)

�x
= lim

�x→0+

f (a +�x)− f (a)

�x

The value of this expression is the value of the derivative function f ′(x) at the
point x = a.
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The best way to understand the condition for differentiability is through a series
of examples of functions that are not differentiable at some point.

Example 5.1 The following simple example of a function which is not differentiable illustrates
the meaning of the conditions in definition 5.5. Consider the function defined by

f (x) =
{
x, if x < 1

2− x, if x ≥ 1

drawn in figure 5.14. This function is continuous at the point x= 1 but is not
differentiable at this point. The reason is that for x < 1 we use f (x)= x to generate
the expression for the left-hand limit,

lim
�x→0−

f (1+�x)− f (1)

�x
= lim

�x→0−

(1+�x)− (1)

�x
= 1

while for x > 1 we use f (x) = 2−x to generate the expression for the right-hand
limit,

lim
�x→0+

f (1+�x)− f (1)

�x
= lim

�x→0+

(2− (1+�x))− (2− 1)

�x

= −�x

�x
= −1

That is, the right- and left-hand derivatives do not equal each other and so the
function is not differentiable at the point x = 1.

dy
/dx

 =
 +

1

f (x)

21

1 dy/dx = –1

x,        x < 1
2 – x,  x ≥ 1

→ →

f (x) = {

x

f ' (x)

–1

x

1

21

Figure 5.14 A function with different left-hand and right-hand derivatives
at point x= 1
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Example 5.2 Typically the marginal rate of income tax varies across income ranges. For exam-
ple, suppose that the first $5,000 income earned is not taxed at all, the next $10,000
earned is taxed at the rate of 15%, and any further income is taxed at the rate of
25%. Let T (y) represent the income tax schedule for this example. The simplest
way to graph this function is to think about how the marginal tax rate changes over
the various income ranges:

Marginal tax rate =

⎧⎪⎨
⎪⎩

0, for 0 < y ≤ 5,000

0.15, for 5,000 < y ≤ 15,000

0.25, for y > 15,000

Since no tax is paid on zero income, we have T (0) = 0. Knowing the rate
at which the tax increases allows us to draw the tax function (see figure 5.15).
Note that the tax function is not discontinuous. However, it is not differentiable
at the points y = 5,000 or y = 15,000 because the marginal tax rate changes
at these points, with the result that the left- and right-hand derivatives are not
the same. Notice that if we graph the derivative function, T ′(y), on the intervals
[0, 5,000], (5,000, 15,000], and (15,000,∞), as is done in figure 5.16, we see
that it is discontinuous at the points where T (y) is not differentiable. This result
illustrates that since the left- and right-hand limits of the derivative are not equal at
a point of nondifferentiability, the derivative function is not defined at that point.

T (y)

marginal tax rate = 0.25

5,000

1,500

4,000

y10,000 15,000 25,000

T (y)

marginal tax rate = 0.15marginal 
tax rate = 0 }

Figure 5.15 Income tax schedule for example 5.2

T ' (y)

5,000

0.15

0.25

y10,000 15,000 25,000

T ' (y)

Figure 5.16 Marginal income tax function for
example 5.2

The tax function, T (y), is defined in equation (5.4). The first part of the
function, T (y) = 0, for 0 ≤ y ≤ 5,000 reflects the fact that the first $5,000 earned
is not taxed and so anyone earning less than this amount pays zero tax. The second
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part, T (y) = 0.15(y − 5,000), for y ∈ (5,000, 15,000] indicates that any income
earned in excess of $5,000, but less than $15,000, is taxed at the rate of 15%.
The third part, T (y) = 0.15(y − 5,000) + 0.10(y − 15,000), for y > $15,000
indicates that income earned in excess of $15,000 is taxed at a rate of 25% and
so an additional 0.10(y − 15,000) must be added to the 15% which is charged on
income earned over $5,000.

T (y) =

⎧⎪⎨
⎪⎩

0, 0 ≤ y ≤ 5,000

0.15(y − 5,000), 5,000 < y ≤ 15,000

0.15(y − 5,000)+ 0.10(y − 15,000), y > 15,000
(5.4)

This tax schedule can be simplified to get

T (y) =

⎧⎪⎨
⎪⎩

0, 0 ≤ y ≤ 5,000

0.15y − 750, 5,000 < y ≤ 15,000

0.25y − 2,250, y > 15,000
(5.5)

Returning to the definition for differentiability (definition 5.5), we can see
a close relationship to the condition for continuity (refer to chapter 4.1). For the
function f to be differentiable at the point x, the lim�x→0 f (x +�x) must exist;
that is, the left-hand limit, lim�x→0− f (x +�x), must equal the right-hand limit,
lim�x→0+ f (x + �x). Moreover, as we noted earlier in this section, it must also
be the case that lim�x→0 f (x + �x) = f (x). These conditions imply that the
function f (x) is continuous. Thus, if a function is not continuous, then it is not
differentiable and so we have demonstrated the following theorem.

Theorem 5.1 If f ′(x) exists (i.e., the function f (x) is differentiable) at the point x = a, then
the function f (x) must also be continuous at this point.

It is important to note that continuity is a necessary but not a sufficient con-
dition for differentiability. In other words, a function may be continuous at some
point yet not differentiable there. This is clearly established by example 5.2 above.
At the point x = 1, we find that

lim
�x→0−

f (x +�x) = 1, lim
�x→0+

f (x +�x) = 1, f (1) = 1

which implies that the function is continuous. However, it is not differentiable at
the point x = 1.
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We can employ the concepts of left- and right-hand derivatives in defining
whether a function is differentiable in the case in which the domain of the function
is a closed interval, [a, b], or has only one boundary point, [a,+∞) or (−∞, b].
Note that if the domain of a function is the closed interval [a, b], then the question
arises of defining its differentiability at a and b. To handle such cases, we ask
whether the relevant one-sided limits exist as one approaches x = a from the right
or x = b from the left. The following definition for differentiability of a function
defined on a closed interval [a, b] can be extended in an obvious way for functions
defined on the sets [a,∞) and (−∞, b].

D e f in i t i o n 5 . 6 A function f (x) defined on the domain x ∈ [a, b] is differentiable on [a, b] if
(i) the right-hand derivative for f (x) exists at x = a, (ii) the left-hand derivative
exists at x = b, and (iii) f (x) is differentiable at every point in the open set (a, b).

An example of a situation in which it is natural to use a function defined on a
closed interval is the case of trade quotas. If a firm can export up to a maximum
amount, say b, of some product into a country, then one would define sales revenue
for this activity by R(x), x ∈ [0, b]. Sales, x, must not exceed the value b and
cannot be negative.

Example 5.3 Modeling Enforcement as a Probability

Consider an enforcement agency choosing a level of enforcement of a law against
some crime (e.g., tax evasion). We can represent the level of enforcement by the
probability with which the crime will be detected. Let p be this probability of
detection. By definition, p must lie in the closed interval [0, 1]. If the function
c(p) represents the resource cost of achieving detection level p, then p ∈ [0, 1]
is the domain of the function. For example, c(p) = kp2 (see figure 5.17) could
represent an enforcement cost function which has right-hand derivative of value
zero at p = 0 and left-hand derivative of value 2k at p = 1.

p

c (p)

c (p) = kp2
k

1
]

Figure 5.17 Function with a
domain being a closed interval

E X E R C I S E S

1. The following are examples of functions that are not differentiable at some
point. Explain in each case why the function is not differentiable according
to definition 5.5. That is, find the left- and right-hand derivatives at the point
of nondifferentiability.
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(a) f (x) =
{

3x + 2, x ≤ 5

x + 12, x > 5

(b) f (x) =
{−x, x ≤ 0

x, x > 0

(c) f (x) =
{

4x + 1, x < 2

11− x, x ≥ 2

2. The following are examples of functions which are not differentiable at some
point. Explain in each case why the function is not differentiable according
to definition 5.5. That is, find the left- and right-hand derivatives at the point
of nondifferentiability.

(a) f (x) =
{−2x + 20, x ≤ 4

−x + 16, x > 4

(b) f (x) =
{−2x + 5, x ≤ 0

x + 5, x > 0

(c) f (x) =
{

3x, x < 2

8− x, x ≥ 2

3. Consider the following income tax scheme:

The first $6,000 of income is not subject to any tax.
The next $10,000 is subject to a tax rate of 20%.
The next $30,000 is subject to a tax rate of 30%.
Any additional income is subject to a tax rate of 40%.

(a) Find and graph the tax function, T (y), defined on y ≥ 0.

(b) Determine the points of nondifferentiability for this function and
indicate according to definition 5.5 why each is a point of nondiffer-
entiability.

(c) Graph the marginal tax function and the average tax function (T (y)/y)

on the same graph.

4. Consider the following income tax scheme:

The first $5,000 of income is not subject to any tax.
The next $15,000 is subject to a tax rate of 20%.
The next $30,000 is subject to a tax rate of 35%.
Any additional income is subject to a tax rate of 50%.

(a) Find and graph the tax function, T (y), defined on y ≥ 0.
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(b) Determine the points of nondifferentiability for this function and
indicate according to definition 5.5 why each is a point of nondiffer-
entiability.

(c) Graph the marginal tax function and the average tax function (T (y)/y)

on the same graph.

5. Suppose that a salesperson has the following contract relating monthly sales,
S, to her monthly pay, P . She is given a basic monthly amount of $600,
regardless of her sales level. On the first $10,000 of monthly sales she earns
a 10% commission. On any additional sales she earns a commission of 20%.

(a) Find and graph the function relating her pay to sales, P(S), S ≥ 0.

(b) Determine the point of nondifferentiability of P(S) and indicate
according to definition 5.5 why this is so.

5.4 Rules of Differentiation
In section 5.2 several examples were presented showing how to derive the deriva-
tives of some simple functions by using the definition of the derivative. It would
be tedious, however, to have to do this every time we wanted to find the derivative
of a function. Since such derivations have been done for various general classes of
functions, we can use these results and so avoid repeating the exercise each time.
These rules or methods of finding derivatives are collected below in summary form
and then presented more fully along with some economic applications. Only in
some of the simpler cases do we show how to generate results from first principles.

Rules of Differentiation

Rule 1 Derivative of a constant function:

If f (x) = c, a constant, then f ′(x) = 0.

Rule 2 Derivative of a linear function:

If f (x) = mx + b, with m and b constants, then f ′(x) = m.

Rule 3 Derivative of a power function:

If f (x) = xn, then f ′(x) = nxn−1.

Rule 4 Derivative of the constant multiple of a function:

If g(x) = cf (x), with c constant, then g′(x) = cf ′(x).
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Rule 5 Derivative of the sum or difference of a pair of functions

If h(x) = g(x)+ f (x), then h′(x) = g′(x)+ f ′(x), while if h(x) = g(x)−
f (x), then h′(x) = g′(x)− f ′(x).

Rule 6 Derivative of the sum of an arbitrary but finite number of functions:

If h(x) =∑n
i=1 gi(x), then h′(x) =∑n

i=1 g′i (x).

Rule 7 Derivative of the product of two functions:

If h(x) = f (x)g(x), then h′(x) = f ′(x)g(x)+ f (x)g′(x).

Rule 8 Derivative of the quotient of two functions:

If h(x) = f (x)

g(x)
, g(x) �= 0, then h′(x) = f ′(x)g(x)− f (x)g′(x)

[g(x)]2
.

Rule 9 Derivative of a function of a function—the chain rule:

If y = f (u) and u = g(x) so that y = f (g(x)) = h(x), then h′(x) =
f ′(u)g′(x) or

dy

dx
= dy

du

du

dx

Rule 10 Derivative of the inverse of a function:

If y = f (x) has the inverse function x = g(y), that is, if g(y) = f −1(y) and
f ′(x) �= 0, then

dx

dy
= 1

dy/dx
or g′(y) = 1

f ′(x)
where y = f (x)

x

f (x)

f (x) = cc

∆x

Figure 5.18 Constant function
f (x) = c has a zero slope

Rule 11 Derivative of the exponential function:

If y = ex , then dy/dx = ex .

Rule 12 Derivative of the logarithmic function:

If y = ln x, then dy/dx = 1/x.
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Rule 1 Derivative of a Constant Function, f(x ) = c

If f (x) = c, a constant, then f ′(x) = 0.

The reason that f ′(x) = 0 when f (x) = c is easy to see intuitively by looking
at the graph of the function f (x) = c (see figure 5.18). Regardless of which point
x is chosen, �y = 0 for any value of �x. Here �y = 0 for any size of �x.

Example 5.4 Marginal Revenue Function for a Competitive Firm

A competitive firm believes that if it sells more output there will not be a reduction
in the market price. The extra revenue generated by producing and selling one
more unit of output is therefore simply the price of the product. This is, of course,
a sensible attitude if the firm is a small producer in a large market. Thus the extra
revenue generated by an extra unit of output is constant regardless of the level
of output of the firm. If we let p̄ be market price, and MR(q) represent marginal
revenue as a function of output, it follows that dMR(q)/dq = 0 (see figure 5.19).

T R (q)

q

TR = pq

M R (q)

q

MR = p

Figure 5.19 Total revenue and marginal revenue of a competitive firm (example 5.4)

Of course, if the firm produced a level of output equal to a substantial fraction
of the output generated by all firms taken together, say one-half, then it would
no longer make sense for the firm to believe that the extra revenue generated by
additional sales was independent of the amount of extra output produced. In this
case, if a firm’s increments in output are large relative to the size of the market,
then it would be appropriate to assume dMR(q)/dq is negative.

Rule 2 Derivative of a Linear Function, f(x ) = mx + b

If f (x) = mx + b, with m and b constants, then f ′(x) = m.



150 CHAPTER 5 THE DERIVATIVE AND DIFFERENTIAL FOR FUNCTIONS OF ONE VARIABLE

This result follows because �y = f (x+�x)−f (x) = m(x+�x)+b−[m(x)+
b] = m�x. Then �y/�x = m, and so lim�x→0 �y/�x = m.

For example, the derivative of the function f (x) = 3x − 5 is f ′(x) = 3. The
important implication of this result is that for a linear function the rate at which
the variable y changes with respect to a change in x is the same at every value x.
We explore this property of linear functions in detail with an economic example.

Example 5.5 Slope of a Linear Demand Function

If p represents price and q represents quantity demanded, then q = a− bp, b > 0
is a general form of a linear demand function. This could reflect either the demand
for a product by a consumer or by the market as a whole. More specifically, if
q = 30−2p, then dq/dp = −2 means that quantity demanded falls by 2 units for
every one unit increase in the price regardless of the current price level or quantity
demanded. This demand function is drawn in figure 5.20. Notice that in describing
this function q(p) = 20 − 2p one might well expect the variable p to be drawn
on the horizontal axis with q on the vertical axis. However, it is standard practice
to do the reverse of this, which corresponds more intuitively and conforms more
to standard practice to think graphically in terms of the inverse of this function,
namely p = 15−(q/2), which is often referred to as the inverse demand function.

This last condition may well seem rather unrealistic in certain circumstances.
For example, suppose that we consider the case of electricity demanded by a
household. Let p be the price of electricity, measured in cents per kilowatt-hour,
and let q be quantity demanded by a single household, measured in hundreds
of kilowatt-hours per month. It seems a reasonable possibility that if the price
changed from p = 8 to p = 9, demand may fall by 200 kilowatt-hours per month
(from q = 1,400 kilowatt-hours to q = 1,200 kilowatt-hours) as it would if
the price changed from p = 9 to p = 10 (from q = 1,200 kilowatt-hours to
q = 1,000 kilowatt-hours), as predicted by the demand function. If, however,
the price were at the level p = 14 and were increased by one unit to p = 15,
it seems less reasonable to expect that the household would reduce consumption
by 200 kilowatt-hours, since that would take the consumer to a zero level of
demand.

q

p

q = 30 – 2p or p = 15 –   q15

30

1
2

Figure 5.20 Linear demand has a
constant slope (example 5.5)

For many commodities the rate at which consumers will reduce consumption
of a good (dq/dp) as price rises will depend on the current consumption level
or, equivalently, the current price of that good. This is one reason economists
often consider the presumption that demand is linear in price to be just a rough
approximation that is reasonable only over a certain range of prices.

Rule 3 Derivative of a Power Function, f(x ) = xn

If f (x) = xn, then f ′(x) = nxn−1.
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For example, the derivative of the function f (x) = x2 is f ′(x) = 2x, as we
derived from the definition of the derivative in section 5.2. The following list of
examples illustrates various types of results using this rule.

For f (x) = x3/2, x > 0, we get f ′(x) = (3/2)x(3/2−1) = (3/2)x1/2. The
function f (x) = x−2 has derivative f ′(x) = −2x−3. The derivative of f (x) = x0,
x �= 0, is f ′(x) = 0x0−1 = 0/x = 0 for x �= 0. Since for x �= 0, x0 = 1, this is
clearly the correct result. (Recall that 00 is not defined.)

Example 5.6 Total and Marginal Product of Labor

Consider the production function y = La, a > 0 which relates the level of input
labor, L, to output, y. This function is often called the total product of labor, TP(L).
The marginal product of labor is then MP(L) = dy/dL = aLa−1. If the parameter
value for a is greater than 1, then the marginal product of labor is increasing in L.
For example, for y = L3/2 we get MP(L) = (3/2)L1/2. If a = 1, the function
is simply the linear function y = L, and the derivative is the constant function
dy/dL = 1. If the value for a is less than 1, then the marginal product of labor
is decreasing in L. For example, for y = L1/2 we get MP(L) = (1/2)L−1/2 or
1/(2L1/2). These functions are graphed in figures 5.21, 5.22, and 5.23.

TP(L)

L

TP(L) = L3/2

MP(L)

L

MP(L) = TP'(L) =   L1/23
2

Figure 5.21 Total product of labor displaying increasing marginal product

It is reasonable to expect that if the amounts of inputs other than labor are held
fixed, then, at least eventually, as more labor is used we obtain smaller increments
in output per added unit of labor. This presumption is called diminishing marginal
productivity of a variable input. The only time this is satisfied for the functional
form y = La is when a < 1, as the above examples illustrate. As a result we
often see the restriction a < 1 imposed when the example of y = La is used. We
investigate this issue further in section 5.5.

As you will see throughout the chapters on optimization and multivariate
calculus, power functions are frequently used to illustrate properties of various
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TP(L)

L

TP(L) = L

MP(L)

L

MP(L) = TP'(L) = 1
1

Figure 5.22 Total product of labor displaying constant marginal product

TP(L)

L

TP(L) = L1/2

MP(L)

L

MP(L) =    L–1/21
2

Figure 5.23 Total product of labor displaying decreasing marginal product

economic concepts such as production functions and utility functions. For example,
the one variable case considered above, y = La , generalizes to the important class
of examples referred to as Cobb-Douglas production or utility functions. It is very
important, therefore, to understand the relationship between the size of a and the
change in the value of the marginal product of labor as L increases.

Rule 4 Derivative of the Constant Multiple of a Function,
g(x ) = cf(x )

If g(x) = cf (x), then g′(x) = cf ′(x).

This rule is a very straightforward one to implement.

Example 5.7 Find the derivative of the function g(L) = 5L2.
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Solution

This function can be written as 5f (L) where f (L) = L2 and so the derivative of
g(L) is g′(L) = 5f ′(L) = 5(2L) = 10L.

This general rule is easy to prove. Note that

g′(x) = lim
�x→0

g(x +�x)− g(x)

�x

= lim
�x→0

cf (x +�x)− cf (x)

�x

= lim
�x→0

c[f (x +�x)− f (x)]

�x

= c

[
lim

�x→0

f (x +�x)− f (x)

�x

]
= cf ′(x)

Rule 5 Derivative of the Sum or Difference of a Pair of
Functions, h(x ) = g(x ) ± f(x)

If h(x) = g(x)+ f (x), then h′(x) = g′(x)+ f ′(x), while if
h(x) = g(x)− f (x), then h′(x) = g′(x)− f ′(x).

This rule is also straightforward to implement.

Example 5.8 Find the derivatives of (i) h(x) = 5x + 3x2 and (ii) h(x) = 7x3 − 4x5.

Solution

For (i) we have h′(x) = 5+ 6x and for (ii) we have h′(x) = 21x2 − 20x4.

Rule 6 Derivative of the Sum of an Arbitrary but Finite
Number of Functions, h(x) =

∑n
i = 1 gi(x )

If h(x) =∑n
i=1 gi(x), then h′(x) =∑n

i=1 g′i (x).

This result also applies to the case where some or all of the operations involve
subtraction rather than addition.

Rule 6 is a straightforward generalization of rule 5. That is, since the derivative
of the sum of two functions is simply the sum of the derivatives of the functions
taken separately, then doing this iteratively allows one to establish rule 6. Thus, for
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example, if h(x) = x4+ 8x2+ 2x, we can treat h(x) as the sum of two functions,
f (x) = (x4+ 8x2) and g(x) = 2x, and write h′(x) = f ′(x)+ g′(x) = f ′(x)+ 2
using rule 5. Apply rule 5 again to the function f (x) to obtain f ′(x) = 4x3+16x.
Substitution gives h′(x) = 4x3+16x+2. Of course, if we treat each term x4, 8x2,
and 2x as separate functions, then we can simply apply rule 6 to establish directly
that h′(x) = 4x3 + 16x + 2.

Rule 6 offers a useful notation for writing out the derivative for a general
polynomial function. That is, for the function

h(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n =

n∑
i=0

aix
i

we can use rule 6 to write

h′(x) =
n∑

i=0

iaix
i−1

Rule 7 Derivative of the Product of Two Functions

If h(x) = f (x) · g(x), then h′(x) = f ′(x)g(x)+ f (x)g′(x).

Example 5.9 Find the derivative of

h(x) = (6x4 + 2x3)(5x − 10x2 + 18x5 − 4)

Solution

Let

f (x) = (6x4 + 2x3)

and

g(x) = (5x − 10x2 + 18x5 − 4)

Since

f ′(x) = (24x3 + 6x2)
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and

g′(x) = (5− 20x + 90x4)

we get

h′(x) = f ′(x)g(x)+ f (x)g′(x)

= (24x3 + 6x2)(5x − 10x2 + 18x5 − 4)+ (6x4 + 2x3)(5− 20x + 90x4)

This example shows the usefulness of this rule; that is, it is often much simpler
to use rule 7 in this manner than it is to expand the original expression for h(x) and
find the derivatives term by term. Moreover, if we are faced with an expression of
the form h(x) = f (x)g(x) but only know certain properties of functions f (x) and
g(x), we can sometimes gain some insights by using this technique. The following
example illustrates this point.

Marginal Revenue Function for a Competitive Firm and a Monopoly
Firm

The total revenue of either a competitive firm or a simple monopolist is the unit
price of its output times the quantity it produces/sells. Thus we write TR(q) = pq.
A competitive firm treats the price as a constant value, equal to the market price, p̄.
Thus we can write TR(q) = p̄q for total revenue, and so marginal revenue is
MR(q) = dTR(q)/dq = p̄ (recall example 5.4). A monopolist, however, is the
only firm in the industry and so recognizes that the amount it can sell is determined
by the price it sets according to the market demand function, q = D(p). Writing
the demand function in its inverse form, p = D−1(q) = p(q), we see that the
monopolist’s total revenue function is

TR(q) = pq = [p(q)] q

Thus the monopolist’s total revenue function is the product of two functions, p(q)

and q, and so we need to use the product rule to find MR(q). We then have

TR(q) = p(q)q

and so

MR(q) = dTR(q)

dq
= dp

dq
q + p(q)

dq

dq
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or

MR(q) = p′(q)q + p

where p′(q) is the derivative of the inverse demand function. If we consider the
usual case of price being negatively related to quantity sold, p′(q) < 0, then it
follows that the term p′(q)q is negative, and so MR(q) < p; that is, the marginal
revenue of increased sales is less than the unit price being charged at any q > 0.

To understand the result above, work through the following steps, which are
illustrated in figure 5.24. A firm sells output q̂ at the price p̂ = p(q̂). To sell an
additional bit of output �q, it must reduce price on all the units it sells by �p.
Thus the change in revenue is

�R = area A− area B

and so we get

�R = (p̂ −�p)�q −�pq̂

The first term is the gain in revenue from selling extra output �q at the
new price (p̂ − �p), and this is given by area A in figure 5.24. The second
term is the loss in revenue resulting from having to take a price reduction of
�p on the output q̂ previously sold at the higher price p̂, area B in the figure.
Whether �R is positive or negative then depends on the relative sizes of these
two areas. Note that the lower is p̂, the higher is q̂, and so the larger is area B

p

loss in revenue due to 
price reduction = ∆pq

q

added revenue due to 
increased sales = p∆q 

p

p – ∆p
∆p {

q q + ∆q

∆q

{

B

D
A

.

Figure 5.24 Impact on a monopolist’s revenue of the sale of an additional �q units



5.4 RULES OF DIFFERENTIATION 157

relative to area A. This explains why marginal revenue diverges increasingly from
price as quantity sold increases. Finally note that this divergence only arises if
the firm must charge the same price on all units it sells, that is, if it cannot price
discriminate.

If we divide through the expression above for �R by �q, we obtain

�R

�q
= p̂ − �p

�q
q̂ −�p

Then marginal revenue is the limit of this expression as �q → 0. Since �p→ 0
as �q → 0, the limit is

MR = lim
�q→0

�R

�q
= p̂ + q̂

dp

dq

Notice the change in sign to positive for the second term. This simply recognizes
that in the expression for �R/�q, we treat the reduction in price as a positive
value, while in the expression lim�q→0 �R/�q, the term dp/dq is the slope of
the inverse demand function which is itself negative (i.e., −�p/�q is the slope
of the inverse demand function, dp/dq, as �q → 0). Thus the second term in the
expression above for MR is indeed negative.

Example 5.10 An example with a specific functional form may illuminate further. Suppose that
the demand function is linear and, in its inverse form,

p(q) = 40− 2q

The monopolist’s total revenue function becomes

TR(q) = p(q)q = [40− 2q]q

Using the product rule, the marginal revenue function is

MR(q) = d[40− 2q]

dq
q + d[q]

dq
[40− 2q] = [−2]q + 1[40− 2q] = 40− 4q

As an example of the fact that MR < p, notice that for output level q̂ = 5, the price
charged is p̂ = 30 but MR(q̂) = 20, which is less than price. This is illustrated in
figure 5.25.

q

30

$

20

40

20

10

MR = 40 – 4q

p = 40 – 2q

q = 5

Figure 5.25 Marginal revenue for
a monopolist facing the inverse
demand function p = 40− 2q
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Rule 8 Derivative of the Quotient of Two Functions

If h(x) = f (x)/g(x) and g(x) �= 0, then

h′(x) = f ′(x)g(x)− g′(x)f (x)

[g(x)]2

Example 5.11 Find the derivative of

h(x) = 10x2 + 3x4 + 5

x2 − 5x

Solution

We can find the derivative by letting

f (x) = 10x2 + 3x4 + 5 and g(x) = x2 − 5x

and then using the formula to get

f ′(x) = 20x + 12x3 and g′(x) = 2x − 5

and so

h′(x) = (20x + 12x3)(x2 − 5x)− (2x − 5)(10x2 + 3x4 + 5)

[x2 − 5x]2

Relation between Average and Marginal Values of a Function

Given a function f (x) (which may be a cost function, total product function, etc.)
its average value function is

A(x) = f (x)

x

Using the quotient rule, it follows that

A′(x) = (f ′(x)x)− (1f (x))

x2
= 1

x

[
f ′(x)− f (x)

x

]
= 1

x
[f ′(x)− A(x)]

where f ′(x) is the marginal value function. This tells us the following:
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y3y1

MC(y) = TC'(y)

AC(y) = 
TC(y)

y

AC(y), MC(y)

yy2

Figure 5.26 Marginal and average cost curves when the average cost is U-shaped

(i) When f ′(x) < A(x), then A′(x) < 0; that is, the average value function is
falling.

(ii) When f ′(x) = A(x), then A′(x) = 0; that is, the average value function is
horizontal or is at a point of horizontal tangency.

(iii) When f ′(x) > A(x), then A′(x) > 0; that is, the average value function is
rising.

This relationship is illustrated for an average cost function, AC(y), and mar-
ginal cost function, MC(y), in figure 5.26. Note that when the cost of producing an
extra unit of output, which is the marginal cost, is below the average cost, such as
at point y = y1, the average cost of production is falling in y. When the marginal
cost is equal to the average cost, such as at point y = y2, the average cost of
production is not changing. When the marginal cost exceeds average cost, such as
at point y = y3, the average cost of production is rising.

Example 5.12 For the total cost function

T C(y) = y2 + 10y + 25, y > 0

show that

(i) MC is less than AC where AC is falling
(ii) MC =AC at the point where the AC curve is horizontal

(iii) MC exceeds AC where AC is rising.
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Solution

MC(y) = 2y + 10

AC(y) = y + 10+ 25

y

AC′(y) = 1− 25

y2

and

AC′(y) = 0⇒ 1− 25

y2
= 0

⇒ 1 = 25

y2

⇒ y2 = 25

⇒ y = 5 (since y > 0)

Thus the AC curve is horizontal at the point y = 5, which corresponds to y2 in
figure 5.26. At y = 5, MC = 2(5) + 10 = 20 and AC = 5 + 10 + 25/5 = 20.
This establishes result (ii).

Now

MC < AC⇒ 2y + 10 < y + 10+ 25

y

⇒ y − 25

y
< 0

⇒ y <
25

y

⇒ y2 < 25

⇒ y < 5

This establishes result (i). Similarly, MC > AC ⇒ y > 5 which establishes
result (iii).

Rule 9 Derivative of a Function of a Function (the Chain
Rule)

If y = f (u) and u = g(x) so that y = f (g(x)) = h(x), then h′(x) = f ′(u)g′(x).
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This result can also be written as

dy

dx
= dy

du

du

dx

Thereason that this technique is called the chain rule is that a change in the
value of the variable x affects the variable u, according to the function u = g(x),
and a change in the variable u, in turn, affects the variable y according to the
function y = f (u). Thus there is a chain of effects by which x affects y, which
can be depicted by x → u→ y.

The chain rule can be extremely convenient when one is faced with certain
types of functions that would be very tedious to differentiate directly. For example,
one way to differentiate the function

y = h(x) = (3x4 + 5x3 − 2x)30

would be to expand the function by brute force and then find the derivative term
by term. However, by recognizing that this function can be written as

y = f (u) = u30, where u = g(x) = 3x4 + 5x3 − 2x

it is easy to apply the chain rule to find its derivative. Noting that

dy

du
= f ′(u) = 30u29

and

du

dx
= g′(x) = 12x3 + 15x2 − 2

allows us to determine the result that

dy

dx
= dy

du

du

dx
= 30u29[12x3 + 15x2 − 2]

Since the original problem is given in terms of the variable x, it is conventional also
to give the final answer in terms of the variable x and so to make the substitution
of u = 3x4 + 5x3 − 2x to get

dy

dx
= h′(x) = 30[3x4 + 5x3 − 2x]29[12x3 + 15x2 − 2]

After a little practice one needn’t make the explicit substitutions to solve such
problems. For example, given the function y = (3x− x3)6, one can directly write
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down the derivative as

dy

dx
= 6(3x − x3)5(3− 3x2)

This rule is also useful in describing certain economic relationships. The following
example illustrates this point.

Rule 10 Finding the Derivative of the Inverse of a Function

If y = f (x) has the inverse function x = g(y), that is, g(y) = f −1(y), then

dx

dy
= 1

dy/dx

Alternatively, we can write

g′(y) = 1

f ′(x)

This rule is easiest to understand in the context of a linear function. Suppose
that y = 2x. Then x = 0.5y is its inverse. Thus we can write �y/�x = 2 and
�x/�y = 1/(�y/�x) = 0.5. Since the derivative of the function y = f (x) is
just the limit of �y/�x as �x → 0 and the derivative of the function x = f −1(y)

is just the limit of �x/�y as �y → 0, the same logic applies to both the derivative
of a function and its inverse.

The inverse function rule is especially useful for cases in which it is difficult
to find explicitly the inverse of the function. For example, suppose that we have
the function y = x5 + x3 and we want to know the derivative of the inverse of
this function. Since dy/dx = 5x4 + 3x2, it follows that dx/dy = 1/(dy/dx) =
1/(5x4+3x2). Thus, as long as one doesn’t want the answer expressed in terms of
the variable y, there is no need to try to write out the inverse function in the form
x = f −1(y). The following example illustrates how to use the inverse function
rule in a general context in order to demonstrate an important relationship between
a firm’s production function and its cost function.

Relationship between the Cost Function and the Production Function
for the Case of One Input

Suppose that a firm produces quantity q of some product using a single input L

according to the production function q = q(L). The marginal product function
is MP(L) = dq/dL. For example, if q = L1/2, then MP(L) = 1/2L−1/2. If the
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marginal product is falling as L increases, as it is in this example, then this means
that for every extra unit of input used, the increment in output is smaller. Looking
at this in reverse, we see that to produce an extra unit of output requires a larger
increment of input the greater is the original output level. This is illustrated in
figure 5.27. Note that at output level q0 it takes �L0 extra input to produce one
more unit of output, whereas at output level q∗ it takes �L∗ extra input to produce
an extra unit of output. At a given wage rate the cost of producing an extra unit of
input must therefore be greater at output level q = q∗ than at q = q0.

L

q

L* ∆L* 

q (L)q* + 1

q*

q0 + 1

q0

L*˜L0∆L0 
L0
˜

Figure 5.27 Case where more of an input is required to generate an extra unit of
output, as the initial level of output becomes higher.

This example shows that the marginal cost of production rises whenever the
marginal product of labor is falling. By a similar argument it follows that the
marginal cost of production is falling whenever the marginal product of labor is
rising. We develop this argument formally below.

If we let c0 represent any fixed cost of production and w be the unit cost of L,
then

C(L) = wL+ c0

is the cost when employing L units of labor. Using the inverse function notation,
we can write the cost as a function of output as

C(q) = wL(q)+ c0
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Thus marginal cost is

dC

dq
= w

dL

dq

Using the inverse function rule for differentiation, we see that

dC

dq
= w

1

dq/dL

Thus, since dq/dL appears in the denominator of the function dC/dq, we have
the following results: if dq/dL is rising, then dC/dq is falling, while if dq/dL is
falling, then dC/dq is rising.

Example 5.13 Use the inverse function rule of differentiation to show that the marginal cost curve
associated with the production function q = L1/2 is rising.

Solution

C(q) = wL(q)+ c0

and so

C ′(q) = w
dL

dq
= w

dq/dL

Since q = L1/2, we have

dq

dL
= 1

2
L−1/2

and so

C ′(q) = w

(L−1/2)/2
= 2wL1/2 = 2wq

which is increasing in output.
Notice that we can check this result by direct substitution

q = L1/2 ⇒ L = q2
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and so

C(q) = wL(q)+ c0 ⇒ C(q) = wq2 + c0

which implies that

C ′(q) = 2wq.

The relationship between this production function and its associated cost function
is illustrated in figure 5.28 for the special case of c0 = 0.

q

L

q(L) = L1/2

4

2

4 16

C 

q

C(q) = wL(q) = wq2
16w

4w

2 4

(c0 = 0)

Figure 5.28 Production function and associated cost function for example 5.13

Rule 11 Derivative of the Exponential Function

If y = ex , then dy/dx = ex .

This rule states that the derivative of the function f (x) = ex at any point x = a

has the same value as the function itself, namely f (a) = ea and f ′(a) = ea . This
is illustrated in figure 5.29.

x

y
y = ex

slope = ea

a

ea

1

Figure 5.29 Function y = ex

The chain rule can also be applied to obtain the result that f (x) = eg(x) has
derivative function f ′(x) = g′(x)eg(x). To see how to get this result, let u = g(x).
Then f (u) = eu, and it follows that f ′(x) = (dy/du)(du/dx) = eug′(x) =
g′(x)eg(x). For example, the derivative of f (x) = ex2

is f ′(x) = 2x(ex2
).

Example 5.14 Exponential Growth in the Price of a Bottle of Wine

Expert wine growers will argue that their best wines improve exponentially in the
length of time they are stored and then so does the price. If we let g be the rate of
growth in the price, t the number of years it is stored, and p0 the price when the
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wine is sold immediately, then

p(t) = egtp0

is the price as a function of t . Notice that

dp

dt
= gegtp0

is the rate at which price changes per period, and so the percentage growth rate in
the price as �t → 0 is

lim
�t→0

�p/�t

p
× 100 = dp/dt

p
× 100 = gegtp0

egtp0
× 100 = g × 100

This illustrates that g is indeed the rate of growth in the price.

Rule 12 Derivative of the Logarithmic Function

If y = ln x, then dy/dx = 1/x.

Since the function y = ln x is the inverse of the exponential function, this
rule can be derived from rules 11 and 10 as follows: The statements y = ln x and
x = ey are equivalent. From rule 11 we know that dx/dy = ey = x, and so from
the method of finding the derivative of the inverse function we know that

dy

dx
= 1

dx/dy
= 1

x

That is,

d[ln x]

dx
= 1

x

The chain rule can be applied to this rule as well to get the more general result that
if y = ln[g(x)], then

dy

dx
= g′(x)

1

g(x)
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Example 5.15 Find the derivative of the function

y = ln[5x2 − 3x]

Solution

The derivative is

dy

dx
= (10x − 3)

1

[5x2 − 3x]
= 10x − 3

5x2 − 3x

The result also extends easily to log functions with a base other than the natural
number e. Since

logb x = logb e ln x

it follows that

d[logb x]

dx
= logb e

(
d[ln x]

dx

)
= logb e

1

x

As we illustrate now, this rule is very useful in expressing and finding elasticities.

Finding Elasticities

Consider a simple linear demand function y = a − bp, b > 0. The value a mea-
sures the quantity demanded at price p = 0, and b = −dy/dp measures the
amount by which demand falls as a result of a unit increase in price. One might
be inclined to think that the slope,−b, is a good measure of the responsiveness of
demand to price changes. However, the slope of the demand function is dependent
on the units in which p and y are measured. Suppose, for example, that the de-
mand function y = 10− 0.02p expresses demand for steel when y is measured in
(metric) tonnes and p refers to the price in dollars per tonne. Thus (p = $100 per
tonne, y = 8 tonnes) and (p = $200 per tonne, y = 6 tonnes) are two points on
this demand function. If we measure y in kilograms (1,000 kg= 1 tonne) and p in
dollars per kilogram, this same demand function becomes y = 10,000−20,000p.
This can be checked by noting that the two points mentioned above are also on this
demand function. That is, (p = $100 per tonne, y = 8 tonnes)= (p = $0.1 per kg,
y = 8,000 kg) and (p = $200 per tonne, y = 6 tonnes) = (p = $0.2 per kg,
y = 6,000 kg). The slopes of these two functions are very different, yet they
explain the same demand behavior.
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By defining a measure of responsiveness in terms of percentage changes in
each of the variables, p and y, we escape the “units of measurement” problem
above. First we develop the idea of arc elasticity which is the (average) elasticity
of demand between two points on the demand function. Then we will indicate what
is the more precise notion of elasticity, the so-called point elasticity of demand.

Letting (y1, p1) and (y2, p2) be two points on the demand function, the average
percentage change in the price between two points is

%�p = p2 − p1

(p2 + p1)/2
× 100

and the average percentage change in the quantity is

%�y = y2 − y1

(y2 + y1)/2
× 100

Notice that these values are the same for the demand function above regardless of
which equation we use to express it. That is,

%�p = 200− 100

150
× 100 = 0.2− 0.1

0.15
× 100

.= 66.7%

and

%�y = 6− 8

7
× 100 = 6000− 8000

7000
× 100

.= −28.6%

Using the standard notation that �y = y2 − y1 and �p = p2 − p1, we can define
the arc elasticity of demand as

[
−%�y

%�p

]
= −

y2 − y1

(y2 + y1)/2
p2 − p1

(p2 + p1)/2

= − �y/(y1 + y2)

�p/(p1 + p2)

There is, however, a difficulty or awkwardness with using this arc elasticity for-
mula. Its value typically depends on the size of the price change (�p) and the
corresponding change in quantity demanded (�y). There is no natural choice for
the size of �p. This issue is demonstrated in detail in the corresponding section
of the Web page http://mitpress.mit.edu/math econ3.

A method that avoids this difficulty is the point elasticity of demand formula.
This formula simply uses the arc elasticity formula developed above but takes the
limit as �p → 0 (and hence �y → 0 also). In doing so, one computes the
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elasticity at a given point, say (y1, p1), rather than between two points, (y1, p1)

and (y2, p2). The point elasticity of demand formula is developed formally below.

ε = lim
�p→0

(−)
�y/(y1 + y2)

�p/(p1 + p2)

= lim
�p→0

(−)
�y

�p

p1

y1
= (−)

dy

dp

p1

y1
(5.6)

There are three things to note about this formula:

• As �p → 0, the two points (p1, y1) and (p2, y2) converge to a single point,
hence the term point elasticity.
• If we are referring to the impact of the change in the (own) product’s price

on demand we generally refer simply to elasticity of demand. We could, of
course, measure other elasticities such as the impact of a change in income on
quantity demanded or the impact of a change in the price of some other good
on quantity demanded. These other elasticities will be treated in chapter 11.
• The negative sign in formula (5.6) is used to convert the elasticity to a positive

number in the standard case of a downward sloping demand function. Not all
textbooks do this and it is only a matter of convenience that we do it here.

For a general linear demand function, y = a − bp, b > 0, we get

ε = −dy

dp

p

y
= −(−b)

(
p

y

)
= b

(
p

y

)

Thus the slope of a linear demand function is constant, but its elasticity is
not. Another functional form commonly used to express the relationship between
price and quantity demanded is the so-called constant elasticity demand function
y = αp−β , α > 0, β > 0. This demand function does not have a constant slope
but rather has the same elasticity of demand at every point.

An alternative, easier method of computing the elasticity in this case is to first
transform the demand function y = αp−β using logarithms and then apply the rule
for finding the derivative of the logarithmic function. Choice of base is irrelevant,
and so we take the natural logarithm of both sides of (y = αp−β) and apply the
rules for logarithms to get the following result:

ln[y] = ln[αp−β] = ln[α]− β ln[p] (5.7)

If we let ŷ represent ln[y], p̂ represent ln[p], and α̂ represent ln[α], we can rewrite
equation (5.7) in the simple linear form

ŷ = α̂ − βp̂
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It follows that

dŷ

dp̂
= −β or

d ln[y]

d ln[p]
= −β

which is the negative of the elasticity of demand. In fact, it can be shown that in
general

− d ln[y]

d ln[p]
= ε = −dy

dp

p

y

To see this, note that

d ln[y]

dy
= 1

y
⇒ d ln[y] = dy

y

and

d ln[p]

dp
= 1

p
⇒ d ln[p] = dp

p

By straightforward substitution we get

− d ln[y]

d ln[p]
= − dy/y

dp/p
= −dy

dp

p

y
= ε (5.8)

Therefore, if a demand relation is specified as a linear function in the logs of the
variables y and p, rather than the variables y and p themselves, then it follows
that the underlying demand function is presumed to have constant elasticity, and
so the slope coefficient (on p̂) is the elasticity of demand.

Example 5.16 Find the point elasticity of demand (with respect to own price) for the demand
function y = 50− 2p, at price p = 5. Over what range of prices is ε less than 1,
and over what range of prices is it greater than 1?

Solution

We know from equation (5.6) that

ε = −dy

dp

p

y
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Now dy/dp = −2, and so

ε = 2p

y
= 2p

50− 2p

At p = 5 we have

ε = 2(5)

50− 2(5)
= 10

40
= 1

4

For ε = 1 we have

1 = 2p

50− 2p

2p = 50− 2p

p = 12.5

Thus ε = 1 at price 12.5.
Similarly

ε < 1 when
2p

50− 2p
< 1 (i.e., when p < 12.5)

ε > 1 when
2p

50− 2p
> 1 (i.e., when p > 12.5)

These results are illustrated in figure 5.30.

y

p

 ε < 1

25  ε = 1

12.5

25 50

 y = 50 – 2p

 ε > 1

Figure 5.30 Elasticity changes
along the demand function
y = 50− 2p

Example 5.17 Find the point elasticity of demand ε (with respect to own price) for the demand
function y = 100p−2. Use both the direct approach, using equation (5.6), and the
method of first taking logarithms, and then apply equation (5.8).

Solution

By equation (5.6),

ε = −dy

dp

p

y
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where, in this case, dy/dp = −200p−3, and so

ε = −(−200p−3)
p

y
= 200p−2

100p−2
= 2

Alternatively, by first taking logs, we have

ln y = ln(100p−2) = ln 100− 2 ln p

Noting that ε = −d ln y/d ln p gives

ε = − d ln y

d ln p
= 2

We can also define the (price) elasticity of supply as the ratio of the percentage
change in quantity supplied divided by the percentage change in price. For example,
given the linear supply function y = −5+3p, we get the elasticity of supply to be

γ = dy/y

dp/p
= dy

dp

p

y
= 3

p

y

In fact the concept of elasticity is very general. Given any variable x that
affects some other variable z, according to the function z = f (x), we can define
the elasticity of variable x on z to be

ν = dz/z

dx/x
= dz

dx

x

z

Rule 13 L’Hôpital’s Rule

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

This rule, which is more an application of differentiation than a rule for finding
derivatives, is useful for finding the limiting value of the ratio of functions at a
point (x = a) where that value is undefined, such as 0/0 or∞/∞. For example,
if f (x) = x2 − 1 and g(x) = x − 1, then the ratio f (x)/g(x) when evaluated at
the point x = 1 is not defined (i.e., it is 0/0). However, the ratio f ′(x)/g′(x) is
defined at the point x = 1 and is easily computed as f ′(x)/g′(x) = 2x/1 = 2x =
2(1) = 2.
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Note that in the case above one could also determine this ratio by factoring,
since (x2 − 1)/(x − 1) = [(x − 1)(x + 1)]/(x − 1) = x + 1, which has value 2
when x = 1. However, it is often much easier to apply L’Hôpital’s rule.

E X E R C I S E S

1. Find the slope of each of the following production functions, y= f (L).
Graph the functions and their derivative functions. Give the economic
significance of the sign of the slope of the derivative functions (i.e., whether
the derivative is increasing or decreasing in L).

(a) y = 10L

(b) y = 8L1/3

(c) y = 3L4

2. Find the slope of each of the following production functions, y= f (L). Graph
the functions and their derivative functions. Give the economic significance
of the sign of the slope of the derivative functions (i.e., whether the derivative
is increasing or decreasing in L).

(a) y = aL, a > 0

(b) y = 10L2/3

(c) y = 12L2 − L3

3. Suppose that two firms, A and B, behave as competitive firms in deciding
how much output to supply to the market. Firm A’s cost function is CA =
10q + 2q2, q ≥ 0, and firm B’s cost function is CB = 15q + q2, q ≥ 0.

(a) Find the supply functions, defined on q ≥ 0, for each firm and draw them
on the same graph. At which points of the domains are these functions
differentiable?

(b) Find the total supply function for the two firms and graph it. Is this
function differentiable? Discuss.

4. For the total cost function

T C(y) = 3y2 + 7y + 24, y > 0

show that (and illustrate on a graph):
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(a) MC is less than AC where AC is falling.

(b) MC =AC at the point where the AC curve is horizontal.

(c) MC exceeds AC where AC is rising.

5. A firm uses one input, L, to generate output, q, according to the production
function q = 16L2. The input price is w and fixed costs are c0 > 0. Show
that dq/dL is rising while dC/dq is falling. How does your result relate to
the inverse function rule for differentiation?

6. Suppose that a monopolist faces inverse demand function p = a − bq. Find
its marginal revenue function. Plot both the demand function and the marginal
revenue function on a single graph.

7. A bakery advertises its bagels by noting either the price per dozen (i.e., 12
bagels—not a “baker’s dozen” of 13) or per bagel and doesn’t offer any
quantity discounts. Thus, for example, if the price is $4.80 per dozen (i.e.,
for 12 bagels), then it is $0.40 per bagel. Since these prices are the same,
the baker is not surprised to find that demand is the same no matter how she
decides to quote the price. By using the per dozen price, the baker finds the
demand function to be y = 100 − 2p, where y is the number of dozens of
bagels sold per day.

(a) Find the (own) price elasticity of demand for bagels.

(b) Find the demand function for bagels, ŷ= a− bp̂, where ŷ is the number
of bagels sold per day and p̂ is the price per bagel for this example (i.e.,
conversion of units). Find the (own) price elasticity of demand for bagels
using this demand function and show that the answer is the same as for
part (a).

8. A bakery advertises its bagels by noting either the price per dozen or per bagel
and doesn’t offer any quantity discounts. Thus, for example, if the price is
$4.80 per dozen (i.e., for 12 bagels), then it is $0.40 per bagel. Since these
prices are the same, the baker is not surprised to find that demand is the same
no matter how she decides to quote the price. By using the per dozen price,
the baker finds the demand function to be y = 100/p2, where y is the number
of dozens of bagels sold per day.

(a) Find the (own) price elasticity of demand for bagels by first taking logs
and using the result that ε = −d ln[y]/d ln[p].

(b) Rewrite the demand function for bagels in terms of the variables ŷ

and p̂ where ŷ is the number of bagels sold per day and p̂ is the
price per bagel. Find the (own) price elasticity of demand for bagels
using this demand function and show that the answer is the same as for
part (a).
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5.5 Higher Order Derivatives: Concavity
and Convexity of a Function

Since the derivative of a function is also a function, we can write dy/dx = f ′(x)

and find its derivative, d[f ′(x)]/dx. We call f ′ the first derivative function of
the function f and the derivative of the first derivative,

d(dy/dx)

dx
or

d[f ′(x)]

dx
or

d2y

dx2
or f ′′(x)

the second derivative function. Since the second derivative is also a function, we
can also find its derivative. We call d[f ′′(x)]/dx the third derivative function and
write it as f ′′′ or f (3)(x) to indicate that this function is found by three successive
operations of differentiation, starting with the function f . Of course, this process
may continue indefinitely and so we use the general notation f (n) to indicate the
nth derivative of the function f .

Example 5.18 Find the first four derivatives of the function f (x) = x4.

Solution

Taking successive derivatives gives

f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x, and f (4)(x) = 24

Upon taking the derivative of the fourth derivative, we get the fifth derivative to
be f (5)(x) = 0. Every further order derivative for this example is also the constant
function zero (i.e., f (n)(x) = 0 for n ≥ 5).

If the first two derivatives of a function exist, we say the function is twice differ-
entiable. In economics we obtain many useful results by concentrating on the first
and second derivatives of a function. In particular, certain results often depend on
whether the second derivative is positive or negative. Thus we will discuss at some
length below what it means for the second derivative of a function to be negative
or positive. This leads us to a simple method of determining whether a function is
convex or concave (see chapter 2).

Consider the function f (x) = x2 for domain x > 0. On x > 0 this function is
upward sloping and, from its graph (figure 5.31), we can see that its slope increases
as x increases. This means that the first derivative function is increasing in x, and
so the derivative of this, the function’s second derivative, must be positive valued
for all x > 0. Upon finding the derivatives, we get f ′(x) = 2x and f ′′(x) = 2.
Thus the second derivative is indeed positive for any value of x.
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x0

f (x)

f (x) = x2

x0

f '(x)

f '(x) = 2x

x0

f ''(x)

f ''(x) = 2

Figure 5.31 Function f (x) = x2, x ≥ 0 and its first two derivatives

Now, consider the graph of this same function defined on x < 0 (figure 5.32).
On this set of values the function is negatively sloped f ′(x) = 2x < 0 on x < 0.
The greater the value of x, the less steep is the curve. Thus, as x increases, the
slope falls in absolute value which means that since the slope is negative, the value
of the slope is actually increasing in x. Thus the second derivative is positive.

x0

f (x)

f (x) = x2

x0

f '(x)

f '(x) = 2x

x0

f ''(x)

f ''(x) = 2

Figure 5.32 Function f (x) = x2, x ≤ 0 and its first two derivatives

Defining this function on the domain R (and putting the graphs over x ≤ 0
and x ≥ 0 together) we see that the second derivative is positive throughout (see
figure 5.33). A function with this shape, as determined by the second derivative
being positive, is convex.

D e f in i t i o n 5 . 7 A twice differentiable function f (x) is convex if, at all points on its domain,
f ′′(x) ≥ 0.
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x0

f (x)

f (x) = x2

x0

f '(x)
f '(x) = 2x

x0

f ''(x)

f ''(x) = 2

Figure 5.33 Function f (x) = x2, x ∈ R, and its first two derivatives

A linear function is convex according to definition 5.7. In many instances,
however, we will want to consider linear functions separately from functions with
positive or nonzero second derivatives. Thus we often use the concept of strict
convexity to exclude linear functions. This is done by replacing the weak inequality
(≥) in definition 5.7 with the strict inequality (>).

D e f in i t i o n 5 . 8 A twice differentiable function f (x) is strictly convex if f ′′(x) > 0 except pos-
sibly at a single point.

Notice that the function f (x) = x4 has the second derivative f ′′(x) = 12x2

which is positive for all x except x = 0 where the second derivative becomes
zero. This function is, however, strictly convex, and hence the qualification in
definition 5.8 regarding the requirement f ′′(x) > 0 except possibly at one point.

The set of diagrams in figure 5.34 illustrates the shape of strictly convex
functions for the cases where the function is monotonic increasing, monotonic

x

f (x)

x

f (x)

x

f (x)

a

f ' (x) > 0
(monotonic increasing)

f ' (x) < 0
(monotonic decreasing)

f ' (x) changes sign
(not monotonic)

0 0 0

Figure 5.34 Possible shapes of strictly convex functions
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decreasing, or not monotonic. If we now consider the function f (x) = 10 − x2,
we find that its first derivative is f ′(x) = −2x and its second derivative is f ′′(x) =
−2 (see figure 5.35). Thus this function is increasing in x for x < 0 and is
decreasing in x for x > 0. The slope, however, is falling for all values of x. This
means that when f ′(x) > 0, it is becoming less steep while when f ′(x) < 0, the
function is becoming more steep in absolute value but the slope is becoming more
negative.x

10

f (x)

y = 10 – x2

0

Figure 5.35 A strictly concave
function: y = 10− x2

Since the function y = 10−x2 has a negative second derivative, it exemplifies
properties which are the opposite of those of a convex function. It is an example
of a concave function.

D e f in i t i o n 5 . 9 A twice differentiable function f (x) is concave if f ′′(x) ≤ 0 on all points of its
domain.

As for the case of convex functions, a linear function also satisfies the definition
of concavity (f ′′(x) = 0 for all x). To exclude it, we have the following definition
for strictly concave functions.

D e f in i t i o n 5 . 10 A twice differentiable function f (x) is strictly concave if f ′′(x) < 0 on all points
of its domain except possibly at a single point.

Alternatively, since multiplying through by −1 reverses an inequality, we could
say that f (x) is (strictly) concave if −f (x) is (strictly) convex.

A function whose second derivative is sometimes positive and sometimes
negative is neither convex nor concave everywhere. However, we can sometimes
find intervals over which the function is one or the other. This information is useful
in determining the shape of the graph of a function, as is illustrated in the following
example.

Example 5.19 Use the sign of the second derivative to help in graphing the function

f (x) = −
(

1

3

)
x3 + 3x2 − 5x + 10 on x ≥ 0

Solution

The first two derivatives of this function are

f ′(x) = −x2 + 6x − 5
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and

f ′′(x) = −2x + 6

Thus, since f ′′(x) > 0 for x < 3 and f ′′(x) < 0 for x > 3, the function is convex
on the interval [0, 3] and concave on the interval [3,+∞). This helps us to draw
the function. The following table gives the values of the function as well as the
values for the first and second derivatives at the points x = 0, 1, 2, . . . , 8. Notice
that at any values of x where f ′(x) = 0, the function is neither rising nor falling
through that point, and hence is flat at that point.

x f (x) f ′(x) f ′′(x)

0 10.00 −5.00 6.00
1 7.67 0.00 4.00
2 9.33 3.00 2.00
3 13.00 4.00 0.00
4 16.67 3.00 −2.00
5 18.33 0.00 −4.00
6 16.00 −5.00 −6.00
7 7.67 −12.00 −8.00
8 −8.67 −21.00 −10.00

Upon factoring the first derivative, we get

f ′(x) = −(x − 5)(x − 1)

and so it is easy to derive algebraically that the first derivative is zero at the
points x= 1 and x= 5. Also it is easy to see that the function has a positive second
derivative, and so is convex-shaped for x < 3 and has a negative second derivative,
and so is concave-shaped for x > 3. This information allows us to draw the function
in figure 5.36.

Concavity and Convexity of Production Functions

Consider the case of a short-run production function. Let x represent a single
(variable) input which is used to produce output y according to the production
functiony = f (x).All other inputs are assumed to be fixed in the short run.The first
derivative of the production function is the marginal product of x, MP(x) = f ′(x).
If f ′(x) is decreasing in x, this means that the marginal product is falling as more
x is used, which is the law of the diminishing marginal product of a variable input.
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x

f (x)

1
3

20

–10

10

0 1 3 5 10

f (x) = –   x3 + 3x2 – 5x + 10

Figure 5.36 Function f (x) = −1

3
x3 + 3x2 − 5x + 10 (example 5.19)

If f ′(x) is falling as x is increasing, then the second derivative is negative:

d[f ′(x)]

dx
= f ′′(x) < 0

means the production function is strictly concave (definition 5.10). For example,
the second derivative of the function y = x1/2, x ≥ 0 is

f ′′(x) = −1

4
x−3/2

which is negative (for x > 0). Thus this is an example of a concave production
function.

If a production function y = f (x) has a positive second derivative (ev-
erywhere), f ′′(x) > 0, then the marginal product of labor, MP(x) = f ′(x), is
increasing in x. Thus a strictly convex production function exhibits the property
that the marginal product of the variable input is increasing. An example is y = x2.
From an economic perspective, this property seems implausible. If all inputs but
one, say labor, are available in fixed amounts, it seems unlikely that adding more
labor will continually lead to greater increments in output, as sooner or later the
productivity of additional amounts of labor will fall because of inadequate levels of
the fixed inputs. Thus, when constructing an economic model involving short-run
production, it is common to assume that the production function is concave (i.e.,
f ′′(x) < 0).



5.5 HIGHER ORDER DERIVATIVES: CONCAVITY AND CONVEXITY OF A FUNCTION 181

It is plausible, however, that for certain production processes increasing the
level of the variable input may lead to increasingly large increments in output at
“low to moderate" levels of production. For example, suppose that there are only
a few workers available to operate the machines in a large factory. Given how
much each worker would have to run from machine to machine, these workers
may not be very productive and adding an extra worker may also not lead to a very
large increase in output. Consequently the marginal product may increase more
rapidly only when there is a sufficient number of workers to operate the various
machines effectively. One would, however, expect the extra output generated by
employing additional workers to fall eventually as more labor is added. Thus
it seems reasonable to expect that for some production processes the marginal
product of labor may rise initially and then fall.

Example 5.20 Show that the production function

f (x) = −
(

2

3

)
x3 + 10x2 + 5x

has both a concave and a convex section. Draw its graph.

Solution

Since the second derivative of this function is

f ′′(x) = −4x + 20

it follows that the function is convex (marginal productivity of x increasing) on the
interval [0, 5) and concave (marginal productivity of x decreasing) on the interval
(5,∞). That is,

f ′′(x) = −4x + 20 > 0 ⇒ x < 5 (convex)

f ′′(x) = −4x + 20 < 0⇒ x > 5 (concave)

The graph of f (x) is provided in figure 5.37.

x

f (x)
2
3

f (x) = –   x3 + 10x2 + 5x

5

Figure 5.37 Function
f (x) = −(2/3)x3 + 10x2 + 5x
(example 5.20)

Concavity and Convexity of Cost Functions

Recall that there is an inverse relationship between marginal productivity of an
input and the short-run marginal cost function. The reason is that if the marginal
productivity of an input is decreasing as more input is used, then to produce an extra
unit of output requires a larger increment of the input the higher the production level
is to begin with. Therefore, if the marginal product of x (the input) is decreasing
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in x, then the marginal cost of production is increasing in y (the output). We can
see this point by using y = x1/2 as the production function. The inverse function
is x = y2. If we assume that the cost of fixed inputs is c0, and we let r represent
the unit cost of the variable input (x), then we get the total cost function to be
C(x) = c0 + rx in terms of the input and C(y) = c0 + ry2 in terms of the
output. The marginal cost function is C ′(y) = 2ry, which is increasing in y. An
equivalent way to see this is to note that the second derivative is C ′′(y) = 2r , which
is positive. Thus for this example the production function is concave while the cost
function is convex. By starting with the convex production function y = x2, we
can follow the same steps to get x = y1/2, the inverse of the production function,
and C(y) = c0+ ry1/2, which is a concave function. This relationship also applies
to ranges of the production function over which it switches from being concave to
convex. The shape of the cost function in figure 5.38 corresponds to the shape of
the production function in figure 5.37.

C(y) 

y

C0

C(y) 

Figure 5.38 Shape of the cost
function associated with the
production function in figure 5.37

Example 5.21 A single input, x, is used to produce output y. Show that if the production function
is y = x1/3, x > 0, then the cost function, C(y) is convex while the production
function is concave.

Solution

Production function : f (x) = x1/3

First derivative : f ′(x) = 1

3
x−2/3

Second derivative : f ′′(x) = −2

9
x−5/3 = − 2

9x5/3
< 0 if x > 0

and so the production function is concave. The cost of production is C(x) =
c0 + rx in terms of the input where c0 is fixed cost and r is the cost per unit of the
input. Since y = x1/3, we have x = y3 and substituting into C(x) gives the cost
function, in terms of output y, to be C(y) = c0 + ry3 with

C ′(y) = 3ry2

C ′′(y) = 6ry > 0 on y > 0

and so the cost function is convex.

We complete this section with a couple of applications of derivatives from macro-
economics.
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The “Keynesian” Consumption Function

Consider the general relationship between aggregate national income and aggre-
gate consumption given by

C = C(Y ) with Y ≥ 0, 0 < C ′(Y ) < 1

The derivative function C ′ is usually called the marginal propensity to consume,
and the average propensity to consume is defined as C/Y .

In the simplest textbook specification, we have the linear form for C(Y ), say

C(Y ) = a + bY , a > 0, 0 < b < 1

where a and b are constants. The marginal propensity to consume is, in this case,

MPC ≡ dC

dY
= C ′(Y ) = b a constant fraction

So, in the aggregate, consumers in this economy consume a constant additional
amount out of additional income, regardless of the level of income. However,
consumers do not consume a constant fraction of total income. The fraction of
income consumed, or the average propensity to consume is, in this case,

APC(Y ) ≡ C(Y )

Y
= a

Y
+ b

with

dAPC(Y )

dY
= − a

Y 2
< 0

so the consumption ratio decreases as income increases.

Example 5.22 The Proportional Consumption Function

Derive the functional form of the proportional consumption function, for which
the average propensity to consume is constant.

Solution

For the average propensity to consume to be constant, we require that

APC(Y ) = k for some constant fraction k
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Now substitute the definition for APC(Y ):

C(Y )

Y
= k

or

C(Y ) = kY

Thus the consumption function with a constant APC has a zero intercept, and in
this case the average propensity to consume and marginal propensity to consume
are the same.

Naturally, when considering actual aggregate consumption functions, we need
not restrict attention to linear forms. This is particularly true when comparing
consumption patterns between countries at different stages of development or
those in one country over a long period of income growth. A candidate functional
form in these cases is one which allows both the APC and the MPC to fall with
increases in income. That is, a concave function

C = C(Y ), 0 < C ′(Y ) < 1, and C ′′(Y ) < 0 ∀ Y

Note that the concavity assumption implies that for the lowest income level, the
marginal propensity to consume is closest to one, while for the highest income
level it is closest to zero. (How “close” depends on the parameters and the precise
functional form of C(Y ).)

E X E R C I S E S

1. Show that the function f (x) = x4 satisfies the definition of a strictly convex
function (definition 5.8).

2. Show that the function f (x) = x1/4, x > 0 satisfies the definition of a strictly
concave function (definition 5.10).

3. Let y = x1/3, x > 0, be a production function, where y is output and x is a
single input. Derive the cost function, C(y) = c0 + rg(y), where x = g(y)

is the inverse of the production function, c0 is the fixed cost, and r is the unit
cost of the input. Show that the production function is strictly concave while
the cost function is strictly convex. Illustrate with a graph and discuss the
economic intuition underlying the result.
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4. Let C(y) = y3 − 9y2 + 60y + 10, y ≥ 0 be a firm’s cost function. Find the
interval over which this function is concave and the interval over which it is
convex. Use this information and a table such as that of example 5.20 to draw
this function.

5. Suppose that a firm in a competitive market sells a product at price p̄= 45 and
has the same cost function as in question 4 above, namely C(y)= y3− 9y2+
60y+ 10, y ≥ 0. For this firm’s profit function find the interval over which
the function is concave and the interval over which it is convex. Use this
information and a table such as that of example 5.20 to draw the function.

5.6 Taylor Series Formula and the
Mean-Value Theorem

Recall that the differential, dy = f ′(x) dx, can be used to provide an approxima-
tion to the change in the y variable, dy

.= �y, for a given change in the x variable,
dx ≡ �x (see figure 5.39). As we saw in section 5.2, the percentage error from
using dy as an approximation to the actual change in y, �y, can be made arbitrarily
small if we are willing to consider changes in x that are made arbitrarily small.
However, we are not always satisfied with the restriction that �x be small and
for noninfinitesimal changes in the x variable this approximation may not be very
accurate. The Taylor series expansion formula allows us to investigate this issue
more fully.

x

f (x)

x2x1

f (x1)

f (x2)

∆x 

∆y 

slope = 

f (x)

dy 

dy
dx

Figure 5.39 The use of the total differential to approximate a change in the value of a
function
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The idea of the Taylor series formula is to use information about the value of
a function, y = f (x), at a specific point, x = x0, in conjunction with information
about the value of the derivative functions of f (x) at the point x = x0, in order
to obtain the value of the function at a different value of x, x = x1, within some
neighborhood of the pointx = x0.The following is sometimes called the remainder
form of the Taylor series expansion formula:

f (x1) = f (x0)+ f ′(x0)(x1 − x0)

1!

+ f ′′(x0)(x1 − x0)
2

2!

+ f (3)(x0)(x1 − x0)
3

3!

+ f (4)(x0)(x1 − x0)
4

4!
+ · · ·

+ f (n−1)(x0)(x1 − x0)
n−1

(n− 1)!
+ Rn

where Rn = f (n)(ξ)(x1 − x0)
n/n! with ξ lying between x0 and x1.

The last term, Rn, is called the remainder term and is computed in the same
manner as the previous terms except the (nth order) derivative is to be evalu-
ated at some (unknown) number between x0 and x1. The same expression using
summation notation is given below.

D e f in i t i o n 5 . 11 The Taylor series expansion of the function f (x) in a neighborhood of the value
x = x0 in the remainder formula is

f (x1) = f (x0)+
n−1∑
k=1

[
f k(x0)(x1 − x0)

k

k!

]
+ Rn

where Rn = f (n)(ξ)(x1 − x0)
n/n! and ξ lies between x0 and x1. The function is

assumed to possess derivatives to the nth order.

Now, knowing the value of a function at some point, x = x0, and then using
this formula to find the value of the function at some other point, x = x1, is the
same exercise as finding how the function f changes as a result of changing x by
amount �x = x1 − x0. This is formally seen by simply moving the term f (x0) of
the expression above to the left side to get f (x1)− f (x0) ≡ �y.
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At first glance the formula may appear complicated to use. Moreover the
value x = ξ at which the term f (n)(ξ) is to be evaluated is not known. However,
under certain conditions we can show that Rn→ 0 as n→∞, and so for specific
functions we can ignore the remainder term and simply add up the series as n→∞,
provided that this limit exists.

Example 5.23 Find the Taylor series expansion for f (x) = ex around the point x0 = 0.

Solution

First, we have f (x0) = e0 = 1. Since the derivative of ex is just ex itself, each
successively higher order derivative is simply ex ; that is, f (k)(x) = ex , and so
f (k)(x0) = e0 = 1. Thus the Taylor series expansion for ex evaluated about the
point x = 0 gives the result

ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ · · · + xn−1

(n− 1)!
+ Rn

where Rn = ξn/n!, and ξ is between 0 and x.

The term Rn can be made as small as one wishes by taking n large, and so
this formula can be used to approximate ex to any desired level of accuracy. For
example, suppose that one wants to use this formula to estimate ex for values of
x between 0 and 1. The remainder term, Rn = ξn/n!, ξ ∈ [0, 1], will obtain its
highest possible value at ξ = 1, and so we know that by ignoring it we will always
be within 1/n! of the true result. Thus, to get an estimate that is guaranteed to be
correct to 6 decimal points, we can choose n large enough so that 1/n! < 0.000001;
that is, we want n! >1,000,000. It turns out that n = 10 will do.

Many of the important uses of the Taylor series formula in economics can be
illustrated by dealing with only two terms (n = 2). In this case we get

f (x1) = f (x0)+ f ′(x0)(x1 − x0)+ f ′′(ξ)(x1 − x0)
2

2
(5.9)

for ξ between x0 and x1.
By taking f (x0) to the left side of this equation and using the notation

dx = (x1 − x0), dy = f ′(x) dx and �y = f (x1) − f (x0), we get the result
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in equation (5.10):

�y = dy + f ′′(ξ)(x1 − x0)
2

2
(5.10)

for ξ between x0 and x1. This explains more fully how the differential dy is an esti-
mate of the actual change in y, �y, (see figure 5.40). The error is in fact the remain-
der term of the Taylor series formula (i.e., ε = �y − dy = f ′′(ξ)(x1 − x0)

2/2).

x

f (x)

x1x0

f (x0)

f (x1)

∆y 

tangent line

f (x)

dy 

ε = 
f ''(ξ)(x1 – x0)

2

2

ε 

∆y < dy

< 0

ε 

Figure 5.40 Example where the total differential overestimates the change in the
function’s value

Suppose that f (x) is a strictly concave function (everywhere) so that f ′′(x) <

0. Since (x1 − x0)
2 is positive for any value x1 �= x0, it turns out that using

dy = f ′(x0)(x1 − x0) = f ′(x0) dx

always provides an overestimate of �y, the actual value of the change in y. This
is seen to be the case for the function in figure 5.40. If the function f (x) is strictly
convex (f ′′(x) > 0), then the opposite holds, as illustrated in figure 5.41. Using
equation (5.10) also turns out to be very useful in the understanding of optimization,
as will be seen in the next chapter.

The mean value theorem for the derivative can be illustrated by taking only
one term in the Taylor series formula:
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f (x1) = f (x0)+ f ′(ξ)(x1 − x0) (5.11)

for ξ between x0 and x1.
By rearranging terms we can illustrate the next theorem.

x

f (x)

x1x0

f (x0)

f (x1)

∆y 

tangent line

f (x)

dy 

∆y > dy

ε = 
f ''(ξ)(x1 – x0)

2

2

ε 

> 0

Figure 5.41 Example where the total differential underestimates the change in the
function’s value

x

f (x)

a

f (a)

f (b)

f ' (c) = 
f (b) – f (a)

b  – a

c b

Figure 5.42 Illustration of the mean-value theorem
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Theorem 5.2 (Mean-value theorem) If the function f (x) is continuous and differentiable on
some closed interval [a, b], then there must be a number c ∈ [a, b] such that

f ′(c) = f (b)− f (a)

b − a

which is the slope of the secant line joining a and b.

This theorem is illustrated in figure 5.42.

E X E R C I S E S

1. Use the Taylor series expansion formula to find an estimate for the function
f (x) = e−x for any value x belonging to the interval [0, 1]. Choose x0= 0
and ensure that your computation is correct to within 0.001 (see exam-
ple 5.24).

2. Use the Taylor series expansion formula to find an estimate for the function
f (x) = ln(1 + x), x > −1, for any value x belonging to the interval [0, 1].
Choose x0 = 0, and ensure that your computation is correct to within 0.001
(see example 5.24).

3. For the function f (x) = x1/2, x ≥ 0, find the Taylor series formula for
n = 2 (i.e., the remainder term involves the second derivative as in equa-
tion 5.9). Show that using the differential dy = f ′(x) dx to estimate the
impact on y of a change in x of amount dx leads to an overestimate of the
actual change in y.

4. For the function f (x) = x2, find the Taylor series formula for n = 2 (i.e., the
remainder term involves the second derivative as in equation 5.9). Show that
using the differential dy = f ′(x) dx to estimate the impact on y of a change
in x of amount dx leads to an underestimate of the actual change in y.

C H A P T E R R E V I E W
Key Concepts chain rule

concave function
convex function
derivative

differentiable function
first derivative function
instantaneous rate of change
left-hand derivative
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marginal cost of production
mean-value theorem
product rule
quotient rule
right-hand derivative
rules of differentiation

secant line
strictly concave function
strictly convex function
tangent line
Taylor series expansion
total differential

Review Questions 1. What is the difference between a secant line and a tangent line?

2. How can a tangent line be defined in terms of a sequence of secant lines?

3. What is the relationship between a tangent line, the derivative of a function,
and total differential?

4. Define and explain left-hand and right-hand derivatives of a function f (x)

at a point x = x0.

5. Use the concepts of left-hand and right-hand derivatives to indicate when a
function f (x) is differentiable at a point x = x0.

6. Why is it the case that if a function f (x) is differentiable at a point x = a,
then it must also be continuous at that point?

7. Write out the 13 rules of differentiation given in this chapter.

8. Explain with the use of a graph why the second derivative of a differentiable
convex function is greater than or equal to zero.

9. Explain with the use of a graph why the second derivative of a differentiable
concave function is less than or equal to zero.

10. Use the Taylor series expansion to show that using the tangent line (or dif-
ferential) at a point x = x0 to estimate the value of the function at some
other point x �= x0 leads to an overestimate if the function is strictly concave
and an underestimate if the function is strictly convex. Illustrate your answer
with graphs.

Review Exercises 1. From the definition of the derivative (definition 5.3), find the derivative of the
function

f (x) = x2 + 3x − 4

2. Suppose that a salesperson has the following contract relating monthly sales,
S, to her monthly pay, P . She is given a basic monthly amount of $500,
regardless of her sales level. On the first $10,000 of monthly sales she earns a
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10% commission. On the next $10,000 of monthly sales she earns a commis-
sion of 20% while on any additional sales she earns a commission of 25%.

(a) Find and graph the function relating her pay to sales, P(S), S ≥ 0.

(b) Determine the points of nondifferentiability of P(S) and indicate
according to definition 5.5 why this is so.

3. Find the slope of each of the following production functions, y = f (L). Graph
the functions and their derivative functions. Give the economic significance of
the slope of the derivative functions (i.e. whether the derivative is increasing
or decreasing in L). In each case L > 0.

(a) y = 64L1/4

(b) y = 10L+ 2L1/2

(c) y = 5L3

(d) y = −L3 + 12L2 + 3L

4. Suppose that two firms, A and B, behave as competitive firms in deciding how
much output to supply to the market. Firm A’s cost function is CA = αq+βq2

and firm B’s cost function is CB = γ q + ωq2. Assume α, β, γ , ω > 0 and
γ ≥ α.

(a) Find the supply functions, defined on q ≥ 0, for each firm and draw
them on the same graph. At which points of their domains are these
functions differentiable?

(b) Find the total supply function for the two firms and graph it. Under what
restrictions on the parameters α, β, γ and ω is this function differen-
tiable? Discuss.

5. Find the expression for the point elasticity of demand ε (with respect to own
price) for the demand function y = 200− 5p. Determine the ranges of prices
for which ε is less than 1 and greater than 1. Illustrate on a graph of this
demand function.

6. Suppose that a firm’s total product function is y = 40L2 − L3. Show that
the average product of labor, AP(L), rises when marginal product of labor,
MP(L), exceedsAP(L), falls when MP(L) is less thanAP(L), and is horizontal
at the point where MP(L) =AP(L).

7. A firm uses one input (L) to generate output (q) according to the production
function q = aLb, a > 0, and b > 0 (also L ≥ 0). The input price is w and
fixed costs are c0. Show that dq/dL is rising if dC/dq is falling, dq/dL is
falling if dC/dq is rising, and dq/dL neither rises nor falls if dC/dq neither



CHAPTER REVIEW 193

rises nor falls. How does your answer relate to the value of b? How does your
result relate to the inverse function rule for differentiation?

8. For the same production function as in question 7, q = aLb, show that the cost
function is convex (concave) if the production function is concave (convex).
Relate your answer to the answer in question 7.

9. Let C(y) = y3 − 12y2 + 50y + 20, y ≥ 0 be a firm’s cost function. Find
the interval over which it is concave and the interval over which it is convex.
Use this information and a table such as that of example 5.19 to draw this
function.

10. For the following functions, find the Taylor series formula for n = 2 (i.e., the
remainder term involves the second derivative as in equation (5.9)). Determine
whether using the differential dy = f ′(x) dx to estimate the impact on y of
a change in x of an amount dx leads to an underestimate or overestimate of
the actual change in y.

(a) f (x) = x4

(b) f (x) = 1/x2, x > 0





Chapter 6 Optimization of Functions of One
Variable

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Monopoly Equilibria I and II
• Monopoly Equilibrium I: Example
• Monopoly Equilibrium II: Example
• Monopoly with Constant-Elasticity Demand and Constant Costs
• Constant Elasticity of Demand Less Than One: Example
• Average and Marginal Functions Revisited
• The Labor-Managed Firm
• Competitive Firm with a Cubic Cost Function
• Short-Run Supply Function of a Competitive Firm
• The Competitive Firm with Cubic Costs Revisited
• The Excise Tax That Maximizes Total Tax Revenue: Example

Many economic models are based on the idea that an individual decision maker
makes an optimal choice from some given set of alternatives. To formalize this
idea, we interpret optimal choice as maximizing or minimizing the value of some
function. For example, a firm is assumed to minimize costs of producing each level
of output and to maximize profit; a consumer to maximize utility; a policy maker
to maximize welfare or the value of national output; and so on. It follows that the
mathematics of optimization is of central importance in economics, and in this and
chapters 12 and 13 we will be studying optimization methods in some depth.

In this chapter we study the simplest case, the optimization of functions of one
variable. We will emphasize the intuitive interpretation of the methods and their
application to economic problems. More technical issues, such as the question of
the existence of optimal solutions, are postponed until chapter 13.
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6.1 Necessary Conditions for
Unconstrained Maxima and Minima

Given some function f (i.e., y = f (x)), we optimize it by finding a value of
x at which it takes on a maximum or minimum value. Such values are called
extreme values of the function. If the set of x-values from which we can choose
is the entire real line, the problem of finding an extreme value is unconstrained,
while if the set of x-values is restricted to be a proper subset of the real line, the
problem is constrained. To begin with we consider only unconstrained problems.
We also assume that the function f is differentiable at least twice everywhere on
its domain.

Of course, it is perfectly possible that a particular function may not have a
maximum or minimum value. For example,

y = a + bx, a, b > 0

has neither a maximum nor a minimum, while

y = a + x2

has a minimum at x = 0 but no maximum, and

y = a − x2

has a maximum at x = 0 but no minimum (see figure 6.1).

x

y
y = a + bx

a

y  = a + x2

y

x

a

x

y

a

y  = a – x2

(a) (b) (c)

Figure 6.1 (a) Neither a maximum nor minimum exists; (b) no maximum exists; (c) no minimum exists

We begin by considering the problem of finding a maximum of a function, and
assume that we are dealing with a function, y = f (x), which certainly possesses
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one. It is important to distinguish between a local and a global maximum of the
function.

D e f in i t i o n 6 . 1 At a global maximum x∗,

f (x∗) ≥ f (x) for all x (6.1)

whereas at a local maximum x̂,

f (x̂) ≥ f (x), x̂ − ε ≤ x ≤ x̂ + ε (6.2)

for x in an interval, perhaps very small, around x̂.

The reason for this distinction is that in an optimization problem we are usually
trying to find a global maximum, but the methods we have for finding solutions
deliver only a local maximum. Usually some further work is then required to
make sure we really have found a global solution. This need not be difficult. Note
that a global solution must be a local one, since if f (x∗) ≥ f (x) for all x, this
condition must also be true for those x in a small interval around x∗. So we find the
global maximum by generating all the local maxima and comparing the values of
the function at each of them to find the global solution, assuming, of course, that
it exists. In many economic problems, assumptions are built in to ensure that there
is only one local maximum, in which case this unique local solution must also be
a global solution. In general, however, optimum solutions may not be unique, and
this is recognized by having weak inequalities in equations (6.1) and (6.2).

If it is true that the function has a local maximum at x∗, then it must also be
true that the first derivative of the function is zero at x = x∗; that is,

f ′(x∗) = 0 (6.3)

We refer to this requirement as the first-order condition. It is easy to see why it
must hold. Take the differential of y = f (x) at x∗:

dy = f ′(x∗) dx (6.4)

If the function is at a local maximum at x∗, it must be impossible to increase
its value by small changes, dx, in either direction from x∗. This could not be
true if f ′(x∗) �= 0. For if f ′(x∗) > 0, then choosing dx > 0 gives dy > 0 and the
function has increased; if f ′(x∗) < 0, then choosing dx < 0 again gives dy > 0
and increases the value of the function. Only if f ′(x∗) = 0 does any dx �= 0 give
dy = 0, so that the function cannot be increased.
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x

f(x)

f '(x*) = 0

f '(x* – ∆x) > 0

x* – ∆x x* + ∆xx*

f '(x* + ∆x) < 0

Figure 6.2 If x∗ is a local maximum, then f ′(x∗) = 0

This principle is even easier to see diagrammatically. In figure 6.2, x∗ clearly
gives a local maximum of the function. At the point (x∗, f (x∗)), the tangent line to
the function is horizontal. But f ′(x∗) is the slope of this tangent line, and the slope
of a horizontal line is zero. At the point x∗ + �x, we see that f ′(x∗ + �x) < 0
and y can be increased by reducing x; at x∗ −�x, we have f ′(x∗ −�x) > 0 and
y can be increased by increasing x.

We emphasize that the equation (6.3), f ′(x) = 0, does only identify—and
allow us to solve for—a local maximum and not a global maximum. In figure 6.2,
as we move further away from x∗, the function might start increasing and reach
a value greater than f (x∗)—we cannot say without knowing the shape of the
function across its entire domain.

Suppose now that we wish to minimize the function, f , and that a minimum
of the function certainly exists. Then, by the same reasoning we used in the case
of a maximum, we can establish that if the function is minimized at a point x∗,
then at that point we must have the first-order condition

f ′(x∗) = 0 (6.5)

meaning that its first derivative is zero at that point. Again, taking the differential
of the function at x∗ as in equation (6.4), if f ′(x∗) �= 0, then we can always find a
small change in x such that the value of the function is reduced. The only instance
where this cannot be done is when f ′(x∗) = 0. Figure 6.3 illustrates this. Again,
the tangent line to the minimum point is horizontal, which is the geometrical
equivalent to f ′(x∗)= 0, while at any point with a nonzero derivative we can
always find a change in x that reduces the value of the function.
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x

f(x)

f '(x*) = 0

f '(x* – ∆x) < 0

x* – ∆x x* + ∆xx*

f '(x* + ∆x) > 0

Figure 6.3 If x∗ is a local minimum, then f ′(x∗) = 0

We have therefore established

Theorem 6.1 If the differentiable function f takes an extreme value (maximum or minimum)
at a point x∗, then f ′(x∗) = 0.

The first-order condition f ′(x∗) = 0 is a necessary condition for x∗ to yield
an extreme value of the function because any x that does not satisfy it cannot
yield an extreme value. If we are trying to find, say, a maximum of the function,
it is clearly not sufficient that a point, x∗, satisfy f ′(x∗) = 0, since that point
could actually be a minimum of the function. Indeed, the fact that x∗ satisfies this
condition is not even sufficient to guarantee that it yield an extreme value of the
function, since there is another class of points, called points of inflection, at which
it is possible that the derivative f ′(x) = 0. Thus consider the function

y = 16x − 4x3 + x4

We have

dy

dx
= 16− 12x2 + 4x3 = f ′(x)

x

f(x)

f '(2) = 0

y = 16x – 4x3 + x4

1 2

Figure 6.4 A point of inflection

and at x = 2 we have f ′(2) = 0. Yet, as the graph of the function in figure 6.4
shows, x = 2 does not yield an extreme value of the function: it happens that the
tangent to the function is horizontal at that point.



200 CHAPTER 6 OPTIMIZATION OF FUNCTIONS OF ONE VARIABLE

D e f in i t i o n 6 . 2 For a differentiable function f , point x∗, at which f ′(x∗) = 0, yields a stationary
value of the function. Such stationary values may be extreme values or points of
inflection. Every extreme value of a function is a stationary value, but not every
stationary value need be an extreme value.

It is then immediately clear that if we wish to use equation (6.3) on its own
to locate or solve for a value x∗ which maximizes or minimizes a function, we
have a problem. That condition alone does not tell us whether we have found a
maximum, minimum, or point of inflection. So some further work is required. We
examine what that is in the next section. First, we consider some examples and
economic applications of the mathematics covered so far.

Example 6.1 Find the extreme values of the functions

(i) y = 2x3 − 0.5x2 + 2
(ii) y = 4x2 − 5x + 10

(iii) y = 6x/(x4 + 2)

(iv) y = 0.5x4 − 5x3 + 2x2

and state in each case whether we have a local maximum or minimum.

Solution

(i) dy/dx = 6x2 − x = 0 ⇒ x∗ = 0.167 or x∗ = 0
At x = 0.167, the value of y is 1.995. We check whether it is a minimum

or maximum by taking small deviations around this point. At x = 0.15, the
value of y is 1.996. At 0.19, the value of y is 1.996. Thus x∗ = 0.167 yields a
local minimum of the function. At x = 0, the value of y is 2. At x = 0.1, the
value of y is 1.997, while at x = −0.1, the value of y is 1.993. Thus x = 0
yields a local maximum of the function. Note that had we chosen x = 0.3
for comparison, we would have found y = 2.009, which would have led us
to reject x = 0 as a local maximum. This emphasizes the fact that we are
dealing only with a local extremum and the neighborhood over which a point
yields an extreme value may be small (see figure 6.5).

(ii) dy/dx = 8x − 5 = 0 ⇒ x∗ = 0.625
At x = 0.625, the value of y is 8.4375. At x = 0.5, the value of y

is 8.5, while at x = 0.8, the value of y is 8.56. Thus x = 0.625 yields a local
minimum of the function (see figure 6.6).
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x

y = 2x3 – 0.5x2 + 2

1 2–1–2 0

1

2

y

(0.167, 1.995)

Figure 6.5 Graph of y = 2x3 − 0.5x2 + 2 for example 6.1(i)

x

y = 4x2 – 5x + 10

1 2–1 0

y

(0.625, 8.438)

3

10

Figure 6.6 Graph of y = 4x2 − 5x + 10 for example 6.1(ii)
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(iii)

dy

dx
= 1

(x4 + 2)2
[6(x4 + 2)− 6x(4x3)]

= 1

(x4 + 2)2
(12− 18x4)

= 0⇒ x∗ =
(

12

18

)1/4

= ±0.9

At x = 0.9, y = 2.03. At x = 1.0, y = 2.0. At x = 0.8, y = 1.99. Thus
x = 0.9 yields a local maximum of the function (see figure 6.7).

At x=−0.9, y=−2.03. At x=−1, y=−2.0. At x=−0.8, y=−1.99.
Thus x=−0.9 yields a local minimum of the function (see figure 6.7).

(iv) dy/dx = 2x3−15x2+4x = 0 and dividing through by x gives the quadratic

2x2 − 15x + 4 = 0

which has roots x = 0.277 and x = 7.222.

x

y = 6x /(x4 + 2)

1 2–1–2 0

y

(–0.9, –2.033)

(0.9, 2.033)

Figure 6.7 Graph of y = 6x/(x4 + 2) for example 6.1(iii)
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x

y = 0.5x4 – 5x3 + 2x2

y

(0.05, 0.277)

107.22

–418.89

Figure 6.8 Graph of y = 0.5x4 − 5x3 + 2x2 for example 6.1(iv)

At x= 0.277, y= 0.05. At x= 0.4, y= 0.01. At x= 0.2, y= 0.04. Thus
x = 0.277 yields a local maximum of the function.

At x= 7.222, y=−418.89.At x= 7, y=−416.5.At x= 8, y=−384.0.
Thus x= 7.222 yields a local minimum of the function (see figure 6.8).
Note that dy/dx= 0 also at the point x= 0. At x= 0, y= 0. At x= ± 0.01,
y= 0.0002. Thus x= 0 yields a local minimum of the function.

Monopoly with Linear Demand and Costs

A monopolist faces a linear demand function x = 100 − p, where x is demand
(output) and p is price. This function means that if the monopolist sets a price of
$100 or more, it can sell no output because no one is willing to pay that much,
while for p < $100, a reduction in price of $1 leads to an increase in demand and
sales of one unit. The firm’s cost function is C = 25x. That is, each additional unit
of output costs $25 to produce, no matter what total level of output is already being
produced. We wish to work in terms of output, x, as the variable in the problem,
and so we transform the demand function into an inverse demand function

p = 100− x
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and write the firm’s profit as

π(x) = px − C = 100x − x2 − 25x (6.6)

If x∗ is used to denote the output at which the firm’s profit is maximized, applying
equation (6.3) gives

π ′(x∗) = 100− 2x∗ − 25 = 0 (6.7)

or

x∗ = 100− 25

2
= 37.5

Then the firm’s profit-maximizing price, and the maximum amount of profit it can
make, are respectively

p∗ = 100− x∗ = $62.50

π∗ = $(62.50− 25)37.5 = $1,406.25

The diagrams in figure 6.9 illustrate this example, which should be familiar
to the economics student. In figure 6.9(a) we show the graphs of

• the total-revenue function R(x) = px = 100x − x2

• the total-cost function C(x) = 25x
• the total-profit function π(x) = (100− 25)x − x2 = 75x − x2

In figure 6.9(b) we show the graphs of

R = 100x – x2

π'(x*) = 0 

π = 75x – x2

x*  =  37.5

C = 25x

R'(x*) = 25 

x

π
R
C 

(a)

p = 100  – x

p*  = 62.5

C'(x) = 25 

x

100 

R'(x) = 100 – 2x 

25 

x*  =  37.5

(b)

Figure 6.9 Monopoly equilibrium
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• the demand function x = 100− p or p = 100− x
• the marginal-revenue function R′(x) = 100− 2x
• the marginal-cost function C ′(x) = 25

Figure 6.9(b) shows that profit-maximizing price and output are at the point of
equality of marginal cost and marginal revenue. This can easily be seen from
equation (6.6)

100− 2x∗ = 25

R′(x∗) = C ′(x∗)

Figure 6.9(a) shows that the slope of the tangent to R(x) at x∗ is equal to the slope
of C(x) at that point.

Note that we could just as well have worked with price as the firm’s choice
variable (though the corresponding diagrams would then look less familiar). We
can express profit as a function of price by writing

R(p) = px = p(100− p) = 100p − p2

C(p) = 25(100− p) = 2,500− 25p

π(p) = R(p)− C(p) = 100p − p2 − (2,500− 25p)

= 125p − p2 − 2,500

Then maximizing with respect to p gives

π ′(p∗) = 125− 2p∗ = 0

giving p∗ = $62.50, just as before.

Competitive Firm with Linear Costs

Suppose that a firm has the cost function C = 5x, and sells into a perfectly com-
petitive market. This means that it can take the market price p as a given constant,
rather than a function of its output. This assumption shows that a competitive firm
is so small relative to the size of the market that its output decision has essentially
no effect on the market price. Suppose that the market price is p = $8. Then we
set up the firm’s profit as follows:

R(x) = px = 8x

C(x) = 5x

π(x) = (8− 5)x = 3x
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If we now apply equation (6.3) to find profit-maximizing output, we have

π ′(x∗) = 3 = 0

which is nonsense! What went wrong?
Figure 6.10 shows the mathematical answer to this question. In figure 6.10(a),

the firm’s profit function always increases with output—it has no maximum. Thus,
this firm would want to increase output indefinitely, since doing so always increases
profit. In Figure 6.10(b), this is seen as resulting from price (= marginal revenue)
being always greater than marginal cost, implying that an extra unit of output
always adds more to revenue than it does to cost.

π = 3x  

R = 8x 

x

π
R
C 

p = 8

x

P
M
C

C = 5x 

MC = 5 

(a) (b)

Figure 6.10 Competitive firm with constant cost

Mathematically this example serves as a warning. If we want to solve a prob-
lem by applying the f ′(x∗)= 0 condition, we must be sure that the function really
does possess a maximum. In other words, this is an example of a function that does
not possess a maximum. (Compare figure 6.10(a) with figure 6.1(a).) But does the
example have any economic meaning? In fact, it does. Essentially it says that if
at least one firm in a competitive market has constant returns to scale (implying
a linear cost function of the kind used here), then we might expect perfect com-
petition to break down and be replaced by monopoly or oligopoly, since it pays
the firm to expand output indefinitely, and as this happens the market structure
must become less competitive as firms are driven out of the market. Then the as-
sumption that firms face a “horizontal demand curve” becomes untenable: we can
no longer assume that firms are “too small” to affect price. Thus we need to turn
to other market models such as oligopoly and monopoly. In a sense, figure 6.10
shows a logically inconsistent situation: if a firm has constant costs below the mar-
ket price, then it cannot regard price as a given parameter for all possible output
levels.
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A Publisher Will Always Set a Higher Price and Sell Fewer Copies
of a Book Than the Author Would Like

Take the monopoly firm illustrated in figure 6.9 and assume the good concerned
is a book. The author of the book receives a royalty of 10% of the purchase price
for each book sold, so her income is

Y (x) = 0.1px = 0.1R(x) = 0.1(100x − x2)

The publisher’s profit must now take into account the royalty paid to the author:

π(x) = R(x)− C(x)− Y (x) = 75x − x2 − (10x − 0.1x2)

= 65x − 0.9x2

We assume that the author would like to set price and quantity to maximize
her income. We then have the condition

Y ′(xA) = 10− 0.2xA = 0

giving xA = 50 as the author’s desired sales, and pA = 100 − 50 = $50 as her
desired price. The publisher, however, chooses the number of books to satisfy

π ′(xp) = 65− 1.8xp = 0

giving desired sales of 36.1 at a price of $63.90.
This “conflict of interest” always arises and is not due to the special example

chosen. If we let r , 0 < r < 1, denote the royalty rate, we can write the author’s
income and the publisher’s profit respectively as

Y (x) = rR(x)

π(x) = R(x)− C(x)− rR(x)

= (1− r)R(x)− C(x)

Maximizing Y (x) gives

Y ′(xA) = rR′(xA) = 0 or R′(xA) = 0 (6.8)

Thus the author essentially wishes to maximize sales revenue. Maximizing the
publisher’s profit gives

π ′(xp) = (1− r)R′(xp)− C ′(xp) = 0
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or

R′(xp) = C ′(xp)

1− r
(6.9)

Then, as long as marginal cost is greater than zero, C ′ > 0, the publisher’s desired
output xp must differ from the author’s desired output xA. Given that we usually as-
sume marginal revenue decreasing with output, that is, R′′(x) < 0, equations (6.7)
and (6.8) must imply that xA > xp.

Example 6.2 A publisher pays the author of a book a royalty of 15%. Demand for the book is
x= 200− 5p and the production cost is C= 10+ 2x+ x2. Find the optimal sales
from both the author’s and the publisher’s perspective.

Solution

The inverse demand function is

p = 40− 0.2x

The author’s income is

Y (x) = 0.15px = 0.15(40− 0.2x)x = 6x − 0.03x2

The optimal level of sales from the author’s viewpoint, xA, leads to a maximum
value for Y (x), so

Y ′(xA) = 0⇒ 6− 0.06xA = 0⇒ xA = 100

The profit for the publisher is

π(x) = R(x)− C(x)− Y (x)

= px − (10+ 2x + x2)− (6x − 0.03x2)

= (40− 0.2x)x − (10+ 2x + x2)− (6x − 0.03x2)

= 32x − 1.32x2 − 10

The optimal level of sales from the publisher’s viewpoint, xP , leads to a maximum
value for π(x), so

π ′(xP ) = 32− 2.46x = 0 ⇒ xP = 32

2.46
= 13
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Clearly, the author seeks a level of sales that maximizes sales revenue, while the
publisher take costs, including royalty costs, into account and prefers a lower level
of sales.

Revenue and Elasticity

A monopolist with inverse demand function p = p(x) has a revenue function
R = p(x)x = R(x), and marginal revenue

R′(x) = p + x
dp

dx

The price elasticity of demand is

ε = −p

x

dx

dp

and marginal revenue may be written as

R′(x) = p + x

p

dp

dx
= p

(
1− 1

ε

)

This little formula turns out to be very useful in many contexts. For example, it
establishes in a simple way the relationship between the elasticity of demand at a
point on the demand curve and the effect on sales revenue of a change in output
or price. Thus, taking p > 0 and using the formula tells us that

ε < 1⇒R′(x) < 0, so when demand is inelastic an increase in output (decrease in
price) reduces revenue;
ε > 1⇒ R′(x) > 0, so when demand is elastic an increase in output (decrease in
price) increases revenue.

Moreover the output x∗ at which revenue is maximized must satisfy

R′(x∗) = p

(
1− 1

ε

)
= 0

implying that revenue is maximized at the point on the demand curve where ε = 1.
Finally, the formula gives us an easy way of establishing the proposition:

a profit-maximizing monopolist with positive marginal costs will always be in
equilibrium at a point on the demand curve where ε > 1. To see this, note that at
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the equilibrium

R′(x) = C ′(x) > 0

and for R′(x) > 0 we must have ε > 1. This is what underlies the conflict of interest
between author and publisher discussed in the previous example.

E X E R C I S E S

1. Find the stationary values of the following functions and state whether they
yield a local maximum, local minimum, or point of inflection (sketch the
function in the neighborhood of the stationary value):

(a) y = x3 − 3x2 + 1

(b) y = x4 − 4x3 + 16x − 2

(c) y = 3x3 − 3x − 2

(d) y = 3x4 − 10x3 + 6x2 + 1

(e) y = 2x/(x2 + 1)

2. Show that a profit-maximizing monopolist’s output is unaffected by a propor-
tional profit tax, but is reduced by a tax of $t per unit of output. Explain these
results.

3. Find the supply curve of a competitive firm with the total-cost function

C = 0.04x2 + 3x + 80

4. The demand function facing a monopolist is

x = ap−b

What range of values must b lie in for a solution to the profit-maximization
problem to exist?

5. A monopolist faces a linear demand function. Show that if it maximizes sales
revenue, it sets an output exactly half that it would produce if it “sold” its
output at a zero price.
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6.2 Second-Order Conditions
We saw in section 6.1 that the condition f ′(x∗) = 0 does not in itself tell us whether
x∗ yields a maximum, a minimum, or a point of inflection of the function f . Since
this condition is stated in terms of the first derivative of the function it is usually
referred to as the first-order condition. We now go on to examine how conditions
on the second derivative of a function, namely second-order conditions, can be
developed to help us distinguish among the three kinds of stationary value.

In figure 6.11 we show the three possible cases of stationary values. Asso-
ciated with each graph of a function f is, directly below it, the graph of its first
derivative f ′, in the neighborhood of a stationary value. The curvature of the
function f determines the slope of its derivative f ′.

In figure 6.11(a), the function is strictly concave in the neighborhood of x∗.
This implies that in figure 6.11(d), at x-values below x∗, we have f ′(x) > 0,
while at x-values above x∗, f ′(x) < 0. The slope of f ′ is the second derivative
f ′′(x), and so we have f ′′(x∗) < 0. Since, in this case, x∗ yields a maximum of
the function, we have

x

f (x) 

(a)
x*

f (x) 

x

f (x) 

(b)
x* x

f (x) 

(c)
x*

x

f ' (x) 

(d)

x*

f (x) f (x) 

f ''(x*) < 0 

f ' (x) 

x

f ' (x) 

(e)

x*

f ''(x*) > 0 

f ' (x) 

x

f ' (x) 

(f)

x* f ''(x*) = 0 

f ' (x) 

f ' (x*) = 0 

f ' (x*) = 0 
f ' (x*) = 0 

Figure 6.11 Second-order conditions



212 CHAPTER 6 OPTIMIZATION OF FUNCTIONS OF ONE VARIABLE

Theorem 6.2 If f ′(x∗) = 0, and f ′′(x∗) < 0, then f has a local maximum at x∗.

In figure 6.11(b), the function is strictly convex in the neighborhood of the min-
imum point, implying that as x increases through x∗, f ′(x) is increasing, and its
slope at x∗ is positive. Thus f ′′(x∗) > 0, and we have

Theorem 6.3 If f ′(x∗) = 0, and f ′′(x∗) > 0, then f has a local minimum at x∗.

x

f (x) 

x*

f (x) 

x

f ' (x) 

x*

f ' (x) 

Figure 6.12 An alternative point
of inflection

In the case of a point of inflection, we see that at that point the function
changes its curvature from concave to convex. The derivative f ′(x) is posi-
tive everywhere except at x∗, which is where it takes its minimum value. This
change in curvature is characteristic of points of inflection and implies that the
derivative f ′ always takes on an extreme value (in this case a minimum) at
points of inflection. Of course, the opposite case is also possible and shown in
figure 6.12 as here f ′(x) is negative in a neighborhood of x∗ except at x∗ itself,
where f ′(x∗) = 0.

From now on we focus on extreme values as illustrated in figure 6.11(a) and
(b). The introduction of the condition on the second derivative f ′′(x∗) gives us a
sufficient condition for a maximum. Satisfaction of f ′(x∗) = 0 and f ′′(x∗) < 0
guarantees that x∗ yields a maximum of the function. Can we then say that these
conditions are also necessary, in that they must be satisfied by all points which do
yield a maximum of the function? The answer is no. We may have points which
maximize a function, but at which f ′′(x∗) = 0. Consider the function

y = −x4

The graph of this function shows that it has a maximum at x∗ = 0 (see figure 6.13),
but

f ′′(0) = −12(0)2 = 0

If we want to have conditions that are both necessary and sufficient, a little more
work is necessary. We carry this out in the last part of this section. For the purposes
of economic applications, it is usually safe to ignore such cases and simply apply
the sufficient conditions in theorems 6.2 and 6.3.

Example 6.3 Use the second-order condition to determine whether the extreme values of the
functions in example 6.1 are local maxima or local minima.
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x

y  

0  

Figure 6.13 Graph of y = −x4

Solution

(i)

y = 2x3 − 0.5x2 + 2

dy

dx
= 6x2 − x

d2y

dx2
= 12x − 1 = 12(0.167)− 1

= 1.004 > 0 at x = 0.167

and so x = 0.167 yields a local minimum of the function. We also have

y ′′(0) = −1 < 0

and so x = 0 yields a local maximum of the function.
(ii)

y = 4x2 − 5x + 10

dy

dx
= 8x − 5

d2y

dx2
= 8 > 0

and so x = 0.625 yields a local minimum of the function.
(iii)

y = 6x

x4 + 2

dy

dx
= (12− 18x4)

(x4 + 2)2

d2y

dx2
= (−(x4 + 2)272x3 − (12− 18x4)8x3(x4 + 2))

(x4 + 2)4

= 72x7 − 240x3

(x4 + 2)3
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Since, x4 + 2 is always positive, we can ignore it in determining the sign of
d2y/dx2.

At x = 0.9, 72x7− 240x3=−140.5 < 0, where there is a local maximum.
At x = −0.9, 72x7− 240x3= 140.5 > 0, where there is a local minimum.

(iv)

y = 0.5x4 − 5x3 + 2x2

dy

dx
= 2x3 − 15x2 + 4x

d2y

dx2
= 6x2 − 30x + 4

At x = 0.277, 6x2− 30x+ 4=−3.85 < 0,where there is a local maximum.
At x = 7.222, 6x2− 30x+ 4= 100.28 > 0,where there is a local minimum.
At x = 0, y ′ = 0, and y ′′ = 4 > 0, and so there is a local minimum.

Maximizing Tax Revenue

In a market for a good, we have a linear demand function

D = a0 − a1pB, a0, a1 > 0

and a linear supply function

S = b0 + b1pS, b0, b1, > 0

where D is quantity demanded, pB is the price paid by buyers, S is quantity
supplied, and pS is the price received by sellers. In the usual supply-demand
model with no tax, pB = pS = p, and so we solve for market equilibrium by
setting D = S:

a0 − a1p = b0 + b1p

giving equilibrium price as

p∗ = a0 − b0

a1 + b1



6.2 SECOND-ORDER CONDITIONS 215

Note that for this to give a positive equilibrium price, we require that a0 > b0,
an assumption we now make explicitly. The corresponding equilibrium quantity
traded is

D∗ = S∗ = b0 + b1

(
a0 − b0

a1 + b1

)
= a0 − a1

(
a0 − b0

a1 + b1

)

found by inserting equilibrium price into the demand or supply functions. (Since
by definition D∗ = S∗ in equilibrium, we only need to compute one of D∗ =
D(p∗) or S∗ = S(p∗), although computing both provides us with a check on our
calculations.)

When the government imposes a tax on a good, say of $t per unit of the good
sold, it drives a wedge between the price buyers pay and the price sellers receive.
In fact, sellers receive what buyers pay minus the tax, and so

pS = pB − t

Note that we could also think of buyers paying the sellers’ price plus tax:

pB = pS + t

Since the two formulations are mathematically equivalent, we work with the first.
For market equilibrium we still require that demand equal supply, and so we

have

a0 − a1pB = b0 + b1(pB − t)

where we have substituted for pS in the supply function. Solving now for the
equilibrium buyers’ price p̂B and sellers’ price p̂s gives

p̂B =
a0 − b0

a1 + b1
+ b1t

a1 + b1
= p∗ + b1t

a1 + b1

p̂s = p̂B − t = p∗ + b1t

a1 + b1
− t = p∗ − a1t

a1 + b1

Thus we see that imposing a tax raises price to buyers and reduces price to sellers,
by an amount which depends on the relative values of the slope coefficients of the
supply and demand functions, a1 and b1. Moreover

dp̂B

dt
= b1

a1 + b1
,

dp̂s

dt
= − a1

a1 + b1

Since a1/(a1 + b1) + b1/(a1 + b1) = 1, this tells us that an extra $1 in tax is
divided between an increase in price to buyers, and a reduction in price to sellers,
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in a way determined by the slope coefficients, and this is called the incidence of
the tax.

Consider now the amount of revenue raised by the tax. At the price p̂B , the
quantity D̂ is bought, where

D̂ = a0 − a1p̂B = a0 − a1p
∗ − a1b1t

a1 + b1

Since a tax of t is paid on each unit bought, tax revenue is therefore

T (t) = tD̂ = (a0 − a1p
∗)t − a1b1t

2

a1 + b1

= tD∗ − a1b1t
2

a1 + b1

Suppose that the government is interested in finding the value of the tax t that
maximizes its tax revenue. Applying theorem 6.2, we have

T ′(t∗) = D∗ − 2a1b1t
∗

a1 + b1
= 0

and so the revenue-maximizing tax is given by

t∗ = D∗
(a1 + b1)

2a1b1

t

T (t) 

t*0

Figure 6.14 Tax revenue is a
strictly concave function of the tax
rate

We can simplify this by substituting for D∗

t∗ =
[
a0 − a1

(a0 − b0)

(a1 + b1)

]
(a1 + b1)

2a1b1

= [a0a1 + a0b1 − a0a1 + a1b0]

2a1b1

=
(

a0b1 + a1b0

2a1b1

)

We now have the question: Is t∗ a true (local) maximum? We answer this by taking

T ′′(t∗) = −2a1b1

a1 + b1
< 0

and so t∗ is a maximum. Note that since T ′′(t) is always negative, T (t) must be a
strictly concave function (see figure 6.14).
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This concave shape has interesting economic implications.As the tax rate goes
up, the equilibrium quantity bought and sold goes down. Initially the increase in tax
rate outweighs the effect of reduced quantity and generates increased tax revenue,
but after a point this ceases to be true: reduced quantity traded outweighs the
increased tax rate and produces lower tax revenue. If the actual tax rate exceeds
t∗, tax revenue can be increased by reducing the tax rate. Given that the supply
and demand curves are (approximately) linear, estimation of the four demand
and supply parameters—a0, a1, b0, b1—would allow an assessment to be made of
whether this was in fact the case.

Second-Order Conditions and the Taylor Series Expansion

A useful way of developing the second-order conditions for maxima and minima,
and which also allows us to consider what happens when f ′′(x∗) = 0, is provided
by the Taylor series expansion (see section 5.6). Let x∗ be such that f ′(x∗) = 0,
and we wish to confirm that it is a maximum or minimum. Let x̂ be any x in a
small interval around x∗. Then a Taylor series expansion in remainder form gives

f (x̂) = f (x∗)+ f ′(x∗)(x̂ − x∗)
1!

+ f ′′(ζ )(x̂ − x∗)2

2!

for some point ζ lying between x∗ and x̂. Since f ′(x∗)= 0, if f ′′(ζ ) < 0, then
f (x̂)− f (x∗) < 0, or f (x∗) > f (x̂), and so x∗ yields a local maximum; while if
f ′′(ζ ) > 0, then f (x̂) − f (x∗) > 0, or f (x∗) < f (x̂), and x∗ yields a local min-
imum. Suppose, however, that f ′′(ζ )= 0. To determine if x∗ is a maximum or
minimum, using the Taylor series expansion then requires taking the expansion to
more than two terms. The next term in the sequence is f ′′′(x∗)(x̂−x∗)3/3!, but this
tells us nothing conclusive since the sign of (x̂−x∗)3 may be positive or negative.

Suppose, however, that f ′′′(x∗) = 0, and indeed so is every derivative up
until the nth, which we denote by f (n)(x). Then we have

f (x̂) = f (x∗)+ f (n)(ζ )(x̂ − x∗)n

n!

Now, if n is even, we can use the sign of f (n)(ζ ) to tell us whether x∗ yields a
maximum or a minimum, since (x̂− x∗)n > 0, and we can use the same argument
as in the case of f ′′(ζ ). This is called the nth derivative test for a maximum or
minimum.

Finally, note that the Taylor series expansion gives us formal confirmation
of the “diagrammatically obvious” fact that if a function is strictly concave in
a neighborhood of an extreme value x∗, then x∗ must yield a local maximum,
while if it is strictly convex in that neighborhood, then x∗ yields a local minimum
(excluding cases where f ′′ = 0 at some point). Recall from section 5.5 that if
f ′′< 0, then f is strictly concave, while if f ′′> 0, the function f is strictly convex.



218 CHAPTER 6 OPTIMIZATION OF FUNCTIONS OF ONE VARIABLE

Example 6.4 Consider the function f (x) = x2 + 5 where

f ′(x) = 2x, f ′′(x) = 2

x

f (x) 

0

f (x) = x2 + 5  

5

Figure 6.15 Graph of
f (x) = x2 + 5 for example 6.9

The first derivative vanishes at x∗ = 0 and f ′′ > 0 everywhere. Thus this function
is strictly convex with an extreme value at x∗ = 0, which implies there is a
minimum here. From the Taylor series expansion we have, with x∗ = 0,

f (x̂) = f (0)+ f ′(0)(x̂ − x∗)+ f ′′(ζ )x̂2

2!

f (x̂) = 5+ 2x̂2

2
= 5+ x̂2

Obviously f (x̂) > f (0) = 5 for any x̂ �= 0. Since f ′′ > 0 for any value of x (and
so for any ζ between x∗ and x̂), we can see from the Taylor series expansion that
x∗ = 0 delivers a global minimum in this case (see figure 6.15).

Example 6.5 Consider the function f (x) = x3. We have

f ′(x) = 3x2

f ′′(x) = 6x

f ′′′(x) = 6

The first derivative vanishes at x∗ = 0 and so does the second derivative. There-
fore, with f ′′′(x∗) being the first of the higher order derivatives not to vanish at x∗,
it follows that we need to use the third derivative (n = 3) as the final term in the
Taylor series expansion to investigate the nature of the function around x∗ = 0;
that is,

f (x̂) = f (0)+ f ′′′(ζ )(x̂)3

6
for ζbetween x∗ and x̂

Since f ′′′(x) = 6 for all x, we can write this equation as

f (x̂) = f (0)+ x̂3

For x̂ > 0 we get f (x̂) > f (0), while for x̂ < 0 we get f (x̂) < f (0). Therefore
x∗ = 0 delivers neither a maximum nor a minimum. It is a point of inflection (see
figure 6.16).

x

f (x) 
f (x) = x3 

Figure 6.16 Graph of f (x) = x3

for example 6.5
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Example 6.6 Consider the function f (x) = 10− x4. We have

f ′(x) = −4x3

f ′′(x) = −12x2

f ′′′(x) = −24x

f (4)(x) = −24

The first derivative vanishes at x∗ as do the higher order derivatives up to the fourth.
It follows that we need to use the fourth derivative (n = 4) as the final term in the
Taylor series expansion to investigate the nature of the function around x∗ = 0:

f (x̂) = f (0)+ f (4)(ζ )(x̂)4

24

Since f (4)(x) = −24 for all x, we can write this as

f (x̂) = f (0)− x̂4 or f (x̂)− f (0) = −x̂4

For any value of x̂ �= 0, we have −x̂4 < 0 and so f (x̂) − f (0) < 0 or f (0) >

f (x̂). That is, the point x∗ = 0 delivers a maximum value for this function (see
figure 6.17.

x

f (x) 

f (x) = 10 – x4  

10

Figure 6.17 Graph of
f (x) = 10− x4 for example 6.6

E X E R C I S E S

1. For each function in question 1 of section 6.1 exercises, now use second-
order conditions to determine whether each stationary value you found is a
maximum, minimum, or point of inflection.

2. A firm in a competitive market discovers a new production process which
gives it the total-cost function

C = 10 log x

where x is output. Explain as fully as you can, in both mathematical and
economic terms, why there may be a breakdown of perfect competition in
this market.
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3. A monopolist has the inverse demand function

p = a − bx

and the total-cost function

C = 10 log x

Give conditions under which there will be a well-defined, profit-maximizing
output and explain your answer in a diagram.

4. A monopsonist’s revenue as a function of its only input is

R = az− bz2, z ≥ 0

It is faced with a supply function for the input

z = α + βp, p ≥ 0

where p is the input price, and a, b, α, β > 0. Find the profit-maximizing
price and quantity of the input the monopsonist will choose, and compare the
analysis to that of the profit-maximizing monopoly.

5. A firm has the production function x = f (L), where x is output and L is labor
input. The firm buys the input in a competitive market.

(a) Assuming the firm sells its output in a competitive market, show that
setting output where price equals marginal cost is equivalent to setting
labor input where input price equals marginal value product.

(b) Assuming the firm is a monopoly, show that setting output where
marginal revenue equals marginal cost is equivalent to setting labor
input where input price equals marginal-revenue product.

(c) What restriction do we have to impose on the production function to
ensure the second-order conditions in problems (a) and (b) are
satisfied?

6. Use the nth derivative test to show that −x4 has a maximum at x = 0.

6.3 Optimization over an Interval
The discussion of first- and second-order conditions in sections 6.1 and 6.2 has
dealt exclusively with the unconstrained case, in which a solution to the problem
can be anywhere on the real line. Often in economics, however, this is unacceptably
general. For example, in problems in which firms choose outputs (as in several ex-
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amples in the previous section) or consumers choose goods, we cannot assume that
negative quantities are possible. In other problems, it may be reasonable to place
an upper bound on a variable: for example, a firm may have a fixed production
capacity that puts an upper limit on how much output it can produce. Or alterna-
tively, a decision-taker may be choosing a proportion, for example, the share of a
company to buy, and that naturally places the bounds zero and one on the variable.

Example 6.7 Solve the following problems involving optimization over an interval:

(i) max y = 3− 2x subject to 0 ≤ x ≤ 1
(ii) max y = 6 subject to − 1 ≤ x ≤ 1

(iii) min y = 6x2 subject to − 2 ≤ x ≤ 2
(iv) min y = 2x3 − 0.5x2 + 2 subject to 0 ≤ x ≤ 1
(v) min y = 4x2 − 5x + 10 subject to 1 ≤ x ≤ 10

Solution

(i) This is a linear function with a negative slope. Therefore, we know an interior
maximum cannot occur, and the solution is clearly at x∗ = 0, with y∗ = 3.
Note that at x = 0 (and indeed at all points in the domain)

dy

dx
= −2 �= 0

(See figure 6.18.)
(ii) This is a constant function. All the points in the interval [−1, 1] are solu-

tions because they all yield the maximum and minimum of the function (see
figure 6.19).

x

y

y = 3 – 2x

2 310

2

3

1

Figure 6.18 Graph of the
problem in example 6.7(i)

y

y = 6

–1 10

6

x

Figure 6.19 Graph of the
problem in example 6.7(ii)
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(iii) This function takes on a minimum at x∗ = 0. Thus we have an interior solution
(see figure 6.20).

(iv) We solved this problem first for unrestricted x as (i) of examples 6.1 and 6.3.
The unconstrained minimum of the function occurs at x∗ = 0.167. This value
of x is not ruled out by the constraint. Hence we have an interior solution
with x∗ = 0.167. Note that f (x∗) = 1.995, which is less than f (0) = 2, so
x∗ does indeed deliver the minimum value on this interval (see figure 6.21).

y = 6x2

1–1

y

24

–2 2 x

Figure 6.20 Graph of the problem
in example 6.7(iii)

y = 2x3 – 0.5x2 + 2

1–1

y

–2 2 x

2

0.167

→

Figure 6.21 Graph of the problem in
example 6.7(iv)

(v) We solved this problem for the unrestricted x as (ii) in examples 6.1 and 6.3.
The unconstrained solution is x = 0.625, but this value is now ruled out by
the constraint. The slope of this function is given by

dy

dx
= 8x − 5

For 1 ≤ x ≤ 10, this slope is always positive. Thus we know that the
minimum value of the function over this interval occurs at x = 1 and the
maximum at x = 10 (see figure 6.22).

Competitive Firm with Linear Costs Revisited

Suppose that a firm has the total-cost function C = 20x and sells into a competitive
market where the given price is $10 per unit. Its profit function is

π(x) = 10x − 20x = −10x

and the first-order condition gives

π ′(x∗) = −10 = 0
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y = 4x2 – 5x + 10

421 5 x

9

0.625
→ 3

y

10

Figure 6.22 Graph of the problem in example 6.7(v)

which, of course, cannot be satisfied. The intuitive answer to the problem is ob-
vious: market price is below unit cost (horizontal demand curve below horizontal
marginal-cost curve), and so the firm does best by producing zero output. How-
ever, this possibility is not captured in the mathematics because, implicitly, we
have allowed the whole real line. The mathematical solution is to set output at
−∞, because multiplying this by −10 gives the largest possible profit! If it is
the case that negative outputs are impossible, we should incorporate this into the
problem explicitly by specifying the constraint

x ≥ 0

Then, as we will show below, the mathematics will produce the correct answer.
Returning to the general case, we assume that the possible values of x that are

feasible for the problem are determined by a constraint

a ≤ x ≤ b

which defines an interval on the real line. We then write the problem as

max f (x) subject to a ≤ x ≤ b (6.10)

We are now trying to find the highest value of the function over this given interval.
Figure 6.23 illustrates this situation. We see immediately that it is no longer a
necessary condition for an extreme value that the derivative is zero.
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x

f (x) 

f ' (a) > 0 
f ' (b) > 0 

ba x

g (x) 

ba

g'(x*) = 0 

(a) (b)

Figure 6.23 (a) Local constrained optima with interval constraint binding (b) Local
constrained optima with interval constraint not binding

The function f shown in figure 6.23 (a) has a local (and global) maximum
at b and a local (and global) minimum at a, while f ′(b) > 0, f ′(a) > 0. The
reason b gives a local maximum, although f ′(b) > 0, is that we cannot increase
x above b: the only feasible direction of change in x is to go below b, and this
reduces f . Likewise a is a local minimum because the only feasible change in x

increases the value of the function. Then again, figure 6.23 (b) shows an example
of a function g that has a maximum at x∗, and the standard condition g′(x∗) = 0
applies.

We start with the first-order necessary conditions for the maximization prob-
lem in equation (6.10). Let x∗ denote a local maximum for this problem (so that
necessarily a ≤ x∗ ≤ b). There are then three possibilities:

1. x∗ = a. In this case we must have f ′(x∗) ≤ 0. To see this, consider the
differential

dy = f ′(a) dx

When x = a, the only permissible change in x is dx > 0. So to make dy ≤ 0,
we must have f ′(a) ≤ 0.

2. a < x∗ < b. In this case we must have f ′(x∗) = 0. This is because, when x∗

is inside the interval, we can choose dx to be both positive or negative. So for
dy not to be positive we must have f ′(x∗) = 0.

3. x∗ = b. In this case we must have f ′(x∗) ≥ 0. Again, consider the differential

dy = f ′(b) dx

When x = b, the only permissible change in x is dx < 0. For this not to produce
dy > 0, we must have f ′(b) ≥ 0.
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These arguments simply formalize somewhat the discussion of figures 6.22
and 6.23 and the results can be stated succinctly as follows:

Theorem 6.4 If x∗ is a solution to the problem

max f (x) subject to a ≤ x ≤ b

then it satisfies one or both of

f ′(x∗) ≤ 0 and (x∗ − a)f ′(x∗) = 0

f ′(x∗) ≥ 0 and (b − x∗)f ′(x∗) = 0

where, if it satisfies both conditions and f ′(a) �= 0 and f ′(b) �= 0, we must have
a < x∗ < b.

These conditions essentially say that if x∗ is inside the interval, meaning that, it
is an interior solution, then its derivative must be zero, while if it is at one of the
endpoints of the interval, the derivative must be nonpositive (at a) or nonnegative
(at b). Note that we have not ruled out the cases in which the derivative just happens
to be zero at an endpoint of the interval.

You should now sketch a figure corresponding to figure 6.23 for the case of a
minimization problem, and set out the argument for

Theorem 6.5 If x∗ is a solution to the problem

min f (x) subject to a ≤ x ≤ b

then it satisfies one or both of

f ′(x∗) ≥ 0 and (x∗ − a)f ′(x∗) = 0

f ′(x∗) ≤ 0 and (b − x∗)f ′(x∗) = 0

where, if it satisfies both conditions and f ′(a) �= 0 and f ′(b) �= 0, we must have
a < x∗ < b.
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x

π

π  = –10x  

0

Figure 6.24 Profit maximum
at −∞

Competitive Firm with Linear Costs—Yet Again

To continue with this earlier example, we now explicitly impose the constraint
x ≥ 0. This gives the problem

max π(x) subject to x ≥ 0

which is a special case of the one just considered, with a = 0 and b set at +∞
(i.e., dropped). Applying theorem 6.4 to the solution gives

π ′(x∗) ≤ 0 and x∗π ′(x∗) = 0

and since in this case π ′ = −10, we have

−10 ≤ 0 and x∗(−10) = 0

implying the solution x∗ = 0. The profit function −10x is graphed in figure 6.24,
and with the positive half of the real line as the set of feasible x-values, we have
the solution at the origin.

Monopoly with Output Quota

Consider a monopoly firm that sells to a foreign country, and suppose that the
government of that country has imposed an upper limit L on its sales there. Let x

denote sales in that country, R(x) the revenue function from those sales, and C(x)

the cost function. Then the firm’s problem is

max π(x) = R(x)− C(x) subject to x ≤ L

Strictly, of course, sales cannot be negative. We should also impose the constraint
x ≥ 0, but we assume that sales will turn out to be always positive. Applying
theorem 6.4 gives

π ′(x∗) = R′(x∗)− C ′(x∗) ≥ 0 and (L− x∗)π ′(x∗) = 0

Since we do not have specific numerical functions, all we can do is consider logical
possibilities:

1. x∗ < L. In this case, π ′(x∗) = 0. The constraint in this case is nonbinding:
the firm is able to do what it wanted to do anyway, which is to set output at the
profit-maximizing level.

2. x∗ = L. In this case, π ′(x∗) ≥ 0. We now have two subcases:
(a) π ′(x∗) > 0. In this case, the firm is constrained by the output quota. It

would like to expand output because its marginal profitability is positive
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but it cannot exceed the quota. Note an important point of economic inter-
pretation: if the quota were increased slightly, then the firm’s profit would
increase at the rate π ′(x∗). That is, taking the differential of profit and
setting x∗ = L,

dπ = π ′(L) dL, and so
dπ

dL
= π ′(L)

Thus we could say that the marginal value of a relaxation in the quota, or
the shadow price of the quota, is π ′(L).

x

π (x)

π (x)

π '(x*) = 0

Lx*

Figure 6.25 Monopoly subject to
a quota: x ≤ L is not binding (b) π ′(x∗) = 0. In this case, we would say that the firm is “trivially constrained”

by the quota, in the sense that although x∗ = L, the firm is able to set its
profit-maximizing output. If the quota were slightly increased, the firm
would not change its output, since x∗ maximizes profit. Its profit would
therefore also not increase. We would say that the shadow price of the
output quota is zero in this case (at least for increases in the quota).

Figure 6.25 corresponds to case 1, figure 6.26 corresponds to case 2(a), and
figure 6.27 corresponds to case 2(b).

x

π (x)

π (x)

x*= L

π '(L) > 0

Figure 6.26 Monopoly subject to
a quota: x ≤ L is binding

x

π (x)

π (x)

π '(L) = 0

x*= L

Figure 6.27 Monopoly subject to
a quota: x ≤ L is a trivial constant

Price-Regulated Monopoly

A monopoly has the linear demand function x = a − bp, where x is demand
and p price, and a linear total-cost function C = cx. It is therefore just like the
monopoly studied in section 6.1. However, this monopoly is not free to charge
whatever price it likes. A regulatory agency sets a maximum price p̄ that it may
charge. We must assume that p̄ ≥ c; otherwise, the firm would close down. We
can write the monopoly’s revenue function as

R(p) = px = ap − bp2

and its cost function as

C = cx = c(a − bp) = ca − cbp

Then we could formulate its problem as

max π(p) = ap − bp2 − [ca − cbp] subject to p ≤ p̄

Applying theorem 6.4, we obtain

π ′(p∗) = a − 2bp∗ + cb ≥ 0 and (p̄ − p∗)π ′(p∗) = 0
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Then again, we have two cases:

1. p∗ < p̄. In this case, π ′(p∗) = 0, implying that

p∗ = a + cb

2b

This is, of course, the monopoly’s profit-maximizing price (confirm from the
earlier example). The price regulation is nonbinding in that it allows the firm
to maximize profit. So what appears to be good news for consumers—that the
firm prices at a lower level than is permitted by the regulator—is simply a sign
that the regulation is ineffective.

2. p∗ = p̄. In this case, either the regulation is a binding constraint, with π ′(p̄) >

0, or it is trivially binding, with π ′ = 0. In the first of these cases, we can take
π ′(p̄) as the shadow price to the firm of the regulatory price constraint.

These solutions are illustrated in figure 6.28, where p̄ and x̄ are the monopoly’s
unconstrained profit-maximizing price and quantity respectively.

x = a – bp

p

c

x

p*

MR
(a)

x = a – bp

c

x

p, cp, c

MR
x̃

(b)

x*

p* = p

~p

Figure 6.28 (a) Price-regulation nonbinding; (b) price-regulation binding

E X E R C I S E S

1. Solve the following problems:

(a) max 3+ 2x subject to 0 ≤ x ≤ 10

(b) max 1+ 10x2 subject to 5 ≤ x ≤ 20

(c) min 5− x2 subject to 0 ≤ x ≤ 10
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Sketch your solutions. How do these solutions differ from the case in
which x is unconstrained?

2. A firm has the cost function

C =
{
cx, 0 ≤ x ≤ x̄

∞, x > x̄

That is, it has a fixed production capacity x̄, below which marginal cost is
constant, at c.

(a) Sketch the firm’s marginal- and average-cost function.

(b) Solve for its profit-maximizing output if it sells in a perfectly competitive
market.

(c) Describe the solution possibilities for output if the firm is a profit-
maximizing monopoly with linear demand.

(d) Identify the “shadow price of capacity” in each of cases (b) and (c).

3. In a competitive but regulated agricultural market, the price of output is $1
per unit, a farm has the constant marginal cost of $0.20 per unit, and there is
an output quota of 100 units.

(a) What is the shadow price of the output quota?

(b) Suppose that the farmer wishes to sell his output quota. How much
can he ask for it? (Assume that all farmers have identical marginal
costs.)

C H A P T E R R E V I E W
Key Concepts constrained extrema

extreme values
first-order conditions
global maximum (minimum)
interior solution
local maximum (minimum)
necessary condition
nonbinding constraint

nth derivative test
points of inflection
second-order conditions
shadow price
stationary value
sufficient condition
unconstrained extrema

Review Questions 1. Distinguish between local and global optima.

2. What is the first-order condition for a maximum?
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3. What is the first-order condition for a minimum?

4. What is a sufficient condition for a maximum or minimum, making use of the
second derivative?

5. What is the nth derivative test and why is it necessary?

6. When x is restricted to an interval, why is it no longer a necessary condition
for a maximum or a minimum that the first derivative is zero at the optimal
point?

7. Explain what is meant by binding and nonbinding constraints.

8. State and explain the first-order conditions for maximization and minimization
over an interval.

9. Explain what is meant by a shadow price of a constraint.

Review Exercises 1. Illustrate in a Venn diagram the relation between stationary values, extreme
values, maxima, and minima.

2. Explain why the condition f ′(x∗) = 0 is necessary but not sufficient for x∗

to yield a maximum of f , while f ′(x∗) = 0 and f ′′(x∗) < 0 is sufficient but
not necessary for x∗ to yield a maximum.

3. Find the stationary values of the following functions, and determine whether
they give maxima, minima, or points of inflection.

(a) y = 0.5x3 − 3x2 + 6x + 10

(b) y = x3 − 3x2 + 5

(c) y = x4 − 4x3 + 16x

(d) y = x + 1/x

(e) y = x3 − 3x − 1

(f) y = 3x4 − 10x3 + 6x2 + 5

(g) y = (1− x2)/(1+ x2)

(h) y = (3− x2)1/2

(i) y = (2− x)/(x2 + x − 2)

(j) y = x0.5e−0.1x

4. The market value of a stock of wine grows over time, t ∈ R+, according to
the function v(t), with v′ > 0, v′′ < 0, all t . The present value of the stock
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of wine is given by

V = v(t)e−rt

where r is the interest rate. Find and interpret an expression for the point in
time at which the present value of the wine is at a maximum.

5. A profit-maximizing firm has the total-cost function

C = 0.5x3 − 3x2 + 6x + 50

and sells into a competitive market on which the price is $1.00. What output
should it produce? What would your answer be if the price were $2?

6. A firm wants to bid for the monopoly franchise to sell hot dogs at a baseball
game. It estimates the inverse demand function for hot dogs as

p = 5− 0.5x

where p is the price in dollars and x is sales of hot dogs in thousands. It also
estimates that it can supply the hot dogs at a constant unit cost of $0.50 per
hot dog. What is the largest bid it would make for the franchise?

7. In the case described in question 6, suppose that the stadium owners decide
to levy a royalty of $0.25 per hot dog sold. Show the effect this has on your
answer.

8. Now suppose that in addition to the royalty, the stadium owners, to prevent
“price-gouging,” set an upper limit of $2 on the price that can be charged for
a hot dog. Show the effect this has on the maximum bid for the franchise.

9. A student is preparing for exams in two subjects. She estimates that the
grades she will obtain in each subject, as a function of the amount of time
spent working on them are

g1 = 20+ 20
√

t1

g2 = −80+ 3t2

where gi is the grade in subject i and ti is the number of hours per week spent
in studying for subject i, i = 1, 2. She wishes to maximize her grade average
(g1 + g2)/2. She cannot spend in total more than 60 hours studying in the
week. Find the optimal values of t1 and t2 and discuss the characteristics of
the solution. Why is this essentially an economic problem? [Hint: Assume
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that 60 hours a week is a binding constraint and express the problem as one
involving t1 only.]

10. A firm sells in a competitive market at a price of $10 per unit and has the
production function

x = 2L1/2

where x is output and L is labor. It has a maximum available labor supply
of 16 units. What is its shadow price of labor? Now suppose the firm could
hire additional labor at a wage rate of $2 per unit. How much labor would it
want to hire?
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Chapter 7 Systems of Linear Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Open-Economy IS-LM-BP Model
• Gauss-Jordan Elimination
• Open Economy Equilibrium with a Flexible Exchange Rate: Example

In chapter 2 we defined a linear function as one that takes the form

y = a + bx (7.1)

for known constants a and b, and where x is the independent variable that takes
on values over some specified domain, and y is the resulting value of the function
at each x-value. We also know that by taking specific values of x, we can draw the
graph of x and y in a two-dimensional picture. The graph is a straight line: hence
the phrase linear function. There are many examples of functions in economics that
can be represented in a linear form. The market demand for a product, for example,
may simply be represented by a straight line. In this case, y would represent the
quantity demanded and x would be the unit price. We would also expect a to be
positive and b negative.

In this chapter we take the analysis of linear functions further by looking at
solutions of systems of linear equations. In many economic problems a single
linear equation identifies or characterizes a relationship between two variables, x

and y. Given a value of x, we can deduce the associated value of y implied by the
equation. Often, however, there are two or more equations that must be satisfied
simultaneously. In the study of a simple market, for example, we may specify
another linear relationship between quantity and price representing the supply.
The solution is then a price that equates demand and supply.

This chapter is concerned with methods for finding solutions to two or more
linear equations.
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7.1 Solving Systems of Linear Equations
There are many ways of solving systems of linear equations. Some of these require
the use of matrix algebra and are discussed in chapters 8 and 9. Others, particularly
suitable for systems with small numbers of equations, simply require direct ma-
nipulation of the equations and are discussed here. These methods may be familiar
already.

Graphing Solutions

We start by considering systems of equations with just two variables, x and y. This
allows us to illustrate the solutions graphically in x,y-space.

Notice first that any linear equation with two variables x and y can be written
in the form

αx + βy = γ (7.2)

where α, β, and γ are known constants.

Example 7.1 Equation (7.1) may be written

−bx + y = a

so that in terms of equation (7.2), α = −b, β = 1, and γ = a.

Now consider the two linear equations

2x + y = 4

x − y = 1

If these equations are to be satisfied simultaneously, then there must be at least one
pair of values for x and y which make both equations true. We can easily verify
that x = 5/3 and y = 2/3 will satisfy both equations. However, x = 1 and y = 2
do not form a solution, since they hold for the first equation but not the second.
The graphs of these two equations are shown in figure 7.1. The lines represent the
equations y = 4− 2x and y = x − 1. Where the two lines intersect is exactly the
solution we identified: x = 5/3 and y = 2/3. Notice that this is the only solution.

2

0 1 x

y

2

1

3

4

y = x – 1

y = 4 – 2x

5 3

2 3

Figure 7.1 Graphs of y = 4− 2x
and y = x − 1

Example 7.2 Find a solution to the two linear equations

x + y = 10

x − y = 0
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Solution

Start by graphing the two equations, y = 10 − x and y = x (see figure 7.2).
Clearly, the solution is x = 5 and y = 5, which can be verified by substituting
these values into the two equations. Again, this is the only solution.

5

0 x

y

5

y = x
y = 10 – x

10

10

Figure 7.2 Graphs of y = 10− x
and y = x

The Linear IS-LM Model

A common application of linear models in undergraduate economics courses is to
the study of macroeconomic equilibrium. In particular, IS-LM models study the
determination of national income, or national output, on the assumption that the
amount supplied in the economy is determined solely by the level of aggregate
demand. Figure 7.3 summarizes the aggregate demand and supply relationship
presumed by this approach. The idea is that we can approximate some aspects of
macroeconomic behavior by assuming that prices are fixed. Alternatively, we are
assuming that the supply curve is perfectly elastic so that, whatever the price, output
is determined by the position of the demand curve. The exercise then becomes one
of finding the determinants of aggregate demand at a given price.

aggregate demand

Y

P

aggregate supply

Figure 7.3 The aggregate demand
and supply conditions implied by the
simple IS-LM approach

Typically the demand conditions of the economy are modeled as depending on
aggregate expenditure components identified by their source. Thus we have expen-
ditures by private consumers and private enterprises, expenditures by government,
and net expenditures on home-produced goods by overseas residents—net exports.
Ignoring the government and net exports for the moment, it is assumed that expen-
ditures depend on both total income, Y , and the interest rate, R. The higher is in-
come the higher are expenditures, while the higher is the interest rate, the lower are
expenditures. The consumption function explains the former effect, while the in-
vestment decision may be used to explain the latter. Expenditures increase with in-
come as long as output as a whole is regarded as a “normal good,” while an increase
in the cost of borrowing (or increase in the interest on savings) inhibits spending on
large expenditure items such as machinery and consumer-durables. The so-called
IS curve is a negative relation between the interest rate and output: the higher is
the interest rate, the lower is demand, and the lower is output. A simple linear
form is

R = α − βY

Of course, this only tells us what the interest rate will be if we know the level of
income. Another relationship between R and Y is needed to determine both R and
Y simultaneously.

The interest rate is assumed to be determined largely by money-market forces.
Individuals hold money in order to make purchases (which depends on income),
but their holding of money will otherwise be reduced if the cash could be earning
a high interest rate. Thus the demand for money depends positively on income
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(expenditures) and negatively on the interest rate. If the amount of money available
is fixed (determined by the government or the central bank), then total demand for
money as income increases can only stay equal to the fixed supply of money if
the interest rate increases. This gives a positive relationship between R and Y to
maintain equilibrium in the money market. This is the so-called LM curve and a
simple linear form is

R = −γ + λY

We will be using the expenditure components and the story of money market
activity to derive the IS and LM curves in greater detail below. For now, we consider
an example which starts with the IS and LM curves for a hypothetical economy.

Example 7.3 The Linear IS-LM Model

An economy has a linear IS curve given by the equation

R = 10− 2Y (7.3)

and an LM curve given by

R = −8+ 4Y (7.4)

Here R is the interest rate (in percent), and Y is GDP or aggregate income (in
billions of dollars). Find the equilibrium interest rate and level of GDP.

0 Y

R

5

R = –8 + 4Y

R = 10 – 2Y
10

8

6

2

4

4321

Figure 7.4 The linear IS-LM
model of example 7.3

Solution

The equilibrium interest rate and GDP level solve both equations (7.3) and (7.4)
simultaneously. The graphs of these two equations are shown in figure 7.4, where
the solution is found to be R = 4 percent and Y = $3 billion. Again, the solution
is unique.

Now consider the two linear equations

y = 2+ x

y = 1+ x

If we draw these two equations, we see that they are parallel and so never cross.
That is, there are no values of x and y that satisfy these equations simultaneously.
There is no solution. In general, this will be true for any two equations whose
graphs have the same slope, but different intercepts. (In this case, both equations
have slopes of +1 but different intercepts [2 and 1 respectively].)



7.1 SOLVING SYSTEMS OF LINEAR EQUATIONS 239

Example 7.4 Linear Indifference Curves

Consider a consumer of two goods, x and y, with preferences which give linear
indifference curves

x + y = a or y = a − x (7.5)

In other words, the consumer regards the two goods as perfect substitutes. Here
the utility function is u(x, y) = x + y and a is a given utility level. Now suppose
that the individual has a budget constraint

M = pxx + pyy (7.6)

where M is money income and px, py are the prices of the two goods. This says
that total expenditures must equal total income. Rearranging this gives

y = m− px

where m (= M/py) is real income measured in units of y and p (= px/py) is the
relative price ratio. Find the consumer’s utility-maximizing choice of x and y.

Solution

If we suppose, first, that p = 1, then we see that the highest possible indifference
curve occurs where a = m, and we see that the budget line and the highest possible
indifference curve coincide exactly as shown in figure 7.5.

x

y

a = m

a = m

Figure 7.5 Linear indifference
curves

It is clear from this result that there are infinitely many values of x and y that
satisfy these equations. The economic intuition here is as follows: The consumer’s
preferences indicate that the two goods are regarded as perfect substitutes with a
marginal rate of substitution of−1. The budget constraint indicates that the goods
have the same price: the slope is−1. Therefore there is nothing to choose between
any combinations of the goods yielding the same level of utility and involving the
same level of expenditures.

To continue with this example, we see that if px > py so that p > 1, then there is
exactly one solution in which only good y is bought, while if px < py so that p < 1,
then there is exactly one solution in which only good x is bought. The intuition
here is very clear. Given that the goods are perfect substitutes, the consumer will
only be concerned with their relative prices, and will simply consume only the
relatively cheaper good.

Example 7.4 illustrates an important and quite general property of all linear
systems.



240 CHAPTER 7 SYSTEMS OF LINEAR EQUATIONS

Theorem 7.1 A system of two linear equations has either no solution, exactly one solution, or
infinitely many solutions.

A moment’s reflection shows this must be true. Two straight lines can be drawn
so that they never intersect, or so they intersect just once, or so that they coincide.
This exhausts the possibilities for graphing any two straight lines. (Try it!)

Solutions by Substitution and Elimination

Perhaps the simplest analytical (rather than diagrammatic) ways of solving these
simple linear systems is by the substitution and elimination methods. Consider
again the two equations represented in figure 7.1. These are

y = 4− 2x (7.7)

y = −1+ x (7.8)

The analytical solution by substitution is obtained simply by solving one of these
equations for either x or y and substituting the result in the other equation. For
example, we can solve equation (7.8) for x to find x = y + 1 and then substitute
this value for x in equation (7.7) to get y = 4−2(y+1), or y = 2/3. Substituting
this value of y into either equation (7.7) or equation (7.8) yields the value for x of
x = 5/3.

Example 7.5 Solve the following equations by substitution:

5x + 2y = 3

−x − 4y = 3

Solution

Rearrange the second equation to give x = −3−4y, and substitute this value into
the first equation to give

5(−3− 4y)+ 2y = 3 ⇒ −15− 20y + 2y = 3 ⇒ −18y = 18 ⇒ y = −1

Substituting this value of y into the second equation gives x = 1.

The analytical solution by elimination can also be seen using equations (7.7) and
(7.8) and in that case offers a more direct way of solving the equations, because the
right-hand side of equation (7.8) can be set equal to the right-hand side of equation



7.1 SOLVING SYSTEMS OF LINEAR EQUATIONS 241

(7.7) to eliminate y. We can extend the approach of solution by elimination by
considering the equations in example 7.5 again, but now multiply the first of these
through by 2 to give

10x + 4y = 6

−x − 4y = 3

and now add these two equations to eliminate y to give

9x = 9 or x = 1

Substitution of this value of x into either of the equations yields the solution for
y = −1.

Example 7.6 Solve the following equations by elimination:

2x + 5y = −10

−2x + 4y = 0

Solution

To solve by elimination, simply add the two equations to obtain

9y = −10 ⇒ y = −10

9

Substituting back gives x = −20/9.

The elimination method is often more straightforward than the substitution
method. With a large number of equations and variables removed, and thus solving
for each variable in terms of the others and then substituting, long and cumbersome
equations are avoided. The elimination method, however, reduces the number
of variables by operations such as multiplication and addition performed on the
equations. Later in this chapter we develop a more systematic approach to the
manipulation of rows in equation systems.

Two very common applications of linear systems in undergraduate economics
courses are in multimarket equilibrium and in the simple IS-LM model.

Equilibrium in Two Markets

In the model of multimarket equilibrium, the system of equations representing
demand and supply in each market explicitly recognizes that the demand side, and
possibly the supply side in each market may depend on prices in other markets.
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For example, the demand for coffee may depend not only on the price of coffee
but also on the price of tea—a substitute good. The demand for automobiles may
depend on the price of automobiles and the price of gasoline—a complementary
good.Afirm’s supply may also be affected by the prices of other goods for a variety
of reasons. For example, a firm may use other produced goods as inputs, in which
case that firm’s supply is determined by the price it can obtain for its own output
and the price charged by other firms producing goods required as inputs.

A general way of representing these interrelationships in a two-good model is

qs
1 = α1 + β11p1 + β12p2

qs
2 = α2 + β21p1 + β22p2

}
supply (7.9)

qd
1 = a1 + b11p1 + b12p2

qd
2 = a2 + b21p1 + b22p2

}
demand (7.10)

So, for example, if β12 < 0, then an increase in the price of good (input) 2 reduces
the use of that good by firm 1 and so reduces the production of good 1. Setting
supply equal to demand in each market gives the system of two equations to
determine the two equilibrium prices p1 and p2. Note that some of the bij s and
βij s may be zero. These equations are the basic building blocks of the model and
are called the structural equations:

(b11 − β11)p1 + (b12 − β12)p2 = α1 − a1

(b21 − β21)p1 + (b22 − β22)p2 = α2 − a2

To solve by substitution, we first use the second equation to write p1 in terms
of p2:

p1 = (α2 − a2)− (b22 − β22)p2

(b21 − β21)

Then we substitute into the first equation which, after rearranging, gives

p2 = (b11 − β11)(α2 − a2)− (b21 − β21)(α1 − a1)

(b11 − β11)(b22 − β22)− (b21 − β21)(b12 − β12)

This can then be substituted into the equation for p1 to give

p1 = (α1 − a1)(b22 − β22)− (α2 − a2)(b12 − β12)

(b11 − β11)(b22 − β22)− (b21 − β21)(b12 − β12)
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These expressions for p1 and p2 are called the reduced forms, since they de-
pend only on the parameters of the model. For particular values of the constant
parameters ai , αi , bij and βij , i, j = 1, 2, we can then find values for the pi , and
subsequently, by substituting these values back into equations (7.9) and (7.10), we
can find values for the equilibrium quantities. The following example illustrates
how to find these values.

Example 7.7 Two-Market Equilibrium for Complementary Goods

Suppose that markets for two goods which are regarded by consumers as comple-
ments have the following demand and supply equations:

qs
1 = −1+ p1, qd

1 = 20− 2p1 − p2 (good 1)

qs
2 = p2, qd

2 = 40− 2p2 − p1 (good 2)

where qs
i and qd

i are the quantities supplied and demanded of good i (i = 1, 2)
and pi is the price per unit of good i. The fact that the two goods are complements
for each other is represented by the fact that the quantity demanded of each good
falls the higher is the price of the other good. Derive the equilibrium prices of the
two goods.

Solution

In equilibrium, qs
i = qd

i for each good i. These conditions lead to the two
equations

3p1 + p2 = 21

p1 + 3p2 = 40

Solving the second of these for p1 = 40− 3p2 and substituting into the first gives

3(40− 3p2)+ p2 = 21 ⇒ 8p2 = 99 ⇒ p2 = 12.375

which, on substitution to find p1, gives p1 = 2.875. These two prices, and only
these prices, will simultaneously give equilibrium in the markets for these two
goods.

The Linear IS-LM Model—Again

We have already worked through one simple IS-LM example, but it is instructive
to review where the equations representing the IS and LM sides of the economy
originate. If C denotes aggregate consumption and Y aggregate income, then one
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form for the consumption function is

C = a + bY

where a > 0 and 0 < b < 1. In the linear consumption function, b is called the
marginal propensity to consume. The consumption function in this example is
clearly linear in income. Ignoring the government for now, we identify investment
spending by I and assume that it is a linear, decreasing function of the interest
rate, R. The assumption that investment expenditure is negatively related to the
interest rate can be related to the internal rate of return idea discussed in chapter 3.
The higher is the cost of borrowing, R, the less likely it is that any given invest-
ment project will be profitable, and so investment spending falls as R increases.
Specifically

I = e − lR, e, l > 0

We then use the idea that in equilibrium these expenditure components just
absorb total output so that

Y = C + I

= a + bY + e − lR

= a + e − lR

1− b

or

R = a + e − (1− b)Y

l

This gives us the IS equation, and it clearly takes the linear form with (a + e)/ l

being the intercept on the R axis and the slope being−(1−b)/ l. The consumption
function and investment function are the building blocks or the structural equations
of the IS curve. The graph of the IS curve traces out pairs of values for R and Y

that are consistent with Y = C + I .
The money market is summarized by an equation for aggregate money demand

L = kY − hR, k, h > 0

and money supply is assumed fixed at M̄ . The money demand function and the
money supply rule are the structural equations of the LM curve. Setting demand
equal to supply and rearranging gives

R = kY − M̄

h
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as the LM equation. The graph of the LM curve traces out pairs of values for R

and Y that are consistent with L = M , money demand = money supply.
Solving the IS and LM equations gives the reduced forms

Y = h(a + e)+ lM̄

lk + h(1− b)

R = k(a + e)− (1− b)M̄

lk + h(1− b)

Questions can now be posed, using these equations, regarding the effects on
equilibrium income and interest rate as, say, the money supply changes. These
comparative-static methods are examined in more detail in chapter 14, but for
now, we can write the reduced forms as linear functions of the money supply

Y = α + βM̄

R = γ − λM̄

where α, β, γ , and λ are constants given by

α = h(a + e)

lk + h(1− b)
> 0

β = l

lk + h(1− b)
> 0

γ = k(a + e)

lk + h(1− b)
> 0

λ = (1− b)

lk + h(1− b)
> 0

(Before continuing, verify that each of these is positive.) Simply by inspecting
the reduced forms, we see that an increase in the money supply will increase
equilibrium income and will reduce the equilibrium interest rate.

For many questions of interest, this model is usually extended to include a
government sector and to include international trade in goods and capital move-
ments. The government is usually modeled as having a fixed level of expenditure,
say Ḡ, and as raising tax revenue by applying a proportional tax rate to income. If
the (uniform) tax rate is t , then consumption takes place out of disposable income,
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(1− t)Y . Question 4 in the exercises to this section provides an example. The open
economy is rather more intricate, even in a simple model, since the forces that de-
termine equilibrium will depend on the assumptions being made about the degree
of capital mobility and about the exchange rate. A particularly simple version of
the open-economy model is presented in example 7.9.

Example 7.8 Deriving the IS and LM Curves

From the following information about the structural equations of a closed economy,
derive the IS and LM curves, and solve for equilibrium income and the interest rate:

C = 50+ 0.8Y (consumption function)

I = 20− 5R (investment function)

L = 100− R + 0.5Y (money demand)

M = 200 (money supply)

Solution

Using Y = C + I , substitute for C and I to find

Y = 350− 25R (the IS equation)

Using L = M , substitute to find

Y = 200+ 2R (the LM equation)

Solving these equations, we find that R = 5.6 and Y = 211 (approximately).

The following example, using a linear IS-LM model, serves to illustrate a
further point about these two-variable systems. That is, if we are looking for a
solution for two variables, then if a solution exists, we only require two equa-
tions. If we have two variables and more than two equations, then the system is
overdetermined.

Example 7.9 IS-LM in an Open Economy

Consider a small, open economy with a fixed exchange rate. The IS and LM curves
are given by

R = 20− Y (IS) (7.11)

R = −5+ 4Y (LM) (7.12)
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where R is the interest rate (in percent) and Y is real GDP (in $ billions). Addi-
tionally we are told that there is perfect capital mobility so that the economy must
maintain an interest rate equal to the “world interest rate,” Rw, which is beyond
the influence of this small economy. Currently the world interest rate is

Rw = 15 (7.13)

and the balance of payments (BP) curve is horizontal at Rw = 15. Find the equi-
librium interest rate and income.

0 Y

R

5

R = 20 – Y
10

8

6

2

4

4321 6 7 8 9 10

20

18

16

12

14

R  = 15

R = –5 + 4Y

w

Figure 7.6 IS-LM in an open
economy

Solution

This is shown in figure 7.6. For internal and external balance all three curves
must intersect and we have chosen parameter values so that this is so. Internal
balance is essentially achieved by the condition that R and Y satisfy both the IS
and LM equations. External balance is obtained by the requirement that the R and
Y combination are a point on the BP curve. Notice that, in this case, only two of the
three curves are required to identify the equilibrium. We may use equations (7.11)
and (7.12), or equations (7.11) and (7.13), or equations (7.12) and (7.13) and they
all yield the same answer of Rw = 15 percent and Y = $5 billion. The system is
overdetermined and only two of the equations are required to find the solution.

Finally note that if the world interest rate were other than 15%, there would
be no solution to the three conditions. Equations (7.11) and (7.12) would still give
the internal balance equilibrium at R = 15 and Y = 5, but this would identify a
point that is not on the BP curve if this is drawn at an interest rate greater than, or
alternatively, less than 15%. In this case there would be a disequilibrium, requiring
some economic mechanism to adjust to a situation of both internal and external
balance. The adjustment mechanism depends on assumptions about the exchange
rate and other considerations which we have suppressed here.

Where a system of two equations has more than two unknowns, then the system
is said to be underdetermined. Consider the two equations

y = z− 2x

y = x − 1

By any of our earlier methods we obtain

x = 1+ z

3
, y = z− 2

3

Equations (7.7) and (7.8) are equivalent to these equations with z = 4, and we can
check our earlier work using the equations above. However, without the additional
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information about z we are not able to find numeric solutions, or rather, there are
an infinite number of solutions—one for each possible value of z. In cases such as
these, where the system is underdetermined, or determined only up to a variable
being assigned a particular value, we say that x and y are the basic variables and
z is the free variable.

E X E R C I S E S

1. Graph the following pairs of equations and find their solutions:

(a) 2x = 4

3y − x = 10

(b) x + y = 1

2x + 2y = 2

(c) −x + 4y = 10

−x/4+ y = 5

(d) y = 10− x

y = 2x

2. Where possible, solve the following pairs of equations by substitution and by
elimination:

(a) x + y = 10

2x = 4

(b) x + y = 0

x − y = 0

(c) 2x + 4y = 2

x + 2y = 1

(d) 2x + y = 8

x − z = 2

(e) x/2− y = 3

2

x + 2y = 15

3. For which values of the constant, c, does the following system have (a) no
solution, (b) one solution?

2x − y = 10

−cx + 2y = 5
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4. A closed economy is described by the following simple IS-LM system:

C = a + b(1− t)Y − lR (consumption)

I = Ī (investment)

G = Ḡ (government spending)

L = kY − hR (money demand)

M = M̄ (money supply)

where R and Y are the interest rate and real GDP, respectively, and a > 0,
0 < b < 1, 0 < t < 1, k > 0, andh > 0 are known constants. Find an expression
for the linear IS curve and an expression for the linear LM curve. Then find
algebraic solutions for R and Y .

5. In the two-market model in equations (7.9) and (7.10), what is the interpreta-
tion of the coefficient β21 being positive? Give an economic example of this
kind of relationship.

6. There are two markets for goods that are regarded as substitutes and their
supply and demand curves are given by

qs
1 = 2p1, qd

1 = 20− p1 + p2 (good 1)

qs
2 = −10+ 2p2, qd

2 = 40− 2p2 + p1 (good 2)

Find the equilibrium prices and quantities of the two goods.

7. An economy has IS and LM curves given by

R = 25− 2Y

R = −10+ M

2
+ Y

where R is the interest rate (percent), Y is GNP ($ billions), and M is the
money supply.

(a) The government has a target for GNP of $7.5 billion. What level of
money supply will achieve this and what is the resulting interest rate?

(b) The world interest rate is Rw = 12 and there is perfect capital mobility.
What is the overall equilibrium? What has gone wrong?
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7.2 Linear Systems in n-Variables
Although graphing solutions and finding solutions by simple substitution is fine for
systems of equations with only two variables, we need to develop other procedures
to find solutions for general systems of linear equations. These procedures often
involve generalizations of some of the alternative solution methods that we have
already referred to: subtracting equations and multiplying equations by a constant.

As we develop these methods, we will illustrate with 3-variable systems first
and then, where necessary, show the general formulation in terms of n-variables.

First, we note immediately that theorem 7.1 generalizes to n-equation systems.

Theorem 7.2 A system of n linear equations has either no solution, exactly one solution, or
infinitely many solutions.

Solution by Row Operations

The idea behind finding solutions by row operations is to transform a given system
of equations into another with the same mathematical properties and hence the
same solution. The aim is to transform a system in such a way as to produce a
simpler system which is easier to solve. Three types of operations are permitted
to transform a system:

1. Multiply an equation by a nonzero constant.
2. Add a multiple of one equation to another.
3. Interchange two equations.

In practice, not all of these operations may be required to simplify a given sys-
tem, while in a complicated system it may be necessary to employ these methods
repeatedly before a solution becomes apparent. Notice also that the first of these
procedures includes multiplication by a reciprocal which, of course, amounts to
division of an equation by a constant, while the second includes adding to one
equation another equation which has been multiplied by −1 which amounts to
subtraction.

Example 7.10 We will apply these rules to the following system of equations. The choice of
operation at each stage is simply determined by inspection and by looking for
patterns in the equations:

4x − y + 2z = 13

x + 2y − 2z = 0

−x + y + z = 5
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Solution

Step 1 Add the second and third equations, and replace the third equation with
the result (i.e., add the second equation to the third equation)

4x − y + 2z = 13

x + 2y − 2z = 0

3y − z = 5

Step 2 Add the second equation to the first with the result

5x + y = 13

x + 2y − 2z = 0

3y − z = 5

Step 3 Multiply the third equation by 2 and subtract from the second equation:

5x + y = 13

x − 4y = −10

3y − z = 5

Step 4 Multiply the first equation by 4 and add to the second equation:

21x = 42

x − 4y = −10

3y − z = 5

Step 5 Divide the first of these equations by 21:

x = 2

x − 4y = −10

3y − z = −5

Step 6 Subtract the second equation from the first:

x = 2

4y = 12

3y − z = 5

Step 7 Divide the second equation by 4:

x = 2

y = 3

3y − z = 5
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Step 8 Finally, subtract the third equation from three times the second equation:

x = 2

y = 3

z = 4

We noted in the last section that systems of two linear equations may have no
solution, exactly one solution, or infinitely many solutions. The same is true when
there are m > 2 linear equations. The following provides an example of infinitely
many solutions.

Example 7.11 Attempt to solve the system of equations:

−x − y + z = −2

3x + 2y − 2z = 7

x + 3y − 3z = 0

Solution

Step 1 Add the first and third equations:

−x − y + z = −2

3x + 2y − 2z = 7

2y − 2z = −2

Step 2 Subtract the third equation from the second equation, and interchange the
second and first equations:

3x = 9

−x − y + z = −2

2y − 2z = −2

Step 3 Add three times the second equation to the first equation, and divide the
first equation by 3:

x = 3

− 3y + 3z = 3

2y − 2z = −2

The source of the difficulty is now apparent, since we are unable to reduce
the second and third equations further to obtain unique solutions. Both equations
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imply that y = z − 1. Any values of y and z satisfying this relationship are
solutions and, of course, there are infinitely many such values. So, even though
we have a unique solution for x = 3, the system as a whole has an infinity of possi-
ble solutions. In this case, we say that the variables y and z are not independent. We
also note that the dependence or the relationship between y and z is itself a linear
dependence, and this is necessarily so. Through these steps, we have discovered
another important property of systems of linear equations.

D e f in i t i o n 7 . 1 Linearly dependent equations are equations that may be derived from each other
by a series of linear operations.

Theorem 7.3 If two or more variables in a linear system are (linearly) dependent, then two or
more of the equations must be linearly dependent.

Example 7.11 illustrates this proposition since the first equation may be obtained
by multiplying the second equation by−2, subtracting the third equation, and then
dividing the result by 7. Thus, the first equation is a linear combination of the
second and third equations.

Equations that are not linearly dependent are linearly independent. The equa-
tions in example 7.11 are linearly dependent.

The following example illustrates a case in which there is no solution to a
system of equations:

Example 7.12 Consider the following system:

−x − y − z = 0

x + y + z = 7

2x − 3y = 0

Solution

Multiplying the first equation by −1 gives

x + y + z = 0

x + y + z = 7

2x − 3y = 0

Clearly, the first and second equations imply that 0 = 7, a contradiction. Hence
there can be no values of x, y, and z that satisfy this system simultaneously.
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Thus we have

D e f in i t i o n 7 . 2 A system of equations which yields no solution is said to be inconsistent.

The idea of an over- or underdetermined system of equations also can be general-
ized to more variables.

D e f in i t i o n 7 . 3 A system of m independent linear equations which is not inconsistent with n

unknowns is overdetermined if m > n and is underdetermined if m < n.

This leads to

Theorem 7.4 A consistent, underdetermined system of linear equations has infinitely many
solutions.

Matrix Arrays

We will be discussing matrix manipulations in greater detail in the next two chap-
ters. However, it is useful to introduce the idea of a matrix here, because matrices
are a very convenient way of summarizing certain types of information. For our
immediate purposes, a matrix is just another way of writing out the information
contained in a system of linear equations such as that in example 7.10. Notice that
as with the other examples, the key to finding the solutions involved identifying
ways of manipulating the various constants so as to reduce the number of terms.
For example, in the first step of example 7.10 we observed that the x in the second
equation was multiplied by 1 while the x in the third equation was multiplied by
−1 so that the procedure of adding these two resulting equations together produced
an equation with an x multiplied by 0 (i.e., an equation with no x). In all steps the
x, y, and z variables did not change position within an equation. By respecting the
position of the variables and focusing only on the constants, we can summarize
all the information at each step in the form of an array of constants. In the case of
example 7.10, the array of interest is⎡

⎢⎣ 4 −1 2 13

1 2 −2 0

−1 1 1 5

⎤
⎥⎦

Because we are respecting the positions of the equations, we know that the first
row of this array corresponds to the first equation, the second row to the second
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equation, and so on.Also, because we are respecting the position or the order of each
variable within each equation, we know that the first column contains the constants
which multiply the x variable in each equation. Since the constants to the right of
the equality in each equation also play an important role in finding the solutions,
these are also included in the array as the last column. Again, implicitly, we are
reading an equality between the third and last columns in each row of the array.

Once we have written the information contained in the system of equations in
matrix form, we can continue with the exercise of row reduction. However, now
we do not need to write out the x, y, z, and = at each stage.

Example 7.13 Solve the array

⎡
⎢⎣ 4 −1 2 13

1 2 −2 0

−1 1 1 5

⎤
⎥⎦

Solution

Step 1 Add the second row to the last row:⎡
⎢⎣4 −1 2 13

1 2 −2 0

0 3 −1 5

⎤
⎥⎦

Step 2 Add the second equation to the first⎡
⎢⎣5 1 0 13

1 2 −2 0

0 3 −1 5

⎤
⎥⎦

and so on down to ⎡
⎢⎣1 0 0 2

0 1 0 3

0 0 1 4

⎤
⎥⎦

We have a solution when we have a diagonal of 1s in the first three columns, 0s in
the off-diagonal positions, and a column of constants—the solutions—in the last
column.

This last matrix is said to be in reduced row-echelon form. Moreover, for any
matrix, despite the large number of row operations we could apply, we would
always finish with the same row echelon form.
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Theorem 7.5 Every matrix has a unique reduced row-echelon form.

Example 7.14 Solve the following equations by row operations:

2x + z = 10

2y = z

z − 3y = 6x

Solution

Step 1 Write the equations in a way that stacks the variables in regular columns
so that the variables follow the same order in each equation:

2x + z = 10

2y − z = 0

−6x − 3y + z = 0

So the matrix is ⎡
⎢⎣ 2 0 1 10

0 2 −1 0

−6 −3 1 0

⎤
⎥⎦

Step 2 Multiply the first row by 3 and add the third row:

⎡
⎢⎣6 0 3 30

0 2 −1 0

0 −3 4 30

⎤
⎥⎦

Step 3 Add the second row to the third row:⎡
⎢⎣6 0 3 30

0 2 −1 0

0 −1 3 30

⎤
⎥⎦

Step 4 Multiply the third row by 2 and add to the second row:⎡
⎢⎣6 0 3 30

0 2 −1 0

0 0 5 60

⎤
⎥⎦
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Step 5 Divide the third row by 5 and add to the second row:⎡
⎢⎣6 0 3 30

0 2 0 12

0 0 1 12

⎤
⎥⎦

Step 6 Divide the second row by 2, multiply the third row by 3, and subtract
from the first row: ⎡

⎢⎣6 0 0 −6

0 1 0 6

0 0 1 12

⎤
⎥⎦

Step 7 Finally, divide the first row by 6 to obtain the reduced row-echelon form:⎡
⎢⎣1 0 0 −1

0 1 0 6

0 0 1 12

⎤
⎥⎦

which gives the solution as x = −1, y = 6, and z = 12.

In identifying the reduced row-echelon form, we note the following features:

• Rows consisting entirely of zeros are collected at the bottom of the matrix.
• The first nonzero number in a row containing nonzero elements is 1, called the

leading 1.
• In a row not consisting entirely of zeros, the leading 1 occurs one place to the

right of the leading 1 of the preceding row.
• Each column containing a leading 1 has zeros elsewhere.

In general, suppose that we have n variables labeled x1, x2, . . . , xn, and m

linear equations. The system may be written in equation form as

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...

am1x1 + am2x2 + · · · + amnxn = bm

(7.14)

and in matrix form as
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⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

. . .
...

...

am1 am2 · · · amn bm

⎤
⎥⎥⎥⎥⎦

Notice that the constants aij have subscripts with a particular meaning. The first
subscript indicates the row or equation number in which the constant is occurring.
The second subscript indicates the column or variable number to which the constant
is attached. This is of great importance, since deriving solutions by row operations
requires that we respect the order of variables in the equation and that we keep a
track of the equations.

Equilibrium in Three Markets

Extending the two-market example of the previous question tonmarkets is straight-
forward. Of course, the more markets there are, the more cumbersome the analysis
becomes. In chapter 8 we will discover a neat way to write a system of demand
and supply equations when there are n goods, and in chapter 9 we will learn how
to solve this system for equilibrium prices using matrix algebra. The equivalent to
equations (7.9) and (7.10) for the three-market case is

qs
1 = α1 + β11p1 + β12p2 + β13p3

qs
2 = α2 + β21p1 + β22p2 + β23p3

qs
3 = α2 + β31p1 + β32p2 + β33p3

qd
1 = a1 + b11p1 + b12p2 + b13p3

qd
2 = a2 + b21p1 + b22p2 + b23p3

qd
3 = a3 + b31p1 + b32p2 + b33p3

Again, some of the bij s and βij s may be zero, thus reducing the number of
interactions on the demand side and the supply side. Rather than derive the reduced
form for these structural equations (which is tedious but follows the same logic
as in the two-good case) we will proceed with an example and solve a particular
system by finding its reduced row-echelon form.

Example 7.15 Market Solution for Three Goods

Consider the supply and demand functions for three goods given by

qs
1 = −10+ p1

qs
2 = 2p2
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qs
3 = −5+ 3p3

qd
1 = 20− p1 − p3

qd
2 = 40− 2p2 − p3

qd
3 = 10+ p2 − p3 − p1

Discuss the interdependencies apparent between these markets, write the equi-
librium conditions, and derive the solutions for the equilibrium prices using the
reduced row-echelon form.

Solution

Note first that there are no supply-side interdependencies present in these markets.
Setting supply equal to demand in each market and rearranging gives

2p1 + p3 = 30

4p2 + p3 = 40

p1 − p2 + 4p3 = 15

Expressing this in matrix form, we can arrive at the reduced row-echelon form
through the following steps:

⎡
⎣2 0 1 30

0 4 1 40
1 −1 4 15

⎤
⎦

⎡
⎣2 0 1 30

0 4 1 40
0 2 −7 0

⎤
⎦ 1st line −2 × 3rd line

⎡
⎣2 0 1 30

0 4 1 40
0 0 15 40

⎤
⎦ 2nd line −2 × 3rd line

⎡
⎣1 0 1/2 15

0 1 1/4 10
0 0 1 40/15

⎤
⎦ 1st line ÷ 2, 2nd line ÷ 4, 3rd line ÷ 15

⎡
⎣1 0 1/2 15

0 1 0 140/15
0 0 1 40/15

⎤
⎦ 2nd line −1/4 × 3rd line

⎡
⎣1 0 0 205/15

0 1 0 140/15
0 0 1 40/15

⎤
⎦ 1st line −1/2 × 3rd line

The equilibrium prices are p1 = 205/15, p2 = 140/15 and p3 = 40/15.
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D e f in i t i o n 7 . 4 A system of linear equations is homogeneous if each constant to the right of the
equality is zero.

A homogeneous system therefore is generally written as

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
...

. . .
... = ...

am1x1 + am2x2 + · · · + amnxn = 0

(7.15)

where, of course, some of the aij may also be zero. Notice immediately that
x1 = x2 = · · · = xn = 0 is always a solution to a system of homogeneous
linear equations. This solution is usually called the trivial solution. The following
theorem states an important property of homogeneous linear equations:

Theorem 7.6 A system of homogeneous linear equations has either the trivial solution only, or
an infinite number of solutions, including the trivial solution.

In particular, we know that

Theorem 7.7 Asystem of homogeneous equations with more unknowns than equations (m < n)
is consistent and has infinitely many solutions.

Example 7.16 Solve the system of linear equations

x1 + 2x2 + x3 = 0

x1 − x2 − 2x3 = 0

x1 + 4x2 = 0

Solution

The last equation has solutions x1 = x2 = 0 and x1 = −4x2, while the second
equation has solutions x1 = x2 = x3 = 0 and x1 = x2 + 2x3. The two nontrivial
solutions in combination imply that

x2 = −
(

2

5

)
x3 (7.16)
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Now consider the first equation. It has solutions x1 = x2 = x3 = 0 and x1 =
−2x2 − x3. This nontrivial solution, combined with the nontrivial solution for the
second equation, implies that

x2 = −x3 (7.17)

Now, equations (7.16) and (7.17) can only be satisfied simultaneously if x2 =
x3 = 0. Hence we only have the trivial solution.

It turns out that in cases where there are solutions other than the trivial solution,
there must be a linear dependence between the equations and, therefore, there must
be an infinity of solutions.

Example 7.17 Find the solutions to

6x1 + 3x2 − x3 = 0

−4x1 + 3x2 + x3 = 0

5x1 − x3 = 0

Solution

Clearly, x1 = x2 = x3 = 0 is a solution. However, note that if we subtract the
second equation from the first, we have

10x1 − 2x3 = 0

which is the third equation multiplied by 2. So, when we look at nontrivial solutions,
theorem 7.6 applies and we have an infinity of nontrivial solutions.

E X E R C I S E S

1. Which of the following systems are linearly dependent? For those systems
that are linearly dependent, find the nature of the dependence. For the rest,
find their solutions.

(a) 2x + 4y − z = 5

y + z = 2

x + y + z = 7
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(b) 4x − 2y + 2z = 6

− y + z = 1

2x = 2

(c) −x1 + 2x2 − 3x3 = 2

− 2x2 = 3

2x1 − x2 + x3 = 9

(d) x1 + x2 + x3 + x4 = 1

−x1 + x2 − x4 = 1

x1 − x2 + x3 = 1

x2 + x3 = 1

(e) 2x1 + x3 − 2x4 = 5

−x1 + 2x2 + x3 = 4

x2 − x3 + 3x4 = 1

2x1 − x2 + 2x3 − 5x4 = 4

2. Which of the following systems are inconsistent?

(a) x + 2y + z = 2

x + y = 3

2x + y + 2z = −4

(b) x + y + z = 0

2x + 2y − z = 0

y + z = 0

(c)
1

2
x1 − 2x2 + x3 = 10

x2 − x3 + 2x4 = 5

−x1 + 2x3 = 0

x2 = −4

(d) ax + by = c

αx + βy = γ

3. Write the following systems in array form and derive the reduced row-echelon
form in each case. Then find the solutions to each set of equations.

(a) 2x1 − x2 = 0

x2 + x3 + 2x4 = 100

x1 + 2x2 + 2x3 = 60

−x1 + x3 − x4 = −10
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(b) x1 + x2 + x3 = 0

x2 = 20

−x1 + 2x3 = 10

4. A small, open economy with a flexible exchange rate has IS, LM, and BP
curves given by

R = 240 − 4Y + E

R = −50 + Y

R = 105 + 1

2
Y − 2E

Solve, using row operations for the equilibrium interest rate R, output Y ,
and exchange rate E. (The exchange rate is defined as the price of domestic
currency in terms of foreign currency.)

5. Solve the following system of excess demand functions for p1, p2, p3, p4:

10 − p1 − 2p2 + 5p3 − 2p4 = 0

5 − 2p1 + p2 − p3 + 8p4 = 0

6 + 2p1 − p2 − 4p3 − 9p4 = 0

20 − 1

2
p1 − 2p2 − 2p3 − 2p4 = 0

C H A P T E R R E V I E W
Key Concepts basic variables

free variables
homogeneous systems
inconsistent systems
linear dependence
overdetermined systems

reduced forms
reduced row-echelon form
structural equations
trivial solution
underdetermined systems

Review Questions 1. Why must a system of two linear equations have either no solution, exactly
one solution, or infinitely many solutions?

2. What is meant by linear dependence in a system of equations?

3. What is meant by linear independence in a system of equations?

4. What information is conveyed by comparing the number of independent linear
equations and the number of unknowns?
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5. What is meant by a consistent system of linear equations?

6. Use Venn diagrams to show the relationship between consistent systems,
inconsistent systems, overdetermined systems, and underdetermined systems.

7. What can be said about the appearance of an array (or matrix) that is in reduced
row-echelon form?

8. What is the distinguishing feature of a homogeneous system of linear equa-
tions?

Review Exercises 1. Which of the following equations are linear in x?

(a) y = a + b/x a, b > 0

(b) y = a + bx a, b > 0

(c) y = x + ex

(d) y = −x + b b > 0

(e) y = ln z+ ax a > 0

2. Solve the following pairs of equations by substitution and by elimination.

(a) y = 24− x

2y = 4+ 5x

(b) −y = −8x − 4

y = 20x + 2

(c) 0.5y + 2x = 0

−y + x = 0

(d) 0.5y + 2x = 0

−y − 4x = 0

3. Which of the following systems are linearly dependent and which are incon-
sistent?

(a) 2x + y − z = 10

4y + 2z = 4

x = 0

(b) −y + z = 0

4x + 2y − z/3 = 0

x + z = 0
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(c) −3x + 2y − z = 14

−x − y − z = 0

x + 10y − 3z = 2

4. An economy has three markets with supply and demand functions for the
three goods given by

qs
1 = −20+ p1 − 0.5p2

qs
2 = −100+ 2p2

qs
3 = p3

qd
1 = 80− 2p1 − p3

qd
2 = 200− p2

qd
3 = 100− 2p3 − p1

(a) Comment on the relationship between the three goods on the demand
side.

(b) What is the nature of any production externality on the supply side?

(c) Solve for the equilibrium prices and quantities of the three goods.

5. An economy has an IS curve given by R = 210− 2Y and an LM curve given
by R = −M+Y/4. The long-run equilibrium level of output must equal 100.
What value of M makes the IS and LM curves intersect at Y = 100? What
is the economic interpretation of a situation in which M exceeds this critical
amount? What is the economic interpretation of a situation in which M is less
than this critical amount?





Chapter 8 Matrices

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Migration
• Profit for a Multiproduct Firm

A matrix provides a very powerful way of organizing and manipulating data. In
chapter 7 matrices were used to focus attention on the parameters and constants of
a simultaneous-equation system. The rows of a matrix could be manipulated to find
solutions to the unknown variables in the original equations using, for example,
the Gauss-Jordan elimination approach. There are clearly many instances where a
large amount of information can be summarized in matrix form. Moreover there are
procedures or operations on matrices that allow us to discover important properties
of systems of equations.

As with any area of mathematics, there are rules that guide us in manipulating
matrices. These rules govern basic operations such as addition and multiplication,
and more complicated operations designed to help solve systems of equations. In
this chapter, we take our first steps in manipulating matrices.

8.1 General Notation
Before considering the basic rules of matrix algebra, we will examine some ex-
amples of how matrices are used to summarize information.

Example 8.1 The Prisoner’s Dilemma

Game theory has been extensively used in economics to study the strategic inter-
action among decision makers. It can be argued that most of economic behavior
can be studied using game-theoretic tools. In this example we illustrate the use
of matrices as descriptions of the strategic interactions among agents that make
up an economic game. Game theory in this sense is a generalization of standard
one-person decision theory. In a game a rational individual, in making his/her best
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choice, would have to take into account the possible actions of others in the game.
In other words, if we deal with a two-person game, each player would have to con-
sider the problem faced by the other player in order to reach his/her best decision.

In this game we consider two players whose interests are only partially in
conflict. Each of these players has two strategies: cooperate or defect. The two
players are two suspects who have been implicated in a crime. However, the
police do not have evidence against each individual but against both of them as
a pair. The players (prisoners) could cooperate (strategy C) with each other and
refuse to give evidence to the police against the other person or choose to defect
(strategy D) and testify against the other person. These strategic interactions can
be expressed in a game matrix. Since we are describing a game between two
players, the game matrix will be 2 × 2. This is a table where each cell contains
the payoff of each player for his/her chosen strategy. The rows of the matrix give
the strategies of player A (C, D) and the columns those of player B (C, D). Each
of the four cells of the matrix contain the payoffs for the combinations of the
chosen strategies by each player. The game matrix describing these payoffs can be
described as

Player B
C D

Player A
C

D

[
(−1,−1) (−4, 0)

(0,−4) (−3,−3)

]

The first cell contains the payoffs for the pair of strategies where each player
cooperates (C, C). In that case they would each get a sentence of one year in prison.
This is the situation of a “plea-bargain,” where both players would plead guilty to
a lesser charge and consequently get a lighter sentence than would have been the
case if the original charge against them stood and they were convicted. If one were
to defect and the other one were to cooperate, then the defector gets a pardon with a
payoff of no prison term (since there is no evidence against him/her), and the player
who did not confess against his/her partner would get severely punished and get a
prison sentence of four years (since all the evidence about the crime is now pinned
on him/her). This is the case for the cell (C, D) where player A cooperates and
player B defects and for (D, C) where player A defects and player B cooperates.
If they both defect, then each will get a sentence of three years each, since the
police will have evidence against both individuals. The setup of the game is such
that each player has an incentive to defect, irrespective of what he or she expects
the other player will do. If player A believes that the other person will cooperate,
then it pays off for player A to defect because he or she will go free by defecting.
If player A thinks that the other person will defect, then of course it is also best to
defect in order to go to prison for three years instead of four years. From a social
point of view, taking into account their joint utility level, it would be best if they
both cooperate, since they would each get a lighter sentence. However, if each
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individual acts on his/her own, then they would both defect and an equilibrium
would be the pair of strategies (defect, defect) with payoffs (−3,−3).

Example 8.2 Suppose that an automobile manufacturer produces output in five plants. The CEO
wants a breakdown of the value of output produced in each plant in each of the
preceding four quarters of the year, Q1, Q2, Q3, and Q4. A table providing this
information (in millions of dollars) might look like this:

Q1 Q2 Q3 Q4

Plant 1 5 3 10 12
Plant 2 6 5 9 15
Plant 3 7 5 8 14
Plant 4 17 13 22 31
Plant 5 32 17 35 44

Then enclosing the array of numbers in parentheses defines the table as a matrix:

A =

⎡
⎢⎢⎢⎢⎣

5 3 10 12
6 5 9 15
7 5 8 14

17 13 22 31
32 17 35 44

⎤
⎥⎥⎥⎥⎦

This example illustrates that any “spreadsheet” type of data is really just an array
of numbers, but notice that the position of each item is critical and it is important
that we know the significance of each location in the array. To read the matrix A

correctly, we must be aware that 22 represents the value of output produced by
plant 4 in the third quarter.

Example 8.3 Input-Output Matrix

An economy consists of three industries: an agricultural industry, a mining industry,
and a manufacturing industry. To produce one unit of agricultural output, the
agricultural sector requires $0.3 of its own output, $0.2 of mining output, and
$0.4 of manufacturing output. To produce one unit of mining output, the mining
sector requires $0.5 of agricultural output, $0.2 of its own output, and $0.2 of
manufacturing output. To produce one unit of manufacturing output requires $0.3
of agricultural output, $0.3 of mining output, and $0.3 of its own output. The
above information can be summarized in terms of a matrix that is known as the
input-requirements matrix:

A =
⎡
⎣0.3 0.5 0.3

0.2 0.2 0.3
0.4 0.2 0.3

⎤
⎦
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The model that is based on the input-requirements matrix is known as the input-
output model. It looks at the economy as a system of interrelated industrial sectors.
The industries are interrelated because an industry’s output in general is used as
an input into some other industry’s production process as well as, possibly, finding
its way into final demand by consumers. Therefore, in general, each industry is
potentially the producer of an intermediate good that may also be used in final
consumption. The problem is to find the production levels for each industry which,
given a set of prices, are just sufficient to supply the total demands from industry and
consumers. In chapter 9 we will investigate in more detail the input-output model
and present a general way of obtaining its solution. We will also obtain the solution
to the problem using the above input-requirements matrix (see example 9.20).

D e f in i t i o n 8 . 1 A matrix is a rectangular array of numbers enclosed in parentheses. It is conven-
tionally denoted by a capital letter.

The numbers are the entries of the matrix. The number of rows (horizontal
arrays) and the number of columns (vertical arrays) determine the dimensions of
the matrix, which is also known as the order of the matrix. In example 8.2, A is of
order 5× 4 (five by four), whereas in example 8.3 and example 8.4, A is of order
3× 3 (three by three). Note that when we express the dimension of a matrix, we
always give the row dimension first.

In general, a matrix A of order m×n (m rows and n columns) can be explicitly
written as ⎡

⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
. . .

...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎦

Recall from chapter 7 that each element of the matrix in the general notation has as
subscript the number of the row and column, respectively, that fully describe the
position of the above element. For example, the element a43 describes the element
that is to be found at the fourth row and the third column.

A matrix having only one row such as (5 3 5 4) is called a row matrix. A
matrix having only one column such as[−1

2

]

is called a column matrix. An alternative and very frequently used name for a
row matrix is a row vector and for a column matrix, a column vector. Thus, an
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n-component row vector is a matrix of order 1× n, and an n-component column
vector is a matrix of order n× 1.

D e f in i t i o n 8 . 2 An array that consists of only one row or one column is known as a vector.

Vectors are special cases of matrices and obey all the rules that characterize the
operations of matrices. Conventionally vectors are denoted by bold face lowercase
letters, a, b, etc., in contrast to matrices denoted by capital letters.

Matrix Equality

Two matrices are equal if they have the same dimension and the corresponding
elements are equal.

Example 8.4 Find the values of x and y if

[
3 2

x + y 1

]
=

[
3 y

2 1

]

Solution

By comparing the corresponding entries, we have

y = 2 and x + y = 2

Therefore x = 0 and y = 2 for the two matrices to be equal.

Square Matrices

D e f in i t i o n 8 . 3 A matrix that has the same number of rows and columns is called a square matrix.

The matrices in example 8.4 were therefore square.

D e f in i t i o n 8 . 4 Any square matrix that has only nonzero entries on the main diagonal and zeros
everywhere else is known as a diagonal matrix.

Thus an n× n matrix A is a diagonal matrix if aij = 0 for all i, j = 1, . . . , n such
that i �= j .
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A special case of a diagonal matrix is the identity matrix, usually represented
by the letter In, where the subscript n denotes the order of the matrix (the number
of rows and columns of the matrix). For example, I3 is given by

I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

The identity matrix, as we will see later when we examine matrix multiplication,
plays the same role in matrix algebra as the number 1 in the algebra of real numbers.

D e f in i t i o n 8 . 5 A square matrix with all its entries being zero is known as the null matrix.

The null matrix plays a similar role in matrix algebra as does zero in the algebra
of real numbers.

E X E R C I S E S

1. Find the values of x and y if[
1 2

x − y 2

]
=

[
1 y

0 2

]

2. Find the values of x and y if[
3 x

x 1

]
=

[
3 y

2 1

]

3. Find the values of x and y if[
3 4 x

2 5 7

]
=

[
3 4 y

2 5 7

]

4. Find the values of x and y if[
x 1
y 0

]
and

[
3 1
2 0

]

are to be equal.
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5. Find the values of y and z if⎡
⎣1 0 0

0 1 1
0 1 0

⎤
⎦ and

⎡
⎣ 1 y z

0 y z

y 1 z

⎤
⎦

are to be equal.

8.2 Basic Matrix Operations
The rules for matrix operations ensure that we make changes to matrices that
satisfy mathematical logic. Not all operations are well defined for all matrices,
and in particular, the dimensions or the order of matrices will need to satisfy some
basic conditions before they can be manipulated.

Addition and Subtraction of Matrices

Addition and subtraction are well defined matrix operations only if the matrices
involved are of the same order. For example,[

1 2
3 1

]
+

[
2 −5
4 0

]
=

[
3 −3
7 1

]

is well defined. Alternatively, we may say the two matrices on the left of the
equality are conformable for addition. On the other hand[

3 4 1
6 5 −3

]
+

[
0 2
−5 8

]

is not well defined, or, not conformable for addition.

Example 8.5 Car Production

A car manufacturer who produces three different models in three different plants
A, B, and C reaches the production levels in millions of dollars in the first and
second half of the year as follows:

First half
Model 1 Model 2 Model 3

Plant A 27 44 51
Plant B 35 39 62
Plant C 33 50 47
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Second half
Model 1 Model 2 Model 3

Plant A 25 42 48
Plant B 33 40 66
Plant C 35 48 50

Summarize this information in matrix form and find total production by each plant
for the whole year.

Solution

The information above can be given in matrix form, where F represents the data
for the first half and S for the second half:

F =
⎡
⎣27 44 51

35 39 62
33 50 47

⎤
⎦ , S =

⎡
⎣25 42 48

33 40 66
35 48 50

⎤
⎦

Obtaining the total production levels for the whole year involves adding the ele-
ments in the corresponding positions

F + S =
⎡
⎣27+ 25 44+ 42 51+ 48

35+ 33 39+ 40 62+ 66
33+ 35 50+ 48 47+ 50

⎤
⎦

=
⎡
⎣52 86 99

68 79 128
68 98 97

⎤
⎦

In general, this leads to

D e f in i t i o n 8 . 6 The sum of two matrices is a matrix, the elements of which are the sums of the
corresponding elements of the matrices.

More specifically, for two matrices of order m× n⎡
⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
. . .

...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n

...
...

...
. . .

...

bm1 bm2 bm3 · · · bmn

⎤
⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎣

a11 + b11 · · · a1n + b1n

a21 + b21 · · · a2n + b2n

...
. . .

...

am1 + bm1 · · · amn + bmn

⎤
⎥⎥⎥⎦

If we call these matrices A, B, and C respectively, then we have the matrix
equation

A+ B = C

where cij = aij + bij for all i, j -pairs, with i= 1, 2, . . . , m and j = 1, 2, . . . , n.
Matrix subtraction, also, can only be performed on matrices that are of the

same order, by subtracting the corresponding elements of the two matrices. In
example 8.5, if we want to find the change in production levels between the first
and second half of the year, we look at F − S:

F − S =
⎡
⎣27 44 51

35 39 62
33 50 47

⎤
⎦−

⎡
⎣25 42 48

33 40 66
35 48 50

⎤
⎦

=
⎡
⎣ 2 2 3

2 −1 −4
−2 2 −3

⎤
⎦

If we denote the matrix differences by D, then we have the matrix equation

F − S = D

where dij = aij −bij for all i, j -pairs with i = 1, 2, . . . , m and j = 1, 2, . . . , n. It
is clear from the definition of matrix addition and subtraction that these operations
may only be performed on matrices with the same number of rows and the same
number of columns.

Scalar Multiplication

In matrix algebra, real numbers are called scalars. Multiplying a matrix by a scalar
is known as scalar multiplication.

D e f in i t i o n 8 . 7 Scalar multiplication is carried out by multiplying each element of the matrix by
the scalar.



276 CHAPTER 8 MATRICES

For example, if A is given by

A =
[

2 1
3 2

]
, then 3A =

[
6 3
9 6

]

In fact, since in ordinary algebra for any real number x, we have that 3x=
x+ x+ x, the same logic applies to matrices, where 3A = A+A+A, as can be
seen here: [

2 1
3 2

]
+

[
2 1
3 2

]
+

[
2 1
3 2

]
=

[
6 3
9 6

]

The negative of a matrix A, −A, is the matrix obtained from A by multiplying all
of its elements by −1. If we have that

A =
[

2 1
3 2

]
, then −A =

[−2 −1
−3 −2

]

Just as with real numbers, we can think of matrix subtraction as being defined by
scalar multiplication and addition, since

A− B = A+ (−B)

Matrix Multiplication

In the light of the definitions of matrix addition and subtraction, the reader would
be forgiven for guessing that matrix multiplication would be defined by the rule
of multiplying the corresponding elements of two matrices of the same order. This
is emphatically not the case. The appropriate rule is more complicated than that
and at first sight not easy to rationalize. The reason it takes the form it does can be
suggested by considering two simultaneous equations:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

where x1 and x2 are the unknowns to be determined and the aij and bi are known
constants. It is very convenient to be able to express this in matrix form as follows:
Define the matrices

A ≡
[

a11 a12

a21 a22

]
, x ≡

[
x1

x2

]
, b ≡

[
b1

b2

]

and write the matrix equation

Ax = b
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For this to describe the above pair of simultaneous equations, we have to define
matrix multiplication in a particular way. First, multiply the first row of A by the
column vector x. To do this, we take each element of the first row of A and multiply
it by the corresponding element in the vector x: the first element of the first row of A

is multiplied by the first element in the (column) vector and the second element of
the first row of A is multiplied by the second element of the (column) vector. We
then add these two products to obtain

a11x1 + a12x2

Then multiply the second row of A by the column vector x to obtain

a21x2 + a22x2

If multiplication is defined in this way, then the very compact matrix equation does
give the simultaneous equation system, since

Ax =
[

a11 a12

a21 a22

][
x1

x2

]

=
[

a11x1 + a12x2

a21x1 + a22x2

]
=

[
b1

b2

]

The rule for multiplying matrices is essentially a generalization of the above rea-
soning.

To multiply matrices, it is not necessary that they be of the same order. The
requirement is that the number of columns of the first matrix be the same as the num-
ber of rows of the second matrix. Matrices that satisfy this requirement are said to
be conformable for matrix multiplication.

Before we present the formal definition of matrix multiplication we will illus-
trate the idea by means of some examples.

Example 8.6 Total Revenue

Determine the revenue of a parking lot on a given Monday, Tuesday, and Wednes-
day based on the following data:

Number of cars Number of buses

Monday 30 5
Tuesday 25 5
Wednesday 35 15
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The dollar charge per vehicle is $4 for cars, and $8 for buses. The daily revenue
in dollars is m on Monday, t on Tuesday, and w on Wednesday. In matrix notation
this information can be put as

Monday vector = [30 5]

Tuesday vector = [25 5]

Wednesday vector = [35 15]

Charge vector =
[

4
8

]

Solution

To obtain m, we need to calculate

[30 5]

[
4
8

]
= 30(4)+ 5(8) = 160

For t , we calculate

[25 5]

[
4
8

]
= 25(4)+ 5(8) = 140

For w, we calculate

[35 15]

[
4
8

]
= 35(4)+ 15(8) = 260

The information for the total number of vehicles (TV) in the parking lot during
the three days in question and the charge per vehicle (CV) are given as

TV =
⎡
⎣30 5

25 5
35 15

⎤
⎦ and CV =

[
4
8

]

The revenue per day is then obtained as (total number of vehicles)× (charge per
vehicle) or

⎡
⎣m

t

w

⎤
⎦ =

⎡
⎣30 5

25 5
35 15

⎤
⎦[4

8

]
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and so

⎡
⎣m

t

w

⎤
⎦ =

⎡
⎣160

140
260

⎤
⎦

The number 160 is the first entry of the product matrix and takes the first position
(first row and first column position). It corresponds to m and it is obtained by
multiplying the entries of the first row of TV by the corresponding entries of the
first column of CV and then adding these products up. Of course, in our example
CV has only one column. Therefore

30(4)+ 5(8) = 160

Similarly the entry 140 is the entry of the product matrix for t . It is obtained by
multiplying the entries of the second row of TV by the column of CV:

25(4)+ 5(8) = 140

Finally, one can obtain the entry of the third row and first column of the product
matrix, corresponding to w, by multiplying the third row of TV by the first column
of CV:

35(4)+ 15(8) = 260

Example 8.7 Cost of a Basket of Goods

Let the column vector

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

denote the quantities of n goods that a consumer buys in a week. Let the row vector
p = [p1 p2 · · · pn] denote the corresponding prices in dollars of a unit of each
good (p1 is the price of one unit of x1, p2 is the price of one unit of x2, etc.). Find
the consumer’s weekly expenditure on these goods.

Solution

The consumer’s weekly expenditure on goods is given by
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E = px = [p1 p2 · · · pn]

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

= p1x1 + p2x2 + · · · + pnxn

=
n∑

i=1

pixi

From these examples we can move to a definition of matrix multiplication.

D e f in i t i o n 8 . 8 Two matrices A and B of dimensions m× n and n× q respectively are con-
formable to form the product matrix AB = C, since the number of columns
of A is equal to the number of rows of B. The product matrix AB is of dimension
m× q, and its ij th element, cij , is obtained by multiplying the elements of the ith
row of A by the corresponding elements of the j th column of B and adding the
resulting products.

In general, the product matrix can be expressed as

cij =
n∑

k=1

aikbkj

Example 8.8 Multiply A and B if possible, where A and B are given below:

(i)

A =
[

5 1 0
2 1 −1

]
, B =

⎡
⎣4 3

1 1
0 2

⎤
⎦

(ii)

A =
[

2 1
2 3

]
, B =

⎡
⎣3 4

2 4
1 −2

⎤
⎦

Solution

For (i) we have that A is 2× 3 and B is 3× 2. Therefore the number of columns
of A is equal to the number of rows of B. They have a common dimension 3 and
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are conformable for multiplication

[
5 1 0
2 1 −1

]⎡⎣4 3
1 1
0 2

⎤
⎦ = [

5(4)+ 1(1)+ 0(0) 5(3)+ 1(1)+ 0(2)

2(4)+ 1(1)− 1(0) 2(3)+ 1(1)− 1(2)

]

=
[

21 16
9 5

]

In the case of (ii), A is 2×2 and B is 3×2. Therefore, since the number of columns
of A is not equal to the number of rows of B, the matrices are not conformable for
multiplication.

It is worth noting that for general matrices A and B of dimensions m× n and
n× q respectively, whereas premultiplying B by A leads to a well defined prod-
uct matrix AB, postmultiplying B by A will not result in a well defined product
matrix BA (except in a special case described below). Conformability between
matrices generally means either premultiplication of one matrix by another, or post-
multiplication of one by another but not both. In fact, it is only for square matrices
A and B of the same order that both product matrices AB and BA are defined.

Theorem 8.1 Both of the product matrices AB and BA are well defined only if A and B

are square matrices of the same order or for A of dimension m × n with B of
dimension n×m.

Note that even if AB and BA are well defined, AB �= BA in general. For exam-
ple, if

A =
[

1 2
2 1

]
and B =

[
1 0
1 0

]

then

AB =
[

1 2
2 1

][
1 0
1 0

]

=
[

1(1)+ 2(1) 1(0)+ 2(0)

2(1)+ 1(1) 2(0)+ 1(0)

]

=
[

3 0
3 0

]
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while

BA =
[

1 0
1 0

][
1 2
2 1

]

=
[

1(1)+ 2(0) 1(2)+ 0(1)

1(1)+ (2)0 1(2)+ 0(1)

]

=
[

1 2
1 2

]

and so AB �= BA.

Example 8.9 Regional Migration

We will consider the data of section S8.1 on the Web page, where we looked at the
transition matrix between three regions. We denote the populations of the three
regions in millions at some initial point in time, 0, in terms of the vector x0, given

x0 =
⎡
⎣ 5

10
6

⎤
⎦

Find the populations of these regions at the beginning of the next period, x1.

Solution

We have to solve the equation x1 = P x0. The transition matrix from example 8.4
is given by

P =
⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦

Then we have that

⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦
⎡
⎣ 5

10
6

⎤
⎦ =

⎡
⎣0.80(5)+ 0.15(10)+ 0.05(6)

0.10(5)+ 0.70(10)+ 0.05(6)

0.10(5)+ 0.15(10)+ 0.90(6)

⎤
⎦

=
⎡
⎣5.8

7.8
7.4

⎤
⎦
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For example,

[0.8 0.15 0.05]

⎡
⎣ 5

10
6

⎤
⎦

gives the sum of individuals initially in region 1 (0.8 × 5) plus the number of
individuals initially in region 2 who move to region 1 (0.15 × 10) plus the num-
ber of individuals initially in region 3 who move to region 1 (0.05 × 6), giving
the sum 5.8. We can see that the population distribution between the three regions
changed from x0 to x1, with regions 1 and 3 gaining people, while region 2 is losing
them.

A special case of matrix multiplication is when a square matrix is raised to
a power n, that is, the matrix is multiplied by itself n times. As with the case of
ordinary algebra we give the following definition.

D e f in i t i o n 8 . 9 The matrix An is the product matrix obtained by multiplying the square matrix A

by itself n times.

Regional Migration over Time

In example 8.9 we saw how the distribution of the populations of three regions
in a country changes between two periods. The matrix equation that we used to
obtain the distribution of these regional populations after one period, x1, is given
by x1 = P x0, where x0 is the distribution of the populations in the regions at time 0
and P is the transition matrix.

To determine how this distribution changes over n periods we then solve the
following equation:

xn = P xn−1 (8.1)

where xn describes the distribution of the regional populations at time period n

and xn−1 the distribution at the previous period n−1. However, from the equation
above it becomes clear that xn−1 = P xn−2. Therefore, by substituting back into
equation (8.1), we obtain xn = P 2xn−2. In fact, backward substitution to the vector
of initial population distributions x0 yields

xn = P nx0 (8.2)
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Equation (8.2) describes the evolution of the populations between the regions
after n periods. It is based on the product matrix P n. We can actually think of
xn = P nx0 as a sequence of vectors in an analogous way to the sequences studied
in chapter 3. In chapter 10 we will study the behavior of such an equation in greater
detail.

Example 8.10 Regional Migration over Two Periods

Consider the transition matrix, P , and initial distribution of population x0 given
in example 8.9. Find the distribution of the population after two periods.

Solution

From equation (8.2) we have

x2 = P 2x0

Now

P 2 =
⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦
⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦

=
⎡
⎣0.6600 0.2325 0.0925

0.1550 0.5125 0.0850
0.1850 0.2550 0.8225

⎤
⎦

and so P 2x0 is

P 2x0 =
⎡
⎣0.6600 0.2325 0.0925

0.1550 0.5125 0.0850
0.1850 0.2550 0.8225

⎤
⎦
⎡
⎣ 5

10
6

⎤
⎦

=
⎡
⎣6.180

6.410
8.410

⎤
⎦

Again, we see that regions 1 and 3 are gaining people while region 2 is losing
them.

Labor Market Transitions*

Similar methods to those used in our regional migration examples may also be
used to study transitions between various labor market states. We may think of
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an individual at any point in time as occupying one of three distinct states. An
individual is either employed (state E), unemployed (state U ), or not in the labor
force (nonparticipation, state N ). During each period an individual may change
state with some probability or remain in the current state. The transition probabil-
ity matrix contains information on the average probability of remaining employed
Pr(E, E), the average probability of an employed person becoming unemployed
Pr(U, E), that is, moving from state E to state U , and so on. The transition prob-
ability matrix may therefore be written

P =
⎡
⎣ Pr(E, E) Pr(E, U) Pr(E, N)

Pr(U, E) Pr(U, U) Pr(U, N)

Pr(N, E) Pr(N, U) Pr(N, N)

⎤
⎦

If x0 represents the initial vector of numbers of people occupying each labor
market state, then the numbers employed, unemployed, and not participating after
n periods is

xn = P nx0

or, denoting the stocks of employed, unemployed, and nonparticipants at date t by
Et , Ut , and Nt respectively, we have (for t = n)

⎡
⎣En

Un

Nn

⎤
⎦ =

⎡
⎣ Pr(E, E) Pr(E, U) Pr(E, N)

Pr(U, E) Pr(U, U) Pr(U, N)

Pr(N, E) Pr(N, U) Pr(N, N)

⎤
⎦n⎡⎣E0

U0

N0

⎤
⎦

Notice that, since these states are exhaustive and mutually exclusive, the sum of
the column probabilities in P must be 1.

Example 8.11 Labor Market Conditions after One Period

Suppose the labor market transition probability matrix is

P =
⎡
⎣0.80 0.1 0.01

0.15 0.6 0.49
0.05 0.3 0.50

⎤
⎦

and the initial distribution of individuals (in millions) is

x0 =
⎡
⎣10

1
5

⎤
⎦
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Comment on the size of the probabilities Pr(E, N) and Pr(N, U). Find the labor
market status vector after one period.

Solution

The probability that a nonparticipant moves directly into employment, Pr(E, N),
is small here (0.01), reflecting that some period of unemployed job search is likely
to be required by most people before work is found. The probability Pr(N, U)

represents the rate at which the unemployed leave the labor force. These individ-
uals are referred to as discouraged workers, and this probability represents the
“drop-out” rate.

After one period we have

x1 = P x0

=
⎡
⎣0.80 0.1 0.01

0.15 0.6 0.49
0.05 0.3 0.50

⎤
⎦
⎡
⎣10

1
5

⎤
⎦

=
⎡
⎣ 0.8(10)+ 0.1(1)+ 0.01(5)

0.15(10)+ 0.6(1)+ 0.49(5)

0.05(10)+ 0.3(1)+ 0.5(5)

⎤
⎦

=
⎡
⎣8.15

4.55
4.10

⎤
⎦

Note that the increase in unemployment comes both from a net reduction in the
number of nonparticipants and a reduction in employment. A situation in which
an increase in unemployment is accompanied by an increase in participation is
referred to as the added-worker effect.

Finally, in this section we return to an economic problem discussed in section
7.2 that makes use of both matrix addition (subtraction) and matrix multiplication.

Equilibrium Supply and Demand in Many Markets

Recall the problem of equilibrium in three markets, discussed in section 7.2. We
now have a neat way of writing out the equilibrium conditions for n markets using
matrix notation. The problem of solving for equilibrium prices is discussed in
chapter 9. For now, we are concerned with notational issues.

Denote the vector of market supplies of n goods by qs . Let α be an n × 1
vector of constants, and β be a n× n matrix of parameters. If p is the n× 1 vector
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of prices, we have

qs = α + βp

Similarly the system of demand equations may be written

qd = a + Bp

where a is a n × 1 vector of constants and B is a n × n matrix of parameters.
Setting demand equal to supply in each market gives

α + βp = a + Bp

or

α − a = (B − β)p

In chapter 9 we will see how to solve this system for an equilibrium price vector p.

E X E R C I S E S

1. For A given below obtain 3A:

A =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

2. For the matrices given below obtain A− B and A+ B, where possible:

(a) A =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , B =

[
2 0
2 −1

]

(b) A =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣−1 2 0

1 −1 1
0 0 −1

⎤
⎦

3. Obtain for the row vector a and the column vector b, below, the products ab
and ba:

a = [1 2 0], b =
⎡
⎣−1

0
1

⎤
⎦
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4. Perform the following matrix multiplications to obtain AB where possible: if

(a) A =
[

1 0 0
0 0 1

]
, B =

⎡
⎣4 3

1 1
0 2

⎤
⎦

(b) B =
[

1 0 0
0 0 1

]
, A =

⎡
⎣4 3

1 1
0 2

⎤
⎦

5. Suppose that a firm produces two types of output using three types of input.
Its output quantities are given by the column vector

q =
[

15,000
27,000

]

and the prices of these are given in the row vector p = [10 12]. The amounts
of inputs it uses are given in the column vector

z =
⎡
⎣ 11,000

15,000
15,000

⎤
⎦

and the input prices are given by w = [10 10 8]. Find the profit of this firm.

6. Use equation (8.2) and the data for P and x0 given in example 8.10 to find
the regional population distribution after three time periods.

8.3 Matrix Transposition
A very useful operation in matrix algebra is that of transposition. The transpose
of a matrix A, is the matrix in which the rows of the original matrix A become
columns and the columns of A become rows. The transpose is denoted by AT .

D e f in i t i o n 8 . 10 The transpose matrix, AT , is the original matrix A with its rows and columns
interchanged.

This implies that AT will have its dimensions reversed when compared with A.

Example 8.12 Find the transpose of the 2× 3 matrix A, given by[
1 2 3
2 5 7

]
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Solution

Since A is 2× 3, its transpose will be 3× 2. Placing the first row of A, (1 2 3),
as the first column of AT and the second row of A, (2 5 7), as the second column
of AT yields

AT =
⎡
⎣1 2

2 5
3 7

⎤
⎦

D e f in i t i o n 8 . 11 A matrix A that is equal to its transpose AT is called a symmetric matrix.

An example of a symmetric matrix is

A =
⎡
⎣1 5 6

5 2 0
6 0 −4

⎤
⎦

where transposing rows and columns shows that AT = A.
Since equality of matrices, as we have seen earlier, implies that all the elements

of the two matrices in each position have to be equal, then the orders of A and
AT have to be the same. In that case, A has to be a square matrix and so, of
course, is AT .

From now on, we will define all vectors as column vectors, taking their trans-
poses when we want to have a row vector.

Example 8.13 The Profit Function

Using all the information that a firm’s profit is given by � = pq − wz, and
expressing all the vectors as column vectors, we obtain the profit function as

� = pT q− wT z

Properties of Transposes

Below we present some useful properties of the transpose matrix by a series of
theorems and examples.

Theorem 8.2 The transpose of the transpose matrix (AT )T is the original matrix A:

(AT )T = A (8.3)
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Example 8.14 Find (AT )T , if A is given by

A =
[

2 1 3
3 1 4

]

Solution

AT =
⎡
⎣2 3

1 1
3 4

⎤
⎦ and so (AT )T =

[
2 1 3
3 1 4

]
= A

Theorem 8.3 The transpose of a sum of matrices is the sum of the transposes:

(A+ B)T = AT + BT (8.4)

Example 8.15 Compute (A+ B)T , for A and B given below:

A =
[

1 2
3 0

]
, B =

[
3 1
−1 1

]

Solution

We first compute AT and BT , and then A+ B and (A+ B)T .

AT =
[

1 3
2 0

]
and BT =

[
3 −1
1 1

]

while

A+ B =
[

1 2
3 0

]
+

[
3 1
−1 1

]

=
[

4 3
2 1

]

and

(A+ B)T =
[

4 2
3 1

]
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But

AT + BT =
[

1 3
2 0

]
+

[
3 −1
1 1

]

=
[

4 2
3 1

]
= (A+ B)T

Somewhat less obvious is the interpretation of (AB)T or the transpose of
the product matrix AB. Suppose that A is m × n and B is n × q for m �= q.
Then the two matrices are conformable for matrix multiplication and AB is well
defined, since the number of columns of A equals the number of rows of B. On
the other hand, the product matrix BA is not defined. Now, it is not possible
that

(AB)T = AT BT

Since AB is a matrix of dimension m × q, its transpose should be of dimension
q ×m. However, AT is of order (n×m) and BT is of order (q × n) so the number
of columns of AT does not equal the number of rows of BT .

If the rule of obtaining (AB)T were to be given by equation (8.5) below, the
product matrix (AB)T would be well defined:

(AB)T = BT AT (8.5)

In that case, BT AT would result in a matrix of order q ×m.

Theorem 8.4 The transpose matrix of the product matrix AB, where A and B are two con-
formable matrices, is defined as the product of the transposes, with the order of
the multiplication reversed.

The rule above extends to any product matrix made up by any number of con-
formable matrices, such as ABC. In the case of a product of three matrices, the
transpose of the product is defined as

(ABC)T = CT (AB)T

= CT BT AT
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E X E R C I S E S

1. Find the transpose of the following matrices:

(a)

I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

(b)

A =
⎡
⎣1 2 3

2 1 0
3 0 1

⎤
⎦

2. For the matrices below, indicate whether the operations listed under (a)–(e)
are well defined. If not, explain why.

A =
[

7 0 −1
2 3 1

]
, B =

[
0 1 3
−1 3 2

]

C =
[

1 4
−1 0

]
, D =

[
1 0
−2 1

]
, E =

[
1
0

]

(a) −3A

(b) A+ E

(c) B − 3D

(d) 3C − E

(e) AC

3. Verify that for the matrices A and B below (AB)T = BT AT .

(a)

A =
[

1 0 0
0 0 1

]
, B =

⎡
⎣4 3

1 1
0 2

⎤
⎦

(b)

A =
[

1 0 0
0 0 1

]
, B =

⎡
⎣1 2 3

2 1 0
3 0 1

⎤
⎦
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4. Obtain the profit function of a firm that produces three types of output using
three inputs. The output vector is given by

q =
⎡
⎣2,000

3,000
6,000

⎤
⎦

the price per unit of output vector is given by

p =
⎡
⎣10

15
20

⎤
⎦

the input vector is given by

z =
⎡
⎣2,000

2,500
2,000

⎤
⎦

and the price per unit of input vector is given by

w =
⎡
⎣ 5

10
15

⎤
⎦

5. If the order of matrix A is 3× 5 and that of the product AB is 3× 7, what is
the order of B?

6. Let

A =
[

1 2
3 6

]
, B =

[
3 −8
2 3

]
, C =

[
5 2
1 −2

]

Verify that AB = AC even though B �= C.

7. How many rows does B have if BA is a 2× 6 matrix?

8.4 Some Special Matrices
A number of matrices have particular properties that are often found to be useful
in studying systems of equations.
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Idempotent Matrices

D e f in i t i o n 8 . 12 A square matrix A of any order is idempotent if

A = A2 = A3 = · · ·

where A2 = AA, A3 = AAA, etc.

Idempotent matrices play a very important role in statistical distribution
theory. We will see examples of them in later chapters when we discuss quadratic
forms.

Example 8.16 Verify that A below is idempotent:

A =
⎡
⎣ 1/6 −1/3 1/6
−1/3 2/3 −1/3

1/6 −1/3 1/6

⎤
⎦

Solution

It is only necessary to verify that AA = A. (Why?)

A =
⎡
⎣ 1/6 −1/3 1/6
−1/3 2/3 −1/3

1/6 −1/3 1/6

⎤
⎦
⎡
⎣ 1/6 −1/3 1/6
−1/3 2/3 −1/3

1/6 −1/3 1/6

⎤
⎦

=
⎡
⎣ (1/6)(1/6)+ (1/3)(1/3)+ (1/6)(1/6)

−(1/3)(1/6)− (2/3)(1/3)− (1/3)(1/6)

(1/6)(1/6)+ (1/3)(1/3)+ (1/6)(1/6)

−(1/6)(1/3)− (1/3)(2/3)− (1/6)(1/3)

(1/3)(1/3)+ (2/3)(2/3)+ (1/3)(1/3)

−(1/6)(1/3)− (1/3)(2/3)− (1/6)(1/3)

(1/6)(1/6)+ (1/3)(1/3)+ (1/6)(1/6)

−(1/6)(1/3)− (1/3)(2/3)− (1/6)(1/3)

(1/6)(1/6)+ (1/3)(1/3)+ (1/6)(1/6)

⎤
⎦

=
⎡
⎣ 1/6 −1/3 1/6
−1/3 2/3 −1/3

1/6 −1/3 1/6

⎤
⎦
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Partitioned Matrices

D e f in i t i o n 8 . 13 A partitioned matrix contains submatrices as elements. The submatrices are ob-
tained by partitioning the rows and columns of the original matrix.

For example,

A =

⎡
⎢⎣1 2 3 1

2 1 0 1

3 0 −1 2

⎤
⎥⎦ = [

A11 A12

A21 A22

]

where

A11 =
[

1 2 3
2 1 0

]
, A12 =

[
1
1

]
, A21 = [3 0 − 1], A22 = [2]

The rules for the addition (subtraction) and multiplication of matrices apply directly
to partitioned matrices provided the submatrices are of suitable order. Let A and
B be two partitioned matrices, which we write as

A =
[

A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]

Then

A+ B =
[

A11 + B11 A12 + B12

A21 + B21 A22 + B22

]

provided that A and B are of the same overall dimension and that, A11 and B11, A12

and B12, A21 and B21, and A22 and B22 are of the same order.

The Trace of a Matrix

The trace is defined only for square matrices.

D e f in i t i o n 8 . 14 The trace of a square matrix A is given by the sum of the elements of the main
diagonal. In other words, if A is n× n, then the trace is defined as

trace(An) = a11 + a22 + · · · + ann
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The trace of a matrix, if defined, has some very attractive simplifying properties.
For instance,

Theorem 8.5 For two matrices A and B of dimensions m×n and n×m respectively, we have
that AB is m×m and BA is n× n and

trace(AB) = trace(BA)

Proof

Since AB is of order m×m, its ith diagonal element will be given by

cii =
n∑

j=1

aij bji for i = 1, . . . , m

On the other hand, BA is of order n×n and its j th diagonal element will be given by

djj =
n∑

i=1

bjiaij for j = 1, . . . , n

Therefore the trace of AB and BA are given by

trace(AB) =
m∑

i=1

cii =
m∑

i=1

(
n∑

j=1

aij bji

)

=
m∑

i=1

n∑
j=1

aij bji

trace(BA) =
n∑

j=1

djj =
n∑

j=1

(
m∑

i=1

bjiaij

)

=
n∑

j=1

m∑
i=1

bjiaij

We can see from this result that

trace(AB) =
m∑

i=1

n∑
j=1

aij bji =
n∑

j=1

m∑
i=1

bjiaij = trace(BA)
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Example 8.17 For the matrices A and B below, verify that trace(AB) = trace(BA):

A =
[

2 1 3
2 1 4

]
and B =

⎡
⎣3 1

2 −1
1 0

⎤
⎦

In this case, A is 2× 3 and B is 3× 2. Therefore AB is 2× 2 and BA is 3× 3.

AB =
[

2 1 3
2 1 4

]⎡⎣3 1
2 −1
1 0

⎤
⎦ = [

11 1
12 1

]

and trace (AB) = 11+ 1 = 12.

BA =
⎡
⎣3 1

2 −1
1 0

⎤
⎦[2 1 3

2 1 4

]
=

⎡
⎣8 4 13

2 1 2
2 1 3

⎤
⎦

and trace (BA) = 8+ 1+ 3 = 12.

E X E R C I S E S

1. Verify that the matrix I3 below is idempotent:

I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

2. Verify that matrix A below is idempotent:

A = 1

11

⎡
⎢⎢⎣

6 −2 −5 1
−2 8 −2 −4
−5 −2 6 1

1 −4 1 2

⎤
⎥⎥⎦

3. Verify that the matrix A below is idempotent:

A =
[

x −x

x − 1 1− x

]
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4. For the matrices A and B below, verify that trace(AB) = trace(BA):

A =
[

1 −1 1
2 2 0

]
, B =

⎡
⎣3 1

0 1
1 1

⎤
⎦

5. For the matrix A below, obtain trace(A), trace(AA), and trace(AAA):

(a) A =
⎡
⎣ 1/6 −1/3 1/6
−1/3 2/3 −1/3

1/6 −1/3 1/6

⎤
⎦

(b) A = 1
11

⎡
⎢⎢⎣

6 −2 −5 1
−2 8 −2 −4
−5 −2 6 1

1 −4 1 2

⎤
⎥⎥⎦

C H A P T E R R E V I E W
Key Concepts column matrix

column vector
conformable matrices
diagonal matrix
idempotent matrix
identity matrix
matrix
matrix equation
null matrix
partitioned matrix
postmultiplication

premultiplication
product matrix
row matrix
row vector
scalar
scalar multiplication
square matrix
symmetric matrix
trace
transpose matrix
vector

Review Questions 1. When are two matrices conformable for addition (subtraction)?

2. When are two matrices conformable for multiplication?

3. Why is it important to distinguish between premultiplication and postmulti-
plication of matrices, but not for scalars?

4. What is the transpose of a symmetric matrix?

5. What is the trace of a matrix?
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Review Exercises 1. For each of the matrix operations below, identify those that result in a scalar.

(a) AB where A is 2× 1 and B is 1× 2

(b) AT B where A is 2× 1 and B is 2× 1

(c) AT BA where A is 2× 1 and B is 2× 2

(d) AAT B where A is 5× 1 and B is 5× 5

2. Show that AB �= BA where

A =
[

5 1
3 −2

]
, B =

[
2 0
4 3

]

3. Let

A =
[

1 −3
−2 4

]
, x =

[
5
3

]

Compute (Ax)T , xT AT , xxT , and xT x. Is AT xT defined?

4. Let

A =
⎡
⎣1 1 1

1 2 3
1 4 5

⎤
⎦ , D =

⎡
⎣2 0 0

0 3 0
0 0 4

⎤
⎦

Compute AD and DA.

5. Let

A =
[

3 −4
−5 1

]
, B =

[
7 4
5 k

]

What values of k, if any, will make AB = BA?

6. Compute the quantities below using

A =
[

1 2
−3 4

]
, B =

[−8 4
−7 5

]

(a) AT , BT , AT + BT , (A+ B)T

(b) AB, (AB)T , AT BT , BT AT
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7. Use the data of example 8.10 to find the evolution of the population after four
periods.

8. Use the data in example 8.11 to find the unemployment rate after two periods.
[Hint: The unemployment rate is the number of people unemployed as a
proportion of all labor market participants.] Can the situation described by
these transition probabilities evolve in the same way indefinitely?



Chapter 9 Determinants and the Inverse Matrix

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Gauss-Jordan Elimination and the Inverse Matrix

In chapter 8 we defined the operations of addition, subtraction, and multiplication
of matrices. What about division? Can we define rules for dividing one matrix
by another? The answer is yes, but only under certain restrictions. Division is
restricted only to square matrices, and then only to those square matrices that
satisfy a condition known as nonsingularity. The reason for all this can again be
traced to the relation between matrix algebra and the problem of solving a system
of simultaneous linear equations.

9.1 Defining the Inverse
Consider, first, the division of two numbers. If we divide b into a, we can write this
as a/b, where b �= 0. Alternatively, we could write 1/b = b−1 as the reciprocal or
inverse of b, and define division as the multiplication of a and b−1 : a/b = ab−1.
This slightly more roundabout way of defining division is in fact the more useful
one when dealing with matrices. Note finally that by the inverse of a number b,
we mean the number b−1 that has the property

bb−1 = b−1b = 1

For example, the inverse of the number 2 is 1/2, since 2(1/2) = 1. This rather
obvious fact is worth spelling out when we proceed to consider matrix division.
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D e f in i t i o n 9 . 1 The inverse matrix A−1 of a square matrix A of order n is the matrix that satisfies
the condition that

AA−1 = A−1A = In

where In is the identity matrix of order n.

Note that A−1 is only defined for square matrices. However, not every square
matrix has an inverse.

Obtaining the inverse matrix involves obtaining the elements of A−1 as solu-
tions to the equation

A−1A = I

When we deal with real numbers in ordinary algebra, we know that for some
real number a, the operation a(1/a) = 1 is valid if and only if a �= 0. In the case
of matrices, A−1 corresponds to (1/a) in simple algebra, but now for A−1 to exist
it is not sufficient simply to assume that A is different from the null matrix.

D e f in i t i o n 9 . 2 Any matrix A for which A−1 does not exist is known as a singular matrix. The
matrix A for which A−1 exists is known as a nonsingular matrix.

Example 9.1 The matrix equation

Ax = b

where A is n × n, x is n × 1, and b is n × 1 defines a system of n simultaneous
linear equations in n unknowns, x. Solve for the vector x.

Solution

Suppose that you were given the ordinary equation

ax = b

where a, x, and b are scalars. Then you would solve this equation simply by
“dividing through by a” to obtain

x = b/a
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or equivalently

(a−1a)x = a−1b

It then seems natural to solve the above matrix equation as follows:

A−1Ax = A−1b

Inx = A−1b

x = A−1b

If A and b are known, this solves for the unknown vector x, provided that A−1

exists.

We see from this that existence of the inverse matrix is equivalent to being able to
solve a linear system, something that we discussed in chapter 7. In fact, we will
see that the conditions that have to be satisfied for the solution of a linear system
also have to be satisfied if the inverse matrix is to exist. Also the Gauss-Jordan
elimination method for solving a linear simultaneous system can be used to obtain
the inverse matrix A−1.

Obtaining the Inverse Matrix of a 2 × 2 Matrix

Let A be a general 2× 2 matrix given by

A =
[

a11 a12

a21 a22

]

and let us assume that it has an inverse matrix A−1 denoted by

A−1 =
[

α11 α12

α21 α22

]

From the definition of the inverse matrix we have that[
a11 a12

a21 a22

][
α11 α12

α21 α22

]
=

[
1 0
0 1

]

We will try to solve for the unknown elements of A−1, denoted by α11, α12,
α21, and α22, in terms of the known elements of A, denoted by a11, a12, a21, and
a22. We will first solve for α11 and α21. In that case we have[

a11 a12

a21 a22

][
α11

α21

]
=

[
1
0

]
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Multiplying out yields a system of two equations in the two unknowns α11 and
α21, given by

a11α11 + a12α21 = 1 (9.1)

a21α11 + a22α21 = 0 (9.2)

We can rewrite equation (9.1) by taking a12α21 to the right-hand side (RHS) and
then dividing both sides by a11 to obtain

α11 = 1− a12α21

a11

Substituting the above value of α11 into equation (9.2) yields

a21

(
1− a12α21

a11

)
+ a22α21 = 0

Multiplying through by a11 yields

a21 − a21a12α21 + a11a22α21 = 0

Collecting the α21 terms together and rearranging yields

α21 = −a21

a22a11 − a21a12

Returning to the expression for α11, substituting α21 yields

α11 = 1

a11
− a12

a11

( −a21

a22a11 − a21a12

)

= a22a11 − a21a12 + a12a21

a11 (a22a11 − a21a12)

= a22

a22a11 − a21a12

Similarly we can solve for α12 and α22 by looking at

[
a11 a12

a21 a22

][
α12

α22

]
=

[
0
1

]
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The solutions are

α12 = −a12

(a22a11 − a21a12)

α22 = a11

(a22a11 − a21a12)

Collecting the different terms together yields the inverse matrix A−1 as

A−1 = 1

(a22a11 − a21a12)

[
a22 −a12

−a21 a11

]

We can verify that AA−1 = A−1A = I2.

The Determinant of the 2 × 2 Matrix and Its Properties

Each element of A−1 is a function of the elements of A. It becomes apparent that
for A−1 to exist, the quantity a22a11 − a21a12 has to be different from zero. If it
were zero, each element of A−1 would be undefined since 1/0 is not defined.

D e f in i t i o n 9 . 3 The quantity a22a11 − a21a12 is called the determinant of the 2× 2 matrix A and
is composed of all the elements of A. It is denoted by |A| or det A.

Besides the algebraic definition given above, the determinant of a 2×2 matrix
has a geometric interpretation. It is proportional to the area enclosed by the two
column vectors that make up the 2× 2 matrix in question. We provide a detailed
exposition of the geometric interpretation at the end of the section.

If |A| = 0, then A is a singular matrix, because in this case A−1 does not exist.
If |A| �= 0, A is nonsingular. The determinant expression a22a11 − a21a12 consti-
tutes the denominator of each of the elements of A−1. To obtain the numerators of
the elements of A−1, we can follow the steps outlined below.

Step 1 For each element in A, strike out the row and column containing that
element and use the remaining element with a positive or negative sign in the
pattern: [+ −

− +
]
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Then we obtain the matrix

[
a22 −a21

−a12 a11

]

Step 2 Transpose the matrix obtained in step 1 to get

[
a22 −a12

−a21 a11

]

Example 9.2 Obtain the inverse of the following matrices:

(i) A =
[

1 2
3 −1

]

(ii) B =
[

1 2
2 4

]

Solution

For (i) we have that |A| = −1−6 = −7. Since |A| �= 0, the inverse matrix exists.
Then |A| is the denominator of each element of A−1. To find the numerators of
A−1, we follow the steps outlined above.

(Step 1) We obtain the matrix [
a22 −a21

−a12 a11

]

which in this case is

[−1 −3
−2 1

]

(Step 2) We transpose the matrix above to get

[−1 −2
−3 1

]

and the inverse is

A−1 = 1

|A|
[−1 −2
−3 1

]
=

[
1/7 2/7
3/7 −1/7

]
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We can verify that A−1A = I by looking at[
1 2
3 −1

][
1/7 2/7
3/7 −1/7

]
=

[
1/7+ 6/7 2/7− 2/7
3/7− 3/7 6/7+ 1/7

]

=
[

1 0
0 1

]

For (ii) we see that |B| = 4− 4 = 0. Therefore B−1 does not exist.

We now present some of the properties of determinants and illustrate them
with examples. The theorems relate to any n×n matrices, though our illustrations
use 2× 2 examples.

Theorem 9.1 The determinant of the transpose matrix of A, |AT |, is the same as the determinant
of A, even though A may not be symmetric.

Example 9.3 For

A =
[

1 2
3 4

]

find |A| and |AT |.

Solution

First

AT =
[

1 3
2 4

]

and so |AT | = 4− 6 = −2. But |A| = 4− 6 = −2. Therefore |A| = |AT |.

Theorem 9.2 If B is obtained from A by interchanging the rows or columns of A, then |B| =
−|A|.

Example 9.4 For

A =
[

1 2
3 4

]

obtain B given in theorem 9.2.
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Solution

Two methods are equivalent:

(i) interchanging the rows of A

(ii) interchanging the columns of A

For case (i) we have that

B =
[

3 4
1 2

]

|B| = 6− 4 = 2. Since |A| = −2, |B| = −|A|.
For case (ii) we have that

B =
[

2 1
4 3

]

and since |B| = 2, again we have that |B| = −|A|.

Theorem 9.3 If a matrix has two identical rows or columns, its determinant will be zero.

Example 9.5 Find the determinants of A and B:

A =
[

1 2
1 2

]
, B =

[
1 1
2 2

]

Solution

We see that |A| = 2 − 2 = 0 (identical rows) and |B| = 2 − 2 = 0 (identical
columns).

Theorem 9.4 If one of the two rows of A is a multiple of the other row, or if one of the columns
of A is a multiple of the other column, then |A| = 0.

Example 9.6 For A and B find the determinants

A =
[

1 3
2 6

]
, B =

[
1 2
3 6

]
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Solution

The second row of A is twice its first row. In this case, |A| = 6 − 6 = 0. The
second column of B is twice its first column. In this case, |B| = 6− 6 = 0.

Theorems 9.3 and 9.4 illustrate a property of the determinant of a matrix
that relates to the relationship among the rows (columns) of the matrix known as
linear dependence. Two rows (columns) are said to be linearly dependent if they
are in some sense indistinguishable from each other and hence contain the same
information. In chapter 10 we expand further on the notion of linear dependence
in the context of vector spaces.

Theorem 9.5 If B is formed from A by adding a multiple of one row to another row, or a
multiple of one column to another column, the value of the determinant remains
unchanged.

Example 9.7 Let

A =
[

1 2
3 4

]

Find the determinant of B formed by

(i) adding twice the second row to the first
(ii) by subtracting the second column from the first column

Solution

For case (i),

B =
[

7 10
3 4

]

Then |B| = 28− 30 = −2. But we also have that |A| = 4− 6 = −2. Therefore
|B| = |A|.

For case (ii),

B =
[−1 2
−1 4

]

Then |B| = −4+ 2 = −2, which is the same as |A|.
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Theorem 9.6 The determinant of a matrix that is composed of a nonzero element in the positions
above (below) the main diagonal and zero in the positions below (above) equals
the product of the diagonal elements. Such a matrix is known as a triangular
matrix.

Example 9.8 Let

A =
[

1 0
2 2

]
and B =

[
1 1
0 −1

]

Find |A| and |B|.

Solution

We can see that |A| = 2− 0(2) = 2 and |B| = −1− 1(0) = −1.

It is easy to see that a special case of the property above is that of the diagonal
matrix. For such a matrix the determinant also equals the product of its diagonal
elements.

Theorem 9.7 Multiplying any row of a matrix by a scalar λ, multiplies the determinant by λ.
Multiplying every element of an n × n matrix by λ, multiplies the determinant
by λn.

Example 9.9 Let A be given by

A =
[

1 2
3 4

]

Verify theorem 9.7 above for matrix B formed from A by

(i) multiplying the first row of A by λ = 2
(ii) multiplying all the elements of A by 2.

Solution

For (i) we have that

B =
[

2 4
3 4

]

and |B| = 8− 12 = −4. Since |A| = −2, we have that |B| = 2|A|.
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For (ii),

B =
[

2 4
6 8

]

and |B| = 16−24 = −8. Since |A| = −2, we see that |B| = 22(−2) = λ2(−2) =
−8.

Theorem 9.8 The determinant of the product of two square matrices A and B of the same order,
is the product of the determinants, that is, |AB| = |A||B|.

Example 9.10 Let

A =
[

1 2
3 4

]
and B =

[
2 3
4 5

]

Find AB and verify theorem 9.8.
We have

AB =
[

1 2
3 4

][
2 3
4 5

]
=

[
2+ 8 3+ 10
6+ 16 9+ 20

]
=

[
10 13
22 29

]

We have that |A| = −2, |B| = −2, and |AB| = 29(10)− 13(22) = 4. Therefore
|AB| = |A||B|.

Example 9.11 The Linear Production Technology

A firm produces two outputs, y1 and y2, with two inputs, z1 and z2. Let aij denote
the amount of input i required to produce 1 unit of output j . The aij describe
what is known as the input-requirements matrix. The matrix of these input-output
coefficients is

A =
[

3 1
2 5

]

Suppose that the firm produces 20 units of y1 and 15 units of y2. We can find the
input levels of z1 and z2 by solving the relationship z = Ay:[

z1

z2

]
=

[
a11 a12

a21 a22

][
y1

y2

]

=
[

3 1
2 5

][
20
15

]
=

[
75

115

]
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Suppose now that we are given the levels of input z1 and z2, say, 10 and 20. Find
the levels of y1 and y2 that we will produce using these levels of inputs. This is
the production function of the firm.

Solution

We need to solve z = Ay for y given z. Put differently, we need to find y = A−1z, or

[
y1

y2

]
=

[
a11 a12

a21 a22

]−1 [
z1

z2

]

=
[

3 1
2 5

]−1 [
10
20

]

=
[

5/13 −1/13
−2/13 3/13

][
10
20

]
=

[
30/13
40/13

]
=

[
2.31
3.08

]

The entries of the inverse matrix, call them αij , can be interpreted as the amount
of output i that is produced by one unit of input j .

We now turn to an example of multimarket equilibrium, first discussed in chapter 7.
We start with a simple example, involving two markets for goods that are substi-
tutes, and solve for equilibrium prices.

Example 9.12 The Markets for Tea and Coffee

Suppose that the market for tea is described by the demand and supply functions

Dt = 100− 5pt + 3pc

St = −10+ 2pt

and the market for coffee by

Dc = 120− 8pc + 2pt

Sc = −20+ 5pc

where pt is the price of tea, pc is the price of coffee, Dt and St are the quantities of
tea demanded and supplied respectively, and Dc and Sc are the quantities of coffee
demanded and supplied.

The first thing we notice in the specifications of the demand and supply func-
tions is that both demands are negatively related with their own prices and posi-
tively related with the price of the other good. Also both supplies are positively
related with their own prices. The fact that the demands are positively related
with the price of the other good suggests that these goods are substitutes, since an
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increase in the price of one good will lead to a fall in its quantity demanded but
at the same time it will lead to an increase in the demand for the other good as
consumers shift into buying the relatively cheaper alternative. If the goods were
complements, the relationship between the demand and the price of the other good
would be negative.

Solve for the equilibrium prices of tea and coffee.

Solution

We write a system of equations that describes equilibrium in both markets simul-
taneously as follows:

Ap = b

where A is a 2× 2 matrix of coefficients, p is a 2× 1 vector of prices, and b is a
2× 1 vector of constants. The solution is then given by

p = A−1b

In order to express the system of equations that describes the markets for tea and
coffee into the form Ap = b, we first need to obtain the equilibrium in each market,
where Dt = St and Dc = Sc. Then we obtain

100− 5pt + 3pc = −10+ 2pt

120− 8pc + 2pt = −20+ 5pc

These can be rewritten more conveniently as

7pt − 3pc = 110

−2pt + 13pc = 140

In matrix form the equations above become

[
7 −3
−2 13

][
pt

pc

]
=

[
110
140

]

The solution is then given by

[
pt

pc

]
=

[
7 −3
−2 13

]−1 [
110
140

]

=
[

13/85 3/85
2/85 7/85

][
110
140

]
=

[
21.76
14.12

]
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Another linear model introduced in chapter 7 was the simple IS-LM model of
a closed economy. We will work through a model similar to that in example 7.8,
but we extend the analysis slightly by introducing government activity. The gov-
ernment is assumed to have an expenditure program and to finance it in part by
raising tax revenue. The underlying principle involved in solving the system is
unchanged.

Example 9.13 The IS-LM Model of a Closed Economy

Aclosed economy is described by the system of equations that give the equilibrium
conditions in the goods and the money markets, the IS and the LM relationships.
The goods market (the IS part of the model) is described by

C = 15+ 0.8(Y − T )

T = −25+ 0.25Y

I = 65− R

G = 94

where C is consumer expenditure, T is tax revenue, Y is aggregate output, I is
investment expenditure, R is the interest rate, and G is government expenditures.
The money market (the LM part of the model) is described by

L = 5Y − 50R

M = 1,500

where L is money demand and M is the fixed money supply. Find the equilibrium
levels of Y and R.

Solution

We can express the system of equations above in the form

Ax = b

where A is a 2 × 2 matrix of coefficients, x is the 2 × 1 vector of variables with
entries Y and R, and b is a 2× 1 vector of constants. We first have to solve for the
equilibria in the goods and money markets, obtain the IS and the LM functions,
and then put the two together. The IS function is obtained from Y = C + I +G

as follows:

Y = 15+ 0.8Y − 0.8(−25+ 0.25Y )+ 65− R + 94

Y (1− 0.8+ 0.2) = 15+ 20+ 65+ 94− R

Y = 485− 2.5R
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The LM function is then found from L = M:

1,500 = 5Y − 50R or Y = 300+ 10R

Looking at the IS and LM relationships as a system of equations yields

Y + 2.5R = 485

Y − 10R = 300

or

[
1 2.5
1 −10

][
Y

R

]
=

[
485
300

]

Solving for Y and R yields

[
Y

R

]
=

[
1 2.5
1 −10

]−1[
485
300

]

=
[

0.8 0.2
0.08 −0.08

][
485
300

]

=
[

448
14.8

]

The equilibrium level of output in this economy is 448 and the interest rate is
14.8%. Notice that at this level of income, tax revenue is T = −25+ 0.25(448) =
87, while government spending is G = 94. The government’s current deficit is
therefore G− T = 7.

Finally we note

Theorem 9.9 For two square matrices, A and B

|A+ B| �= |A| + |B|

in general.

A Geometric Interpretation of the Determinant

In this section, we will consider the determinant from an alternative geometric
point of view. Let us consider two vectors

x =
[

x1

x2

]
and y =

[
y1

y2

]
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The components of these vectors represent the coordinates in R2, where the first
components x1 and y1 represent the coordinates on the horizontal axis and x2 and
y2 represent the coordinates on the vertical axis respectively. Figure 9.1 presents
the vectors as points in R2.

A

B

O D E

x

y

C

Figure 9.1 Geometric
interpretation of the determinant

The shaded area enclosed by x, y, and the origin, turns out to be half of the
determinant of the matrix formed by using x and y as its columns. If we add the
areas OBxD and OAyE, subtract the area OACD that has been counted twice,
and finally add the area of the triangle xCy, we will obtain the area OBxyE. Then,
to obtain the shaded area in figure 9.1, we subtract the areas of the triangles OBx
and OyE from OBxyE.

Using the fact that the area of a rectangle is found by multiplying the base by
the height, and that of a triangle by half the product of the base by the height, we
calculate the shaded area in figure 9.1 to be

Shaded area = x1x2 + y1y2 − y2x1 + 1

2
(y1 − x1)(x2 − y2)

− 1

2
x1x2 − 1

2
y1y2

= 1

2
y1x2 − 1

2
y2x1

= 1

2

∣∣∣∣y1 x1

y2 x2

∣∣∣∣
This property generalizes so that the determinant of a 3×3 matrix, to be discussed
in the next section, will be proportional to the volume enclosed by the three vectors
that make up the columns of the matrix in question and the origin.

E X E R C I S E S

1. Obtain the inverses of the following matrices, if they exist:

(a)
[

5 0
0 3

]
(b)

[
3 2
−1 1

]
(c)

[
1 2
2 4

]
2. Find the determinants of the following matrices:

(a)
[

1 2
3 6

]

(c)
[

1 0
37 2

] (b)
[

2 4
6 8

]

(d)
[

1 37
0 2

]
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3. Suppose that a firm, as in example 9.11, produces two outputs y1 and y2 with
two inputs z1 and z2. The input requirements matrix is given by A below:

A =
[

2 1
3 4

]

(a) If the firm wants to produce 5 units of y1 and 10 units of y2, how much
of z1 and z2 will it require?

(b) Let the prices of inputs be $5 per unit and $10 per unit, respectively, so
that

w =
[

5
10

]

is an input price vector. What is the interpretation of wT Ay? Is it a scalar
or a matrix?

4. Suppose that the markets for coffee and sugar are characterized by the fol-
lowing demand and supply relationships:

Dc = 100− 5pc − ps, Sc = −20+ 2pc

and

Ds = 80− 4ps − 2pc, Ss = −10+ ps

where pc is the price of coffee and ps is the price of sugar.

(a) Set up the system in equilibrium as a matrix equation

Ap = b

where A is a 2× 2 matrix of coefficients, p is a 2× 1 vector of prices,
and b is a 2× 1 vector of constants.

(b) Solve for the equilibrium prices of coffee and sugar.

5. Solve for the equilibrium levels of Y and R in the extended IS-LM model that
allows for imports and exports. The model is given by

C = 15+ 0.8(Y − T )

T = −25+ 0.25Y

I = 65− R
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G = 94

X = 50− 10− 0.1Y

where C is consumer expenditure, T is tax revenue, Y is aggregate output, I is
investment expenditures, R is the interest rate, G is government expenditure,
and X is net exports (exports minus imports).

The money market (the LM part of the model) is described by

L = 5Y − 50R

M = 1,500

In this model, we are not imposing balance-of-payments equilibrium.
Calculate the government’s budget deficit (or surplus) in the equilibrium.
Calculate the trade deficit (or surplus) in the equilibrium.

9.2 Obtaining the Determinant and Inverse
of a 3 × 3 Matrix

In section 9.1 we obtained the determinant of a 2×2 matrix. Below we will derive
the determinant of a 3 × 3 matrix and then obtain the determinant of a general
square matrix of dimension n× n.

The determinant of a 3× 3 matrix A will be composed of all the elements of
A. However, as we will see, the expression of the determinant of A will be reduced
to particular expressions involving the determinants of certain 2× 2 submatrices
of A. From a computational point of view, for the calculation of |A|, we only have
to remember how to compute the determinant of a 2× 2 matrix. Let us denote the
square matrix A of order 3 by

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

In order to obtain |A|, we follow the steps below:

Step 1 Define Mij to be the determinant of the 2 × 2 submatrix obtained when
the ith row and the j th column of A are deleted. Mij is known as a minor.

Example 9.14 Find M11 and M31 from A.
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Solution

M11 refers to the determinant of the 2× 2 submatrix obtained by deleting the first
row and the first column of A. This submatrix is[

a22 a23

a32 a33

]
and M11 = a22a33 − a23a32

M31 refers to the determinant of the 2×2 submatrix obtained by deleting the third
row and the first column of A. This submatrix is[

a12 a13

a22 a23

]
and M31 = a12a23 − a13a22

Step 2 Attach a sign to the minor and define

Cij = (−1)i+jMij , i = 1, 2, 3; j = 1, 2, 3

Cij is known as a cofactor. The sign of Mij does not change if i + j is an
even number and changes if it is an odd number. For example for M11, M31 and
M22, C11 = M11, C31 = M31, C22 = M22. However for M21 and M23, we have
that C21 = −M21 and C23 = −M23. The sign matrix to remember how to convert
Mij into Cij for the 3× 3 case is⎡

⎣+ − +
− + −
+ − +

⎤
⎦

Step 3 To obtain the determinant of A, we can take any row or column of A,
multiply its elements by the corresponding cofactors, and add all these products.
This is known as cofactor expansion. For example, expanding along the first row
of the 3× 3 matrix A, we have that

|A| = a11C11 + a12C12 + a13C13

Similarly we could calculate |A| by expanding along the first column as

|A| = a11C11 + a21C21 + a31C31

Expanding along any row or column of the matrix results in the same answer, |A|.
Note that if we were to multiply the elements of a row (or column) by the

cofactors of another row (or column), the determinant would vanish. For example,
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let us look at the expression

a11C21 + a12C22 + a13C23

where the elements of the first row of A are multiplied by the cofactors obtained
from the second row. The expansion above would have been obtained if the deter-
minant were calculated for a matrix where the first and second rows were identical.
But theorem 9.3 suggests that if a matrix has two identical rows or columns, then
its determinant will be zero. Therefore, expanding along a row (or column) using
the cofactors from another row (or column) can be thought of as obtaining the
determinant of a matrix with two identical rows (or columns).

Obtaining the Inverse of a 3 × 3 Matrix

Having obtained the determinant of a 3 × 3 matrix, it is quite straightforward to
obtain its inverse matrix. Below we will present the steps that one follows to obtain
the inverse of a matrix of order 3 and illustrate the method by means of an example.

Step 1 Corresponding to the elements aij of A, we obtain the cofactors Cij , i =
1, 2, 3; j = 1, 2, 3. Then we form a matrix in which each element aij is replaced
by the corresponding cofactors Cij , given below as

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦

Step 2 Obtain the determinant of A, |A|.
Step 3 Transpose the matrix obtained in the first step. The resulting matrix is
known as the adjoint matrix of the original matrix A. The adjoint matrix is denoted
by adj(A) and is given by

adj(A) =
⎡
⎣C11 C21 C31

C12 C22 C32

C13 C23 C33

⎤
⎦

Step 4 Once we have obtained adj(A), we divide each of its elements by |A|.
The resulting matrix is A−1. This is given by

A−1 = 1

|A|

⎡
⎣C11 C21 C31

C12 C22 C32

C13 C23 C33

⎤
⎦
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Example 9.15 Find the inverse of the matrix A below:

A =
⎡
⎣1 2 3

0 1 −1
1 2 1

⎤
⎦

Solution

We first obtain |A|. Let us obtain the minors M11, M12, M13, M21, M22, M23, M31,
M32, and M33, and then the corresponding cofactors,

M11 =
∣∣∣∣1 −1
2 1

∣∣∣∣ = 3

M12 =
∣∣∣∣0 −1
1 1

∣∣∣∣ = 1

M13 =
∣∣∣∣0 1
1 2

∣∣∣∣ = −1

M21 =
∣∣∣∣2 3
2 1

∣∣∣∣ = −4

M22 =
∣∣∣∣1 3
1 1

∣∣∣∣ = −2

M23 =
∣∣∣∣1 2
1 2

∣∣∣∣ = 0

M31 =
∣∣∣∣2 3
1 −1

∣∣∣∣ = −5

M32 =
∣∣∣∣1 3
0 −1

∣∣∣∣ = −1

M33 =
∣∣∣∣1 2
0 1

∣∣∣∣ = 1

so that

C11 = 3 C12 = −1 C13 = −1

C21 = 4 C22 = −2 C23 = 0

C31 = −5 C32 = 1 C33 = 1

We obtain the determinant of A by expanding along the second row to get
|A| = 0(4)− 1(2)− 1(0) = −2.

We choose to expand along the second row in order to take advantage of the
zeros to simplify the calculations.
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The cofactor matrix is given by⎡
⎣ 3 −1 −1

4 −2 0
−5 1 1

⎤
⎦

The adjoint matrix is given as

adj(A) =
⎡
⎣ 3 4 −5
−1 −2 1
−1 0 1

⎤
⎦

Finally we divide each element of adj(A) by |A| to obtain the inverse

A−1 =
⎡
⎣−3/2 −2 5/2

1/2 1 −1/2
1/2 0 −1/2

⎤
⎦

We can verify that A−1 satisfies AA−1 = I , since

AA−1 =
⎡
⎣1 2 3

0 1 −1
1 2 1

⎤
⎦
⎡
⎣−3/2 −2 5/2

1/2 1 −1/2
1/2 0 −1/2

⎤
⎦

=
⎡
⎣−3/2+ 1+ 3/2 −2+ 2 5/2− 1− 3/2

1/2− 1/2 1 −1/2+ 1/2
−3/2+ 1+ 1/2 −2+ 2 5/2− 1− 1/2

⎤
⎦

=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I

E X E R C I S E S

1. Compute the determinants of the following matrices:

(a) A =
⎡
⎣3 0 4

2 3 2
0 5 −1

⎤
⎦ (c) C =

⎡
⎣2 3 −4

4 0 5
5 1 6

⎤
⎦

(b) B =
⎡
⎣2 −4 3

3 1 2
1 4 −1

⎤
⎦ (d) D =

⎡
⎣4 3 0

6 5 2
9 7 3

⎤
⎦
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2. Obtain the inverse of each matrix in question 1.

3. Find the determinant of B:

B =
⎡
⎣ a b c

d e f

3g 3h 3i

⎤
⎦

if

|A| =
∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = 7

4. Find the determinant of C:

C =
⎡
⎣a b c

g h i

d e f

⎤
⎦

if

|A| =
∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = 3

5. Find the determinant of D:

D =
⎡
⎣ a b c

3d + a 3e + b 3f + c

g h i

⎤
⎦

if

|A| =
∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = 3

6. Use determinants to decide if the following set of vectors is linearly indepen-
dent:

⎡
⎣ 7
−4
−6

⎤
⎦
⎡
⎣−8

5
7

⎤
⎦
⎡
⎣ 7

0
−5

⎤
⎦
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7. Compute |A3|, where

A =
⎡
⎣1 0 1

1 1 2
1 2 1

⎤
⎦

9.3 The Inverse of an n × n Matrix and Its
Properties

To obtain the inverse of a matrix of order n, we follow the same steps outlined in
the previous section for the case of a 3× 3 matrix. From a computational point of
view, obtaining the cofactors becomes a fairly complicated task. For example, in
the case of a matrix of order 4 given below,

A =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦

obtaining any minor, say M14, would involve solving for the determinant of a 3×3
matrix, since

M14 =
∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣
To obtain the determinant of the 3× 3 matrix above, we would proceed to find its
corresponding minors and cofactors and then proceed through a cofactor expansion
along a given row or column.

For the n × n case, finding the cofactors would involve reducing through
successive substitutions these cofactors to expressions involving determinants of
2× 2 matrices. Of course, from a computational point of view, these calculations
will be far from trivial. Note also that the properties of the determinants that were
discussed earlier for the case of a 2× 2 matrix apply also for matrices of order n.

In the next section we will discuss a method that allows us to compute the in-
verse matrix without explicitly having to compute the adjoint matrix and the de-
terminant. Before we do that, we will present the general definitions of the minors,
cofactors, and adjoints introduced in section 9.2. We will then summarize some of
the properties of the inverse matrix of order n.
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D e f in i t i o n 9 . 4 Consider an n× n matrix, A, with typical element aij . The minor associated with
each element is denoted Mij and is the determinant of the (n−1)× (n−1) matrix
formed by deleting the ith row and j th column of the matrix A.

Notice that we can replace each element of the original matrix A with its associated
minor. The resulting matrix is called the matrix of minors.

D e f in i t i o n 9 . 5 Consider an n × n matrix, A, with typical element aij . The cofactor of element
aij is the minor of that element multiplied by (−1)i+j , and is denoted Cij :

Cij = (−1)i+jMij , i, j = 1, 2, . . . , n

Clearly, where i+ j is an even number, the cofactor and the minor associated with
aij are equivalent. When i + j is an odd number, the cofactor is the negative of
the minor.

D e f in i t i o n 9 . 6 An n × n matrix, A, has an associated cofactor matrix that is also n × n and is
formed by replacing each aij with its associated cofactor.

At this point we note the generalization of the method of finding the determinant
of a matrix by cofactor expansion introduced in section 9.2 for the 3 × 3 case.
For the n× n case we have

Theorem 9.10 The determinant of an n × n matrix A may be found by adding along any row
or column the product of each element aij and its associated cofactor.

Thus we have either

|A| =
n∑

i=1

aijCij for any single j = 1, . . . , n (9.3)

or

|A| =
n∑

j=1

aijCij for any single i = 1, . . . , n (9.4)
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The choice of which particular row or column to expand by may be guided by
computational ease. One rule of thumb is to choose the row or column of A with
the largest number of zero elements. The cofactors for these zero elements clearly
do not need to be computed. The crucial thing is that only expansion along a single
row or column is permitted.

D e f in i t i o n 9 . 7 The adjoint matrix of an n× n matrix A, denoted adj(A), is the transpose of the
cofactor matrix of A.

This leads to the generalization for finding the inverse of any matrix.

Theorem 9.11 The inverse of an n × n matrix A is the adjoint matrix of A divided by the
determinant of A:

A−1 = 1

|A|adj(A) (9.5)

The following theorems give some of the properties of the inverse matrix.

Theorem 9.12 (AB)−1 = B−1A−1 provided that A and B are of the same order and A−1 and
B−1 exist.

Proof

To show that this is true, we simply have to note that

(AB)−1AB = B−1A−1AB = B−1IB = I

It is also worth noting that this property of inverses is similar to the property of
taking the transpose of a product matrix.

Theorem 9.13 The inverse of an inverse matrix reproduces the original matrix

(A−1)−1 = A
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Thus, by the definition of an inverse,

(A−1)(A−1)−1 = I

AA−1(A−1)−1 = A

(A−1)−1 = A

Theorem 9.14 The inverse of the transpose equals the transpose of the inverse

(AT )−1 = (A−1)T

We have AA−1 = I , take the transpose (A−1)T AT = I , and postmultiply by
(AT )−1 both sides (A−1)T AT (AT )−1 = (AT )−1. Thus

(A−1)T = (AT )−1

Theorem 9.15 The determinant of the inverse matrix is 1 over the determinant of the original
matrix, |A−1| = 1/|A|.

This property follows from theorem 9.8 of determinants where |AB| = |A||B|.
This can be seen from the fact that

A−1A = I

Then taking determinants on both sides yields

|A||A−1| = |I |

But, since |I | = 1, we have that

|A||A−1| = 1

|A−1| = 1

|A|

(Remember that a determinant is a scalar, not a matrix.)

Theorem 9.16 The inverse of a diagonal matrix A, with elements aii, i = 1, . . . n on the main
diagonal is also a diagonal matrix with diagonal elements 1/aii .
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In other words, if A is

A =

⎡
⎢⎣

a11

. . .

ann

⎤
⎥⎦

then A−1 is

A−1 =

⎡
⎢⎣

1/a11

. . .

1/ann

⎤
⎥⎦

We can easily verify that A−1A = I in that case.

E X E R C I S E S

1. Obtain the inverses of the following matrices by the cofactor method:

(a)

⎡
⎣1 2 3

0 1 2
0 0 1

⎤
⎦ (b)

⎡
⎣ 1 2 −1

0 1 0
−5 2 3

⎤
⎦ (c)

⎡
⎣3 0 0

0 −1 0
0 0 3

⎤
⎦

2. Find the inverses of the following matrices:

(a)

⎡
⎣1 2 −1

0 −1 2
0 1 0

⎤
⎦ (b)

⎡
⎣3 0 1

0 2 1
1 2 0

⎤
⎦

3. Suppose that a firm produces three outputs y1, y2, and y3, with three inputs
z1, z2, and z3. The input-requirements matrix is given by A below:

A =
⎡
⎣1 0 5

1 1 0
3 2 6

⎤
⎦

If the firm wants to produce 5 units of y1, 5 units of y2, and 10 units of y3,
how much of z1, z2, and z3 will it require?

4. Compute |A| in as few steps as possible:

A =

⎡
⎢⎢⎣

1 −3 1 −2
2 −5 −1 −2
0 −4 5 1
−3 10 −6 8

⎤
⎥⎥⎦
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5. Find the determinants of the following matrices:

(a) A =
⎡
⎣ 1 5 −6
−1 −4 4
−2 −7 9

⎤
⎦

(b) B =

⎡
⎢⎢⎣

1 3 0 2
−2 −5 7 4

3 5 2 1
−1 0 −9 −5

⎤
⎥⎥⎦

(c) C =

⎡
⎢⎢⎣

1 −1 −3 0
0 1 0 4
−1 2 8 5
−1 −1 −2 3

⎤
⎥⎥⎦

6. Show that (ABC)−1 = C−1B−1A−1.

9.4 Cramer’s Rule
In this section we present Cramer’s rule, a method for solving for n unknown
variables in a system of n equations that is an alternative to the inverse-matrix
method. The system of equations may be written as

Ax = b (9.6)

where A is a square matrix of order n that has an inverse A−1, x is an array of order
n×1 of n unknowns, and b is an array of order n×1 of known elements. Premul-
tiplying both sides of equation (9.3) by A−1 yields the solution for x, given by

x = A−1b

In other words, to solve for the n unknowns, we have to obtain the inverse A−1,
which is given by

A−1 = 1

|A|

⎡
⎢⎣

C11 C21 · · · Cn1
...

...
. . .

...

C1n C2n · · · Cnn

⎤
⎥⎦

where Cij , i= 1, . . . n, j = 1, . . . n are the relevant cofactors. Therefore we obtain
as the solution for x:⎡

⎢⎣
x1
...

xn

⎤
⎥⎦ = 1

|A|

⎡
⎢⎣

C11 C21 · · · Cn1
...

...
. . .

...

C1n C2n · · · Cnn

⎤
⎥⎦
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦
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From the expression above the solution for the first unknown, x1, is seen to be

x1 = 1

|A| (b1C11 + b2C21 + · · · + bnCn1)

However, the expression in parentheses is nothing but the evaluation of the de-
terminant of a matrix derived from A by replacing its first column by the column
vector b. More precisely

(b1C11 + b2C21 + · · · + bnCn1) =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n

b2 a22 · · · a2n

...
...

. . .
...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣
Similarly, for x2, the solution is obtained by evaluating the determinant of the ma-
trix A where its second column has been replaced by b. Then x2 is simply the ratio
of the determinant of A with its second column replaced by b, to the determinant
of A. In fact, xj , the j th unknown, is calculated as the ratio of the determinant of
A with its j th column replaced by b, to the determinant of A.

Example 9.16 Solve the system for the unknowns x1, x2, and x3, using Cramer’s rule:

2x1 + 4x2 − x3 = 15

x1 − 3x2 + 2x3 = −5

6x1 + 5x2 + x3 = 28

Solution

We rewrite the system above in the form of equation (9.6) as Ax = b, where

A =
⎡
⎣2 4 −1

1 −3 2
6 5 1

⎤
⎦ , x =

⎡
⎣x1

x2

x3

⎤
⎦ , b =

⎡
⎣ 15
−5
28

⎤
⎦

The solution for x1 is given by x1 = |A1|/|A|, where A1 is the matrix A with its
first column replaced by b:

A1 =
⎡
⎣ 15 4 −1
−5 −3 2
28 5 1

⎤
⎦
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We first obtain |A|. This is given by the cofactor expansion method along the first
column as

|A| = 2

∣∣∣∣−3 2
5 1

∣∣∣∣− 1

∣∣∣∣4 −1
5 1

∣∣∣∣+ 6

∣∣∣∣ 4 −1
−3 2

∣∣∣∣
= 2(−13)− 9+ 6(5) = −5

Then we obtain the determinant of A1 by expanding again along the first column
of A1:

|A1| = 15

∣∣∣∣−3 2
5 1

∣∣∣∣+ 5

∣∣∣∣4 −1
5 1

∣∣∣∣+ 28

∣∣∣∣ 4 −1
−3 2

∣∣∣∣
= 15(−13)+ 5(9)+ 28(5) = −10

Therefore

x1 = |A1|
|A| =

−10

(−5)
= 2

Similarly, for x2, we have to evaluate the ratio of |A2|/|A|, where A2 is A

with its second column replaced by b:

A2 =
⎡
⎣2 15 −1

1 −5 2
6 28 1

⎤
⎦

The determinant of A2 is given by

|A2| = −15

∣∣∣∣1 2
6 1

∣∣∣∣− 5

∣∣∣∣2 −1
6 1

∣∣∣∣− 28

∣∣∣∣2 −1
1 2

∣∣∣∣
= −15(−11)− 5(8)− 28(5) = −15

and

x2 = |A2|
|A| =

−15

(−5)
= 3

Finally, x3 = |A3|/|A|, where A3 is

A3 =
⎡
⎣2 4 15

1 −3 −5
6 5 28

⎤
⎦
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The determinant |A3| is found as

|A3| = 15

∣∣∣∣1 −3
6 5

∣∣∣∣+ 5

∣∣∣∣2 4
6 5

∣∣∣∣+ 28

∣∣∣∣2 4
1 −3

∣∣∣∣
= 15(23)+ 5(−14)+ 28(−10) = −5

Therefore

x3 = |A3|
|A| =

−5

(−5)
= 1

The solutions for the unknowns x1, x2, and x3 are given by⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2

3
1

⎤
⎦

The IS-LM Model Again

Let us look at the following IS-LM model, first considered in chapter 7. The goods
market is described by

C = a + b(1− t)Y

I = e − lR

G = Ḡ

The money market is described by

L = kY − hR

M = M̄

The economy in equilibrium is then characterized by

Y = C + I + Ḡ

C = a + b(1− t)Y

I = e − lR

M̄ = kY − hR

There are four endogenous variables in the system, Y,C, I , and R and four exoge-
nous variables, Ḡ, a, e, and M̄ . The system can be written in the form

Ax = b
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where A is a 4 × 4 matrix of parameters, x is a 4 × 1 vector of the endogenous
variables, and b is a vector of constants and exogenous variables.

Suppose that we are interested in determining R. We will do that by Cramer’s
rule. The system is given by

⎡
⎢⎢⎣

1 −1 −1 0
−b(1− t) 1 0 0

0 0 1 l

k 0 0 −h

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Y

C

I

R

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ḡ

a

e

M̄

⎤
⎥⎥⎦

Solving for R yields R = |A4|/|A|, where A4 is obtained by replacing the fourth
column of A by b:

A4 =

⎡
⎢⎢⎣

1 −1 −1 Ḡ

−b(1− t) 1 0 a

0 0 1 e

k 0 0 M̄

⎤
⎥⎥⎦

We obtain |A| by expanding along the third row of A:

|A| = 1

∣∣∣∣∣∣
1 −1 0

−b(1− t) 1 0
k 0 −h

∣∣∣∣∣∣− l

∣∣∣∣∣∣
1 −1 −1

−b(1− t) 1 0
k 0 0

∣∣∣∣∣∣
= −h

∣∣∣∣ 1 −1
−b(1− t) 1

∣∣∣∣− l

(
−1

∣∣∣∣−b(1− t) 1
k 0

∣∣∣∣
)

= −h[1− b(1− t)]− lk

Then |A4| is obtained by expanding along the third row of A4:

|A4| = 1

∣∣∣∣∣∣∣
1 −1 Ḡ

−b(1− t) 1 a

k 0 M̄

∣∣∣∣∣∣∣− e

∣∣∣∣∣∣
1 −1 −1

−b(1− t) 1 0
k 0 0

∣∣∣∣∣∣
= k

∣∣∣∣−1 Ḡ

1 a

∣∣∣∣+ M̄

∣∣∣∣ 1 −1
−b(1− t) 1

∣∣∣∣− e

(
k

∣∣∣∣−1 −1
1 0

∣∣∣∣
)

= −k(a + Ḡ)+ M̄ [1− b(1− t)]− ke

Therefore R is given by

R = k(a + e + Ḡ)− M̄ [1− b(1− t)]

h[1− b(1− t)]+ lk
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This solution for R is the reduced-form equation for R. (Compare your answer to
question 4 in the exercises to section 7.1.) It expresses the endogenous variable R

as a function of exogenous variables and parameters only.

Example 9.17 Consider the following closed economy IS-LM model:

C = 15+ 0.8(Y − T )

T =−25+ 0.25Y

I = 65− R

G = Ḡ

L = 5Y − 50R

M = 1,500

Solve for the equilibrium level of income in terms of government spending, Ḡ. At
what level of public spending does the government balance its budget?

Solution

The IS curve is found from Y = C + I + Ḡ:

0.4Y + R = Ḡ + 100

and the LM curve from L = M:

Y − 10R = 300

These can be written in the form

[
0.4 1

1 −10

][
Y

R

]
=

[
Ḡ + 100

300

]

Now, |A| = 0.4(−10)− 1(1) = −5 and to find Y we need |A1| which is∣∣∣∣ Ḡ + 100 1
300 −10

∣∣∣∣ = (Ḡ + 100)(−10)− 300(1) = −10Ḡ − 1,300

and so

Y = −10Ḡ − 1,300

−5
= 2Ḡ + 260
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Income is just a simple linear function of government spending. In this case the gov-
ernment expenditure multiplier is 2—each dollar increase in government spending
increases income by 2 dollars. Tax revenue is

T = −25+ 0.25Y

= −25+ 0.25[2Ḡ + 260]

= 40+ 0.5Ḡ

This tells us that, while an increase in Ḡ generates more income (through the
multiplier), each dollar increase in government spending only generates an extra
50 cents in tax revenue. The government deficit is Ḡ−T , and the budget is balanced
when this is zero, or when Ḡ = T . This implies that

Ḡ = 40+ 0.5Ḡ ⇒ Ḡ = 80

The “Open” Leontief Input-Output Model

This model looks at the economy as a number of interrelated industrial sectors. The
industries are interrelated because an industry’s output, in general, is used as an
input into some other industries’ production processes as well as possibly finding
its way into final demand by consumers. Therefore, in general, each industry is
potentially the producer of an intermediate good that may also be used in final
consumption. The problem is to find the production level for each industry that is
just sufficient to supply the demands from industry and consumers alike.

To model such a system, we start by expressing all outputs and demands in
money terms. Since prices are assumed to be fixed, we can always recover the
implied physical quantities by dividing through by the appropriate price per unit.
There are assumed to be n goods produced by n industries, with the money value
of output of the ith industry given by xi . The production vector for the economy
in money terms is therefore given by

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ , x ≥ 0

The final demand by consumers in money terms for the output of industry i is fixed
at di , and so the final demand vector as a whole is

d =

⎡
⎢⎢⎢⎣

d1

d2
...

dn

⎤
⎥⎥⎥⎦ , d ≥ 0
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Finally we need to specify the input requirements of each industry. Denote by aij

the amount of the money value of the output of industry i needed to produce one
unit of output in industry j . This is a fixed technological requirement and the full,
economywide array of input requirements is given by

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

Note that this is necessarily a square matrix, though, of course, some of the aij

may be zero, reflecting the fact that industry j may not use any of the output of
industry i as input. We refer to A as the matrix of production coefficients. Notice
also that aii may be positive for some or all industries, meaning that some (or all)
industries require some of their own output to be used in their production process.

The total money value of the output of industry i required by all industries is

n∑
j=1

aij xj = ai1x1 + ai2x2 + · · · + ainxn

where aij xj is the money value of the output of industry i required to produce the
xj units of output of industry j . In total, the demands made on the output of all
industries can be expressed as a column array

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...

an1x1 + an2x2 + · · · + annxn

⎤
⎥⎥⎥⎦

which is simply

Ax =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

Each row here is the total demand on the output of industry i made by the entire
production sector. Of course, in general there will also be a final demand from the
consumption sector for the output of industry i, di . This economy demand for the
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output of industry i in the economy as a whole is

n∑
j=1

aij xj + di

and for supply to equal demand in sector i, we must have

xi =
n∑

j=1

aij xj + di

If all demands in the economy are to be supplied, this must hold for all n industries,
and so

x = Ax + d (9.7)

We can now pose the problem set by this model. Given the matrix of production
coefficients A (summarizing the input requirements of industry) and a final demand
vector d, what is the vector of outputs x, that will just satisfy equation (9.7)?

We can rearrange equation (9.7) to give

x − Ax = d

or

(I − A)x = d

and so, if (I − A)−1 exists, we may write the solution as

x = (I − A)−1d

Theorem 9.17 If (I − A)−1 has only nonnegative entries, then for any d ≥ 0, there is a unique
nonnegative solution for x.

Example 9.18 A Three-Sector Input-Output Model

We will use the input requirements matrix that was first presented in example 8.3.
In this case the economy consists of three industries: an agricultural industry, a
mining industry, and a manufacturing industry. To produce one unit of agricultural



338 CHAPTER 9 DETERMINANTS AND THE INVERSE MATRIX

output, the agricultural sector requires $0.3 of its own output, $0.2 of mining
output and $0.4 of manufacturing output. To produce one unit of mining output, the
mining sector requires $0.5 of agricultural output, $0.2 of its own output, and $0.2
of manufacturing output. To produce one unit of manufacturing output requires
$0.3 of agricultural output, $0.3 of mining output, and $0.3 of its own output.
Final demands by consumers amount to $20,000, $10,000, and $40,000 for goods
1, 2, and 3, respectively. Find the equilibrium quantities of output for the three
sectors.

We have

A =
⎡
⎣0.3 0.5 0.3

0.2 0.2 0.3
0.4 0.2 0.3

⎤
⎦ , d =

⎡
⎣20,000

10,000
40,000

⎤
⎦

First, construct (I − A):

I − A =
⎡
⎣ 0.7 −0.5 −0.3
−0.2 0.8 −0.3
−0.4 −0.2 0.7

⎤
⎦

Now, find the inverse of the above by the usual methods described earlier:

(I − A)−1 =
⎡
⎣4.4643 3.6607 3.4821

2.3214 3.3036 2.4107
3.2143 3.0357 4.1071

⎤
⎦

So

x =
⎡
⎣4.4643 3.6607 3.4821

2.3214 3.3036 2.4107
3.2143 3.0357 4.1071

⎤
⎦
⎡
⎣20,000

10,000
40,000

⎤
⎦

=
⎡
⎣89,286+ 36,607+ 139,284

46,424+ 33,036+ 96,428
64,286+ 30,357+ 164,284

⎤
⎦

=
⎡
⎣265,177

175,892
258,927

⎤
⎦

The agricultural industry should produce $265,177 worth of output, the mining
industry $175,892 worth of output, and the manufacturing industry $258,927 worth
of output.
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Example 9.19 A “Closed” Leontief Model

Take the economy of example 9.18. Suppose that there are two primary inputs (i.e.,
inputs that cannot be increased in the short run), labor and capital. The vectors

e =
⎡
⎣2.2

3.0
0.8

⎤
⎦ , k =

⎡
⎣1.5

2.6
3.8

⎤
⎦

give the amounts of labor and capital required to produce, respectively, one unit
of agricultural, mining, and manufacturing output.

(i) Find the primary input requirements of the economy when it wishes to produce
the final demand vector

d =
⎡
⎣20,000

10,000
40,000

⎤
⎦

(ii) Is this final demand vector feasible for this economy if it has available a
maximum of 1,200,000 units of labor and 1,700,000 units of capital?

(iii) Find the set of final demand vectors that are feasible for the economy given
the primary input availability in (ii).

Solution

To answer (i), we simply note that to produce the given demand vector, we require
a total output vector

x = (I − A)−1d =
⎡
⎣265,177

175,892
258,927

⎤
⎦

as was computed in example 9.18. It follows that the total labor requirement of
the economy is

LD = eT x = [2.2 3.0 0.8]

⎡
⎣265,177

175,892
258,927

⎤
⎦ = 1,318,207

Similarly the total capital requirement is

KD = kT x = [1.5 2.6 3.8]

⎡
⎣265,177

175,892
258,927

⎤
⎦ = 1,839,007
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Then, to answer (ii), we note that if the economy has 1,200,000 units of labor and
1,700,000 units of capital, the given final demand vector is not feasible, since it
requires more labor and capital than are available to the economy.

We can answer (iii) by first expressing the problem algebraically. In general,
the required amount of labor is

LD = eT x = eT (I − A)−1d

and that of capital is

KD = kT x = kT (I − A)−1d

For a final demand vector to be feasible, we must have the following weak
inequalities simultaneously satisfied:

LD ≤ 1,200,000 or eT (I − A)−1d ≤ 1,200,000

KD ≤ 1,700,000 or kT (I − A)−1d ≤ 1,700,000

These inequalities then define the feasible set of demand vectors. To obtain more
insight into this, let us compute the 1× 3 vectors eT (I −A)−1 and kT (I −A)−1:

eT (I − A)−1 = [2.2 3.0 0.8]

⎡
⎣4.4643 3.6607 3.4821

2.3214 3.3036 2.4107
3.2143 3.0357 4.1071

⎤
⎦

= [19.3571 20.6499 18.1884]

kT (I − A)−1 = [1.5 2.6 3.8]

⎡
⎣4.4643 3.6607 3.4821

2.3214 3.3036 2.4107
3.2143 3.0357 4.1071

⎤
⎦

= [24.9464 23.1875 27.0980]

(Note that we have found the inverse matrix (I − A)−1 in example 9.18.)
This then allows us to write the feasibility constraints as

[19.3571 20.6499 18.1884]

⎡
⎣d1

d2

d3

⎤
⎦ ≤ 1,200,000

[24.9464 23.1875 27.0980]

⎡
⎣d1

d2

d3

⎤
⎦ ≤ 1,700,000
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or

19.3571d1 + 20.6499d2 + 18.1884d3 ≤ 1,200,000

24.9464d1 + 23.1875d2 + 27.0980d3 ≤ 1,700,000

If we take these constraints as equalities, each defines a plane in three dimensions,
which we graph in figure 9.2.

K2

d2

L2

K1L1

K3

L3

d3

d1
F

F

Figure 9.2 Feasibility constraints for example 9.19

The end-points of each plane are found in turn as the points (d1, 0, 0), (0, d2, 0),
and (0, 0, d3). Then, the feasible set of final demand vectors for this economy is
given by the set of points in the shaded area and along the portions of the planes
bounding it. We see that the point

⎡
⎣20,000

10,000
40,000

⎤
⎦

is not feasible, because it lies above the labor plane. Note finally that only the final
demand vectors along the segment FF at the intersection of the planes achieve
exactly full employment of both capital and labor in this economy.All other feasible
final demand vectors imply unemployment of at least one primary input.
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Equilibrium in n-Markets

Section 8.2 ended with a quite general matrix formulation of equilibrium in n

markets. We now have a method of solving such a system. Recall that equilibrium
requires that

α − a = (B − β)p

where α and a are n × 1 vectors of constants, p is an n × 1 vector of (equilib-
rium) prices, and B and β are n × n matrices of demand and supply parameters,
respectively.

In view of the definition of the inverse, the solution for the equilibrium vector
of prices is

p = (B − β)−1(α − a)

which gives a system of reduced-form equations for the prices. The following 3×3
example illustrates and shows how to solve for a particular price (rather than the
entire vector of prices) using Cramer’s rule.

Example 9.20 Consider the markets for coffee, tea, and sugar. These goods are related in demand,
since the first two are often substitutes for each other while the third is often
complementary with each of the other two goods. Ignoring any supply side links
(which are, in any case, unlikely), we have as an example:

qd
t = 100− 5pt + 3pc − ps

qs
t = −10+ 2pt

qd
c = 120− 8pc + 2pt − 2ps

qs
c = −20+ 5pc

qd
s = 300− 10pt − 5pc − ps

qs
s = 15ps

Setting these pairs of equations equal to each other and arranging in matrix form
gives the system for equilibrium prices:⎡

⎣110
140
300

⎤
⎦ =

⎡
⎣ 7 −3 1
−2 13 2
10 5 16

⎤
⎦
⎡
⎣ pt

pc

ps

⎤
⎦



9.4 CRAMER’S RULE 343

We can solve for any one price, say pc, using Cramer’s rule. The determinant of
the square matrix in this equation system is

7

∣∣∣∣13 2
5 16

∣∣∣∣− (−3)

∣∣∣∣−2 2
10 16

∣∣∣∣+ 1

∣∣∣∣−2 13
10 5

∣∣∣∣
where we have done a cofactor expansion along the first row. Solving gives

7(208− 10)+ 3(−32− 20)+ (−10− 130) = 1,090

Since we are solving for pc, we need |A2|, in the notation developed earlier, where

∣∣∣∣∣∣
7 110 1
−2 140 2
10 300 16

∣∣∣∣∣∣
Solving as before (i.e., expanding along the first row of A2) gives

7(2,240− 600)− 110(−32− 20)+ (−600− 1,400) = 15,200

and so pc = 15,200/1,090
.= 14.

In the following exercises, we ask you to solve for the entire vector of prices in
this last example using matrix inversion. It appears that selectively solving for
particular prices of interest using Cramer’s rule is computationally easier than
solving for the entire vector of equilibrium prices.

E X E R C I S E S

1. Use Cramer’s rule to compute the solution of the following system:

−2x1 + x2 = 7

−3x1 + x3 = −8

x2 + 2x3 = −3

2. Use Cramer’s rule to compute the solution of the following system:

2x1 + x2 + x3 = 3

−x1 + 2x3 = 7

3x1 + x2 + 3x3 = −3
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3. Solve the following system for the unknowns x1, x2, and x3:

2x1 + 4x2 − x3 = 3

x1 − 3x2 + 2x3 = −1

6x1 + 5x2 + x3 = 5

4. Find the equilibrium quantities of output for the three sectors of example 9.18
with the following new sets of data:

(a) A =
⎡
⎣0.4 0.2 0.3

0.2 0.2 0.3
0.3 0.5 0.3

⎤
⎦, d =

⎡
⎣40,000

10,000
20,000

⎤
⎦

(b) A =
⎡
⎣0.2 0.2 0.3

0.3 0.5 0.3
0.4 0.2 0.3

⎤
⎦, d =

⎡
⎣10,000

20,000
40,000

⎤
⎦

5. Using the IS-LM model of section 9.4, obtain the reduced-form equations for
Y and C.

6. Solve for the entire vector of equilibrium prices in example 9.20, using matrix
inversion.

C H A P T E R R E V I E W
Key Concepts adjoint matrix

cofactor
cofactor expansion
cofactor matrix
Cramer’s rule
determinant
inverse matrix

Leontief model
matrix of minors
minor
nonsingular matrix
singular matrix
triangular matrix

Review Questions 1. What is the scalar equivalent of the matrix operation of multiplication by the
inverse of a matrix?

2. What is the determinant of a matrix?

3. What are the main properties of determinants?

4. What is a cofactor matrix?

5. How is the adjoint matrix related to the cofactor matrix?
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6. If you had a system of 10 equations with 10 endogenous variables to be de-
termined, but you were only interested in the values of two of the variables,
would you solve the system by (a) matrix inversion (b) Cramer’s rule. Or, is it
difficult to choose between the methods? Explain.

Review Exercises 1. Does the following matrix have an inverse?

A =
⎡
⎣12 13 14

15 16 17
18 19 20

⎤
⎦

2. Verify that det A = det B + det C, where

A =
⎡
⎣a11 a12 u1 + v1

a21 a22 u2 + v2

a31 a32 u3 + v3

⎤
⎦ B =

⎡
⎣a11 a12 u1

a21 a22 u2

a31 a32 u3

⎤
⎦

C =
⎡
⎣a11 a12 v1

a21 a22 v2

a31 a32 v3

⎤
⎦

What do you conclude about the statement that in general for all matrices B

and C, det(B + C) = det B + det C?

3. Use the cofactor expansion method to compute |A|, where

A =
⎡
⎣1 5 0

2 4 −1
0 −2 0

⎤
⎦

4. Suppose that a firm produces three outputs, y1, y2, and y3, with three inputs,
z1, z2, and z3. The input-requirement matrix is given by

A =
⎡
⎣3 1 2

2 5 1
1 1 3

⎤
⎦

If the firm wants to produce 10 units of y1, 20 units of y2, and 10 units of y3,
how much of z1, z2, and z3 will it require?
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5. Use Cramer’s rule to compute the solutions to

2x1 + x2 = 3
−3x1 + x3 = −8

x2 + 2x3 = −2

6. Let A and B be square matrices. Show that even though AB may not be equal
to BA, it is always true that |AB| = |BA|.

7. Let A be a square matrix such that AT A = I . Show that |A| = ±1.

8. Let A and B be square matrices, with B invertible. Show that |BAB−1| = |A|.
9. Suppose that A is a square matrix such that |A3| = 0. Show that A is not

invertible.



Chapter 10 Some Advanced Topics in Linear
Algebra

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Statistical Distribution of Quadratic Forms
• The Classical Least-Squares Model: Example
• The Generalized Least-Squares Transformation: Example

In this chapter we consider three important advanced topics in matrix algebra:
vector spaces, eigenvalues, and quadratic forms. All play important roles in a
variety of contexts in economic theory and in econometrics. Vector spaces enable
us to talk about distance between points, and linear dependence between vectors.
They are therefore closely linked to the study of systems of linear equations of
chapter 7. Eigenvalues play an important role in determining the stability properties
of dynamic, linear systems and so this topic is of use in chapters 18, 20, 21, 23,
and 24. Quadratic forms have applications in econometrics, and to the study of
second-order derivatives in multivariate calculus discussed in chapter 11.

10.1 Vector Spaces
A vector can be thought of as a special kind of matrix, with n rows and just one
column (see definition 8.2). Thus we can write the vector v as

v =

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦

For obvious reasons, we refer to this as a column vector and its 1× n transpose

vT = [v1 v2 · · · vn]
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as a row vector. The rules for adding, subtracting, and multiplying vectors then
follow from those defined in chapter 8 for matrices in general. Thus addition
(subtraction) is defined for two vectors with the same dimension,

w ± v =

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦±

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1 ± v1

w2 ± v2
...

wn ± vn

⎤
⎥⎥⎥⎦

while the product of two vectors is now referred to as the inner product, denoted
w · v, and is defined for two vectors of the same dimension

w · v ≡ wT v = [w1 w2 · · · wn]

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦

=
n∑

i=1

wivi

Note that wT v = vT w. Example 8.7 goes through the steps involved in vector
addition (subtraction) and multiplication.

However, there is an alternative approach that begins with the idea of a vector,
defines the above operations without reference to matrices in general, and then goes
on to develop a number of important concepts concerning vectors. An important
aspect of this approach is the close link with coordinate geometry, which is harder
to achieve in the case of matrices in general. The link between vectors and matrices
is reestablished by regarding a matrix as a collection of vectors. In this section we
set out the main elements of this approach.

2

0 1 v1

v

(1, 2)

v2

Figure 10.1 Vector

[
1
2

]
Define a (real) vector as an array of (real) numbers and define the operations

of addition, subtraction, and multiplication as above. The link with geometry is
established by noting that we can associate with any two-component vector, v, a
point in R

2, with v1 for the x-coordinate and v2 the y-coordinate, as figure 10.1
illustrates for

v =
[

1
2

]
(10.1)

This vector is shown in figure 10.1. The vector is pictured as an arrow from the
origin to a point with coordinates given by the two elements of v. The first element
gives the coordinate on the horizontal axis and the second gives the coordinate on
the vertical axis.
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Using Pythagoras’s theorem, we can define the length of this vector as the
square root of the sum of squares of the coordinates, since the length of the vector
is the length of the hypotenuse of the triangle formed by connecting the end point
of the vector to the horizontal (or vertical) axis. So the length of the vector (10.1)
is ‖v‖ = √12 + 22. In general, for an n-dimensional vector, we have

D e f in i t i o n 10 . 1 The length of an n-dimensional vector v is

‖v‖ =
√

v2
1 + v2

2 + · · · + v2
n (10.2)

The length of a vector is also often called its Euclidean norm because the
concept of distance underlying ‖v‖ is an important element of Euclidean geometry.
Note that the length of the vector v may be defined equivalently as the square root
of the inner product of v with itself: ‖v‖ =

√
vT v.

Example 10.1 Find the length of

(i)

[
1
2

]
(ii)

⎡
⎣ 1

2
−2

⎤
⎦

Solution

For (i) we have ‖v‖ = √12 + 22 = √5.
For (ii) we have ‖w‖ =

√
12 + 22 + (−2)2 = √9 = 3.

We now look at the graphical interpretation of the operation of vector addition.
If we add to the vector (10.1) the vector

w =
[

3
1

]

we obtain

v + w =
[

1
2

]
+

[
3
1

]
=

[
4
3

]2

0 1 x

v

(4, 3)

(3, 1)

(1, 2)

v + w

w

y

Figure 10.2 Vector addition

Graphically, this is shown in figure 10.2. Diagrammatically, summing two vectors
involves constructing a parallelogram, and it is clear from this example that v+w
and w + v are equivalent operations.
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2

0 1 x

v

(2, –1)

(3, 1)

(1, 2)
w – v

w

y

2 3

1

–1

Figure 10.3 Vector subtraction

Vector subtraction is similarly illustrated by

w − v =
[

3
1

]
−

[
1
2

]
=

[
2
−1

]

Graphically, this is shown in figure 10.3. The resulting vector is the one connecting
the two end points of the original vectors.

Figure 10.3 also illustrates another feature of vectors. Since vectors are defined
by their length and direction, vectors that are parallel and of the same length are
equivalent. Thus the vector obtained by subtracting v from w is equivalent to the
dotted vector drawn from the origin to the point (2,−1) in figure 10.3.

Scalar multiplication of a vector is done by multiplying all the entries of the
vector by the scalar. If the scalar is 2, for instance, we have

2v = 2

[
1
2

]
=

[
2
4

]

Graphically scalar multiplication changes the length of a vector but not its direction.
If the scalar is a fraction, then the resulting vector is shorter than the original. If the
scalar is greater than 1, the resulting vector is an extended version of the original.
Figure 10.4 illustrates. Vector v is multiplied by a fraction k to obtain vector kv,

0

(a)  λ > 1

v = (v , v )

v2

v1

1 2

λv = (λv , λv )1 2

0

(b)  0 < λ < 1

v = (v , v )

v2

v1

1 2

λv = (λv , λv )1 2

0

(c)  –1 < λ < 0

v = (v , v )
v2

v1

1 2

λv = (λv , λv )1 2

0

(d)  λ < –1

v = (v , v )

v2

v1

1 2

λv = (λv , λv )1 2

Figure 10.4 Scalar multiplication
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while vector u is multiplied by λ > 1 to obtain λu. If a vector is multiplied by a
negative scalar, then the direction of the original vector is reversed and its length
changes according to the absolute value of the scalar. Notice that the vectors v and
−v have the same length but point in opposite directions.

Combining the operation of scalar multiplication and vector addition allows
the representation of any vector as a linear combination of vectors v and w. If u
represents such an arbitrary vector, we write

u = λ1v + λ2w (10.3)

where λ1 and λ2 are scalars.

Example 10.2 Find the scalars λ1 and λ2 that are attached to

v =
[

1
2

]
and w =

[
3
1

]

to yield

u =
[

1
0

]

0 x1

v
x2

w

u

w2 5

v1 5

Figure 10.5 Linear combination
of two vectors in example 10.2

Using equation (10.3), we are looking for λ1 and λ2 satisfying

[
1
0

]
= λ1

[
1
2

]
+ λ2

[
3
1

]

or carrying out the scalar multiplication and vector addition

λ1

[
1
2

]
+ λ2

[
3
1

]
=

[
λ1 + 3λ2

2λ1 + λ2

]
=

[
1
0

]

From the second equation λ2 = −2λ1, and substitution back into the first equation
yields

3(−2λ1)+ λ1 = 1 ⇒ λ1 = −1

5
and λ2 = 2

5

This is illustrated in figure 10.5.
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Example 10.3 Find λ1 and λ2 that are attached to

v =
[

1
2

]
and w =

[
3
1

]

to give

u =
[

3
3

]

Solution

Again, using equation (10.3), we have

[
3
3

]
= λ1

[
1
2

]
+ λ2

[
3
1

]

and so

λ1

[
1
2

]
+ λ2

[
3
1

]
=

[
λ1 + 3λ2

2λ1 + λ2

]
=

[
3
3

]

From the first equation we obtain λ1 = 3− 3λ2, and substitution into the second
equation yields

2(3− 3λ2)+ λ2 = 3 ⇒ λ2 = 3

5
and λ1 = 6

5

This is illustrated in figure 10.6.
0

v

w

u

w3 5

v6 5

x1

x2

Figure 10.6 Linear combination
of two vectors in example 10.3

Given the relationship between vectors and geometry, two vectors of different
lengths may point in different directions or in the same direction. Consider first
those that point in the same direction. These vectors must simply be scalar multiples
of each other. That is, the direction of the vector v must be the same as the direction
of the vector λv for any λ > 0. This family of vectors is said to be linearly
dependent:

v =
[

1
2

]
and w =

[
3
1

]
to give u =

[
1
0

]

that is, u = (−1/5)v + (2/5)w. The requirement that vectors point in different
directions is known as linear independence.
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D e f in i t i o n 10 . 2 Two vectors in R
2, v and w, are linearly independent if the scalars λ1 and λ2

satisfying

λ1v + λ2w = 0

are zero. Here 0 is the null vector.

If the λis are nonzero, then the pair of vectors v and w would point in the same
direction and they would be linearly dependent. To see this, note that a nontrivial
solution to the equation λ1v + λ2w = 0 would imply that

v = −λ2

λ1
w

which states that v is a scalar multiple of w.

Example 10.4 Establish whether the following vectors in R
2 are linearly independent:

(i) v =
[

2
1

]
and w =

[
4
2

]

(ii) v =
[

2
1

]
and w =

[
1
2

]

Solution

In case (i),

λ1

[
2
1

]
+ λ2

[
4
2

]
=

[
0
0

]
⇒ λ1 = −2 and λ2 = 1

Therefore v and w are linearly dependent.
In case (ii),

λ1

[
2
1

]
+ λ2

[
1
2

]
=

[
0
0

]

The only solution to this equation is λ1 = λ2 = 0, and the vectors are linearly
independent.

The idea of linear independence generalizes, as summarized in the following:
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Theorem 10.1 Let V be a set of vectors in R
m,

V = {v1, v2, . . . , vn}

Then, if n > m, the vectors in V are linearly dependent and

λ1v1 + λ2v2 + · · · + λnv = 0

has only the trivial solution.

Proof

If we write out this homogeneous system, it looks similar to the system in equa-
tion (7.15) in chapter 7 with the λi as the unknowns. Theorem 10.1 then follows
directly from theorem 7.7.

Now consider two linearly independent vectors in R
2, v and w. If we let u be any

other vector in R
2, then we can always find two numbers λ1 and λ2 such that

λ1v + λ2w = u

In other words

Theorem 10.2 Any vector in R
2 can be expressed as a linear combination of two independent

vectors in R
2.

Proof

For given, arbitrary vectors v, u, and w in R
2, we have a system of two equations

in the two unknowns λ1 and λ2. That is,

λ1v + λ2w = u

λ1

[
v1

v2

]
+ λ2

[
w1

w2

]
=

[
u1

u2

]

λ1v1 + λ2w1 = u1

λ1v2 + λ2w2 = u2
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We know from chapter 7 that this system always has a solution for the λi given by

λ1 = u1w2 − w1u2

w2v1 − w1v2
, λ2 = u2v1 − v2u1

w2v1 − w1v2

We now build on this idea by introducing the idea of a vector space.

Basis for a Vector Space

We can identify the set of all two-component vectors with R
2, the set of all three-

component vectors with R
3, and so on. We also note that (i) if v and w are vectors

in R
n, then v+ u is a vector in R

n and (ii) if v is a vector in R
n, then λv is a vector in

R
n for any scalar λ. We then say that R

n is closed under the operations of addition
and scalar multiplication. A set of mathematical objects for which addition and
scalar multiplication can be defined and which is closed under these operations is
called a vector space. Then, R

2, R
3, and R

n are clearly vector spaces. It would be
wrong to conclude that these are the only vector spaces, although this is perhaps
encouraged by the terminology. For example, the set of real-valued, continuous
functions defined on the domain [0, 1] is a vector space, since the sum of two
such functions is a continuous function on this domain, as is the product of any such
function and a scalar.

Example 10.5 Let

V =
{[

x

y

]
such that xy ≥ 0

}

denote the union of the first and third quadrants in the xy-plane.

(i) If u is in V and λ is any scalar, is λu in V?
(ii) Find specific vectors u and v in V such that u + v is not in V . This would

imply that V is not a vector space.

Solution

(i) We can choose

u =
[−1
−2

]
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and λ = −1. Then

λu =
[

1
2

]

which belongs to V .
(ii) We choose

u =
[−1
−2

]
and v =

[
3
1

]

both belonging to V . However

u+ v =
[−1
−2

]
+

[
3
1

]
=

[
2
−1

]

does not belong to V . Hence V is not a vector space.

We have just seen that every vector in R
2 can be derived as a linear combination of

two linearly independent vectors in R
2. Any such pair of linearly independent vec-

tors is then said to form a basis for R
2.

D e f in i t i o n 10 . 3 A basis is a set of linearly independent vectors that generates all vectors in the
space.

In the case of R
2, the basis consists of any two linearly independent vectors.

Example 10.6 Consider vectors

e1 =
[

1
0

]
and e2 =

[
0
1

]

for a basis of R
2. Show that the following vectors can be expressed as linear

combinations of e1 and e2:

(i) v =
[

2
1

]
(ii) w =

[
1
2

]
(iii) y =

[−3
1

]
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Solution [
2
1

]
= 2

[
1
0

]
+

[
0
1

]
[

1
2

]
=

[
1
0

]
+ 2

[
0
1

]
[−3

1

]
= −3

[
1
0

]
+

[
0
1

]

Vector Orthogonality

We have seen how linearly independent vectors point in different directions. Now
consider the vectors in figure 10.2 given by

v =
[

3
1

]
, w =

[
1
2

]

Let A denote the angle between v and the horizontal axis, and let B denote the
angle between w and the horizontal axis. The angle between the two vectors is

given by φ = B − A. Since the lengths of v and w are given by
√

v2
1 + v2

2 and√
w2

1 + w2
2, we can use the definition of cos and sin to obtain

cos A = v1

‖v‖ , cos B = w1

‖w‖ , sin A = v2

‖v‖ , sin B = w2

‖w‖

A trigonometric equality tells us that

cos(B − A) = cos A cos B + sin A sin B

and so

cos(B − A) = cos φ = v1w1

‖v‖ ‖w‖ +
v2w2

‖v‖ ‖w‖

= vT w
‖v‖ ‖w‖

In the case that φ = 0◦, then v and w are linearly dependent, so they can be written
as v = λw. In that case

vT w = λwT w = λ‖w‖2
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Also ‖v‖ = λ‖w‖. Hence

cos φ = λ‖w‖2

λ‖w‖2
= 1

If v and w are at right angles to each other so that φ = 90◦, then cos φ = 0.
Conversely, when vT w = 0, φ = 90◦.

D e f in i t i o n 10 . 4 Two vectors, v and w, are orthogonal if and only if

vT w = 0 (10.4)

Vectors e1 and e2 in example 10.6 constitute a basis that is known as an
orthonormal basis, since it consists of vectors that are orthogonal to each other
and are also of unit length. In the case of the vector space of all three-dimensional,
real-valued vectors, R

3, we can denote the orthonormal basis as

e1 =
⎡
⎣1

0
0

⎤
⎦ , e2 =

⎡
⎣0

1
0

⎤
⎦ , e3 =

⎡
⎣0

0
1

⎤
⎦

Any vector, v, in R
3 can be expressed as a linear combination of e1, e2, and e3 with

coordinates given by the entries of v.

Example 10.7 Express the following vector in terms of the basis vectors e1, e2, and e3:

v =
⎡
⎣ 3
−1

0

⎤
⎦

Solution ⎡
⎣ 3
−1

0

⎤
⎦ = 3

⎡
⎣1

0
0

⎤
⎦− 1

⎡
⎣0

1
0

⎤
⎦+ 0

⎡
⎣0

0
1

⎤
⎦

The following application combines the operation of vector subtraction and the
idea of vector orthogonality.
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The Consumer’s Budget Line

In the standard theory of consumer behavior, the consumer faces a budget line of
the form

p1x1 + p2x2 = m

where the pi are the (exogenous) prices of the two goods, the xi are the quantities
consumed, and m is the given income available to be spent on the two goods. Find
a vector representation of the budget line and show that price vector is orthogonal
to the budget line.

A

x1

v

x2

p

B

Figure 10.7 Orthogonality
between budget line and price vector

Solution

Figure 10.7 helps with the construction of the answer to this question. The vector

associated with point A is

[
0

m/p2

]
, while the vector associated with point B is[

m/p1

0

]
. From vector subtraction we know that the vector connecting point A with

point B is

[
0

m/p2

]
−

[
m/p1

0

]
=

[−m/p1

m/p2

]
≡ v

This is the vector representation of the budget line AB. The price vector is simply

p =
[
p1

p2

]
, and so, applying definition 10.4, we construct pT v to find

pT v = [p1 p2]
[−m/p1

m/p2

]
= −m+m = 0

Hence the price vector is orthogonal to the budget line.

The generalization to the n-dimensional space R
n is straightforward. In this

case, R
n is the collection of all n-tuples which is closed under the operations of

vector addition and scalar multiplication. The basis for R
n consists of the maximum

set of linearly independent vectors that generate other vectors in the same space.
This number in the case of R

n is n. When the number of the basis vectors is finite,
then the vector space is said to be a finite-dimensional space.

D e f in i t i o n 10 . 5 The number of vectors that belong to the basis of a finite vector space is known as
the dimension of the space.
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For instance, in R
3 the dimension is 3 since the basis consists of three linearly

independent vectors. In R
m the dimension is m, since the basis consists of m

linearly independent vectors.

Rank of a Matrix

The concept of linear independence or dependence of vectors is closely linked to
the concept of nonsingularity or singularity of matrices discussed in chapter 9. We
now investigate further the nonsingularity (singularity) properties of matrices by
introducing the concept of the rank of a matrix.

Consider any arbitrary matrix of order m× n. It consists of n column vectors
with m elements each, and m row vectors with n elements each. Therefore the n

column, m-element vectors belong to R
m, whereas the m row n-element vectors

belong to R
n. Denote by c the maximum number of linearly independent columns

of A so that c ≤ n. If c is strictly less than n, then there will be more than one
subset of the n column vectors that consists of linearly independent vectors. For
example, if n = 5, then it may be that columns 1, 2, and 3 form a linearly inde-
pendent subset, but so may columns 1, 4, and 5. However, all five column vectors
taken together will be linearly dependent. In this example, c = 3. If we take the
set of c linearly independent columns and discard the remaining n − c columns,
we can form a matrix B with c linearly independent columns of dimension m× c.
We proceed by denoting by r the number of linearly independent rows of A. This
number r must also be the number of linearly independent rows of B. Since each
row of B has c elements it follows that

r ≤ c (10.5)

since any vector in R
c may be expressed as a linear combination of c linearly

independent vectors that form a basis.
Reversing the argument, we can form a matrix C of order r × n by retaining

the set of r linearly independent rows and discarding the remaining m− r . Matrix
C will be of order r × n. The maximum number of linearly independent columns
of A, namely c, will be the same as that of C. It follows that since C has r-element
column vectors,

c ≤ r (10.6)

Using equations (10.5) and (10.6), we see that r = c. Hence, for the m× n matrix
A, the maximum number of linearly independent rows is equal to the number of
linearly independent columns.

D e f in i t i o n 10 . 6 The maximum number of linearly independent columns equals the number of
linearly independent rows. This number is known as the rank of the matrix A.
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In the case where A is a square matrix of order n, if the rank of A is n, then the
matrix is nonsingular.

D e f in i t i o n 10 . 7 A n× n matrix A is nonsingular if and only if

(i) det(A) �= 0
(ii) A−1 exists

(iii) rank(A) = n

This definition makes clear that for a matrix to be invertible it must have linearly
independent rows and columns.

Example 10.8 Find the rank of the matrix

A =
⎡
⎣1 0 0 2

1 1 0 2
2 0 1 4

⎤
⎦

Solution

Columns 1 and 4 are linearly dependent, since column 1 is column 4 multiplied by
2. Columns 1, 2, and 3, and columns 2, 3, and 4 constitute two different sets of three
linearly independent columns of A. Therefore c = 3. Also the rows of A constitute
a set of linearly independent vectors since there are no nonzero λs such that

λ1

⎡
⎢⎢⎣

1
0
0
2

⎤
⎥⎥⎦

T

+ λ2

⎡
⎢⎢⎣

1
1
0
2

⎤
⎥⎥⎦

T

+ λ3

⎡
⎢⎢⎣

1
0
1
4

⎤
⎥⎥⎦

T

=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

Hence r = 3. Since c = r = 3, the rank of A is 3.

E X E R C I S E S

1. Find the lengths of the following vectors:

y =
⎡
⎣ 1

2
−1

⎤
⎦ , w =

⎡
⎣−1
−2

1

⎤
⎦ , z =

⎡
⎣ 0

0
−1

⎤
⎦ , v =

⎡
⎣1/3

1/3
1/3

⎤
⎦
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2. Find the inner product of the following pairs of vectors:

(a) y =
⎡
⎣0

0
1

⎤
⎦ , w =

⎡
⎣1

0
0

⎤
⎦

(b) y =
⎡
⎣−1

0
1

⎤
⎦ , w =

⎡
⎣0

0
1

⎤
⎦

(c) y =
⎡
⎣1/2

0
1/2

⎤
⎦ , w =

⎡
⎣1

0
1

⎤
⎦

3. Show that the following sets of vectors are linearly independent:

(a) e1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , e2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ , e3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , e4 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

(b) v1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

0
2
0
0

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

0
0
1
4

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

0
0
0
4

⎤
⎥⎥⎦

4. Express the following vectors in terms of the basis vectors given by sets (a)
and (b) in question 3.

(a) y =

⎡
⎢⎢⎣

3
1
2
5

⎤
⎥⎥⎦ (b) z =

⎡
⎢⎢⎣
−1

2
0
1

⎤
⎥⎥⎦

5. Check whether the following pairs of vectors are orthogonal:

(a) y =
⎡
⎣ 1

0
−1

⎤
⎦ , w =

⎡
⎣1

0
1

⎤
⎦

(b) y =
⎡
⎣ 0

0
−1

⎤
⎦ , w =

⎡
⎣3

1
0

⎤
⎦

(c) y =
[

1
2

]
, w =

[−2
1

]
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6. Express the following vectors in terms of the orthonormal basis {e1, e2, e3}:

(a) e1=
⎡
⎣1

0
0

⎤
⎦ (b) y=

⎡
⎣ 3

1
−2

⎤
⎦ (c) z=

⎡
⎣1/2

0
−1

⎤
⎦

7. Suppose V is the positive quadrant in xy-plane defined as

V =
{[

x

y

]
such that x ≥ 0 y ≥ 0

}

(a) If two vectors u and v are in V , is u+ v in V?

(b) If u is in V , is λu in V , where λ is any scalar?

On the basis of (a) and (b), is V a vector space?

8. If A is a 6× 9 matrix, what is the maximum number of linearly independent
columns that A may have?

9. Find the rank of

A =
⎡
⎣1 0 1

0 1 0
1 0 0

⎤
⎦ , B =

⎡
⎣1 0 1 0

0 1 0 1
1 0 0 1

⎤
⎦

10.2 The Eigenvalue Problem
In previous chapters we examined the solution of a system of n linear equations
formulated as

Ax = b

where A is an n× n matrix of coefficients, x is an n× 1 vector of unknowns and
b is an n× 1 vector of constants.

In this section we investigate the solution to an alternative problem formu-
lated as

Aq = λq (10.7)

where A is a known square matrix of order n × n, q is an unknown n-element
column vector, and λ is an unknown scalar. This problem, known as the eigenvalue
problem, arises in many situations in economics and econometrics as will become
apparent by the examples that follow. In contrast to the problem of solving for
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the unknown vector x in a system of equations, we now have to solve for two
unknowns, q and λ, a vector and a scalar.

D e f in i t i o n 10 . 8 In the eigenvalue problem formulated by equation (10.7), A is a known square
matrix of order n× n, q is a n× 1 unknown vector known as the eigenvector, or
characteristic vector, or latent vector, and λ is an unknown scalar known as the
eigenvalue, or characteristic root, or latent root.

To fix these ideas, let us look at a special case of equation (10.7), where A is
a 2× 2 matrix and q is a 2× 1 vector. In this case we have

[
a11 a12

a21 a22

][
q1

q2

]
= λ

[
q1

q2

]

This can be written explicitly as a system of two equations

a11q1 + a12q2 = λq1

a21q1 + a22q2 = λq2

or

(a11 − λ)q1 + a12q2 = 0

a21q1 + (a22 − λ)q2 = 0

In matrix form these equations become

(A− λI)q = 0 (10.8)

where I is the identity matrix. For equation (10.8) to hold when (A − λI) is
nonsingular, we require that q is the zero vector. However, for a nontrivial solution,
that is, a solution where q �= 0, we need (A− λI) to be singular. The singularity
of (A− λI) would imply that

|A− λI | = 0 (10.9)

Equation (10.9) is known as the characteristic equation or characteristic poly-
nomial for matrix A. It gives a polynomial of degree n in λ, where n is the order
of the matrix A, with its n roots being given by λ1, . . . , λn. Each λi, i = 1, . . . , n

can then be substituted into equation (10.8) to obtain the corresponding eigen-
vector qi .
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Example 10.9 Find the characteristic equation for the 2× 2 matrix A.

Solution

We can derive the characteristic equation by looking at

∣∣∣∣
[
a11 a12

a21 a22

]
−

[
λ 0
0 λ

]∣∣∣∣ = 0

∣∣∣∣(a11 − λ) a12

a21 (a22 − λ)

∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21

= a11a22 − λa22 − λa11 + λ2 − a12a21

= λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0

The roots of the quadratic equation above are the values of λ, λ1, and λ2 that
satisfy the quadratic equation. In general, the roots of the quadratic equation
aλ2+ bλ+ c = 0, are given by the formulas

λ1 = −b +
√

(b2 − 4ac)

2a

λ2 = −b −
√

(b2 − 4ac)

2a

In our case, a = 1, b = −(a11 + a22), and c = a11a22 − a12a21. Then

λ1 = 1

2

(
(a11 + a22)+

√
(a11 + a22)2 − 4(a11a22 − a12a21)

)

λ2 = 1

2

(
(a11 + a22)−

√
(a11 + a22)2 − 4(a11a22 − a12a21)

)

In the special case in which the A matrix is symmetric, so that a12 = a21, the roots
become

λ1 = 1

2

(
(a11 + a22)+

√
(a11 − a22)2 + 4a2

12

)

λ2 = 1

2

(
(a11 + a22)−

√
(a11 − a22)2 + 4a2

12

)
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Example 10.10 For the matrix A given below, find the roots of the characteristic equation:

A =
[

4 2
2 1

]

Solution

Now

(A− λI) =
[

4− λ 2
2 1− λ

]

and

|A− λI | =
∣∣∣∣4− λ 2

2 1− λ

∣∣∣∣
= (4− λ)(1− λ)− 4

= 4− λ− 4λ+ λ2 − 4

= λ2 − 5λ = 0

The roots are λ1 = 5 and λ2 = 0.

The Diagonalization of a Square Matrix

Once we obtain the eigenvalues of a matrix A as solutions to the characteristic
equation, we proceed to obtain the corresponding eigenvectors. This leads us to a
very important result whereby matrix A is transformed to a diagonal matrix. This
result is known as the spectral decomposition of a square matrix.

Example 10.11 For the matrix A of example 10.10, find the eigenvectors corresponding to the
characteristic roots λ1 = 5 and λ2 = 0.

Solution

For λ1 = 5, substituting into equation (10.8) yields

[−1 2
2 −4

][
q1

q2

]
=

[
0
0

]

or

−q1 + 2q2 = 0

2q1 − 4q2 = 0
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Therefore q1 = 2q2. Since one of the elements of the eigenvector is arbitrary, there
will be an infinite number of eigenvectors that would satisfy equation (10.8). In
order to find a unique eigenvector, we can choose the vector q whose length is
unity. This implies the condition that

q2
1 + q2

2 = 1

This condition is known as the Euclidean distance condition or normalization.
If we represent q in R

2 as an arrow from the origin to the point given by the
coordinates q1 and q2, then the length of this arrow will be unity. Using the fact
that q1 = 2q2, we obtain

4q2
2 + q2

2 = 1 ⇒ q2
2 =

1

5
⇒ q2 = ± 1√

5

Choosing q2 = 1/
√

5, we obtain q1 = 2/
√

5. Therefore corresponding to λ1, the
eigenvector is found to be

q1 =
[

2/
√

5
1/
√

5

]

Similarly the eigenvector corresponding to λ2 = 0, is given by

q2 =
[

1/
√

5
−2/
√

5

]

The eigenvectors obtained in example 10.11 can be used to illustrate some of the
properties of eigenvectors of symmetric matrices, since the matrix A in example
10.11 is symmetric. In fact, all the results that we are going to discuss in the
remainder of the chapter will be illustrated for the case of symmetric matrices.

Recall from definition 10.4 that two vectors x and z are orthogonal if xT z = 0.
The eigenvectors q1 and q2 from example 10.11 can be seen to be orthogonal, since

qT
1 q2 = [2/

√
5 1/

√
5 ]

[
1/
√

5
−2/
√

5

]
= 2/5− 2/5 = 0

We also have that qT
1 q1 = 1 and qT

2 q2 = 1, since q1 and q2 have been chosen to
be of unit length. If we put the two vectors q1 and q2 to be the columns of a 2× 2
matrix Q, then Q will satisfy

QT Q =
[

2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]T [
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]
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=
[

4/5+ 1/5 1/5− 2/5
2/5− 2/5 1/5+ 4/5

]
=

[
1 0
0 1

]

D e f in i t i o n 10 . 9 A matrix Q that has the property that

QT Q = QQT = I

is known as an orthogonal matrix. An orthogonal matrix is a matrix for which its
inverse equals its transpose.

Theorem 10.3 For the problem in equation (10.8), where A is a symmetric matrix, the eigen-
vectors that correspond to distinct eigenvalues are pairwise orthogonal and if put
together into a matrix, they form an orthogonal matrix.

Proof

Let q1 and q2 denote the eigenvectors corresponding to λ1 and λ2. Then

Aq1 = λ1q1 ⇒ qT
2 Aq1 = λ1qT

2 q1

and

Aq2 = λ2q2 ⇒ qT
1 Aq2 = λ2qT

1 q2

Since A is symmetric we have that

qT
1 Aq2 = qT

2 Aq1

Then

λ1qT
2 q1 = λ2qT

1 q2

If λ1 �= λ2, the last relationship above implies that

qT
1 q2 = qT

2 q1 = 0

Theorem 10.4 If an eigenvalue λ is repeated r times, there will be r orthogonal vectors corre-
sponding to this root.
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Example 10.12 Consider the diagonal matrix

A =
⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦

Find the characteristic roots and vectors of A.

Solution

The characteristic equation is given by

|A− λI | =
∣∣∣∣∣∣
1− λ 0 0

0 3− λ 0
0 0 1− λ

∣∣∣∣∣∣ = (1− λ)2(3− λ)

The roots of the equation above are easily seen to be λ1 = 1 (repeated twice) and
λ2 = 3. For λ2 = 3, (A− λ2I )q2 = 0 gives

⎡
⎣−2 0 0

0 0 0
0 0 −2

⎤
⎦
⎡
⎣q1

q2

q3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

Corresponding to that root we obtain the eigenvector

q2 =
⎡
⎣0

1
0

⎤
⎦

Notice that q2 is of unit length. For the multiple root λ1 we get

⎡
⎣0 0 0

0 2 0
0 0 0

⎤
⎦
⎡
⎣q1

q2

q3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦⇒

q1 =
⎡
⎣q1

0
0

⎤
⎦+

⎡
⎣ 0

0
q3

⎤
⎦⇒

= q1

⎡
⎣1

0
0

⎤
⎦+ q3

⎡
⎣0

0
1

⎤
⎦
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The multiple root has two orthogonal vectors associated with it

⎡
⎣1

0
0

⎤
⎦ and

⎡
⎣0

0
1

⎤
⎦

call them e1 and e2, respectively. It is easy to verify that eT
1 e1 = 1, eT

2 e2 = 1, and
eT

1 e2 = 0.

Theorem 10.5 Let the n× n symmetric matrix A have eigenvalues λ1, λ2, . . . , λn, possibly not
all distinct. Then, by theorems 10.3 and 10.4, there will be a set of n orthogonal
eigenvectors q1, q2, . . . , qn such that

qT
i qj = 0, i �= j ; i, j = 1, 2, . . . , n (10.10)

Any eigenvector is arbitrary up to a scale factor, since

Aqi = λqi ⇒ A(cqi ) = λcqi

where c is any constant. We remove this arbitrariness by defining the eigenvectors
to be of unit length. Then

qT
i qi = 1, i = 1, . . . , n (10.11)

Together equations (10.10) and (10.11) define an orthonormal set of vectors. This
can be expressed in the following statement

qT
i qj = δij , δij =

{
0, i �= j

1, i = j
(10.12)

where δij is known as the Kronecker delta. If we put all the eigenvectors as
columns of a matrix Q, then equation (10.12) can be written in the form

QT Q = I

that is, Q is an orthogonal matrix. Since the inverse matrix is unique, we also have
that

QQT = I

The above implies that both the columns and rows of Q are orthogonal.
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Example 10.13 Show that the matrix A below is orthogonal.

A =
⎡
⎣−1/

√
3 2/

√
10 2/

√
15

0 −2/
√

10 3/
√

15√
2/
√

3 1/
√

5
√

2/
√

15

⎤
⎦

Solution

We have to show that AT A = I :
⎡
⎣−1/

√
3 0

√
2/
√

3
2/
√

10 −2/
√

10 1/
√

5
2/
√

15 3/
√

15
√

2/
√

15

⎤
⎦
⎡
⎣−1/

√
3 2/

√
10 2/

√
15

0 −2/
√

10 3/
√

15√
2/
√

3 1/
√

5
√

2/
√

15

⎤
⎦

=
⎡
⎣ 1/3+ 2/3 −2/

√
30+√2/

√
15 −2/

√
45+ 2/

√
45

−2/
√

30+√2
√

15 4/10+ 4/10+ 1/5 4/
√

150− 6/
√

150+√2/
√

75
−2/
√

45+ 2/
√

45 4/
√

150− 6/
√

150+√2/
√

75 4/15+ 9/15+ 2/15

⎤
⎦

=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

Theorem 10.6 The orthogonal matrix of eigenvectors diagonalizes the symmetric matrix A:

QT AQ = �

where

� =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦

Proof

For λi and qi , we have that

Aqi = λiqi

Premultiplying by qT
j gives

qT
j Aqi = λiqT

j qi = λiδji

using equation (10.12).
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Theorem 10.7 If A is a nonsymmetric matrix and the eigenvectors can be arranged into a non-
singular matrix Q, then

Q−1AQ = �

Note that in the case where A is not symmetric, Q is no longer an orthogonal
matrix.

Example 10.14 Diagonalize matrix A of example 10.10.

Solution

From example 10.10 we have that

A =
[

4 2
2 1

]

and λ1 = 5 and λ2 = 0. We have also obtained in example 10.11 the eigenvectors
corresponding to λ1 and λ2 to be

q1 =
[

2/
√

5
1/
√

5

]
and q2 =

[
1/
√

5
−2/
√

5

]

Putting q1 and q2 as columns of matrix Q leads to

QT AQ = �

since

[
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

][
4 2
2 1

][
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]
=

[
5 0
0 0

]

Theorem 10.8 The sum of the eigenvalues for a symmetric matrix A is equal to the sum of the
elements of the main diagonal, that is, the trace of matrix A.
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Proof

Since QT AQ = �, using the properties of traces (see chapter 8), we have that

trace(�) = trace(QT AQ)

= trace(AQQT )

= trace(A)

The above implies that

n∑
i=1

λi =
n∑

i=1

aii

Theorem 10.9 The product of the eigenvalues of a symmetric matrix equals the determinant of
the matrix.

|A| = λ1λ2 . . . λn

Proof

When Q is orthogonal we have that |Q| = ±1. This is because QT Q = I . Taking
the determinant on both sides yields

|QT Q| = |QT ‖Q| = 1

using theorem 9.8 of determinants (see chapter 9). Since |QT | = |Q|, we have
that

|Q|2 = 1 ⇒ |Q| = ±1

To prove theorem 10.9, we have that QT AQ = � so |QT AQ| = |�|. Using
theorem 9.8 of determinants, we obtain

|QT ‖A‖Q| = |�|.

Using the result |Q|2 = 1, we finally get |A| = λ1λ2 . . . λn.
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Theorem 10.10 The eigenvalues ofA2 are the squares of the eigenvalues ofA, but the eigenvectors
of both matrices are the same.

A2q = λ2q

Proof

Premultiplying by A gives

A2q = λAq = λ2q

Theorem 10.10 generalizes to the following:

Theorem 10.11 The eigenvalues of An are the same as the eigenvalues of A, raised to the nth
power, but the eigenvectors of both matrices A and An are the same.

Example 10.15 Regional Migration over Time

Suppose that we have a transition matrix that describes the population movements
between regions (see examples 8.9 and 8.10). Then the population at time t is
described by

xt = P xt−1

where xt represents the population at time t , xt−1 the population at time t − 1, and
P the transition matrix. If we start from an initial conditions vector x0, then, as
explained in example 8.10, we obtain

xt = P tx0

Notice that P is not necessarily symmetric. We can diagonalize P assuming
that its eigenvectors form a nonsingular matrix as follows:

Q−1PQ = � ⇒
P = Q�Q−1 ⇒

P 2 = Q�Q−1Q�Q−1 = Q�2Q−1 ⇒
P t = Q�tQ−1
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The elements of xt are linear combinations of the t th power of the eigenvalues of
P . For the process to be stable we need that

−1 ≤ λi ≤ 1, i = 1, . . . , n (10.13)

for all the λis, since the higher powers of the λis will mean smaller values for the
diagonals of �t and the matrix P t = Q�tQ−1 will not increase with large values
of t . In other words, the population at time t will be given by

xt = Q�tQ−1x0 (10.14)

and since Q�tQ−1 will be stable the population will also be stable. In example
8.9, we looked at the transition matrix between three regions, given by P :

P =
⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦

The population of the three regions in millions at time t = 0 was given by x0:

x0 =
⎡
⎣ 5

10
6

⎤
⎦

Suppose that we are interested in finding the evolution of the populations in these
three regions after 10 time periods. The eigenvalues of P can be found after solving
the characterstic polynomial to be λ1 = 1, λ2 = 0.613397, and λ3 = 0.786603.
Corresponding to these eigenvalues there are the eigenvectors

q1 =
⎡
⎣0.557086

0.371391
1.114170

⎤
⎦

q2 =
⎡
⎣−0.495053

0.676254
−0.181202

⎤
⎦

q3 =
⎡
⎣−0.570945
−0.208980

0.779926

⎤
⎦
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The eigenvectors above can be arranged into a matrix Q, the inverse of which is
found to be

Q−1 =
⎡
⎣ 0.489560 0.489560 0.489560
−0.522497 1.070620 −0.095624
−0.820760 −0.450629 0.560590

⎤
⎦

It can be seen that the eigenvalues satisfy the stability equation (10.14), since each
one has an absolute value that is less than or equal to 1. The population at time 10
can be found solving equation (10.14). In that case

x10 = Q�10Q−1x0

=
⎡
⎣0.557086 −0.495053 −0.570945

0.371391 0.676254 −0.208980
1.114170 −0.181202 0.779926

⎤
⎦
⎡
⎣1 0 0

0 0.0075408 0
0 0 0.0906893

⎤
⎦

×
⎡
⎣ 0.489560 0.489560 0.489560
−0.522497 1.070620 −0.095624
−0.820760 −0.450629 0.560590

⎤
⎦
⎡
⎣ 5

10
6

⎤
⎦ =

⎡
⎣ 5.97

3.96
11.07

⎤
⎦

After 10 periods, the populations of regions 1 and 3 have increased, whereas the
population of region 2 has decreased.

Theorem 10.12 The eigenvalues of A−1 are the reciprocals of the eigenvalues of A, but the
eigenvectors of both matrices are the same.

Proof

Premultiply Aq = λq by A−1 to obtain

q = A−1λq⇒ A−1q =
(

1

λ

)
q

The above establishes the result.

Theorem 10.13 Each eigenvalue of an idempotent matrix is either zero or one.
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Proof

By theorem 10.10, A2q = λ2q. Since A is idempotent, A2 = A. Then Aq =
A2q = λ2q. Therefore Aq = λ2q and

A2q = λq ⇒ λ2q− λq = (λ2 − λ)q = 0 ⇒ λ(λ− 1)q = 0

Since q �= 0, the above establishes the result.

E X E R C I S E S

1. For the matrix

A =
[

2 1
1 2

]

(a) Write the characteristic equation and find the characteristic roots.

(b) Find the eigenvectors corresponding to the characteristic equation.

(c) Diagonalize A.

2. Repeat the question 1 for A given by

A =
⎡
⎣1 0 1

0 1 1
1 1 2

⎤
⎦

3. Suppose that we have the matrix P = X(XT X)−1XT .

(a) Show that P is idempotent.

(b) If

X =

⎡
⎢⎢⎣

1 2
1 4
1 1
1 3

⎤
⎥⎥⎦

obtain the eigenvalues of P .
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4. Suppose that matrix A below has one eigenvalue, 2, with multiplicity 2.
Find |A|.

A =
⎡
⎣ 5 −6 −6
−1 4 2

3 −6 −4

⎤
⎦

5. Show that the product of two orthogonal matrices of the same order is also
an orthogonal matrix.

10.3 Quadratic Forms
Quadratic forms are special matrix functions that are very important for the deriva-
tion of second-order conditions of maxima and minima in multivariate calculus,
(see chapter 11). In econometrics most of the estimators of model parameters can
be formulated as solutions to the minimization of particular quadratic forms. Also,
in hypothesis testing, all of the classical statistical testing procedures can be seen
to depend on the distribution properties of certain quadratic forms.

Let us start by looking at a 2× 2 matrix A and a 2× 1 vector x. In this case

A =
[
a11 a12

a21 a22

]
, x =

[
x1

x2

]

The scalar expression q(x) = xT Ax is said to be a quadratic form and its value
depends on the choice of the vector x, for a given matrix A. In the case above it is
given as

q(x) = a11x
2
1 + a12x1x2 + a21x2x1 + a22x

2
2

D e f in i t i o n 10 . 10 Given an n× n matrix A and a n× 1 vector x, we define the quadratic form to
be the scalar function q(x) such that

q(x) = xT Ax =
n∑

i=1

n∑
j=1

aij xixj

If A is not symmetric, then we can always define a symmetric matrix A∗ that yields
the same quadratic form as A.
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Theorem 10.14 For a general nonsymmetric matrix A, we define the symmetric matrix A∗, such
that its elements are given by

a∗ij = a∗ji =
(

1

2

)
(aij + aji)

Then the quadratic form defined by A equals the quadratic form defined by A∗.

Example 10.16 Verify the equality of the quadratic forms for A and A∗ for the 2× 2 case.

Solution

If we denote the quadratic form corresponding to a 2× 2 nonsymmetric matrix A

by q(x) and the one corresponding to A∗ by q∗(x), we have

q(x) = a11x
2
1 + (a12 + a21)x1x2 + a22x

2
2

= a11x
2
1 + 2(1/2)(a12 + a21)x1x2 + a22x

2
2

= a11x
2
1 + 2a∗12x1x2 + a22x

2
2

= q∗(x)

Without any loss of generality, from now onwards we will concentrate on the case
that the matrix A is symmetric.

Example 10.17 Derive the quadratic form for the 3× 3 case.

Solution

Write out explicitly q(x), where A is a 3× 3 symmetric matrix and x is 3× 1. In
this case

q(x) = xT Ax = [
x1 x2 x3

]⎡⎣a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦

= a11x
2
1 + 2a12x2x1 + 2a13x1x3 + a22x

2
2 + 2a23x2x3 + a33x

2
3
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D e f in i t i o n 10 . 11 • If q(x) = xT Ax > 0 for all x �= 0, q(x) is said to be positive definite and A

is said to be a positive definite matrix.
• If q(x) = xT Ax ≥ 0 for all x �= 0, then q(x) is said to be positive semidefinite

and A is a positive semidefinite matrix.
• If q(x) = xT Ax < 0 for all x �= 0, then q(x) is said to be negative definite

and A is a negative definite matrix.
• If q(x) = xT Ax ≤ 0 for all x �= 0, then q(x) is said to be negative semidefinite

and A is a negative semidefinite matrix.

If a quadratic form is positive for some x and negative for some other x, it is said
to be indefinite, as is the matrix A that defines it.

D e f in i t i o n 10 . 12 Given an n×n matrix A, we define a principal submatrix of order k (1 ≤ k ≤ n)
to be a submatrix that is obtained by removing n− k rows and columns of A.

Clearly, for any order k < n, there is more than one principal submatrix. For
example, if k = 1, all the entries on the main diagonal constitute principal sub-
matrices of order 1. The leading principal submatrix of order k is the submatrix
obtained by removing the last n− k rows and columns.

D e f in i t i o n 10 . 13 The determinants of the principal submatrices are known as minors and those of
the leading principal submatrices as leading principal minors.

Example 10.18 Find the principal submatrices of a 3× 3 matrix.

Solution

Let the 3× 3 matrix A be given by

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

For k = 1, the principal submatrices are all the scalar entries of the main diagonal,
that is, a11, a22, a33. The leading principal submatrix is a11. For k = 2, the principal
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submatrices are

[
a11 a12

a21 a22

][
a11 a13

a31 a33

][
a22 a23

a32 a33

]

the first of these being the leading principal submatrix.

Theorem 10.15 Anecessary and sufficient condition for the real symmetric matrix A to be positive
definite is that all its eigenvalues be positive.

Proof

From theorem 10.7 we have that

QT AQ = �

where Q is the orthogonal matrix of eigenvectors such that QT Q = I and � is
the diagonal matrix of eigenvalues. Let us start with an arbitrary vector x. Then
we can define x = Qy. It also follows that

xT Ax = yT QT AQy

= yT �y

=
n∑

i=1

λiy
2
i

Then xT Ax > 0 if and only if λi > 0 for all i. If one of the eigenvalues were
negative, say λ1 < 0, then we could choose x such that

y1 = 1, y2 = 0, . . . , yn = 0

In this case xT Ax = y1 < 0, and xT Ax would not be positive. Therefore we need
all the eigenvalues to be positive.

Theorem 10.16 A necessary and sufficient condition for a symmetric matrix A to be positive
semidefinite is that its eigenvalues be greater than or equal to zero.
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Theorem 10.17 A necessary and sufficient condition for a symmetric matrix A to be negative
definite is that all its eigenvalues be negative.

Theorem 10.18 A necessary and sufficient condition for a symmetric matrix A to be negative
semidefinite is that its eigenvalues be less than or equal to zero.

Theorem 10.19 A necessary and sufficient condition for a symmetric matrix A to be positive
definite is that the determinant of every leading principal submatrix be positive.
The leading principal submatrices of A are a set of submatrices

A1 = a11, A2 =
[
a11 a12

a21 a22

]

A3 =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ . . . An = A

Proof

When A is positive definite, xT Ax > 0 for every nonzero x. Let us consider an x
vector whose first k elements are nonzero and whose last n− k elements are zero:

xT = (
xT

k , 0T
)

where xk is the subvector of x with the nonzero elements. Then we have

xT Ax = (
xT

k , 0T
)[ Ak,k An−k,k

Ak,n−k An−k,n−k

][
xk

0

]
= xT

k Ak,kxk

where Ak,k refers to the first k× k partition of A and Ak,n−k, An−k,k , and An−k,n−k

to the remaining partitions of A, which will be eliminated by the zero subvector
of x. Now, since

xT Ax > 0

we have that

xT
k Ak,kxk > 0
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But then, by theorem 10.15, all the characteristic roots of Ak,k will be positive.
This implies that

|Ak,k| > 0

To cover all possible cases of suitable choice of x vectors gives the necessary and
sufficient condition for A to be positive definite, since

|A1| > 0, |A2| > 0, . . . , |A| > 0

Theorem 10.20 A necessary and sufficient condition for a symmetric matrix A to be positive
semidefinite and not positive definite is that some of its principal minors be zero
and the rest positive.

Theorem 10.21 A necessary and sufficient condition for a symmetric matrix A to be negative
definite is that its principal minors alternate in sign starting with negative.

Theorem 10.22 A necessary and sufficient condition for a symmetric matrix A to be negative
semidefinite and not negative definite is that some of its principal minors be zero
and the rest alternate in sign starting with negative.

Example 10.19 What is the “definiteness” of the matrix

A =
⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦

Solution

Since the eigenvalues of this matrix are λ1 = 1, λ2 = 1, and λ3 = 3, then by
theorem 10.15, the quadratic form is positive. This can be written as

q(x) = [x1 x2 x3]

⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦

= x2
1 + 3x2

2 + x2
3
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It can be seen that unless x is the null vector, q(x) above will be positive for any
values that x1, x2, and x3 may take. Note that all the principal minors are positive.
This matrix is positive definite.

Example 10.20 What is the “definiteness” of the matrix

A =
[

4 2
2 1

]

Solution

The eigenvalues are given by λ1 = 5 and λ2 = 0. By theorem 10.16, the quadratic
form will be positive semidefinite. This can be written as

q(x) = [x1 x2]

[
4 2
2 1

][
x1

x2

]
= 4x2

1 + 4x1x2 + x2
2

It can be seen that q(x) is greater than or equal to zero for different choices of x.
For example, if x = [−1 2], then q(x) will be zero. Note that the first principal
minor is positive and the second, the determinant of A, is zero.

Example 10.21 What is the “definiteness” of the matrix

A =
[−1 0

0 −1

]

Solution

There is an eigenvalue given by λ = −1, repeated twice. By theorem 10.17, the
quadratic form is negative definite. This is given by

q(x) = [x1 x2]

[−1 0
0 −1

][
x1

x2

]
= −x2

1 − x2
2

We have that x above is negative unless x is the null vector. The principal minors
are −1 and 1, alternating in sign starting with a negative value.
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Example 10.22 What is the “definiteness” of the matrix

A =
[−1 1

1 −1

]

Solution

The eigenvalues are found to be λ1= 0 and λ2=−2. By theorem 10.18, we
expect the quadratic form to be negative semidefinite. This is written as

q(x) = [x1 x2]

[−1 1
1 −1

][
x1

x2

]
= −x2

1 + 2x1x2 − x2
2 .

This is seen to be either negative or zero depending on the choice of x1 and x2.
Note also that the principal minors are−1 and 0. Therefore, by theorem 10.22, the
quadratic form is negative semidefinite but not negative definite.

Theorem 10.23 If A is symmetric and positive definite, one can find a nonsingular matrix P such
that

A = PP T

Proof

Since A is a symmetric matrix we have that

QT AQ = �

which becomes

A = Q�QT

where Q and � are the orthogonal matrices of eigenvectors and the diagonal matrix
of eigenvalues, respectively.

Since A is positive definite, all its eigenvalues are positive by theorem 10.15.
Then we can define �1/2 as

�1/2 =

⎡
⎢⎣
√

λ1 · · · 0
...

. . .
...

0 · · · √λn

⎤
⎥⎦
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It follows that � = �1/2�1/2, which in turn implies that

A = Q�1/2�1/2QT

= (Q�1/2)(Q�1/2)T

= PP T

where P = Q�1/2 is nonsingular since it is the product of two nonsingular
matrices.

E X E R C I S E S

1. State whether the following matrices are positive definite, negative definite,
or indefinite:

A =
⎡
⎣1 1 0

1 4 2
0 2 3

⎤
⎦ , B =

⎡
⎣ 5 −6 −6
−1 4 2

3 −6 −4

⎤
⎦ , C =

⎡
⎣1 0 1

0 1 1
1 1 2

⎤
⎦

2. Let

x =
[
x1

x2

]

Compute xT Ax for the following matrices:

(a) A =
[

4 0
0 3

]

(b) B =
[

3 −2
−2 7

]
3. For x ∈ R3 let

g(x) = 5x2
1 + 3x2

2 + 2x2
3 − x1x2 + 8x1x3

Write this quadratic form as xT Ax.

4. Examine whether the following quadratic forms are positive definite, negative
definite, or indefinite:

(a) 6x2
1 + 25x2

2 + 9x2
3 − 60x2x3 + 40x1x3 − 6x1x2

(b) 9x2
2 + 9x2

3 + 10x2x3 + x3 + 6x1x2
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5. Is

g(x) = 3x2
1 + 2x2

2 + x2
3 + 4x1x2 + 4x2x3

positive definite, negative definite, or indefinite?

C H A P T E R R E V I E W
Key Concepts basis

characteristic equation
characteristic polynomial
characteristic root
characteristic vector
closed
diagonalize
dimension
eigenvalue
eigenvalue problem
eigenvector
Euclidean distance
Euclidean norm
finite-dimensional
indefinite
inner product
Kronecker delta
latent root
latent vector
leading principal minor

leading principal submatrix
linear dependence
linear independence
minor
negative definite
negative semidefinite
normalization
orthogonal
orthogonal matrix
orthonormal basis
positive definite
positive semidefinite
principal submatrix
quadratic form
rank
scalar multiplication
spectral decomposition
vector addition
vector space
vector subtraction

Review Questions 1. How does the idea of distance between vectors relate to the Euclidean norm?

2. What is the relationship between the inner product of a vector and the Eu-
clidean norm?

3. What is the effect on a vector of multiplying it by a negative fraction?

4. How does the idea of linear dependence as presented in this chapter relate to
the idea of linear dependence discussed in chapter 7?

5. How would you decide if two vectors were orthogonal?

6. What does orthogonality mean in terms of the geometry of vectors?

7. What is the rank of a matrix?



388 CHAPTER 10 SOME ADVANCED TOPICS IN LINEAR ALGEBRA

8. What is an eigenvalue?

9. What is a quadratic form?

10. Find two ways of determining whether a matrix A is negative definite.

11. Find two ways of determining whether a matrix A is positive semidefinite.

12. What does it mean to say that a matrix is indefinite?

Review Exercises 1. Establish whether the following pairs of vectors are linearly independent:

(a) y =
[

0
1

]
, w =

[−1
1

]

(b) y =
[

0
1

]
, w =

[
0
−1

]

(c) y =
⎡
⎣ 1

0
−1

⎤
⎦ , w =

⎡
⎣1

1
0

⎤
⎦ , z =

⎡
⎣0

3
0

⎤
⎦

2. If A is a 7× 9 matrix with three linearly independent rows, what is the rank
of A?

3. (a) If A is a 9× 7 matrix, what is the largest possible rank of A?

(b) If A is a 7× 9 matrix, what is the largest possible rank of A? Explain.

4. Find the rank of the following matrices:

A =
⎡
⎣1 0 2

0 1 0
1 0 2

⎤
⎦ , B =

⎡
⎣1 0 1

0 1 0
1 0 2

⎤
⎦

5. Provide two different bases for R
3 such that the vectors of the bases are not

orthogonal to each other and are not of unit length.

6. Let V be the set of points inside and on the unit circle in xy-plane defined by

V =
{[

x

y

]
such that x2 + y2 ≤ 1

}

Showby means of a specific example that V is not a vector space.
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7. Find the eigenvalues of

(a) A =
[

2 3
3 −6

]
(b) B =

[
2 7
7 2

]
8. Find the eigenvalues of

A =
⎡
⎣3 6 −8

0 1 6
0 0 2

⎤
⎦

9. Obtain the orthogonal decomposition of

A =
[

7 2
2 4

]

10. Find the matrix of the the quadratic forms below. Assume that x is in R
3.

(a) 8x2
1 + 7x2

2 − 3x2
3 − 6x1x2 + 4x1x3 − 2x2x3

(b) 4x1x2 + 6x1x3 − 8x2x3
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Chapter 11 Calculus for Functions of n-Variables

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• More Properties of Homogeneous Functions
• Homotheticity
• Finding First-Order Partial Derivatives: Example
• Finding Marginal-Product Functions: Example
• Finding Marginal Rate of Technical Substitution: Example
• Practice Exercises

We have already discussed at length the basic principles of calculus for functions of
one variable, y= f (x) with x ∈R. Continuity was presented in chapter 4, and the
derivative was presented in chapter 5. Economic analysis, however, often demands
consideration of functions of more than one variable. For example, it is often im-
portant to model how the level of output produced by a firm depends on several
inputs rather than just one. In this chapter we consider the fundamental relation-
ships of differential calculus for functions of more than one variable. Fortunately,
much of what was learned in chapters 4 and 5 carries over in a straightforward
manner. For example, the rules of differentiation for functions of many variables
are straightforward extensions of the rules for differentiation of functions of a
single variable. However, we must be careful in interpreting these new results.

11.1 Partial Differentiation
We first deal with notation. We use (x1, x2, . . . , xn) or x to denote a point in R

n,
the domain of the function, and y = f (x1, x2, . . . , xn) or y = f (x) to denote a
function. For simplicity, we will often focus on the case of n = 2 variables. The
extension to the general case of n variables is usually straightforward, although
sometimes cumbersome to write down.

Continuity of functions of one variable was discussed at length in chapter 4.
The intuition obtained there about continuity carries over to functions of more than
one variable. A function f (x), x ∈ R

n, is continuous at a point x = a, provided
that it does not jump or have a break as the value of x approaches the point a. For
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functions of one variable there are only two directions from which a point x = a

can be approached, from the left or from the right, as indicated in figure 11.1.
One can then define the left-hand and right-hand limits of the function at x = a,
depicted by limx→a−f (x) and limx→a+f (x), and then define the function to be
continuous at x = a if limx→a−f (x) = limx→a+f (x) = f (a), as is illustrated by
the example in figure 11.2 and stated formally in definition 4.3.

x

y

a

x → a– x → a+

Figure 11.1 Two paths to
approach a point x = a in R

x

y

a

x → a– x → a+

lim
x→a –

f (x)
f (a)

f (x)

lim
x→a+

f (x)

Figure 11.2 For a continuous
function, both the left-hand and
right-hand limits are equal to the
function value at each point x = a,
x ∈ R

The added complication in defining continuity for functions of more than one
variable is that there are more than two directions from which any point x = a can
be approached, and so we cannot simply refer to the left- and right-hand limits of
a function at a point. In fact there are an infinite number of directions or paths to
be considered when thinking about approaching some point in R

n, n > 1. This is
illustrated in figure 11.3, where the paths marked P1, P2, . . . , P5 are clearly just a
few examples.

a1 x1

x2

a2

P2

P1

P5

P4

P3

Figure 11.3 Some of the infinite
number of paths to approach a point
in R

2

In section 4.1 we also considered an alternative definition of continuity. In
definition 4.4, which states that a function is continuous at a point x = a if, within
a small neighborhood of this point (i.e., for points close to x = a), the function
values f (x) are close to the value f (a). This definition of continuity extends
to functions defined on R

n in a straightforward manner. For x ∈R, closeness is
determined by the (absolute) distance |x− a|. To extend the concept of continuity
to functions on x ∈ R

n, we can simply use the Euclidean distance between the
points, ‖x − a‖, introduced in chapters 2 and 10. For example, in R

2 we have

‖x − a‖ = ‖(x1, x2)− (a1, a2)‖ =
√

(x1 − a1)2 + (x2 − a2)2

We do not study this definition of continuity further here, though question 12 at
the end of this section illustrates how to use this definition for functions on R

n.
Extending the idea of the derivative for functions of one variable to functions

defined on R
n is more straightforward than is continuity. Recall from chapter 5

that the derivative of a function y = f (x) with domain x ∈ R is the rate at which
y changes as x changes (�y/�x) as we let the change in x become arbitrarily
small (�x→ 0). If y depends on more than one variable, as in y = f (x1, x2),
we can define the rate at which y changes with respect to changes in each of the
variables x1 and x2, taken separately, in the same way. For example, we can find the
ratio �y/�x1 as �x1→ 0 while holding x2 constant. The result of this operation
is called the partial derivative of the function y = f (x1, x2) with respect to the
variable x1, and it is written

∂f (x1, x2)

∂x1
or

∂y

∂x1
or f1(x1, x2) or simply f1

where

∂f (x1, x2)

∂x1
= lim

�x1→ 0

f (x1 +�x1, x2)− f (x1, x2)

�x1
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The partial derivative of the function f (x1, x2) with respect to the variable x2 is
written

∂f (x1, x2)

∂x2
or

∂y

∂x2
or f2(x1, x2) or simply f2

where

∂f (x1, x2)

∂x2
= lim

�x2→ 0

f (x1, x2 +�x2)− f (x1, x2)

�x2

The reason for calling these expressions partial derivatives and using the notation
“∂” is that we are changing only one of x1 or x2 at a time, even though y depends
on both of these variables. It is important to remember that since y is a function
of both x1 and x2, the ratio �y/�x1 will in general depend on the level of x2.
Similarly the ratio �y/�x2 will depend on the level of x1. The notation f1(x1, x2)

and f2(x1, x2) reminds us that the rate of change of y with respect to x1 or x2 is
itself a function which in general depends on the values of both x1 and x2.

The idea of the derivative being the slope of the tangent to the curve at some
point in the one-variable case carries over to the case where x ∈ R

2. However, one
must take care in drawing and interpreting the relevant diagram.

Notice in figure 11.4 (a) that with x2 fixed, there are now only two directions,
rather than an arbitrary number of directions, from which to approach any given
point. This being the case, the partial derivative ∂y/∂x1 behaves just like the deriva-
tive of a function of one variable since only one variable, x1, is changing. This
similarity with the one-variable case explains why the process of partial differenti-
ation is a straightforward extension of the derivative for functions of one variable.

The idea of the partial derivative generalizes readily to functions of n variables.

y

x2

x1

a2a1

d1

(a)

slope = 
�y
�x1

P

at x � (a1, a2)

y

x2

x1

a2a1

d2

(b)

slope = 
�y
�x2

P

at x � (a1, a2)

Figure 11.4 The partial derivatives for a function on R
2
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D e f in i t i o n 11 . 1 The partial derivative of a function y = f (x1, x2, . . . , xn) with respect to the
variable xi is

∂f

∂xi

= lim
�xi→ 0

f (x1, . . . , xi +�xi, . . . , xn)− f (x1, . . . , xi, . . . , xn)

�xi

The notations ∂y/∂xi or fi(x) or simply fi are used interchangeably. Notice that in
defining the partial derivative fi(x) all other variables, xj , j �= i, are held constant.

As in the case of the derivative of a function of one variable, we can use defi-
nition 11.1 to compute the partial derivatives of a specific function. The following
example illustrates.

Example 11.1 Derive and interpret the partial derivatives of the revenue function for a multi-
product, competitive firm.

Solution

Suppose that we let x1 and x2 represent the quantities of two products sold by a
competitive firm with p1 and p2 being the price of each, respectively. Total revenue
for the firm is R(x1, x2) = p1x1 + p2x2. According to definition 11.1, the partial
derivative, ∂R(x1, x2)/∂x1 is

∂R(x1, x2)

∂x1
= lim

�x1→ 0

R(x1 +�x1, x2)− R(x1, x2)

�x1

= lim
�x1→ 0

[p1(x1 +�x1)+ p2x2]− [p1x1 + p2x2]

�x1

= lim
�x1→ 0

p1x1 + p1�x1 + p2x2 − p1x1 − p2x2

�x1

= lim
�x1→ 0

p1�x1

�x1

= p1

The derivation of R2(x1, x2) is left as one of the exercises at the end of this
section.

The result R1(x1, x2) = p1 accords with simple intuition. The amount by which
revenue increases as one more unit of good 1 is sold with the output of the other
good left unchanged is simply the price of good 1. Notice that this derivative is
just a constant. This result is the same as for the case of a linear function of one
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variable. The independence of R1 with respect to the value of x1 or x2 carries over
for any linear function. It is of course not true for functions in general, as the
following example illustrates.

Example 11.2 In this example the derivative ∂y/∂x1 of the function y= x2
1x2 depends on

the value of both x1 and x2. According to definition 11.1, the partial derivative,
∂f (x1, x2)/∂x1, is

∂f (x1, x2)

∂x1
= lim

�x1→ 0

f (x1 +�x1, x2)− f (x1, x2)

�x1

= lim
�x1→ 0

(x1 +�x1)
2x2 − x2

1x2

�x1

= lim
�x1→ 0

(
x2

1 + 2x1�x1 + (�x1)
2
)
x2 − x2

1x2

�x1

= lim
�x1→ 0

(2x1�x1 + (�x1)
2)x2

�x1

= lim
�x1→ 0

(2x1 +�x1)x2

= 2x1x2

Rather than derive them from first principles (i.e., by using the definition of the
derivative), we can use rules of differentiation to find partial derivatives just as we
did for functions of one variable in chapter 5. Since we hold all variables except
xi fixed when finding ∂f/∂xi , we can explicitly treat all parts of the function f (x)

that do not depend on xi as a constant, c, and then use the rules of differentiation
for functions of one variable. For the function of example 11.1, R(x1, x2)=p1x1+
p2x2; this means setting p2x2 = c, where c is some constant. Then noting that

R(x1, x2) = p1x1 + c

we have

R1(x1, x2) = d[p1x1 + c]

dx1
= p1

Similarly, for the function of example 11.2, y = f (x1, x2) = x2
1x2, the vari-

able x2 is held fixed when computing ∂f/∂x1. If we explicitly set x2 = c, c a
constant, then the function becomes

y = cx2
1
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and so

∂f (x1, x2)

∂x1
= d

[
cx2

1

]
dx1

= 2cx1

which, upon substituting back for c = x2, gives the result

∂f (x1, x2)

∂x1
= 2x2x1

Now let us see how the procedure above carries over to functions of any num-
ber of variables. If we have y = f (x1, x2, . . . , xn), then to find the derivative of
f with respect to one of the variables, xi , we factor out all parts of the expression
that are not dependent on xi and treat these as constant values. For example, given
the function

y = 5x2
1x4

2x6
3

we find the partial derivative ∂y/∂x2 by first setting

c = 5x2
1x6

3

which implies that

y = cx4
2

It follows from the rules of differentiation given in chapter 5 that

∂y

∂x2
= 4cx3

2

which, upon substituting back for c = 5x2
1x6

3 , gives the result that

∂y

∂x2
= 4

(
5x2

1x6
3

)
x3

2 = 20x2
1x3

2x6
3

After a little practice you don’t need to make these substitutions explicitly.
We can see from these examples that the partial derivative ∂f/∂xi will in

general depend on the values of all variables, xj , even for j �= i. There is a class
of functions, however, that has the property that the partial derivative with respect
to xi is independent of all the other variables xj , j �= i. We define this class by
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D e f in i t i o n 11 . 2 A function y = f (x1, x2, . . . , xn) which can be written in the form

f (x1, x2, . . . , xn) = g1(x1)+ g2(x2)+ · · · + gn(xn)

=
n∑

k=1

gk(xk)

is additively separable.

Example 11.3 The functions

f (x1, x2) = x3
1 + 5x2

and

g(x1, x2, x3) = 5x2
1 − 6x2 + ex3

are examples of additively separable functions. Notice that the partial derivative
with respect to any of the variables does not depend on the level of any of the other
variables, since

f1 = 3x2
1

f2 = 5

g1 = 10x1

g2 = −6

g3 = ex3

Notice also that additive separability includes the case where variables
enter the function with a negative sign, as illustrated by the term −6x2 in the
function g.

Marginal-Product Functions

If y = f (x1, x2, . . . , xn) represents a production function, with xi being the level
of input i and y being the level of output, then the partial derivative ∂y/∂xi is
the marginal product of input i. This is the rate at which output increases as a
result of increasing input i when there is no change in the level of other inputs.
Since partial derivatives are defined in the limit as �xi→ 0, it follows that ∂y/∂xi

represents (approximately) the change in output resulting from a one-unit increase
in the input i only if the choice of units is sufficiently small.
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Since the partial derivative ∂y/∂xi will in general depend on the value of the
other variables xj , j = 1, 2, . . . , n, the marginal-product function of input i will
be a function of all the inputs. Noting these relationships can help us understand
the technological assumptions that are implied by using a particular production
function. This point is illustrated in the following example.

Example 11.4 Find and interpret the partial derivatives of the production function

y = 10x
1/2
1 x

1/2
2

Solution

f1 = ∂y

∂x1
= 1

2

(
10x

−1/2
1 x

1/2
2

) = 5x
−1/2
1 x

1/2
2 =

5x
1/2
2

x
1/2
1

f2 = ∂y

∂x2
= 1

2

(
10x

1/2
1 x

−1/2
2

) = 5x
1/2
1 x

−1/2
2 = 5x

1/2
1

x
1/2
2

If we think of x1 as the input labor and x2 as the input capital, then we can
see from f1, the marginal product of labor function, that higher values of capital
lead to a bigger increase in output being generated by a given increase in labor.
In figure 11.5 we illustrate how the relationship between x1 and y depends on the
value of x2 by considering two specific values of x2, (x2 = 4 and x2 = 9), and then
in figure 11.6 we see how the value of x2 affects the derivative function f1. (Note:
For x2 = 4, f1 = 10/x

1/2
1 , while for x2 = 9, f1 = 15/x

1/2
1 .) These graphs also

emphasize the fact that for a fixed amount of capital available, the marginal product
of labor falls as more labor is used. Thus this production function conforms to the
law of diminishing marginal productivity of an input (see chapter 5, example 5.6).
An analogous interpretation follows for the marginal product of input 2.

The production function used in example 11.4 is a specific case of the Cobb-
Douglas production function. We explore a more general form in the examples
below, where we will denote inputs as L (labor) and K (capital) when there are
only two inputs.

Example 11.5 Find and interpret the partial derivatives for the Cobb-Douglas production function
with two inputs:

y = f (K, L) = AKαLβ A > 0, 0 < α, β < 1

where A, α, and β are technological parameters.
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y

x2

x1

0

(a)

y

x2 � 4

x1

(b)

4

x2

0

y

x2

x2 � 9

x1

0

(c)

9

y

x1

150

100

25
(d)

slope = 3

slope = 2

y � 30x1
1/2

(x2 � 9)

y � 20x1
1/2

(x2 � 4)

Figure 11.5 Sections of the function y = 10x
1/2
1 x

1/2
2 . Note that (d) suppresses x2.

Solution

The marginal-product functions are

fK = αAKα−1Lβ

fL = βAKαLβ−1

Given the assumptions on α and β, it is clear that both inputs satisfy the law of
diminishing marginal productivity, while the marginal product of each input is
positively related to the the level of the other input. In this sense the inputs are
complementary to each other (e.g., increasing K leads to a higher marginal product
of L).
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x1

3

25

2

f1 = 15/x1
1/2

(x2 = 9)

f1 = 10/x1
1/2

(x2 = 4)

f1

Figure 11.6 Effect of x2 on the derivative function f1 = 5x
1/2
2 /x

1/2
1

Example 11.6 Find the marginal-product functions for the Cobb-Douglas production function
with three inputs:

y = Axα
1 x

β

2 x
γ

3 , A > 0; 0 < α, β, γ < 1

Solution

The marginal products are

∂y

∂x1
= αAxα−1

1 x
β

2 x
γ

3 = αA
x

β

2 x
γ

3

x1−α
1

∂y

∂x2
= βAxα

1 x
β−1
2 x

γ

3 = βA
xα

1 x
γ

3

x
1−β

2

∂y

∂x3
= γAxα

1 x
β

2 x
γ−1
3 = γA

xα
1 x

β

2

x
1−γ

3

Again, in each case we see that the marginal product of each input decreases as
the level of that input increases but increases as either of the other two inputs
increases.

It is easy to see that these examples point to the general case for n inputs, and so
the general Cobb-Douglas production function is given by

y = f (x1, x2, . . . , xn) = Ax
α1
1 x

α2
2 . . . xαn

n
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where A > 0 and 0 < αi < 1 for every i = 1, 2, . . . , n. Now, for any input xj ,
j = 1, 2, . . . , n, we have

fj ≡ ∂y

∂xj

= αjAx
α1
1 x

α2
2 · · · xαj−1

j−1 x
αj−1
j x

αj+1

j+1 · · · xαn

n

= αjA
x

α1
1 x

α2
2 · · · xαj−1

j−1 x
αj+1

j+1 · · · xαn
n

x
1−αj

j

where again each input has diminishing marginal productivity, and all inputs are
complementary to each other.

Example 11.7 Find the marginal-product functions for the constant elasticity of substitution
(CES) production function with two inputs:

y = A
[
δx−r

1 + (1− δ)x−r
2

]−1/r

where A > 0, 0 < δ < 1, r >−1.

Solution

The marginal products are

∂y

∂x1
= A

(
−1

r

[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1(−rδx−r−1
1

))
= δAx−r−1

1

[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1

∂y

∂x2
= A

(
−1

r

[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1(−r(1− δ)x−r−1
2

))
= (1− δ)Ax−r−1

2

[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1

These can be written in a more convenient form. Multiplying ∂y/∂x1 by Ar/Ar ,
which leaves it unchanged, and noting that x−r−1

1 = 1/xr+1
1 , we get

∂y

∂x1
= δAr+1

[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1

Ar
(
xr+1

1

)
Noting that

yr+1 = (
A
[
δx−r

1 + (1− δ)x−r
2

]−1/r)r+1

= Ar+1
[
δx−r

1 + (1− δ)x−r
2

]−(1/r)−1
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we can write

∂y

∂x1
= δyr+1

Arxr+1
1

= δ

Ar

(
y

x1

)r+1

Following similar steps, we can write

∂y

∂x2
= (1− δ)yr+1

Arxr+1
2

= (1− δ)

Ar

(
y

x2

)r+1

Although the rules of differentiation studied in chapter 5 for functions of one
variable can generally be applied to functions of many variables in a straight-
forward manner, it is worth reconsidering the chain rule here. Suppose that y =
f (x1(t), x2(t)); that is, both variables x1 and x2 depend on time which we denote
by the variable t . Since y is affected by t through its effect on both variables x1

and x2, we must take this influence into account when applying the chain rule to
find the derivative of f (x1(t), x2(t)) with respect to t , and so we get

dy

dt
= ∂f

∂x1

dx1

dt
+ ∂f

∂x2

dx2

dt

To see how this rule actually works consider the example below:

y = f (x1, x2) = 3x1 + 5x2, with x1 = t2, x2 = 4t3

The chain rule gives the result

dy

dt
= 3

d[t2]

dt
+ 5

d[4t3]

dt
= 3[2t]+ 5[12t2] = 6t + 60t2

while direct substitution gives

y = 3[t2]+ 5[4t3] = 3t2 + 20t3

implying that

dy

dt
= 6t + 60t2

which is the same result as found using the chain rule.
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If we had a function of three variables, with only two of them depending on
some common variable t , for example, y= g(x1(t), x2(t), x3), then we would write

∂y

∂t
= ∂g

∂x1

dx1

dt
+ ∂g

∂x2

dx2

dt

Notice that in this expression we use ∂ to denote the derivative of the function
with respect to t . The reason for doing so is that although we have evaluated each
impact of changing t on the function value y by considering its effect on both
variables x1 and x2, we have held the variable x3 fixed. Thus we consider ∂y/∂t

to be a partial derivative rather than a total derivative, as would be indicated by
using dy/dt . This distinction is fairly subtle and is not always made.

It is important to emphasize that although as a mathematical exercise one can
always compute a partial derivative of a function by implicitly holding all the other
variables fixed, one must sometimes be cautious when considering the economic
meaning of the result. The following discussion illustrates.

Suppose that one wishes to determine the impact of capital accumulation and
technical change on the level of productivity in an economy. Let the value of capital
stock at time t be represented by the function K(t). Suppose that both the amount
of capital and the efficiency with which capital is used over time affect the level
of gross national product (Y ), and hence write

Y = f (K, t), where K = K(t)

Suppose that the level of capital is fixed artificially at K(t) = K̄ , but suppose that
this capital is used more efficiently over time. It follows that the expression

∂[f (K̄ , t)]

∂t
= ft > 0

measures the impact of time passing on the level of output, assuming that the
capital stock does not increase in size. If, however, capital stock is growing over
time, then it does not make economic sense to ignore this impact on Y. The total
effect of increasing t on output would then be

d[f (K(t), t)]

dt
= ∂[f (K(t), t)]

∂K

dK(t)

dt
+ ft

= fKK ′(t)+ ft

The first term in this expression indicates the impact that an increase in capital
stock has on output as time passes while the second term indicates the impact that
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time passing has on output through the more efficient use of any existing level of
capital.

The relevance of the distinction between the total and partial derivative for
functions of more than one variable often arises in equations which represent the
reduced form of some economic model. That is, there are a number of relationships
that are expressed in the equation f (K(t), t) which could be considered separately.
We will return to this issue in chapter 14.

E X E R C I S E S

1. Find the partial derivatives of the function

y = 3x1 + 5x2

using definition 11.1 (see example 11.1).

2. Find the partial derivatives of the function

y = ax1 + bx2

where a and b are any constants, using definition 11.1 (see example 11.1).

3. For the revenue function of example 11.1, R(x1, x2) = p1x1+p2x2, find the
partial derivative ∂R(x1, x2)/∂x2 by using definition 11.1. Give an intuitive
explanation of your result.

4. Discuss why it is the case that the partial derivatives in questions 1, 2, and 3
are constant functions.

5. For the function of example 11.2, y = x2
1x2, find the partial derivative

∂y/∂x2 by using definition 11.1.

6. For the function

y = x1x2

find the partial derivatives by using definition 11.1.

7. Find the marginal-product functions for the Cobb-Douglas production func-
tion

y = 10x
1/2
1 x

1/3
2 x

1/4
3
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8. Find the marginal-product functions for the Cobb-Douglas production func-
tion

y = Ax
α1
1 x

α2
2 x

α3
3 x

α4
4 , A > 0, 0 < αi < 1 for i = 1, 2, 3, 4

9. Find the marginal-product functions for the CES (constant elasticity of sub-
stitution) production function

y = 12
[
0.4x

−1/2
1 + 0.6x

−1/2
2

]−2

10. Find the marginal-product functions for the CES production function

y = A
[
w1x

−r
1 + w2x

−r
2 + w3x

−r
3

]−1/r

A > 0, r > −1, 0 < wi < 1 for i = 1, 2, 3 and w1 + w2 + w3 = 1.

11. Suppose both that the amount of capital at time t , K = K(t), and that the
efficiency with which it is used affect GNP according to the function

Y = f (K, t) = 0.2(1+ t)1/2K, where K = K0e
0.05t

Find and give the economic intuition of the derivative

dY

dt
= ft + fK

dK

dt

12. In general, a function f (x), x ∈ R
n, is said to be continuous at the point

x = a if there is some δ > 0 (possibly very small) such that |f (x)−f (a)|< ε

whenever ‖x − a‖< δ for any ε > 0, where ‖.‖ is the Euclidean distance.
Show that according to this definition, the linear function f (x1, x2) =

c0 + c1x1 + c2x2, c1, c2 �= 0, is continuous at any point (a1, a2) ∈ R
2.

11.2 Second-Order Partial Derivatives
In chapter 5 we saw that since the derivative of a function f (x) is itself a function,
sometimes written f ′(x), we can find the derivative of the derivative function,
df ′(x)/dx, which is called the second derivative and is often written f ′′(x). The
second derivative is itself also a function and so we can continue the process
to find the third derivative and so on to any number of higher-order derivatives,
f (n)(x) for n = 1, 2, 3, . . . . The same can be done for functions of more than one
variable, although we must recognize that there will be more than one derivative
of the first order, second order, and so on. That is, a function of n variables,
y = f (x1, x2, . . . , xn), has n first-order partial derivatives f1, f2, . . . , fn. Each of
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these can be differentiated with respect to each of the n variables, and so it follows
that a function of n variables has n sets of n second-order partial derivatives, n2

in all, each denoted

fij ≡ ∂fi(x1, x2, . . . , xn)

∂xj

, i, j = 1, 2, . . . , n

where fij is found by first differentiating the function f (x) with respect to the
variable xi and then differentiating the result, fi(x), with respect to the variable
xj . In this way we can use fij to represent all of the second-order partial derivatives.

We can see from this discussion that even if we restrict our attention to only
the first- and second-order derivatives of functions of more than one variable, it
is important to have a simple technique for keeping track of, or cataloging, all the
various derivatives. This is done using vector and matrix notation. It is standard
notation to arrange the first-order partial derivatives in a column or row vector and
refer to it as the gradient vector using the following notation:

∇f =

⎡
⎢⎢⎢⎣

f1

f2
...

fn

⎤
⎥⎥⎥⎦ or ∇f T = [f1 f2 . . . fn]

The reason for calling this a gradient vector is that each element, fi , indicates
the rate of change in the function value with respect to the variable xi . This is
analogous to signs indicating the grade or steepness that we find when driving a
vehicle through hills or mountains.

y

x2
x1

d1 d2

Figure 11.7 Graph of the plane
y = 5− 2x1 + 3x2 in example 11.8

Example 11.8 Find the gradient vector for the function f (x1, x2) = 5− 2x1 + 3x2.

Solution

The first derivatives of the function are

f1 = −2, f2 = 3

and so the gradient vector is

∇f =
[−2

3

]

The meaning of this gradient vector is that the rate of change of the function value
is −2 to 1 for a change in the variable x1 and +3 to 1 for a change in the variable
x2, as indicated in figure 11.7.
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Example 11.9 Find the gradient vector for the function f (x1, x2, x3) = xα
1 x

β

2 x
γ

3 .

Solution

The first-order derivatives of the function are

f1 = αxα−1
1 x

β

2 x
γ

3

f2 = βxα
1 x

β−1
2 x

γ

3

f3 = γ xα
1 x

β

2 x
γ−1
3

and so the gradient vector is

∇f =

⎡
⎢⎣

αxα−1
1 x

β

2 x
γ

3

βxα
1 x

β−1
2 x

γ

3

γ xα
1 x

β

2 x
γ−1
3

⎤
⎥⎦

To keep track of second-order derivatives, it is best to use a matrix. Take as an
example a function of two variables, y = f (x1, x2). There are 22 = 4 second-order
partial derivatives:

f11 ≡ ∂f1(x1, x2)

∂x1
, f12 ≡ ∂f1(x1, x2)

∂x2

f21 ≡ ∂f2(x1, x2)

∂x1
, f22 ≡ ∂f2(x1, x2)

∂x2

A function of three variables, y= f (x1, x2, x3), has 32= 9 second-order partial
derivatives, and so on. These then can be represented conveniently in matrix no-
tation as follows:

∇2F ≡
[

f11 f12

f21 f22

]
for n = 2

∇2F ≡
⎡
⎣ f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎦ for n = 3

and

∇2F ≡

⎡
⎢⎢⎢⎣

f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn

⎤
⎥⎥⎥⎦ for general n
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For the n variable case we can more simply write the matrix of second-order
partial derivatives as

∇2F ≡ [fij ]

with the i, j th element of the matrix ∇2F representing the result of first differen-
tiating the function f (x) with respect to the ith variable and then differentiating
this derivative function with respect to the j th variable.

A remark about notation is in order here. The sign∇ indicates the operation of
differentiation and with the subscript 2, ∇2 indicates that the operation relates to
second-order partial derivatives. We use the capital letter, F , because we are refer-
ring to a matrix. The matrix of the second-order partials of f is called the Hessian
matrix.

Example 11.10 Find and arrange in vector/matrix notation the first- and second-order partial
derivatives of the function f (x1, x2) = x2

1x2.

Solution

The first-order partials are

f1 = 2x1x2, f2 = x2
1

while the second-order partials are

f11 = 2x2, f12 = 2x1

f21 = 2x1, f22 = 0

Arranging these in vector and matrix notation gives

∇f =
[

2x1x2

x2
1

]
, ∇2F =

[
2x2 2x1

2x1 0

]

For functions of two variables, some intuition about the meaning of second-
order partial derivatives can be obtained from the graph of the function used in
example 11.10. The derivative f11 = ∂f1/∂x1 gives the rate at which the derivative
f1 changes as x1 changes with the value of x2 fixed. Notice in this case that f11 =
2x2 is positive for x2 > 0 and negative for x2 < 0. So, in the x1 direction (i.e., as x1

changes but x2 is held fixed), the function behaves as a one-dimensional convex
function whenever x2 > 0 and as a one-dimensional concave function whenever
x2 < 0 (recall section 5.5). This is illustrated in figure 11.8.
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y

�x1

�x2

x2

x1

(a)

y
�x1

x2

x1

(b)

�x2

y

�x1
�x2

x2

x1

(c)

Figure 11.8 Function f (x1, x2) = x2
1x2. In (b), x2 > 0; in (c), x2 < 0.

The second-order partial derivatives fij with i �= j are called cross-partial
derivatives. These indicate the rate at which the first-order derivative fi changes
as the value of the variable xj changes. Continuing with example 11.10, we see
that f12 = 2x1. Since f12 > 0 when x1 > 0, this implies that f1 gets larger in value
with an increase in x2. This is illustrated in figure 11.9, where we see that f1 is
greater at point v = (a, d) than at point u = (a, b), since d > b.

y

x2

x2 � b x2 � d
x1 � a

x1

u y

Figure 11.9 Function y = x2
1x2 with a “slice" removed

Notice that for this function f12= f21= 2x1. That the two cross-partial deriva-
tives are equal is not a coincidence. As the following theorem indicates, the order
of differentiation is irrelevant in the determination of cross-partial derivatives.

Theorem 11.1 (Young’s theorem) For a function y = f (x1, x2, . . . , xn), with continuous first-
and second-order partial derivatives, the order of differentiation in computing the
cross-partials is irrelevant. That is, fij = fji for any pair i, j ; i, j = 1, 2, . . . n;
i �= j . (Of course, this statement holds trivially when i = j as well.)
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Example 11.11 Illustrate Young’s theorem (theorem 11.1) for the function

f (x1, x2, x3) = x2
1e3x2+x1x3 + 2x3

2

x1

Solution

The theorem in this case tells us to expect

f12 = f21 f13 = f31 f23 = f32

We will show the last of these and leave the others as an exercise. We have

f2 =
(
x2

1

)
3e3x2+x1x3 + 6x2

2

x1

f23 = ∂f2

∂x3
= (

3x2
1

)
x1e

3x2+x1x3 = 3x3
1e3x2+x1x3

f3 =
(
x2

1

)
x1e

3x2+x1x3

f32 = ∂f3

∂x2
= 3x3

1e3x2+x1x3

and so f23 = f32.

For additively separable functions, the cross-partial derivatives are zero. In general,
this can be shown as follows. An additively separable function may be written in
the form

f (x1, x2, . . . , xn) =
n∑

i=1

gi(xi)

We have

∇f =

⎡
⎢⎢⎢⎣

∂[g1(x1)]/∂x1

∂[g2(x2)]/∂x2
...

∂[gn(xn)]/∂xn

⎤
⎥⎥⎥⎦

and, since ∂[∂gi(xi)/∂xi]/∂xj = 0 for i �= j , the Hessian matrix is a diagonal
matrix
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∇2F =

⎡
⎢⎢⎢⎣

∂2g1(x1)/∂x2
1 0 · · · 0

0 ∂2g2(x2)/∂x2
2 · · · 0

...
...

. . .
...

0 0 · · · ∂2gn(xn)/∂x2
n

⎤
⎥⎥⎥⎦

Since much of the calculus used in economics is made much more straight-
forward by results such as Young’s theorem, we will make much use of functions
which possess continuous first- and second-order partial derivatives and refer to
these as C2 functions. Throughout the remainder of the chapter, functions are
assumed to be C2 unless otherwise stated.

The exercise of determining the economic interpretation of first- and second-
order partial derivatives is illustrated in the following example:

Example 11.12 Find and interpret the second-order partial derivatives of the Cobb-Douglas pro-
duction function with two inputs.

Solution

The general form of the Cobb-Douglas production function with two inputs is

y = f (x1, x2) = Axα
1 x

β

2 , x1, x2 > 0

where x1 and x2 are input levels, y is the output level, and α, β, A > 0, are tech-
nological parameters. We usually add the restrictions that α < 1 and β < 1, for
reasons that are described below.

The (first-order) partial derivatives of this function are

f1 = αAxα−1
1 x

β

2

which is the marginal product of input 1, and

f2 = βAxα
1 x

β−1
2

which is the marginal product of input 2. The conditions α > 0 and β > 0 ensure
that the marginal products are positive, which implies that adding more of either
input leads to a greater level of output, as one would expect.

The second-order partial derivatives are

∂f1

∂x1
or f11 = α(α − 1)Axα−2

1 x
β

2

∂f1

∂x2
or f12 = αβAxα−1

1 x
β−1
2
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∂f2

∂x1
or f21 = αβAxα−1

1 x
β−1
2

∂f2

∂x2
or f22 = β(β − 1)Axα

1 x
β−2
2

Given the assumptions made about the parameters, 0 < α, β < 1, A > 0, it
follows that f11 and f22 are negative (since α < 1⇒α− 1 < 0 and β < 1⇒β −
1 < 0), which implies diminishing marginal productivity of each input. (See ex-
ample 5.15 for a discussion of this phenomenon in the context of a single input.)
f12 and f21 are positive. The cross-partial derivative f12 is the rate at which the
marginal product of input 1 changes as more of input 2 is added. f12 > 0 implies
that as more of input 2 is added (e.g., capital), an additional unit of input 1 (e.g.,
labor) becomes more productive; that is, the marginal productivity of one input is
enhanced by having more of the other input available.

E X E R C I S E S

1. For the linear function f (x1, x2) = a1x1 + a2x2, where a1 and a2 are con-
stants, determine the first- and second-order partial derivatives, and arrange
in vector/matrix notation. Give an intuitive account of your result.

2. For the linear function f (x1, x2) = a1x1 + a2x2 + a3x3, where a1, a2 and a3

are constants, determine the first- and second-order partial derivatives, and
arrange in vector/matrix notation. Give an intuitive account of your result.

3. For the function f (x1, x2) = x3
1x4

2 , determine the first- and second-order
partial derivatives, and arrange in vector/matrix notation.

4. For the function f (x1, x2) = x2
1x4

2x5
3 , determine the first- and second-order

partial derivatives, and arrange in vector/matrix notation.

5. For the function f (x1, x2) = x2
1 + x2

2 , determine the first- and second-order
partial derivatives, and arrange in vector/matrix notation.

6. For the function f (x1, x2) = a1x
2
1 + a2x

2
2 + a3x

2
3 , determine the first- and

second-order partial derivatives, and arrange in vector/matrix notation.

7. Consider the following specific Cobb-Douglas production function:

y = 50x
1/2
1 x

2/3
2

Find the first- and second-order partial derivatives, and determine the signs.
What is the economic interpretation of the signs of these derivatives?
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8. Consider the following 3-input version of a Cobb-Douglas production
function

y = Axα
1 x

β

2 x
γ

3 , A > 0, 0 < α, β, γ < 1

Find the first- and second-order partial derivatives, and determine the signs.
What is the economic interpretation of the signs of these derivatives?

9. Complete the exercise begun in example 11.11. That is, for the function

f (x1, x2, x3) = x2
1e3x2+x1x3 + 2x3

2/x1

show thatf12= f21, andf13= f31, which are implications ofYoung’s theorem.

11.3 The First-Order Total Differential
In section 5.2, we derived the expression for the first-order total differential of the
function y = f (x), which is written as

dy = f ′(x) dx

For a specific value of x, say x = a, we can use this expression as a means of
approximating the change in y, �y, generated by a change in the value of x, �x,
within a neighborhood of the point x = a. That is,

�y = f (a +�x)− f (a)

can be approximated by

dy = f ′(a) dx

This is illustrated in figure 11.10, where the change in x is �x(≡ dx), the actual
change in y is �y, the approximation of the change in y is dy and so ε=�y− dy is
the approximation error. In section 5.2 we illustrated how ε/�y→ 0 as �x→ 0. In
other words, the approximation can be made as accurate as one wishes by choosing
the change in x to be small.

An analogous result applies to functions of more than one variable, although
a geometric interpretation is possible only for the case with f (x), x ∈ R

2. This is
easy to see if we consider changing the variables one at a time, which mirrors the
operation of partial differentiation. Thus, for the function

y = f (x1, x2)
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f (x)

f (a + ∆x)

f (a)

f (x)

∆y

∆x

dy

dy > ∆y

dx

e

a

tangent line
(slope � f�(a))

a + ∆x

�

x

Figure 11.10 Total differential as an approximation to a change in the function value
for a change in x

defined in some neighborhood of the point (a1, a2) ∈ R
2, we could change only

x1 (dx1 ≡ �x1) and get the result that

�y = f (a1 +�x1, a2)− f (a1, a2)

which can be approximated by

dy = f1(a1, a2) dx1 (i.e., x2 fixed, implying that dx2 = 0)

Similarly we could change x2 (dx2 ≡ �x2) only and get the result that

�y = f (a1, a2 +�x2)− f (a1, a2)

which can be approximated by

dy = f2(a1, a2) dx2 (i.e., x1 fixed, implying that dx1 = 0)

Allowing for both x1 and x2 to change leads us to the following result:
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D e f in i t i o n 11 . 3 The first-order total differential for the function y = f (x1, x2) is

dy = f1(x1, x2) dx1 + f2(x1, x2) dx2

Using the total differential to approximate actual changes in the function value
for given changes in x1 and x2 corresponds geometrically to using the tangent plane
as an approximation of the function in the same way as we used the tangent line
for functions of one variable. This is illustrated in figure 11.11.

y

�x1

x1

�x2

x2

Figure 11.11 A segment of a tangent plane to the function y = 1− x2
1 − x2

2

Recall from chapter 5 that the total differential provides an exact approxima-
tion for linear functions, y= ax+ b. This result extends to functions of more than
one variable. Consider, for example, the function y = f (x1, x2), where

f (x1, x2) = 2x1 + 3x2

This function implies that for every 1-unit increase in x1, the function value f in-
creases by 2 units while, for every 1-unit increase in x2, the function value f

increases by 3 units. Now consider a change in x1 of amount +4 units and a
change in x2 of amount +5 units. The change in x1(dx1 = 4) leads to an increase
in y of 2(4) = 8 while the change in x2(dx2 = 5) leads to an increase in y of
3(5) = 15. That is, the total effect is

dy = f1 dx1 + f2 dx2 = 2(4)+ 3(5) = 23 (11.1)



418 CHAPTER 11 CALCULUS FOR FUNCTIONS OF n-VARIABLES

For a general (nonlinear) function f (x1, x2)

dy = f1 dx1 + f2 dx2

is an approximation of the total amount by which f changes for changes in the
variables x1 and x2 of amounts dx1 and dx2, respectively. The reason that dy is
generally just an approximation for �y is that for nonlinear functions the partial
derivatives f1 and f2 change as x1 and x2 change. To see that this is so, consider
the following two examples. Suppose that we compute the value of the function
f (x1, x2) = 2x1 + 3x2 at the points (1, 1) and (5, 6). In moving from (1, 1) to
(5, 6), we have dx1 = +4 and dx2 = +5, and we find that the actual change in
the function value is

�y = f (5, 6)− f (1, 1) = 28− 5 = 23 (11.2)

which corresponds precisely to the result obtained in (11.1) using the total differ-
ential.

However, consider the nonlinear function f (x1, x2) = x1x2 evaluated at the
points (1, 1) and (5, 6), so that again dx1 = +4 and dx2 = +5. We find that the
actual change in the function value is

�y = f (5, 6)− f (1, 1) = 30− 1 = 29 (11.3)

Noting that f1 = x2 and f2 = x1, we find that the total differential, evaluated at
the initial point (1,1), gives the result

dy = f1 dx1 + f2 dx2 = 1(+4)+ 1(+5) = 9 (11.4)

For these noninfinitessimal values of dx1 and dx2, we find that the formula for the
total differential does not in this case give a very impressive approximation to the
actual change in the function value (compare equations 11.3 and 11.4). We leave it
to the reader to try values dx1 = 0.2 and dx2 = 0.3 to see how the percentage
error in using this formula depends on the size of the changes dxi .

Implicit Differentiation

In chapter 2 we introduced the possibility of a value y being defined implicitly as
a function of x, x ∈ R. A simple example is

2y + 4x − 10 = 0

where we can see that once we have specified an x value, then there is a specific
value of y which satisfies the equation. A little algebra indicates that we could
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explicitly define y as a function of x, with

y = −2x + 5

and we can see that the derivative is dy/dx = −2.
However, finding an explicit solution for y from an equation involving x and

y is not always so simple, and so a procedure is useful for finding dy/dx when y

is implicitly defined. For example, in

ex2+y − 5 = 0

a given value for x implies a specific y if the equality is to be satisfied. Rather than
solve explicitly for y, finding dy/dx can be done through the process of implicit
differentiation.

First, presume for the moment that the above equation does imply that y can
be defined as a function of x; namely y= f (x). This being the case, we can write
the equation as

ex2+f (x) − 5 = 0

Upon differentiation of each term with respect to the variable x, we get (using the
chain rule)

(
d

dx
[x2 + f (x)]

)
ex2+f (x) = [2x + f ′(x)]ex2+f (x) = 0

and upon dividing by ex2+f (x), which cannot be zero, we have that

2x + f ′(x) = 0

⇒ f ′(x) or
dy

dx
= −2x

which gives the desired result. It turns out in this case that we can check the result
quite easily by first directly solving for y as a function of x. If we take the natural
logarithm of both sides of the original equation, ex2+y = 5, we get

[x2 + y] ln e = ln 5

which, since ln e = 1, implies that

y = ln 5− x2

and so dy/dx = −2x.
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However, following the series of steps above to implicitly differentiate a func-
tion is a little tedious. A more convenient method is to first write the relationship
between x and y as the implicit function

F(x, y) = 0

and then totally differentiate this expression to get

Fx dx + Fy dy = 0

Rearranging terms gives

dy

dx
= −Fx

Fy

This is a useful method for computing the relationship between a change in x (dx)
and a change in y(dy) within the neighborhood of some point (x0, y0) wherever
F(x, y) = 0 implies that y is a function of x. The appropriate theorem, which we
give without proof, is

Theorem 11.2 Implicit Function Theorem (for two variables) Let F(x, y)= 0 be an implicit
function with continuous first derivatives which is satisfied at some point (x0, y0)
and is defined in some neighborhood of this point. IfFy �= 0 at this point, then there
is a function y= f (x) defined in some neighborhood of x= x0 corresponding to
the relationship defined by F(x, y)= 0 such that

(i) y0 = f (x0), and
(ii) f ′(x0) = −Fx/Fy

This theorem gives the conditions under which it is possible to presume that
the implicit function F(x, y)= 0 does imply an explicit functional relationship
y= f (x) and how to compute its derivative. The key point is that Fy �= 0. The
following example illustrates how to apply the theorem.

Example 11.13 Illustrate the implicit function theorem using the function

F(x, y) = x2 + y2 − 25 = 0

Solution

This is the equation of a circle in R
2 with center at the origin, (0, 0), and radius 5.

Since we can also write this equation as either

y2 = 25− x2
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or

x2 = 25− y2

it follows that −5≤ x ≤ 5 and −5≤ y ≤ 5. Otherwise, we would have that some
number when squared takes on a negative value, which is not a real number.
So we choose x0= 3, y0= 4, a specific point that satisfies F(x, y)= 0. Since
Fy(x, y)= 2y, it follows that Fy �= 0 at y0= 4, and so the key condition is satisfied.
Thus, in the neighborhood of (3, 4), we can think of y as a function of x, and we have

f ′(x) = dy

dx
= −Fx

Fy

= −2x

2y

Now, at the point (3, 4), we have

dy

dx
= −6

8
= −3

4

For this example it is easy to solve explicitly for y = f (x) in the neighborhood
of the point (3, 4), with y = √25− x2, and to check the value of the derivative
by the following steps:

dy

dx
= 1

2
(25− x2)−1/2(−2x) ⇒ dy

dx
= − x√

25− x2

and at x0 = 3 we get dy/dx = −3/4.
These results are illustrated in figure 11.12. Notice in this figure that at the

points (5, 0) and (−5, 0) it is not possible to see the relationship between x and y as
a function y= f (x). We cannot construct a neighborhood (i.e., an open interval)
around x for which there is a single value y associated with every value of x

within the interval, as required by the definition of a function. The implicit function
theorem indicates this difficulty since Fy = 2y = 0 at values x = 5 or x = −5
(i.e., since y = 0 in each case).

Example 11.14 Use the implicit function theorem to show that

x2y3 + 3xy2 + y = 22

implies an explicitly defined function y= f (x) at the point (1, 2) and find the value
of the derivative dy/dx at this point.
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y

x

4

0 3
5�5

(x0, y0)

slope = � 3
4

Figure 11.12 Figure to accompany example 11.13

Solution

Let F(x, y) = x2y3 + 3xy2 + y − 22 = 0. This function is satisfied at the point
(1, 2), Fy = 3x2y2 + 6xy + 1 so Fy(1, 2) = 25 �= 0. Hence we can perceive
this relationship as a function y = f (x) defined in the neighborhood of the point
(1, 2), and the derivative is

dy

dx
= −Fx

Fy

= − (2xy3 + 3y2)

(3x2y2 + 6xy + 1)

Thus, at the point (1, 2), we have dy/dx = −28/25.

An analogous theorem, which is a generalization of theorem 11.2, holds for func-
tions of more than one variable.

Theorem 11.3 Implicit Function Theorem Let F(x1, x2, . . . , xn, y) = 0 be an implicit func-
tion, with continuous first derivatives, which is satisfied at some point (x0

1 , x0
2 , . . . ,

x0
n, y

0) and is defined in some neighborhood of this point. If Fy �= 0 at this point,
then there is a function y = f (x1, x2, . . . xn) defined in some neighborhood of
x = x0 = (x0

1 , x0
2 , . . . , x0

n) such that

(i) y0 = f (x0), and
(ii) fi(x0) = −Fxi

/Fy

Example 11.15 Use implicit differentiation to find the partial derivatives ∂y/∂x1 and ∂y/∂x2 im-
plied by the relationship
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F(x1, x2, y) = 3x1x2 + x2y
2 + x2

1x2y − 10 = 0

Solution

First, we find

Fx1 = 3x2 + 2x1x2y

Fx2 = 3x1 + y2 + x2
1y

Fy = 2x2y + x2
1x2

According to the implicit function theorem we can perceive this relationship
as a function y = f (x1, x2) within any neighborhood of a point, provided that
Fy �= 0 at that point. So, at any point where Fy �= 0, we have

∂y

∂x1
= −Fx1

Fy

= − (3x2 + 2x1x2y)(
2x2y + x2

1x2
)

and

∂y

∂x2
= −Fx2

Fy

= −
(
3x1 + y2 + x2

1y
)(

2x2y + x2
1x2

)
As for the case of functions of one variable, a means of remembering the formula
for implicit differentiation is to totally differentiate the function F(x, y) = 0 and
take the appropriate ratios. For the case of n = 2, we get

dF = Fx1 dx1 + Fx2 dx2 + Fy dy = 0

Then, to find ∂y/∂x1, we set dx2 = 0 (since x2 is held fixed when finding the
partial derivative with respect to x1), and so

Fx1 dx1 + Fy dy = 0 ⇒ ∂y

∂x1
= −Fx1

Fy

Similarly, for the partial derivative with respect to x2, we set dx1 = 0.

Level Curves and Level Sets

For a function y= f (x1, x2), the set of (x1, x2) pairs that will generate some
specific level for y, ȳ, is called a level set. If, in the two-variable case, we can
solve the equation explicitly for x2 in terms of x1 and the fixed value ȳ, then we
have the equation for a level curve in (x1, x2)-space for any assumed value of ȳ.
The derivative dx2/dx1 is then the slope of the level curve.
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An alternative method for computing this slope is to use the total differential.
The advantage of doing so is that this technique works for functions which are
complicated enough that it is difficult to solve explicitly for x2 as a function of x1.
A level curve for a function, y = f (x1, x2) is written

ȳ = f (x1, x2) or f (x1, x2)− ȳ = 0

In this form we can implement the implicit function theorem, since it is equivalent
to the relationship

F(x1, x2) ≡ f (x1, x2)− ȳ = 0

Thus we have that

dF = f1 dx1 + f2 dx2 = 0 for y fixed.

It is useful to express this relationship in the following manner:

dx2

dx1

∣∣∣∣
y=ȳ

or
dx2

dx1

∣∣∣∣
dy=0

= −f1

f2

The condition y = ȳ or dy = 0 is explicit recognition that we are evaluating
the derivative dx2/dx1 specifically along a level curve where the value of y is fixed
at some level (y = ȳ) or, in other words, the value of y is not changing (dy = 0).

Example 11.16 Use the total differential to compute the slope of the level curves for the function
f (x1, x2) = 2x1 + 3x2.

Solution

Along any level curve of f (x1, x2) = 2x1 + 3x2 it follows that

dy = f1 dx1 + f2 dx2 = 2 dx1 + 3 dx2 = 0

which implies that

3 dx2 = −2 dx1

which in turn implies that

dx2

dx1

∣∣∣∣
dy=0

= −2

3

as indicated in figure 11.13.
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x1

15/3 y = 15

25/3

35/3

15/2 25/2 35/2

y = 25

y = 35

x2

Figure 11.13 Representative level curves for y = 2x1 + 3x2 (example 11.16)

Example 11.17 Use the total differential to compute the slope of the level curves for the function
f (x1, x2) = x2

1x2.

Solution

The partial derivatives of the function f (x1, x2) = x2
1x2 are

f1 = 2x1x2

and

f2 = x2
1

It follows that the slope of a level curve is

dx2

dx1

∣∣∣∣
y=ȳ

= −f1

f2
= −2x1x2

x2
1

= −2x2

x1

Unlike the example with a linear function, the slope of a level curve for this example
depends on the values of x1 and x2.
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Often we will just write dx2/dx1 to indicate the slope of level curves, with
the qualification that y = ȳ or dy = 0 to be taken for granted.

The Production Function: Isoquants and the Marginal Rate of
Technical Substitution

For a production function written y= f (x1, x2), the level curve x2= g(x1) defined
by the set

{(x1, x2) : ȳ = f (x1, x2)} ⇒ x2 = g(x1)

represents the input combinations which will generate the same level of output
y = ȳ. The graph of this curve is called an isoquant (where “iso” means equal)
because all the input combinations that satisfy the condition above lead to the same
quantity of output being produced. Along an isoquant dy = 0, and so we can find
the slope of an isoquant by setting the total differential to zero:

dy = f1 dx1 + f2 dx2 = 0

Solving for dx2/dx1 along dy = 0 gives the slope of the isoquant:

dx2

dx1

∣∣∣∣
dy=0

= −f1

f2

The negative of this slope is called the marginal rate of technical substitution
(MRTS):

MRTS = −dx2

dx1

∣∣∣∣
dy=0

= f1

f2

The MRTS is the (marginal) rate at which the firm can substitute one input for the
other and continue to produce the same level of output.

Example 11.18 Find the marginal rate of technical substitution for the production function y =
f (x1, x2) = x

1/3
1 x

1/2
2 .

Solution

Setting the total differential of this production function to zero gives

dy = f1 dx1 + f2 dx2 =
(

1

3
x
−2/3
1 x

1/2
2

)
dx1 +

(
1

2
x

1/3
1 x

−1/2
2

)
dx2 = 0
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and so we get the slope of an isoquant to be

dx2

dx1

∣∣∣∣
dy=0

= −
1

3
x
−2/3
1 x

1/2
2

1

2
x

1/3
1 x

−1/2
2

= −2x2

3x1

and so the marginal rate of technical substitution is

MRTS = −dx2

dx1

∣∣∣∣
dy=0

= 2x2

3x1

A graph of an isoquant for this function is “strictly convex to the origin”; that
is (roughly speaking), it can be seen that it bends in toward the origin (see
figure 11.14). There is, however, a more formal method of determining whether
the shape of an isoquant, or any other level curve, is strictly convex to the origin.
Let x2 = g(x1) represent the general equation of an isoquant. If dx2/dx1 is neg-
ative, then the slope of the isoquant is negative, while if in addition we find that
d2x2/dx2

1 > 0, then the isoquant is strictly convex to the origin. (With a weak in-
equality, d2x2/dx2

1 ≥ 0, we just say convex to the origin.) If we draw a graph of
an isoquant (see figure 11.14) for the production function in example 11.18, we
find that it does indeed have a strictly convex to the origin shape. To see this using

x2

x1

A

B

Dx2

Dx2 x2 = y 2x1
22/3

Dx1

Dx1

¯

Figure 11.14 Representative isoquant for the production function y = x
1/3
1 x

1/2
2 used

in example 11.18
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the formal method just described, notice that along an isoquant

x
1/3
1 x

1/2
2 = ȳ

which implies that

x2 = g(x1) = ȳ
2

x
2/3
1

is the equation for an isoquant. The first two derivatives of this function are

dx2

dx1
= g′(x1) = −2

3
ȳ

2
x
−5/3
1 < 0 for x1, ȳ > 0

d2x2

dx2
1

= g′′(x1) = 10

9
ȳ

2
x
−8/3
1 > 0 for x1, ȳ > 0

which implies that the isoquants are downward sloping and strictly convex to the
origin. Notice that the positive second derivative in conjunction with a negative
first derivative means that the slope at a point like B in figure 11.14 is smaller in
absolute value than at a point like A.

For a general production function with two inputs, we have

MRTS = −dx2

dx1

∣∣∣∣
y=ȳ

= f1

f2

Diagrammatically the condition that isoquants be strictly convex to the origin
corresponds to the fact that as we move rightward along an isoquant, increasing x1

and decreasing x2, the MRTS is decreasing (i.e., the slope of the curve decreases
in absolute value). This implies that

d[−dx2/dx1]

dx1
= d[f1(x1, x2)/f2(x1, x2)]

dx1
< 0

where x2 is a function of x1, x2 = g(x1), along an isoquant. Therefore, employing
the quotient rule and chain rule, and using x2 = g(x1), we have that

d

dx1

[
f1(x1, x2)

f2(x1, x2)

]
= (f11 + f12g

′(x1))f2 − (f21 + f22g
′(x1))f1

f 2
2
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= 1

f 2
2

[
f11f2 + f12f2

(−f1

f2

)
− f12f1 − f22f1

(−f1

f2

)]

= 1

f 3
2

[
f11f

2
2 − f1f2f12 − f1f2f12 + f22f

2
1

]
= 1

f 3
2

[
f11f

2
2 − 2f1f2f12 + f22f

2
1

]
where the second equality uses g′(x1) = dx2/dx1 = −f1/f2 andYoung’s theorem.
Thus an isoquant, or any level curve for a general function with f2 > 0, has the
strictly convex to the origin shape provided that

f11f
2
2 − 2f1f2f12 + f22f

2
1 < 0 (11.5)

Recall from chapter 2 that such a function is said to be strictly quasiconcave. In
fact, economists usually impose the condition of strict concavity on production
functions. Any function which is strictly concave is also strictly quasiconcave and
so has strictly convex to the origin level curves. We investigate these relationships
more fully in section 11.5.

Example 11.19 Consider the Cobb-Douglas production function

y = Axα
1 x

β

2 , A > 0, 0 < α, β < 1

Setting the total differential of this production function to zero gives

dy = f1 dx1 + f2 dx2 =
(
αAxα−1

1 x
β

2

)
dx1 +

(
βAxα

1 x
β−1
2

)
dx2 = 0

and so we get the slope of an isoquant to be

dx2

dx1

∣∣∣∣
dy=0

= −αAxα−1
1 x

β

2

βAxα
1 x

β−1
2

= −αx2

βx1

Now the marginal rate of technical substitution is

MRTS = −dx2

dx1

∣∣∣∣
dy=0

= αx2

βx1

To show that the shape of an isoquant is convex to the origin, let x2= g(x1)

represent the general equation of an isoquant, and compute the first two derivatives:

Axα
1 x

β

2 = ȳ
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This implies that the equation of an isoquant is

x2 = g(x1) =
(

ȳ

Axα
1

)1/β

=
(

ȳ

A

)1/β

x
−α/β

1

The first two derivatives of this function are

dx2

dx1
= g′(x1) = −α

β

(
ȳ

A

)1/β

x
−1−α/β

1 < 0 for x1, ȳ > 0

d2x2

dx2
1

= g′′(x1) = −α

β

(
−1− α

β

)(
ȳ

A

)1/β

x
−2−α/β

1 > 0 for x1, ȳ > 0

The signs of these derivatives imply that the isoquants are downward sloping and
strictly convex to the origin.

A clear understanding of the relationship between isoquants and the production
function is a critical component to the development of the theory of firm behavior,
as will become apparent in chapter 13. The description of consumer behavior
requires as well that we understand the relationship between the utility function,
which represents consumers’ preferences, and the level sets or contours of this
function, which are called indifference curves. Although a utility function does
not reflect a physical quantity, as does a production function, the mathematical and
graphical analysis of the two subjects are remarkably similar.

The Utility Function: Indifference Curves and the Marginal Rate of
Substitution

It is convenient to represent an individual’s preferences over hypothetical con-
sumption bundles by a utility function, u(x) defined on R

n
+. The level sets of a

utility function are {x : u(x) = ū, x ∈ R
n
+}, and for x ∈ R

2 level sets or level
curves are called indifference curves. Although these are analogous to the iso-
quants of the production function, there is one important difference. To say that
output has doubled is a meaningful statement, whereas such a remark makes no
sense when applied to utility. Therefore we say that the measurement of the level
of a physical product has cardinal properties but utility measurements have only
ordinal properties. Thus in figure 11.15 it is only the relative ordering of the four
bundles (B1, B2, B3, B4) that has meaning, with comparisons between the size of
differences in utilities being irrelevant. Either of the two sets of utility numbers
indicated could be used since in both cases u(B1) > u(B2) = u(B3) > u(B4), indi-
cating that among these bundles B1 is most preferred, followed by equal preference
between B2 and B3 (indifference) with B4 least preferred.
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x2

x1
0

B1

B2

B3

B4

u � 6 (u � 72)

u � 4 (u � 32)

u � 2 (u � 8)

Figure 11.15 Indifference curves

Thus it is the shape of the indifference curves only that is relevant in consumer
theory. This implies that if u : R

n
+→R describes a preference ordering, then so

would any other function

ũ(x) = T [u(x)], T ′> 0

obtained from u by applying a positive monotonic transformation T . For exam-
ple, suppose that we find that the Cobb-Douglas utility function

u = Axa
1 xb

2 , A, a, b > 0

accurately represents a specific preference ordering for a given a and b, then

ũ = 1

Ak
uk = xka

1 xkb
2 , k > 0

represents the same preference ordering. In particular, by choosing k = 1/(a+ b)

the utility function ũ is seen to have exponents which add up to 1 and so we can
write the utility function

u = xα
1 x1−α

2 , 0 < α < 1

without loss of generality to describe any preferences that are Cobb-Douglas. (Note
that α = a/(a + b), and so 1− α = 1− a/(a + b) = b/(a + b).)

Example 11.20 The utility functions u = x
1/3
1 x

2/3
2 and ũ = [u]6 = x2

1x4
2 represent the same

preferences. To see this, note that the slope of any level curve at a point in R
2
+ is
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the same for both functions:

For u,
dx2

dx1

∣∣∣∣
du=0

= −u1

u2
= −

1

3
x
−2/3
1 x

2/3
2

2

3
x

1/3
1 x

−1/3
2

= −1

2

x2

x1

For ũ,
dx2

dx1

∣∣∣∣
dũ=0

= − ũ1

ũ2
= − 2x1x

4
2

4x2
1x3

2

= −1

2

x2

x1

In the context of the production function, we have discussed conditions that must be
imposed to ensure that its level curves or contours are strictly convex to the origin
or, equivalently, the condition for the function to be strictly quasiconcave (see
equation 11.5). We repeat these below for the utility function u = u(x1, x2). This
condition for strict quasi-concavity is less general than that given in section 2.4,
because it requires differentiability.

A utility function u = u(x1, x2) that satisfies u2 > 0 is strictly quasiconcave
if and only if

u11u
2
2 − 2u1u2u12 + u22u

2
1 < 0 (11.6)

To understand the economic significance of this condition, we need to develop
the notion of the marginal rate of substitution (MRS), which is equivalent to
the MRTS in production theory. The MRS is the (marginal) rate at which the
consumer can substitute one good for the other and continue to remain on the
same indifference curve. Formally it is the negative of the slope of the indifference
curve. Thus

MRS = −dx2

dx1

∣∣∣∣
u=ū

= u1

u2

We establish the intuition for this concept through the following two examples.

Example 11.21 Consider the utility function

u(x1, x2) = x2
1x2

with first-order partial derivatives

u1 = 2x1x2

u2 = x2
1
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It follows that the MRS is

MRS = −dx2

dx1

∣∣∣∣
du=0

= u1

u2
= 2x2

x1

The MRS, which is the absolute value of the slope of the indifference curve, is
increasing in x2 and decreasing in x1.

It is generally presumed that indifference curves are likely to have this shape, that
is, be strictly convex to the origin. The rationale given for this supposition is that as
one moves from a bundle with more of x2 and less of x1 (i.e., x1 becomes relatively
scarcer), a reduction in a unit of x1 requires a greater increase in x2 to compensate
the consumer (i.e., to remain on a given indifference curve).

Example 11.22 Find the shape of the indifference curves for the case of perfect substitutes
u(x1, x2) = x1 + x2.

Solution

The total differential for u(x1, x2) = x1 + x2 is

du = (1) dx1 + (1) dx2

Along any indifference curve du = 0 and so dx2 = −dx1; i.e., dx2/dx1 = −1.
This implies that

MRS = −dx2

dx1

∣∣∣∣
du=0

= 1

We can see that if from some initial consumption bundle, such as point A in
figure 11.16, we substitute k units of one commodity for k units of the other,
i.e., dx2=−dx1, then the consumer remains on the same indifference curve. Since
the consumer is always indifferent in a one-for-one trade-off between these com-
modities, we say that the commodities represent perfect substitutes for this con-
sumer.

The intuition and analysis of the concepts of MRS and MRTS carry over
to functions of more than two variables. If y= f (x1, x2, . . . , xn), then fidxi

represents the contribution to the change in the y variable from a change dxi

in the variable xi, i = 1, 2, . . . , n. The following generalization of definition 11.3
applies.
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x1

45˚

A

x2

k

k

u = ū ⇒ x2 = ū x1 ⇒ dx2

dx1

∣
∣
∣
∣
du=0

= –1

⇒ MRS = 1

u = ū

Figure 11.16 Representative indifference curve for goods that are perfect substitutes

D e f in i t i o n 11 . 4 The first-order total differential for the function y = f (x1, . . . , xn) is

dy = f1 dx1 + f2 dx2 + · · · + fn dxn =
n∑

i=1

fi dxi

To compute the MRS for a consumer between two commodities or the MRTS
for a firm between two inputs set dxi = 0 for all xi except the two under consid-
eration. Thus, setting dxi = 0 for every i = 1, 2, . . . , n except i = k and i = l

gives us

dy = fk dxk + fl dxl = 0

which implies that

dxk

dxl

∣∣∣∣
dy=0,dxi=0

= − fl

fk

for i �= k, l

The following example illustrates this point.

Example 11.23 Consider the MRTS between pairs of inputs for the production function

y = f (x1, x2, x3) = Axα
1 x

β

2 x
γ

3 , α, β, γ > 0
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Total differentiation of this production function gives

dy = f1 dx1 + f2 dx2 + f3 dx3

Along an isoquant dy = 0, and so, for example, setting dx1 = 0, gives us

MRTS2,3 = − dx3

dx2

∣∣∣∣
dy=0,dx1=0

= f2

f3
= βAxα

1 x
β−1
2 x

γ

3

γAxα
1 x

β

2 x
γ−1
3

= βx3

γ x2

A similar procedure will produce the others (MRTS1,2, etc.).

E X E R C I S E S

1. For the function u(x1, x2) = 5x1 + 3x2:

(a) Find the total differential.

(b) Draw the level curve for ū = 120.

(c) Use the pair of points (12, 20) and (18, 10) to illustrate that the
MRS= 5/3 and derive this result from the total differential in part (a).

2. For the function u(x1, x2) = ax1 + bx2:

(a) Find the total differential.

(b) Draw a representative level curve for u = ū.

(c) Use the expression for the total differential to illustrate that the
MRS = a/b.

3. Use the total differential to find the MRTS for the production function y =
x1x2. Show that the isoquants are strictly convex to the origin.

4. Use the total differential to find the MRTS2,3 for the production function
y = x1x2x3. Show that the relevant isoquants in (x2, x3)-space (i.e., the plane
with x1 held fixed) are strictly convex to the origin.

5. Use the total differential to find the slopes of the indifference curves for each
of the following utility functions:

(a) u(x1, x2) = x1x2

(b) û(x1, x2) = x2
1x2

2

(c) ũ(x1, x2) = BxK
1 xK

2 , where B, K > 0 are constants

6. Note that the slopes of the indifference curves for each of the utility functions
of question 5 are the same. This is because of the functional relationship
between the utility functions. That is, û = F(u) = u2 and ũ = F(u) = BuK .
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In both cases the derivative of the F function, F ′(·), is positive on u > 0. We
call such an F function a positive monotonic transformation of u. Show that
for any such F used to generate a function of some original function u(x1, x2),
the resulting function has indifference curves (or more generally level curves)
with the same shape.

7. Use the total differential to find the MRTS for the production function

y = [
0.3x−3

1 + 0.7x−3
2

]−1/3

Show that its isoquants are strictly convex to the origin.

8. Use the total differential to find the MRTS for the production function

y = A
[
δx−r

1 + (1− δ)x−r
2

]−1/r
, A > 0, r >− 1

Show that its isoquants are strictly convex to the origin.

9. Show that the points A = (8, 1), B = (4, 4), and C = (2, 16) are on the same
indifference curve generated by the function u = x2

1x2. Compute the ratio
|�x2|/|�x1| between the pairs B and C, and A and B. How do these ratios
relate to the notion of the marginal rate of substitution and the fact that it is
falling as x1 rises (and x2 falls) moving along the indifference curve from left
to right?

11.4 Curvature Properties: Concavity and
Convexity

An important aspect of the shape of a function is its curvature. This property
is usually described by using the second-order derivatives that explain how the
first derivatives change. We discussed this process in section 5.5 for functions
of one variable. Figure 11.17 summarizes those results. For f ′′> 0 the function
is convex, which means that for f ′> 0 the function increases more rapidly as x

increases while for f ′< 0 the function value falls less quickly. For f ′′< 0, the
function is concave, which means that for f ′> 0 the function value increases less
quickly as x increases while for f ′< 0 the function value falls more quickly.

One might expect that a direct extension for functions on R
n could be made by

simply considering each second-order partial fii separately and checking its sign.
The problem with this approach, however, is that it isolates only a finite number
of specific directions in which one can travel from a point, (i.e., by changing each
xi separately while holding all other variables fixed). In fact there are an infinite
number of paths that one can take from some point, as illustrated in figure 11.3.
As a result we must work a bit harder to determine concavity and convexity for
functions defined on R

2 or R
n than for functions defined on R.
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x1

x2

f '(x) > 0, f ''(x) > 0 

(a)

x1

x2

f '(x) < 0, f ''(x) > 0 

(b)

x1

x2

f '(x) > 0, f ''(x) < 0 

(c)

x1

x2

f '(x) < 0, f ''(x) < 0 

(d)

Figure 11.17 Strictly convex, (a) and (b), and strictly concave, (c) and (d), functions

Example 11.24 The second-order derivatives of the function f (x1, x2) = x2
1 + x2

2 − 5x1x2 are

f11 = 2, f22 = 2, f12 = −5

Although both f11 and f22 are positive, this function is not strictly convex (in all
directions), as we see in figure 11.18. The cross-partial derivative (f12 = −5) also
plays a role in determining the curvature of a function, as we will see formally in
this section.

y

x2

x1

Figure 11.18 Graph of
f (x1, x2) = x2

1 + x2
2 − 5x1x2 in

example 11.24

Consider a function y= f (x) defined on R. Recall that the first-order total differ-
ential at the point x = x0 is

dy = f ′(x0) dx
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Notice that dy is a function of both x and dx, but we often regard dx as a given
constant. Upon taking the total differential of dy, which is written d2y, we get

d2y = d[dy] = d[dy]

dx
dx = d[f ′(x) dx]

dx
dx

= f ′′(x) dx dx = f ′′(x) dx2

which is called the second-order total differential of f (x). Since the term dx2 ≡
(dx)2 is strictly positive for any value dx �= 0, it follows that d2y has the same
sign as f ′′(x). Therefore the determination of convexity and concavity, which
rely on the sign of f ′′(x), can be equally well presented using the sign of d2y.
That is, since a function is convex if f ′′(x) ≥ 0 and concave if f ′′(x) ≤ 0, then
d2y= [f ′′(x)] dx2≥ 0 for convex functions and d2y= [f ′′(x)] dx2≤ 0 for con-
cave functions.

The same conditions relating the sign of d2y to concavity/convexity apply to
functions defined on R

n. We will develop this result first for the case of R
2; that

is, y = f (x1, x2). Recall that the first-order total differential for y = f (x1, x2) is

dy = ∂f (x1, x2)

∂x1
dx1 + ∂f (x1, x2)

∂x2
dx2

or

dy = f1 dx1 + f2 dx2

The second-order total differential is the total differential of dy; that is, d[dy]
or d2y where

d[dy] = ∂[dy]

∂x1
dx1 + ∂[dy]

∂x2
dx2

= ∂[f1 dx1 + f2 dx2]

∂x1
dx1 + ∂[f1 dx1 + f2 dx2]

∂x2
dx2

= [f11 dx1 + f21 dx2] dx1 + [f12 dx1 + f22 dx2] dx2

= f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2

since f21 = f12 by Young’s theorem.

D e f in i t i o n 11 . 5 The second-order total differential for the function y = f (x1, x2) is

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2
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From this expression we can see that d2y depends on the cross-partial second
derivative f12 as well as on f11 and f22. We can now state sufficient conditions for
a function to be strictly convex or strictly concave.

Theorem 11.4 If the function y = f (x1, x2) defined on R
2 is twice continuously differentiable

and d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2 > 0 whenever at least one of dx1

or dx2 is nonzero, then y = f (x1, x2) is a strictly convex function.

Theorem 11.5 If the function y = f (x1, x2) defined on R
2 is twice continuously differentiable

and d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2 < 0 whenever at least one of dx1

or dx2 is nonzero, then y = f (x1, x2) is a strictly concave function.

Example 11.25 Use the sign of the second-order total differential to show that the function y =
x2

1 + x2
2 is strictly convex.

Solution

The second-order partial derivatives of the function y = x2
1 + x2

2 are

f11 = 2, f12 = 0, f22 = 2

It follows that

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2 = 2 dx2
1 + 2 dx2

2

Since dx2
1 ≥ 0 and dx2

2 ≥ 0 and both are zero only if dx1= dx2= 0, then the
conditions for strict convexity in theorem 11.4 are satisfied.

The conditions for strict convexity and strict concavity for a function y = f (x1, x2)

given in theorems 11.4 and 11.5 are sufficient but not necessary. The reason for
this is illustrated by the following example:

Example 11.26 The function y = x4
1 + x4

2 is strictly convex, yet d2y = 0 if x1 = x2 = 0. To see
this, notice that

f1 = 4x3
1 , f2 = 4x3

2

f11 = 12x2
1 , f22 = 12x2

2 , f12 = 0
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and so

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2

= 12x2
1 dx2

1 + 12x2
2 dx2

2

which takes on the value zero in the cases indicated. However, this function can
be shown to be strictly convex (see figure 11.19).

y

x2

x1

Figure 11.19 Graph of y = x4
1 + x4

2 (example 11.26)

The weaker conditions of concavity and convexity, which allow for linear
functions or functions with linear segments, are given by the following.

Theorem 11.6 If the function y = f (x1, x2) defined on R
2 is twice continuously differentiable,

then it is convex if and only if

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2 ≥ 0

Theorem 11.7 If the function y = f (x1, x2) defined on R
2 is twice continuously differentiable,

then it is concave if and only if

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2 ≤ 0
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Notice that in the case of (weak) convexity or (weak) concavity, the condition on
d2y involves a weak inequality and is both necessary and sufficient.

Example 11.27 Use the sign of the second-order total differential to show that the function y =
5− (x1 + x2)

2 is concave.

Solution

First- and second-order partial derivatives of this function are

f1 = −2(x1 + x2), f2 = −2(x1 + x2)

f11 = −2, f22 = −2, f12 = −2

It follows that

d2y = f11 dx2
1 + 2f12 dx1 dx2 + f22 dx2

2

= −2 dx2
1 − 4 dx1 dx2 − 2 dx2

2

= −2 (dx1 + dx2)
2 ≤ 0

and so the function is concave. To see that this function is not strictly concave,
notice that along the set of (x1, x2) values satisfying x2= a − x1, where a is any
constant, we have y= (x1 + a − x1)

2= a2. These (x1, x2) values generate hori-
zontal linear segments of the graph of f as illustrated in figure 11.20.

y

y � a2

x2
 � a − x1

x2

x1

Figure 11.20 Linear segment on
the surface of the graph of
y = 5− (x1 + x2)

2 in example 11.27

This analysis concerning concavity and convexity carries over to functions of
more than two variables. Recall that the first-order total differential for y =
f (x1, x2, . . . , xn) is

dy = f1 dx1 + f2 dx2 + · · · + fn dxn =
n∑

i=1

fi dxi

Since each of the partial derivatives fi is a function of (x1, x2, . . . , xn), dy is also
a function of (x1, x2, . . . , xn), and so we can find its total differential d[dy] or d2y

as follows:

d2y = ∂[dy]

∂x1
dx1 + ∂[dy]

∂x2
dx2 + · · · + ∂[dy]

∂xn

dxn

= ∂
[∑n

i=1 fi dxi

]
∂x1

dx1 +
∂
[∑n

i=1 fi dxi

]
∂x2

dx2 + · · ·

+ ∂
[∑n

i=1 fi dxi

]
∂xn

dxn (11.7)
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Each term in equation (11.7) represents n partial derivatives. For example,

∂
[∑n

i=1 fi dxi

]
∂x1

= ∂ [f1 dx1 + f2 dx2 + · · · + fn dxn]

∂x1

= ∂f1

∂x1
dx1 + ∂f2

∂x1
dx2 + · · · + ∂fn

∂x1
dxn

= f11 dx1 + f21 dx2 + · · · + fn1 dxn

It follows that since each of the n terms in equation (11.7) represents n terms, there
are n2 terms altogether. It is tedious to write these out in full. However, by using
summation notation, we get

d2y =
n∑

j=1

(
∂
[∑n

i=1 fi dxi

]
∂xj

dxj

)
=

n∑
j=1

n∑
i=1

fij dxi dxj

which in turn indicates how we can write d2y in matrix notation

d2y = dxT∇2F dx (11.8)

where dxT = [dx1 dx2 · · · dxn] is the vector of changes dxi and

∇2F =

⎡
⎢⎢⎢⎣

f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn

⎤
⎥⎥⎥⎦

is the Hessian matrix of f .
The conditions regarding the relationship between the sign of d2y and con-

cavity or convexity for functions of two variables carry over directly to functions
of n variables using the above expression for d2y given by equation (11.8).

Determining the sign of d2y directly can involve quite a lot of algebraic manip-
ulation even for rather simple functions of only two variables. Fortunately results
from chapter 10 on quadratic forms offer a simpler way of determining whether
d2y is positive or negative (or neither). To see this, notice from equation (11.8) that
d2y is in fact a quadratic form with matrix ∇2F and vector dx. Moreover, from
Young’s theorem (i.e., fij = fji) it follows that the matrix ∇2F is symmetric. We
can therefore use results from the theory of quadratic forms to establish alternative
sets of conditions for checking whether a function y = f (x) is concave or convex.
For example, from theorem 10.17 we know that the quadratic form d2y is positive
(i.e., the matrix ∇2F is positive definite) if and only if all the leading principal
minors of the matrix ∇2F are positive. This provides an alternative method of
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determining whether a function is strictly convex. Writing the Hessian as H (i.e.,
∇2F ≡ H ), we have the following rules for determining convexity/concavity of
a function.

Theorem 11.8 For any function y= f (x), x∈R
n which is twice continuously differentiable

with Hessian H , it follows that:

1. the function f is strictly convex on R
n if H is positive definite for all x ∈ R

n

(i.e., d2y = dxT H dx > 0).
2. the function f is strictly concave on R

n if H is negative definite for all x ∈ R
n

(i.e., d2y = dxT H dx < 0).
3. the function f is convex on R

n if and only if H is positive semi-definite for
all x ∈ R

n (i.e., d2y = dxT H dx ≥ 0).
4. the function f is concave on R

n if and only if H is negative semi-definite for
all x ∈ R

n (i.e., d2y = dxT H dx ≤ 0).

Notice that the conditions on H are only sufficient in the case of strict convex-
ity/concavity, while the conditions are both necessary and sufficient in the case of
(weak) convexity/concavity. This is consistent with our earlier discussion regard-
ing functions of two variables.

Recall from section 10.3 that the conditions for a matrix to be positive or
negative definite depend on the signs of the leading principal minors of the matrix.
We collect these results in the context of the Hessian (i.e., the quadratic form
d2y = dxT Hdx) in the following theorem. Recall that |Hk| refers to the leading
principal minor of order k while we indicate by |H ∗k | any principal minor of order
k, so |H ∗k | refers to more than one minor. Thus the leading principal minors are

|H1| = f11 |H2| =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ . . .

|Hn| = |H | =

∣∣∣∣∣∣∣∣∣
f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣
It is tedious to write out all of the |H ∗k | determinants, and so we do this only for
n = 3 here:

|H ∗1 | = f11, f22, f33

|H ∗2 | =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ ,
∣∣∣∣ f11 f13

f31 f33

∣∣∣∣ ,
∣∣∣∣f22 f23

f32 f33

∣∣∣∣
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|H ∗3 | =
∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣
Since |H ∗n | represent the determinants of matrices formed by interchanging row-
column pairs, it follows that we only need to check the sign of |Hn| = |H | to know
the sign of all the |H ∗n | values.

Theorem 11.9 Let H be the Hessian matrix associated with a twice continuously differentiable
function y = f (x), x ∈ R

n. It follows that:

1. H is positive definite on R
n if and only if its leading principal minors are

positive; |H1|> 0, |H2|> 0, |H3|> 0, . . . , |Hn| = |H |> 0 for x ∈ R
n. In this

case d2y > 0 and so f is strictly convex.
2. H is negative definite on R

n if and only if its leading principal minors alternate
in sign beginning with a negative value for k = 1;

|H1|< 0, |H2|> 0, . . . , |Hn| = |H |
{
> 0 if n is even
< 0 if n is odd

for x ∈ R
n. In this case d2y < 0 and so f is strictly concave.

3. H is positive semidefinite on R
n if and only if all of its principal minors are

positive or zero; |H ∗1 | ≥ 0, |H ∗2 | ≥ 0, |H ∗3 | ≥ 0, . . . , |H ∗n | = |H | ≥ 0 for
x ∈ R

n. In this case d2y ≥ 0 and so f is convex. Moreover, if f is convex,
this set of conditions must hold.

4. H is negative semidefinite on R
n if and only if all of its principal minors

alternate in sign beginning with a negative or zero value for k = 1;

|H ∗1 | ≤ 0, |H ∗2 | ≥ 0, . . . , |H ∗n | = |H |
{≥ 0 if n is even
≤ 0 if n is odd

for x ∈ R
n. In this case d2y ≤ 0 and so f is concave. Moreover, if f is

concave this set of conditions must hold.

The following examples illustrate how to use the results in theorem 11.9 to
determine the concavity/convexity properties of a function.

Example 11.28 Use theorem 11.9 to determine the convexity/concavity property of the function
y= f (x1, x2)= (x1 + x2)

1/2 defined on x∈R
2
++.
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Solution

The second-order partial derivatives are

f11 = −1

4
(x1 + x2)

−3/2

f12 = f21 = −1

4
(x1 + x2)

−3/2

f22 = −1

4
(x1 + x2)

−3/2

Since all of these are negative, we check first for strict concavity of f :

|H1| = f11 < 0, |H2| =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ = f11f22 − f 2
12 = 0

Note that |H2| = 0, and so we cannot apply result 2 of theorem 11.9. Therefore we
check for (weak) concavity. |H ∗1 | = f11, f22, both of which are negative. |H ∗2 | =
|H2| ≥ 0 (because |H2| = 0). Therefore f is concave.

The following example illustrates that the conditions for weak concavity or
convexity are not determined simply by relaxing the strict inequalities to weak
inequalities only on the leading principal minors. All minor determinants must be
evaluated when checking for (weak) convexity or (weak) concavity.

Example 11.29 Use theorem 11.9 to determine the convexity/concavity property of the function
y = f (x1, x2) = 3x1 + x2

2 defined on R
2.

Solution

The first- and second-order partial derivatives of this function are

f1 = 3, f2 = 2x2

f11 = 0, f12 = f21 = 0, f22 = 2

To check for strict concavity/convexity we determine the signs for the leading
principal minors of H

|H1| = f11 = 0, |H2| = f11f22 − f 2
12 = 0

and so neither the condition for strict concavity nor strict convexity is satisfied.
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It is an error to conclude that since the series |Hk| in this example satisfies
trivially both |Hk| ≤ 0 and |Hk| ≥ 0, k = 1, 2, that f is both weakly convex and
weakly concave. The only function for which this is true is the linear function,
and the graph of f in figure 11.21 clearly indicates that this is not the case. The
appropriate condition to check for weak convexity or weak concavity involves
checking the sign of both |H ∗1 | values, f11 and f22:

|H ∗1 | =
{
f11 = 0

f22 > 0

and so |H ∗1 | ≥ 0. |H ∗2 | = f11f22−f 2
12 = 0 and so |H ∗2 | ≥ 0. Therefore, the function

is convex. (Note that since one of the |H ∗1 | values is positive, this function is not
also concave.)

Example 11.30 Use theorem 11.9 to determine the convexity/concavity property of the function

y = f (x1, x2, x3) = xα
1 + x

β

2 + x
γ

3 , x ∈ R
3
++, 0 < α, β, γ < 1

y

x2

x1

Figure 11.21 Graph of
y = 3x1 + x2

2 in example 11.29

Solution

The first-order partials of this function are

f1 = αxα−1
1 , f2 = βx

β−1
2 , f3 = γ x

γ−1
3

Since all second-order cross-partials are zero, the second-order partial derivatives
are

f11 = (α − 1)αxα−2
1 < 0 since α − 1 < 0

f22 = (β − 1)βx
β−2
2 < 0 since β − 1 < 0

f33 = (γ − 1)γ x
γ−2
3 < 0 since γ − 1 < 0

fij = 0, i �= j

As a result we get the following value of |H |:

|H | =
∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(α − 1)αxα−2

1 0 0
0 (β − 1)βx

β−2
2 0

0 0 (γ − 1)γ x
γ−2
3

∣∣∣∣∣∣
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And so we get

|H1| = (α − 1)αxα−2
1 < 0

|H2| =
[
(α − 1)αxα−2

1

][
(β − 1)βx

β−2
2

]
> 0

|H3| =
[
(α − 1)αxα−2

1

][
(β − 1)βx

β−2
2

][
(γ − 1)γ x

γ−2
3

]
< 0

which implies that the function is strictly concave.

This example illustrates an interesting general point regarding the relationship
between conditions for a function of one variable to be convex (concave) and
the conditions for a function of more than one variable to be convex (concave).
For instance, if for y = f (x), x ∈ R, we have that f ′′(x) ≤ 0 (or d2y ≤
0), then the function is concave. If we have a function of many variables y =
f (x1, x2, . . . , xn) which has the property that all cross-partials are zero, then such
a function is concave if and only if every second-order partial fii is negative or
zero. In particular, additively separable functions which can be written as

f (x1, x2, . . . , xn) = g1(x1)+ g2(x2)+ · · · + gn(xn)

have this property (see definition 11.2). We prove this in the following theorem:

Theorem 11.10 An additively separable function y = f (x) is concave if and only if fii ≤ 0 for
all i = 1, 2, . . . , n.

Proof

We need to show that d2y = dxT H dx ≤ 0 for all vectors dx if and only if fii ≤ 0
for all i = 1, 2, . . . , n. First, note that since fij = 0 for i �= j , we can write d2y

as

d2y = dxT H dx =
n∑

j=1

n∑
i=1

fij dxi dxj

=
n∑

i=1

fii dx2
i

We first show that if fii ≤ 0 for all i, then d2y ≤ 0. Since dx2
i ≥ 0 for any

dxi and fii ≤ 0 for all i, then every term in d2y is negative or zero, which proves
the sufficiency part of the theorem (i.e., if all fii ≤ 0 then d2y ≤ 0).
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We now need to show that the claim that d2y ≤ 0 for any vector dx requires that
fii ≤ 0 for all i. First, suppose the contrary; that is, suppose that one of the fii > 0.
Without loss of generality, suppose that f11 > 0. Then choose a vector dx with
dx1 �= 0 and dxj = 0 for j = 2, 3, . . . , n. The result is that

d2y = f11 dx2
1 > 0

which is a contradiction. This proves the necessity part of the theorem (i.e., that
d2y ≤ 0 only if all fii ≤ 0).

Clearly, we can establish similar theorems for the cases of (weak) concavity and
(strict and weak) convexity. Some of these results are left as problems in the
exercises. The intuitive point brought out by theorem 11.10 is that if a function
of many variables has zero cross-partial derivatives, then it will be concave if and
only if it is concave in each direction xi (i.e., with respect to each variable xi).
For example, the function f (x1, x2) = x

1/2
1 + x

1/2
2 , x1 > 0 and x2 > 0, is strictly

concave on R
2
++ with respect to each variable xi (f11, f22 < 0), as illustrated in

figure 11.22, while the function f (x1, x2) = x
1/2
1 + x2

2 is strictly concave on R
2
++

with respect to x1 (i.e., f11 < 0) but strictly convex with respect to x2(i.e., f22 > 0)
and so is neither concave nor convex, as illustrated in figure 11.23.

If the cross-partial derivatives are nonzero, the necessity part of theorem 11.10
continues to hold:

x2

x1

0

y

Figure 11.22 Graph of y = x
1/2
1 + x

1/2
2
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x2

x1

0

y

Figure 11.23 Graph of y = x
1/2
1 + x2

2

Theorem 11.11 If a function y = f (x) is concave, then it must be the case that fii ≤ 0 for all
i = 1, 2, . . . , n.

Proof

We need to prove that if

d2y = dxT H dx =
n∑

j=1

n∑
i=1

fij dxi dxj ≤ 0

for all vectors dx (except for the zero vector), then it must be the case that each
second-order partial fij with i= j (i.e., each fii) must be ≤ 0. Without loss of
generality, consider in particular the case i= 1. Choose the vector dx with dx1 �= 0
but dxj = 0 for all j �= 1. The expression above for d2y then becomes

d2y = f11 dx2
1

and d2y ≤ 0 clearly requires that f11 ≤ 0. This proves the theorem.

We close this section by illustrating the important result that if the exponents
on the inputs of a Cobb-Douglas production function sum to a number less than
one, then the function is strictly concave. Although we show this for the case of
two inputs, it holds for any number of inputs.
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Example 11.31 Show that the Cobb-Douglas production function

y = f (x1, x2) = Axα
1 x

β

2

with 0 < α, β < 1, and α + β < 1 is strictly concave on x1, x2 > 0.

Solution

The second-order partial derivatives are

f11 = α(α − 1)Axα−2
1 x

β

2

f12 = αβAxα−1
1 x

β−1
2

f22 = β(β − 1)Axα
1 x

β−2
2

Since 0 < α < 1, we have α− 1 < 0 and so |H1| = f11 < 0. Now we need to show
that |H2| = f11f22 − f 2

12 > 0. That is, we need to show that

f11f22 > f 2
12

Thus, making the substitutions for the second-order partial derivatives, we need
to show that[

α(α − 1)Axα−2
1 x

β

2

][
β(β − 1)Axα

1 x
β−2
2

]
>

[
αβAxα−1

1 x
β−1
2

]2

The following steps demonstrate that for α + β < 1 the inequality above does
indeed hold:

αβ(α − 1)(β − 1)A2x2α−2
1 x

2β−2
2 > α2β2A2x2α−2

1 x
2β−2
2

(α − 1)(β − 1) > αβ

αβ − α − β + 1 > αβ

−α − β > −1

α + β < 1

We have shown how the total differential can be used as a test to determine whether
a function is either concave or convex (or neither). We have demonstrated two
methods of doing so: (i) direct determination of the sign of the second order total
differential, d2y, as in example 11.27; (ii) using the results which relate quadratic
forms to positive or negative (semi-) definite matrices to determine the sign of the
second-order total differential, d2y, as in example 11.30.
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E X E R C I S E S

1. Use theorem 11.6 to show that the function f (x1, x2) = (x1+ x2)
2 is convex

(see example 11.27).

2. Use theorem 11.5 to show that the function f (x1, x2) = 10 − x2
1 − x2

2 is
strictly concave (see example 11.27).

3. Use theorem 11.9 to show that the function f (x1, x2) = x
1/2
1 x

1/3
2 , defined on

R
2
++, is strictly concave.

4. Use theorem 11.9 to show that the function f (x1, x2) = x
1/2
1 x

1/2
2 , defined on

R
2
++, is concave.

5. Use theorem 11.7 to show that the function y = (x1+x2)
1/2, defined on R

2
++,

is a concave function. Show that there are linear segments on the surface of
this function and so the function is not strictly concave (see example 11.27).

6. *Show that an additively separable function y = f (x1, x2, . . . , xn) is convex
if and only if fii ≥ 0 for all i = 1, 2, . . . , n (see theorem 11.10).

7. *Show that an additively separable function y = f (x1, x2, . . . , xn) is strictly
concave if fii < 0 for all i = 1, 2, . . . , n (see theorem 11.10).

8. *Show that if a function y = f (x1, x2, . . . , xn) is convex, then it must be the
case that fii ≥ 0 for all i = 1, 2, . . . , n (see theorem 11.11).

11.5 More Properties of Functions with
Economic Applications

We have developed some important properties of functions, such as concavity and
convexity, in earlier sections, and we have applied them to a number of economic
relationships. In this section we add to these results as preparation for some of the
arguments used in chapters 12 and 13.

Concavity/Convexity and Quasiconcavity/Quasiconvexity

In section 11.3 we developed the important proposition that a function y=
f (x), x ∈ R

2, which is increasing in each of its arguments, has strictly convex to
the origin level curves if the following condition is satisfied:

f −3
2

{
f11f

2
2 − 2f1f2f12 + f22f

2
1

}
< 0 (11.9)
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A function satisfying this condition is quasiconcave, a term which was defined in
chapter 2. (The material in section 2.4 on concavity, convexity, quasiconcavity,
and quasiconvexity should be reviewed before proceeding with the material in this
section.) All functions that are concave are also quasiconcave, but the reverse is
not true. The first part of this relationship is illustrated in the following example.

Example 11.32 Show that if a function y= f (x), x∈R
2, with f1 > 0 and f2 > 0, satisfies

the conditions of theorem 11.9 for a strictly concave function, then it is also quasi-
concave.

Solution

From theorem 11.9 the following conditions imply that a function is strictly con-
cave

d2y = dxT H dx < 0 for any vector dx

We need to show that this condition, in conjunction with f1 > 0 and f2 > 0, implies
that f also satisfies equation (11.9).

Since f is strictly concave, then d2y < 0 for any vector dx (i.e., dxT ) and it
follows that d2y < 0 for the particular choice dxT = [f2 −f1]. Substitution of
this vector into the expression above for d2y gives

[f2 −f1]

[
f11 f12

f12 f22

][
f2

−f1

]
< 0

which implies that

[(f11f2 − f1f12) (f2f12 − f22f1)]

[
f2

−f1

]
< 0

Therefore

f2(f11f2 − f1f12)− f1(f2f12 − f1f22) < 0

implying that

f11f
2
2 − 2f1f2f12 + f22f

2
1 < 0

Since f2 > 0, this shows that the function is also quasiconcave. (See equation 11.9.)
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Figures 11.24 and 11.25, which are graphs of the functions y = x
1/4
1 x

1/2
2 and

y = x1x
2
2 on x ∈ R

2
+, along with representative contours, illustrate the difference

between concavity and quasiconcavity. The shape of the contours indicates that the
level sets of these functions are strictly convex to the origin and so both functions
are quasiconcave. It is clear in figure 11.25, however, that the function y = x1x

2
2

is not concave. It is especially illuminating to cut through this function for a given
value of x2, as was done in figure 11.9, to see how the function actually has a
convex shape in the x1 direction.

y

x1

y � ȳ
x2

0

x1

x2

y = y

Figure 11.24 Graph of y = x
1/4
1 x

1/2
2 and a representative level curve

y

x1

y � ȳ

x2

0

x1

x2

y = y

Figure 11.25 Graph of y = x1x
2
2 and a representative level curve
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Sufficient conditions for quasiconcavity and quasiconvexity are given in the-
orem 11.12 and the various relations between concave (convex) and quasiconcave
(quasiconvex) functions are summarized in theorem 11.13. First, we need to define
the bordered Hessian, H̄ , for the function f .

D e f in i t i o n 11 . 6 Suppose that the function f defined on R
n has continuous first- and second-order

partial derivatives. The bordered Hessian of the function f is

H̄ =

⎡
⎢⎢⎢⎢⎢⎣

0 f1 f2 . . . fn

f1 f11 f12 . . . f1n

f2 f21 f22 . . . f2n

...
...

...
. . .

...

fn fn1 fn2 . . . fnn

⎤
⎥⎥⎥⎥⎥⎦

Notice that the bordered Hessian is formed by taking the Hessian matrix and adding
[0 f1 f2 · · · fn] as a first column and a first row (i.e., the first derivatives of the
function preceded by a zero).

We refer to the matrix composed of the first k + 1 row and column elements
(leading principal minors) as

H̄ k =

⎡
⎢⎢⎢⎢⎢⎣

0 f1 f2 . . . fk

f1 f11 f12 . . . f1k

f2 f21 f22 . . . f2k

...
...

...
. . .

...

fk fk1 fk2 . . . fkk

⎤
⎥⎥⎥⎥⎥⎦

implying that

|H̄ 1| =
∣∣∣∣ 0 f1

f1 f11

∣∣∣∣ , |H̄ 2| =
∣∣∣∣∣∣

0 f1 f2

f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣

|H̄ 3| =

∣∣∣∣∣∣∣∣
0 f1 f2 f3

f1 f11 f12 f13

f2 f21 f22 f23

f3 f31 f32 f33

∣∣∣∣∣∣∣∣
and so on. Notice that |H̄ 1| = −f 2

1 and so must be nonpositive. For this reason
no mention is made concerning the sign of |H̄ 1| in the following theorem, which
provides sufficient conditions for a function to be quasiconcave or quasiconvex:
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Theorem 11.12 Suppose that f is a function defined on R
n and that f has continuous first- and

second-order partial derivatives. Let H̄ represent the bordered Hessian of f .

(i) If |H̄ 2|> 0, |H̄ 3|< 0, . . . , |H̄ n| = |H̄ |> 0 (n even), < 0 (n odd) for all
x ∈ R

n
+, then f is quasiconcave.

(ii) If |H̄ 2|< 0, |H̄ 3|< 0, . . . , |H̄ n| = |H̄ |< 0 for all x ∈ R
n
+, then f is

quasiconvex.

Theorem 11.13 (i) Any convex function is quasiconvex, although the reverse does not neces-
sarily hold.

(ii) Any concave function is quasiconcave, although the reverse does not neces-
sarily hold.

Example 11.33 Use theorem 11.12 to show that the function f (x1, x2) = x1x
2
2 defined on R

2
+ is

quasiconcave.

Solution

Since the first leading principal minor in this case is H̄ 2 = H̄ , we only have this
determinant to evaluate

|H̄ 2| = |H̄ | =
∣∣∣∣∣∣

0 f1 f2

f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 x2
2 2x1x2

x2
2 0 2x2

2x1x2 2x2 2x1

∣∣∣∣∣∣
= 0

∣∣∣∣ 0 2x2

2x2 2x1

∣∣∣∣− x2
2

∣∣∣∣ x2
2 2x2

2x1x2 2x1

∣∣∣∣
+ 2x1x2

∣∣∣∣ x2
2 0

2x1x2 2x2

∣∣∣∣
= −x2

2

(
2x1x

2
2 − 4x1x

2
2

)+ 2x1x2
(
x2

2 2x2
)

= 6x1x
4
2 > 0 for x1, x2 > 0

Thus f satisfies the conditions for quasiconcavity.

Example 11.34 Show that for an increasing function f defined on R
2
+, with continuous first-

and second-order partial derivatives, the condition for quasiconcavity given by
equation (11.9) is consistent with that given in theorem 11.12.
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Solution

A function f defined on R
2
+ is quasiconcave according to theorem 11.12 if

|H̄ 2| = |H̄ | =
∣∣∣∣∣∣

0 f1 f2

f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣ > 0

which implies that

0

∣∣∣∣ f11 f12

f21 f22

∣∣∣∣− f1

∣∣∣∣f1 f12

f2 f22

∣∣∣∣+ f2

∣∣∣∣f1 f11

f2 f21

∣∣∣∣
= −f1(f1f22 − f2f12)+ f2(f1f21 − f2f11)

= −f 2
1 f22 + 2f1f2f12 − f 2

2 f11 > 0

which, upon multiplying throughout by −1 and rearranging, implies that

f11f
2
2 − 2f1f2f12 + f22f

2
1 < 0

If f2 > 0, then this condition is equivalent to the condition given by equation
(11.9).

The Cobb-Douglas function, defined on R
n
+,

f (x1, x2, . . . , xn) = Ax
α1
1 x

α2
2 · · · xαn

n , A > 0, αi > 0, ∀i

is quasiconcave for the stated conditions but is concave only if
∑

αi ≤ 1 and
strictly concave only if

∑
αi < 1. We effectively showed this to be the case for

n = 2 through example 11.31.

Homogeneous Functions

When we study the theory of the firm in a competitive setting, we impose the
assumption of concavity (rather than quasiconcavity) on the firm’s production
function. Concavity rules out the possibility of increasing returns to scale (IRS)—a
phenomenon inconsistent with a market composed of many small firms, because
under increasing returns to scale it is more efficient for firms to merge or increase in
size than to remain “small.” If we restrict ourselves to production functions which
are homogeneous then the analysis of returns to scale is substantially simplified.
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D e f in i t i o n 11 . 7 A function f defined on R
n is homogeneous of degree k if

f (sx1, sx2, . . . , sxn) = skf (x1, x2, . . . , xn)

If f is a production function which is homogeneous of degree k, then multi-
plying the level of all inputs by the same factor s will increase output by the factor
sk . For example, if f (x1, x2) = x1x

2
2 is the production function, we can see that it

is homogeneous of degree 3, since

f (sx1, sx2) = (sx1)(sx2)
2 = sx1s

2x2
2 = s3x1x

2
2

= s3f (x1, x2)

In particular, if we were to double all input levels (s = 2), we would increase
output by a factor of 8 (23 = 8). This is an example of increasing returns to scale.
Performing the same analysis for the function f (x1, x2)= x

1/4
1 x

1/2
2 , we see that

this function is homogeneous of degree 3/4. In this case, if we were to double all
input levels we would increase output by a factor of 23/4 .= 1.68. This is a case
of decreasing returns to scale. Upon doubling inputs for the production func-
tion y= x

1/2
1 x

1/2
2 , we see that output doubles (see figure 11.26). This is a case of

constant returns to scale.

x1

x2

(2, 8)

(1, 4) (4, 4)

(2, 2)
(8, 2)

(4, 1)

y = 4

y = 2

Figure 11.26 Isoquants for the production function y = x
1/2
1 x

1/2
2



458 CHAPTER 11 CALCULUS FOR FUNCTIONS OF n-VARIABLES

To see how homogeneity is a restriction that all functions do not satisfy, con-
sider the following example of a nonhomogeneous function and the accompanying
graph of a few of its representative isoquants.

Example 11.35 Show that the production function y = f (x1, x2) = x
1/2
1 x

1/3
2 + x

3/2
2 is not homo-

geneous.

Solution

We have

f (sx1, sx2) = (sx1)
1/2(sx2)

1/3 + (sx2)
3/2

= s5/6x
1/2
1 x

1/3
2 + s3/2x

3/2
2

This function cannot be written in the form

f (sx1, sx2) = skf (x1, x2) = sk
(
x

1/2
1 x

1/3
2 + x

3/2
2

)
and so it is not homogeneous, and its returns-to-scale properties depend on the
values of x1 and x2. See figure 11.27 where it is shown that beginning with input
bundle (16, 1) and doubling each input leads to an output level which is less than
double while beginning with input bundle (1, 2.38) and doubling each input leads
to an output which is more than double.

x1

x2

(2, 4.76)

(1, 2.38)

(32, 2)

(16, 1) y = 5

y = 9.9

y = 12.8

0

Figure 11.27 Isoquants for the production function y = x
1/2
1 x

1/3
2 + x

3/2
2
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From the preceding examples, the following theorem should be clear:

Theorem 11.14 Suppose the production function y = f (x), x ∈ R
n
+, is homogeneous of degree

k. That is,

f (sx) = skf (x)

This production function displays:

(i) Increasing returns to scale if k > 1
(ii) Constant returns to scale if k = 1

(iii) Decreasing returns to scale if k < 1

Euler’s Theorem

The following theorem, referred to as Euler’s theorem, leads to an interesting
result for the special case of a production function which is homogeneous of
degree k = 1. First, we present the general case for any value of k.

Theorem 11.15 (Euler’s theorem) If f (x), x ∈ R
n
+, is homogeneous of degree k, then the

following condition holds:

f1x1 + f2x2 + · · · + fnxn = kf (x1, x2, . . . , xn)

Proof

Since f is homogeneous of degree k, we have

f (sx1, sx2, . . . , sxn) = skf (x1, x2, . . . , xn)

Writing each sxi as zi and differentiating both sides with respect to s gives

∂f

∂z1

∂z1

∂s
+ ∂f

∂z2

∂z2

∂s
+ · · · + ∂f

∂zn

∂zn

∂s
= ksk−1f (x1, x2, . . . , xn)

which implies that

f1x1 + f2x2 + · · · + fnxn = ksk−1f (x1, x2, . . . , xn)
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Since this condition holds for any s > 0, it holds for s = 1 which implies that

f1x1 + f2x2 + · · · + fnxn = kf (x1, x2, . . . , xn) (11.10)

Euler’s theorem states that if f is homogeneous of degree k, then multiplying the
marginal product of each input i by the level of that input and summing (

∑n
i=1 fixi)

gives a value equal to k times the value of output. For the specific case of k = 1,
we have that

∑n
i=1 fixi equals the value of output.

Example 11.36 Show that for y = f (x1, x2) = x
1/4
1 x

3/4
2 it follows that f1x1 + f2x2 = f (x1, x2).

Solution

f1 = 1

4
x
−3/4
1 x

3/4
2 , f2 = 3

4
x

1/4
1 x

−1/4
2

and so

f1x1 + f2x2 =
(

1

4
x
−3/4
1 x

3/4
2

)
x1 +

(
3

4
x

1/4
1 x

−1/4
2

)
x2

= 1

4
x

1/4
1 x

3/4
2 +

3

4
x

1/4
1 x

3/4
2 = x

1/4
1 x

3/4
2 = f (x1, x2)

Elasticity of Substitution

The elasticity of substitution between inputs, σ , is defined as

σ = proportionate rate of change of the input ratio

proportionate rate of change of the MRTS

when MRTS, the marginal rate of technical substitution, is the slope of the isoquant.
In figure 11.28 we have drawn two level curves (isoquants) for two different
production functions f and g. The proportionate rate of change in the input ratio
(i.e., the numerator of σ ) in moving from point x0 to x̄ is the same for either isoquant
f or g. However, the proportionate rate of change of the slopes of the isoquants—
the MRTS (i.e., the denominator of σ )—is less for g than f . Thus g displays
greater elasticity of substitution. To make such comparisons mathematically, we
use the following definition:
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x2

x1

x0

x̄
f (x0)

g(x0)

Figure 11.28 Production function associated with level curve g showing a greater
elasticity of substitution than that associated with level curve f

D e f in i t i o n 11 . 8 The elasticity of substitution between inputs for a production function y = f (x),
x ∈ R

2
+ which has continuous marginal product functions is defined as

σ = d ln(x2/x1)

d ln(f1/f2)

The constant elasticity of substitution (CES) production function has the prop-
erty, as its name suggests, that the value of σ is the same at any point on any
isoquant. The Cobb-Douglas production function has this property, with σ = 1.

Example 11.37 Show that the Cobb-Douglas production function y = Axα
1 x

β

2 , A, α, β > 0 defined
on R

2
++ has σ = 1 everywhere.

Solution

First we find the partial derivatives f1 and f2:

f1 = αAxα−1
1 x

β

2 , f2 = βAxα
1 x

β−1
2

and so

f1

f2
= αx2

βx1
or

x2

x1
= β

α

f1

f2
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This implies that

ln

(
x2

x1

)
= ln

(
f1

f2

)
+ ln

(
β

α

)

Since ln(β/α) is a constant, we see that

σ = d ln(x2/x1)

d ln(f1/f2)
= 1

Example 11.38 Find the elasticity of substitution for the CES production function y = f (L, K) =
[δL−r + (1− δ)K−r ]−1/r , 0 < δ < 1, r > −1 where inputs L, K > 0 refer to labor
and capital respectively.

Solution

We have

fL = −1

r
[δL−r + (1− δ)K−r ]−1/r−1(−rδL−r−1)

fK = −1

r
[δL−r + (1− δ)K−r ]−1/r−1(−r(1− δ)K−r−1)

which implies that

MRTS = fL

fK

= δ

1− δ

(
K

L

)r+1

Taking logs gives

ln

(
fL

fK

)
= ln

(
δ

1− δ

)
+ (r + 1) ln

(
K

L

)

or

ln

(
K

L

)
= 1

1+ r
ln

(
fL

fK

)
− 1

1+ r
ln

(
δ

1− δ

)

Since the last term is just a constant, we have

σ = d[ln(K/L)]

d[ln(fL/fK)]
= 1

1+ r
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L

0 K

r � 3 (s � 1/4)

r � �1

r � 2 (s � 1/3)

(s � � `)

r � 1 (s � 1/2)

r � 0 (s � 1)

r � �0.5 (s � 2)

Figure 11.29 Isoquants for the CES production function y = [0.5L−r + 0.5K−r ]−1/r

The smaller r is in example 11.38, the greater is σ . This is illustrated in figure 11.29.
The following special cases for the value of r are of interest:

Case 1 r→+∞, which implies that σ→ 0. Here the MRTS approaches zero
if L > K and +∞ if K > L. This means that isoquants become a right angle and
it is not possible to substitute between inputs.
Case 2 r = 0, which implies that σ = 1. We cannot use the formula for the CES
in this case because −1/r is undefined at r = 0. However, we know that σ = 1
corresponds to the Cobb-Douglas case and it can be shown that the Cobb-Douglas
is a limiting case of the CES as r→ 0.
Case 3 r→− 1 (from the right since r > − 1), which implies that σ→ +∞.
This is the case of perfect substitutability and the isoquants are linear.

Some of these issues are taken up in section 13.1 on cost minimization with
the CES production function.

In these examples it is easy to write ln(x2/x1) as a function of ln(f1/f2), and
so we could apply the formula given in definition 11.8. Since this is not always
the case, an alternative and equivalent formula may be used

σ = f1f2(f1x1 + f2x2)

x1x2|H̄ |
(11.11)

where |H̄ | = −f 2
1 f22 + 2f1f2f12 − f 2

2 f11 is the determinant of the bordered
Hessian for f .
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E X E R C I S E S

1. Show that the following functions defined on R
2
++ are quasiconcave. Which

are also concave?

(a) f (x1, x2) = x
1/2
1 x

1/4
2

(b) f (x1, x2) = x
1/3
1 x

2/3
2

(c) f (x1, x2) = x2
1x3

2

2. Show that the following functions defined on R
2
++ are quasiconvex. Which

are also convex?

(a) f (x1, x2) = x2
1 + x2

2

(b) f (x1, x2) = 3x4
1 + 5x2

2

(c) f (x1, x2) = 2x1 + 3x2 − x2
1x3

2

3. Show that:

(a) y = x
1/4
1 x

1/3
2 x

1/4
3 satisfies the conditions of quasiconcavity and strict

concavity on R
3
++.

(b) y = x
1/2
1 x

1/3
2 x

1/4
3 satisfies the conditions of quasiconcavity but not strict

concavity on R
3
++.

4. Show that the production function y = x
1/2
1 x

2/3
2 is homogeneous of degree

7/6.

5. For the Cobb-Douglas production function f (x1, x2) = Axα
1 x

β

2 , A > 0, α,

β > 0 defined on R
2
++, show that Euler’s theorem applies so that

f1x1 + f2x2 = kf (x1, x2)

where k is the degree of homogeneity of f .

6. Show that using the formula given by equation (11.11) to find the elasticity
of substitution, σ , for the Cobb-Douglas production function yields the same
result as was found in example 11.39.

11.6 Taylor Series Expansion*
In section 5.6 we presented the Taylor series expansion for functions of one vari-
able. In this section we do the same for functions of n variables. Since it is the
remainder formula that is most useful in economic analysis, we focus on this
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particular form of the Taylor series expansion. We first review it for the one vari-
able case. Then we illustrate the formula for two variables and finally present the
general case for n variables.

The Taylor series expansion for functions of one variable, y = f (x), x ∈ R,
is given in definition 5.11. We present below the same expressions as in section 5.6
except with some notational changes. These changes are introduced because in this
chapter we have used n to represent the number of variables of a function, while
in section 5.6 we used n to represent the number of terms in the formula for the
Taylor series expansion.

The following expression is the remainder formula of the Taylor series ex-
pansion for functions of one variable taken to the pth term for the remainder:

f (x̂) = f (x0)+
p−1∑
k=1

[
f (k)(x0)(x̂ − x0)k

k!

]
+ Rp

with

Rp = f (p)(ξ)(x̂ − x0)p

p!

The point x = ξ lies between x0 and x̂ and the function is assumed to possess
derivatives to the pth order.

The particular case of p = 2 proves to be the most useful, and so we focus on
it. It is also helpful to note that since x̂ − x0 is just some change in x, we can set
dx = x̂ − x0. Therefore we get the following expression for the case p = 2:

f (x̂) = f (x0)+ f ′(x0) dx + f ′′(ξ) dx2

2
(11.12)

Notice in equation (11.12) that f ′(x0) dx is just dy evaluated at x = x0, while
f ′′(ξ) dx2/2 is just d2y/2 evaluated at the point ξ . Therefore, remembering that
total differentials are functions of x, and noting that �y = f (x̂)− f (x0), we can
rewrite equation (11.12) in the following convenient manner:

�y = dy (x0)+ d2y(ξ)

2
(11.13)

Equation (11.13) emphasizes the fact that the first-order total differential is an
estimate of the amount by which a function changes given some change in x

(see section 11.3). This estimate is made exact in the Taylor series formula by
applying the remainder term, which if we choose p = 2, is simply one-half times
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the second-order total differential. The problem with applying this formula to
obtain a precise value of �y, however, is that the second-order total differential
must be evaluated at some point ξ between x0 and x̂, and there is no straightforward
procedure for finding this value precisely.

Nonetheless, the formula is still very useful. For example, if a function is
strictly concave (everywhere), then we know that the second-order total differential
is negative (everywhere) and so d2y(ξ) < 0 for any ξ . This allows us to conclude
that dy is always an overestimate of �y for any strictly concave function. This
conclusion follows directly from simple analysis of equation (11.13):

dy(x0)−�y = −1

2
d2y(ξ) > 0 if d2y(ξ) < 0

The opposite result, that dy is always an underestimate of �y for any strictly
convex function follows in an analogous manner.

The great advantage of writing the Taylor series expansion in terms of total
differentials is that it extends immediately to functions of n variables. Moreover
the conclusion about dy being an overestimate (underestimate) of �y for strictly
concave (convex) functions also continues to hold in general. We expand each
element of equation (11.13) for the case of n = 2 in order to illustrate what the
Taylor series expansion looks like for functions of more than one variable. This
exercise also points out the convenience of the total differential notation.

�y = f (x̂1, x̂2)− f
(
x0

1 , x0
2

)
,

dx =
[(

x̂1 − x0
1

)(
x̂2 − x0

2

)
]

and so for the first-order total differential, we get

dy(x0) = [
f1

(
x0

1 , x0
2

)
f2

(
x0

1 , x0
2

) ][ (
x̂1 − x0

1

)(
x̂2 − x0

2

) ]

For the second-order total differential, we get (using notation H ≡ ∇2F )

d2y(ξ1, ξ2) = dxT H dx

= [(
x̂1 − x0

1

) (
x̂2 − x0

2

)][ f11(ξ1, ξ2) f12(ξ1, ξ2)

f21(ξ1, ξ2) f22(ξ1, ξ2)

]

×
[(

x̂1 − x0
1

)(
x̂2 − x0

2

)
]
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We summarize the results of this section with definition 11.9, two theorems,
and an example. In chapter 12 we will see how to use these results to interpret
second-order conditions of optimization problems.

D e f in i t i o n 11 . 9 The remainder formula for the Taylor series expansion for a function defined on
R

n, y = f (x), expanded around the point x0 and taken to two terms is

f (x̂) = f (x0)+ dy(x0)+ 1

2
d2y(ξ)

where ξ lies between x0 and x̂.

Theorem 11.16 If y = f (x) is a strictly concave function, then using the first-order total differen-
tial to estimate the change in the function value caused by moving away from x0 to
any other point x̂ always leads to an overestimate. That is, for �y ≡ f (x̂)−f (x0)

we have that

�y = dy(x0)+ 1

2
d2y(ξ)⇒ �y < dy(x0)

since d2y < 0 for y = f (x) strictly concave.

Theorem 11.17 If y = f (x) is a strictly convex function, then using the first-order total dif-
ferential to estimate the change in the function value caused by moving away
from x0to any other point x̂ always leads to an underestimate. That is, for
�y ≡ f (x̂)− f (x0) we have that

�y = dy(x0)+ 1

2
d2y(ξ)⇒ �y > dy(x0)

since d2y > 0 for y = f (x) strictly convex.

Note that there are similar results to the above two propositions for (weakly)
concave and (weakly) convex functions. The inequalities just need to be changed
to be weak (i.e., ≥ and ≤ rather than > and <).
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Example 11.39 Here we illustrate the result that the total differential overestimates the actual
change in the function value for the concave function y = f (x1, x2) = x

1/2
1 +x

1/2
2

on x1, x2 > 0.
It is easy to show that this function is strictly concave, and so theorem 11.16

applies. To illustrate, consider the initial point x0 = (4, 9) and changes to x1

and x2 of amounts dx1 = 12 and dx2 = 27. This implies that the new point is
x̂ = (16, 36). The resulting change in the value of the function is

�y = f (16, 36)− f (4, 9) = [4+ 6]− [2+ 3] = 5

If we use dy(x0) to estimate �y, we get

dy(x0) = [
f1

(
x0

1 , x0
2

)
f2

(
x0

1 , x0
2

)][dx1

dx2

]

=
[

1/2(
x0

1

)1/2

1/2(
x0

2

)1/2

][
dx1

dx2

]

=
[

1/2

(4)1/2

1/2

(9)1/2

][
12
27

]

=
(

1

4

)
12+

(
1

6

)
27 = 7

1

2

and so we see that dy = 7 1
2 is indeed an overestimate of �y = 5. (See figure 11.30)

y

12.5
10

5

4

9

16 x1

x2

x̂ � (16, 36)

x0 � (4, 9)

y � x1
1/2

 � x2
1/2

 

tangent plane

Figure 11.30 Tangent plane that overestimates the change in the function value for the
strictly concave function y = x

1/2
1 + x

1/2
2 (example 11.39)
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The equation for the tangent plane to f (x), x ∈ R
n, at the point x = x0 is

T (x1, x2, . . . , xn) = f (x0)+ [ f1(x0) f2(x0) . . . fn(x0) ]

⎡
⎢⎢⎢⎢⎣

(
x1 − x0

1

)(
x2 − x0

2

)
...(

xn − x0
n

)

⎤
⎥⎥⎥⎥⎦

or, in more compact notation

T (x) = f (x0)+ ∇fT (x − x0)

We can see from this expression that the idea of estimating changes in the value of
a function using the total differential (i.e., ignoring all terms of the Taylor series
expansion beyond the first derivative terms) is the same as using the tangent plane at
a point to estimate the function itself. (See also figure 11.30 and example 11.39 for a
specific function.) The estimate can become as accurate as one wishes by choosing
dxi values to be small. That is, as dx→ 0, the function T (x) approximates f (x)

with precision approaching 100%. Note that for functions defined on R
n, n > 2,

there is no geometric interpretation of the function T (x). In this case we refer to
T (x) as the tangent hyperplane to f (x) at the point x0.

E X E R C I S E S

1. Illustrate the result that using the first-order total differential leads to overes-
timates of the change in a function value for the function

y = 10− (
x2

1 + x2
2

)
.

Use the initial point x = (1, 1) and changes in the xi values of dx1 = 2 and
dx2 = 3.

2. Illustrate the result that using the first-order total differential leads to under-
estimates of the change in a function value for the function

y = x2
1 + x2

2 .

Use the initial point x = (1, 2) and changes in the xi values of dx1 = 3 and
dx2 = 1.
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C H A P T E R R E V I E W
Key Concepts additively separable function

bordered Hessian
cross-partial derivatives
elasticity of substitution
Euler’s theorem
first-order total differential
gradient vector
Hessian matrix
homogeneous function
implicit differentiation
implicit function theorem
indifference curves

isoquant
level curve
level set
marginal rate of substitution (MRS)
marginal rate of technical substitution

(MRTS)
partial derivative
positive monotonic transformation
remainder formula
second-order total differential
Taylor series
Young’s theorem

Review Questions 1. What is a gradient vector?

2. Why is it convenient to express the first-order and second-order partial deriva-
tives in vector/matrix notation?

3. What is meant by “implicit differentiation,” and why is it useful?

4. What properties does a function require in order for the implicit function
theorem to apply?

5. What is involved in finding the second-order total differential of a function
that is additively separable?

6. How does the sign of the second-order total differential relate to concavity/
convexity of a function?

7. Distinguish between concave and quasiconcave functions, and between con-
vex and quasiconvex functions.

8. How would you determine if a production function were homogeneous?

9. What in general can be said about the returns-to-scale properties of production
functions that are homogeneous?

10. What in general can be said about the returns-to-scale properties of production
functions that are not homogeneous?

11. What is meant by the “remainder formula” for the Taylor series expansion?
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Review Exercises 1. Find the marginal-product functions for the production function

f (x1, x2) = Axα
1 x

β

2

for A > 0, 0 < α, β < 1 and x1, x2 > 0.

2. Compute all the second-order partial derivatives for the function given in
question 1. Determine the signs of these and provide an economic interpreta-
tion.

3. Compute all the first- and second-order derivatives of the function

f (x1, x2, x3) = ax1 + x
β

2 x
γ

3

and show that Young’s theorem applies.

4. For each of the following functions find the total differential, and use this to
draw a representative level curve.

(a) y = x1 + x2 for x1, x2 ≥ 0

(b) y = x
1/2
1 x

1/3
2 for x1, x2 > 0

(c) y = x3
1x2

2 for x1, x2 > 0

In which cases are the level curves strictly convex to the origin? Explain by
finding the second derivatives of the functions of these level curves.

5. Use theorem 11.9 to show that the function

y = x
1/4
1 x

1/2
2

defined on R
2
++ is strictly concave.

6. Show that the function

y = Ax
α1
1 x

α2
2 x

α3
3 ,

A > 0, αi > 0 ∀ i defined on R
3
++ is quasiconcave. Show that it is concave

only if we add the restriction that α1 + α2 + α3 ≤ 1.

7. Use a Venn diagram to show the following relationships between:

(a) The set of functions that is quasiconcave and the set that is concave.

(b) The set of functions that is quasiconvex and the set that is convex.
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8. Illustrate Euler’s theorem for the Cobb-Douglas production function

f (x1, x2, x3) = Ax
α1
1 x

α2
2 x

α3
3 A > 0, αi > 0 ∀ i

defined on R
3
++, and

∑
αi = 1.

9. Consider the following specific CES production function defined on x1 > 0,
x2 > 0:

y = f (x1, x2) =
[
0.3x−2

1 + 0.7x−2
2

]−1/2

(a) Find an expression for the MRTS, and show that isoquants are strictly
convex to the origin.

(b) Use the determinant condition in theorem 11.12 to show that f is
quasiconcave.

(c) Show that f is concave.

(d) Show that f is homogeneous, and find its degree of homogeneity.

(e) Show that the following result (from Euler’s theorem) applies to f

f1x1 + f2x2 = kf (x1, x2)

where k is the degree of homogeneity of f .

(f) Use the formula given in definition 11.9 to find the elasticity of sub-
stitution between the inputs for this function.

10. Do parts (a), (d), and (e) of question 10 for the general CES production
function

y = A
[
δx−r

1 + (1− δ)x−r
2

]−1/r
, A > 0, 0 < δ < 1, r > − 1

defined on x1 > 0 and x2 > 0.



Chapter 12 Optimization of Functions of
n-Variables

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Price-Discriminating Monopoly with Linear Demands and Costs
• Cournot Equilibrium with n Identical Firms: Example
• Two-Plant Monopoly: Example
• Optimal Input Quantities for a Competitive Firm: Example
• Multiproduct Monopoly Revisited: Example
• Multiplant Monopoly with Linear Costs: Example
• Two-Plant Monopoly with Capacity Constraints: Example

The idea of optimization is fundamental in economics, and the mathematical meth-
ods of optimization underlie most economic models. For example, the theory of
demand is based on the model of a consumer who chooses the best (“most pre-
ferred”) bundle of goods from the set of affordable bundles. The theory of supply
is based on the model of a firm choosing inputs in such a way as to minimize the
cost of producing any given level of output, and then choosing output to maximize
profit. Rationality and optimization are virtually synonymous in economics.

In a formal sense, by optimization we mean the maximization or minimization
of a function over some given set. The significance of the concept of optimization
is therefore that it gives us a well-defined mathematical procedure for obtaining
the solutions to economic models: the “predictions” of the model are based upon
the solution to the optimization problem it contains.

We already considered optimization methods for functions of one variable in
chapter 6. In this chapter we extend these to functions of any number of variables
though, as in chapter 11, we continue to focus on functions that are twice continu-
ously differentiable, namely f ∈ C2. We begin by considering the unconstrained
problem, in which any point in R

n is allowed to be a possible solution. In the last
section of this chapter we modify this to consider the case, often arising in eco-
nomics, in which permissible values of at least one of the variables are restricted
to a subset of the real line. In chapter 13 we consider the important problem of
functional constraints.
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Few difficulties will be presented by the methods in this chapter and the next
if the reader has a good grasp of the material in chapters 6 and 11, and for the
discussion of second-order conditions in section 12.2, it will also be useful to have
studied the material on quadratic forms in section 10.3 and their relationship to
concavity discussed in chapter 11.

12.1 First-Order Conditions
In chapter 6 we defined extreme values and stationary values of a function of
one variable. Similar definitions apply here. An extreme value is a maximum or
a minimum of the function, while a stationary value in the present case has the
following definition:

D e f in i t i o n 12 . 1 Astationary value of a function f over the domain R
n occurs at a point (x∗1 , . . . , x∗n)

at which the n-equalities

f1(x
∗
1 , . . . , x∗n) = 0

. . . . . . . . . . . . . . . . . .

fn(x
∗
1 , . . . , x∗n) = 0

hold simultaneously.

As in the case of functions of one variable, not all stationary points need
give extreme values, because of the possibility of points of inflection. In the case
of functions of n variables, there is the further possibility that a stationary value
may be a saddle point, at which the function takes on a maximum with respect
to changes in some of the x-values and a minimum with respect to others. For
example, consider the case of a function of two variables. Holding one variable
constant, say x2, it becomes a function of x1 only. If at some x1= x∗1 we have
f1(x

∗
1 , x̄2) = 0, where x̄2 is the fixed value of x2, then we know from the discussion

in chapter 6 that this could correspond to a minimum, a maximum, or a point
of inflection of the function, thought of only as a function of x1. Likewise, if
we fix the value of x1 and consider the function only as a function of a single
variable, x2, the point at which f2(x̄1, x

∗
2 ) = 0 could correspond to a minimum,

a maximum, or a point of inflection of this function. A further difficulty occurs
when considering the possibility of allowing both x1 and x2 to change in moving
away from the point (x∗1 , x∗2 ). The complications that can arise are similar to
those associated with the function f (x1, x2) = x2

1 + x2
2 − 5x1x2 discussed in

example 11.24 and figure 11.18. This function appears to possess a minimum
point at (x∗1 , x∗2 )= (0, 0) as one changes x1 only or x2 only, with the function being
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convex in each of these two directions. However, as we see in figure 11.24, this
function does not display a minimum when we change x1 and x2 simultaneously.
This means that if we have a point (x∗1 , x∗2 ) at which both partial derivatives are
zero

f1(x
∗
1 , x∗2 ) = 0

f2(x
∗
1 , x∗2 ) = 0

it does not necessarily imply we have either a minimum or a maximum. Figure 12.1
illustrates four possibilities. Cases (c) and (d) represent saddle points. Only in cases
(a) and (b) do we have extreme values of the function, in the first case a minimum
and in the second a maximum.

The purpose of this discussion is to show that it is not sufficient for (x∗1 , . . . , x∗n)

to yield an extreme value of the function that the conditions in definition 12.1 are
satisfied. Just as in the case of functions of one variable, we are going to have to

x1

(a) (b)

x2

f(x1, x2)

0

x1

x2

f(x1, x2)

0
x1*

x2*

x1*

x2*

x1

x2

f(x1, x2)

0
x1*

x2*

x1

x2

f(x1, x2)

0
x1*

x2*

maximum in x1-direction, maximum
in x2-direction

minimum in x1-direction, minimum
in x2-direction

(c) (d) maximum in x1-direction, minimum
in x2-direction

minimum in x1-direction, maximum
in x2-direction

Figure 12.1 Possible cases of stationary values of f (x1, x2)
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develop second-order conditions to help us distinguish among maximum points,
minimum points, and other points such as saddle points.

However, we can show that for (x∗1 , . . . , x∗n) to yield a maximum or a min-
imum it is necessary that the conditions in definition 12.1 be satisfied. Consider
figure 12.1 (b). If we are at the peak of the hill, it must be impossible to move
away from the point (x∗1 , x∗2 ) in any direction in such a way as to increase the
value of the function. That implies that it must be impossible to move either in
the x1-direction or the x2-direction and increase the value of the function. It is a
necessary condition, therefore, that the partial derivatives at this point are zero. A
similar argument applies to the case of the minimum in figure 12.1(a). We can put
these intuitive arguments a little more generally as follows:

Theorem 12.1 If at a point (x∗1 , . . . , x∗n) we have a local maximum of the function f , so that

f (x∗1 , . . . , x∗n) ≥ f (x1, . . . , xn)

for all points (x1, . . . , xn) in a (possibly small) neighborhood of (x∗1 , . . . , x∗n),
then the conditions

f1(x
∗
1 , . . . , x∗n) = 0

. . . . . . . . . . . . . . . . . .

fn(x
∗
1 , . . . , x∗n) = 0

hold simultaneously.

To see this, consider the total differential

dy = df = f1(x
∗
1 , . . . , x∗n) dx1 + · · · + fn(x

∗
1 , . . . , x∗n) dxn

Suppose that at (x∗1 , . . . , x∗n) any one of the partial derivatives is nonzero, say the
first. Then, if f1 > 0, choose dx1 > 0, and all other dxi = 0, i �= 1, and we can
increase the value of the function; if f1 < 0, choose dx1 < 0 and all other dxi = 0,
i �= 1, and we can again increase the value of the function. Only if f1 = 0, is it
not possible to find a dx1 �= 0 that will increase the value of the function.

Figure 12.2 illustrates for the case n = 2. In (a) we have a nice well-behaved
hill-shaped function. At its peak, the tangent plane is horizontal. The slope of the
tangent plane in the x1-direction is f1, and the slope in the x2-direction is f2, and
since the plane is horizontal each of these slopes is zero. In (b) we show the level
curves for the function, and the point (x∗1 , . . . , x∗n) again gives the maximum of
the function.
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x1
(a) (b)

x2

f (x1, x2)

0 x1

x2

0
x1*

x2*

x1*

x2*

tangent plane

Figure 12.2 (x∗1 , x∗2 ) yields a maximum of the function

Since they follow exactly the same lines, we leave it to the reader to supply
the details of the argument establishing theorem 12.2.

Theorem 12.2 If at a point (x∗1 , . . . , x∗n) we have a minimum of the function f , so that

f (x∗1 , . . . , x∗n) ≤ f (x1, . . . , xn)

for all (x1, . . . , xn) in a (possibly small) neighborhood of (x∗1 , . . . , x∗n), then the
conditions

f1(x
∗
1 , . . . , x∗n) = 0

. . . . . . . . . . . . . . . . . .

fn(x
∗
1 , . . . , x∗n) = 0

hold simultaneously.

We now consider some mathematical examples before going on to some eco-
nomic applications of these important theorems.

Example 12.1 Find stationary values of the following functions:

(i) y = 2x2
1 + x2

2
(ii) y = 4x1 + 2x2 − x2

1 − x2
2 + x1x2

(iii) y = 4x2
1 − x1x2 + x2

2 − x3
1

(iv) y = 2x2
1 + x2

2 + 4x2
3 − x1 + 2x3

(v) y = x2
1 − x2

2
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Solution

(i) The first-order conditions are

4x1 = 0, 2x2 = 0

These can only be satisfied at x∗1 = x∗2 = 0. Therefore (0, 0) is a stationary
point.

(ii) The first-order conditions are

4− 2x1 + x2 = 0

2− 2x2 + x1 = 0

which can be written as

[
2 −1
−1 2

][
x1

x2

]
=

[
4
2

]

Solving by Cramer’s rule gives

x∗1 =
10

3
= 3.33

x∗2 =
8

3
= 2.67

Thus (3.33, 2.67) gives a stationary value of the function.
(iii) The first-order conditions are

8x1 − x2 − 3x2
1 = 0

−x1 + 2x2 = 0

From the second equation we have

x2 = x1

2

So substituting into the first gives

8x1 − 0.5x1 − 3x2
1 = 0

implying that

x∗1 =
7.5

3
= 2.5 and x∗2 = 1.25



12.1 FIRST-ORDER CONDITIONS 479

Thus (2.5, 1.25) gives a stationary value of the function. Note, however, that
x1 = x2 = 0 also gives a stationary value. Therefore the function has two
stationary points, (0, 0) and (2.5, 1.5).

(iv) The first-order conditions are

4x1 − 1 = 0

2x2 = 0

8x3 + 2 = 0

These yield, respectively,

x∗1 = 0.25, x∗2 = 0, x∗3 = −0.25

Thus (0.25, 0,−0.25) gives a stationary value of the function.
(v) The first-order conditions are

2x1 = 0, − 2x2 = 0

Thus x∗1 = x∗2 = 0, and (0, 0) gives a stationary value of the function.

Multiproduct Monopoly

A monopoly produces two outputs, x1 and x2, with the linear demand functions

x1 = 100− 2p1 + p2

x2 = 120+ 3p1 − 5p2

As we found in chapter 6, it is useful to have demand functions in inverse form, with
price a function of quantity, when solving profit-maximization problems. To obtain
the inverse-demand functions in this case, we treat p1 and p2 as unknowns and
solve the equations simultaneously to express them as functions of the quantities.
Thus we can write the demand functions as the system

[
2 −1
−3 5

][
p1

p2

]
=

[
100− x1

120− x2

]

and using Cramer’s rule to solve gives

p1 = 5(100− x1)+ (120− x2)

7

p2 = 2(120− x2)+ 3(100− x1)

7
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which in turn give the inverse demand functions

p1 = 88.57− 0.71x1 − 0.14x2

p2 = 77.14− 0.29x1 − 0.43x2

Note that in the inverse-demand functions, when goods are substitutes, each output
enters with a negative sign in the demand function of the other. An increase, say,
in x1 causes a fall in its price, which then causes a fall in demand for good 2, and
therefore a fall in p2 at any given output x2.

Next, assume that the firm’s cost function takes the form

C = 50+ 10x1 + 20x2

We then have the firm’s profit function

π(x1, x2) = p1x1 + p2x2 − C

= 88.57x1 − 0.71x2
1 − 0.14x1x2 + 77.14x2

− 0.29x1x2 − 0.43x2
2 − 50− 10x1 − 20x2

= 78.57x1 + 57.14x2 − 0.71x2
1 − 0.43x2

2 − 0.43x1x2 − 50

To find the first-order conditions, we apply theorem 12.1 to obtain

π1(x
∗
1 , x∗2 ) = 78.57− 1.42x∗1 − 0.43x∗2 = 0

π2(x
∗
1 , x∗2 ) = 57.14− 0.86x∗2 − 0.43x∗1 = 0

and using Cramer’s rule gives the profit-maximizing outputs

x∗1 =

∣∣∣∣78.57 0.43
57.14 0.86

∣∣∣∣
1.04

= 41.35

x∗2 =

∣∣∣∣1.42 78.57
0.43 57.14

∣∣∣∣
1.04

= 45.53

To find the corresponding prices, we insert these outputs into the demand functions
to obtain

p∗1 = $52.84, p∗2 = $45.57

This result gives the firm’s maximum profit as π∗ = $2885.64. All this effort, of
course, assumes that we have found a true maximum of the function. One way of
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x1

x2

0
41.35

45.53

(b)(a)

Figure 12.3 Two-output monopoly profit function

checking is to consider the graph of the function, drawn in figure 12.3. In (a) we
show the graph in three dimensions: we have a nice strictly concave shape, and the
point (41.35, 45.53) is clearly a true maximum. In (b) we show the level curves of
the function, again with the indicated maximum. In the next section we consider
second-order conditions which allow us to carry out this check quite generally.

Cournot Duopoly

Two firms produce identical outputs and sell into a market with the linear demand
function

p = 100− (q1 + q2)

where qi is the output of firm i = 1, 2. We assume that each firm’s production cost
is zero. Each firm wants to maximize its profits, given by

πi = pqi = 100qi − (q1 + q2)qi, i = 1, 2

The basic idea here is that market price depends on the total output of the two firms,
and so each firm’s profit depends on how much output the other firm produces,
as well as on its own output. This form of close interdependence is characteristic
of oligopolistic markets, of which the two-firm duopoly is a special case. The
difficulty the firm faces in solving its profit-maximizing problem is to figure out
what output the other firm will produce, since until it does that it cannot compute the
profit that will result from any choice of its own output. The assumption about this,
made by the French economist Augustin Cournot, is that each firm takes the output
of the other as a given parameter when choosing its own output, and the market
equilibrium is then given as the solution of the pair of simultaneous equations that
results. We now see how this works out.
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If we maximize firm i’s profit, treating the other firm’s output as a given
parameter, we obtain for the two firms the two equations

∂π1

∂q1
= 100− 2q1 − q2 = 0

∂π2

∂q2
= 100− 2q2 − q1 = 0

Solving these for the outputs gives

q1 = q2 = 33.33 and p = 100− 66.67 = $33.33

Thus, as we might expect from the symmetry of the example, the firms end up
sharing the market equally.

We illustrate this solution in figure 12.4. From the first-order conditions above
we have the two equations

q1 = 100− q2

2

q2 = 100− q1

2

These equations give the output of one firm which is best (profit maximizing) for
it at each possible level of output of the other firm, and so they are often known
as “best response” or “best reply” or simply “reaction” functions. In figure 12.4
we graph these functions, and note that the point at which they intersect gives the
Cournot equilibrium outputs we just derived.

q2

50 q1100

50

100

331/3

331/3

Figure 12.4 Cournot equilibrium

As question 2 of the exercises asks you to confirm, the total output in this
market lies between the monopoly and perfectly competitive levels, which is a
nice feature of a model with more than one, but still relatively few, firms. We
explore this feature further in the next example (see the website).

E X E R C I S E S

1. Find the stationary values of the following functions:

(a) y = 3x2
1 + 2x2

2 + 5

(b) y = 2x2
1 − 4x2

2 + 1

(c) y = 2x1 + x2 − 3x2
1 − 4x2

2 + x1x2
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(d) y = 0.5x1 − 2x2
1 + 4x2 − 3x2

2 + 2x1x2

(e) y = 2x3
1 − 3x1x2 + x2

1 − 2x2
2

(f) y = x1x
0.5
2 (10− x1 − x2)

0.4

(g) y = (x2
1 + x4

2 + x6
3)2

(h) y = 4x2
1 + 2x2

2 + x2
3 − x1 + 5x3

(i) y = x3
1 + x3

2 − 3x1x2

(j) y = 2(x1 − x2)
2 − x4

1 − x4
2

2. In the example of Cournot duopoly, calculate the following:

(a) The output that would be sold if prices were set equal to marginal cost.

(b) The output that would be sold if the two firms acted jointly as a profit-
maximizing, monopolist.

Show that the Cournot equilibrium output lies between these extremes.

3. A firm sells some output in a perfectly competitive market, where the price
is $60 per unit, and some on a market in which it has a monopoly, with a
demand function p2 = 100− q2, where q2 is output in the monopoly market.
Its total-cost function is C = (q1+ q2)

2, where q1 is output in the competitive
market. Find the profit-maximizing outputs in the two markets and discuss
the nature of the equilibrium. Suppose now that the price in the competitive
market falls to $10. Find the new profit-maximizing solution, and discuss how
it compares with the original one.

4. Take the discriminating monopoly example of this section, but assume now
that it has the cost function C= (q1+ q2)

2. Find the profit-maximizing
solutions in the cases where it does and does not practice price discrimination.
Discuss your results.

5. Two firms produce identical outputs in a market with the demand function

p = 10− 0.1(q1 + q2)

They have cost functions

C1 = 0.25q1 and C2 = 0.5q2

First find and discuss the Cournot duopoly equilibrium. Then assume that
the firms adopt the joint profit-maximizing solution; in other words, they
maximize the sum of their profits. Compare the result to the Cournot
equilibrium.
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6. A monopoly has the demand function p = D(q, a), where a is its advertising
expenditure, and p and q are price and output. What would you expect to
be true of the signs of the partials Da and Dqa? Advertising is measured in
dollars, and so the cost function is C=C(q)+ a. Find and discuss the firm’s
profit-maximizing equilibrium.

7. A monopolist faces the demand function

p = 100− (q1 + q2)

and produces identical outputs from two plants with cost functions

C1 = 2q2
1 , C2 = 3q2

2

Find the profit-maximizing price and total output and the corresponding output
from each plant. Explain, both in this numerical problem and generally, why
the marginal costs of the plants are equalized at the optimum. Illustrate your
answer in a diagram.

12.2 Second-Order Conditions
We know that the first-order conditions cannot in themselves distinguish between
maximum values, minimum values, points of inflection and saddle points, because
they hold at each of these. We now develop second-order conditions which tell us
when we can be sure that a point satisfying the first-order conditions is certainly
a true maximum or minimum. We begin with an intuitive discussion and at the
end of this section give a somewhat more rigorous account in terms of the Taylor
series expansion.

Suppose that (x∗1 , . . . , x∗n) is a stationary point of the function f . If we make
small changes in the x-vector in any direction from this point, and the result is to
reduce the value of f , then this point must yield a local maximum of the function.
Similarly, if we move away from this point a small distance in any direction and
this increases the value of the function, this point must yield a local minimum.
Finally, if moving in some directions increases the value of the function, while
moving in other directions reduces the function value, then the stationary point
must be a saddle point.

Note the emphasis on “in any direction.” If simply moving in the xi-direction
(parallel to the xi-axis), for each xi reduces the value of the function, this need
not imply we have a maximum, since these are only a small subset of all the
possible directions in which we could go. Figure 12.5 illustrates for a function
of two variables. The bulge in the function means that (x∗1 , x∗2 ) gives a stationary
value which is not a local maximum, since moving in the direction indicated—not
parallel to either axis—increases the value of the function.
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x1

x1-direction

x2

x2-direction

x2*

x1*

f(x1* , x2* )  

(x1* , x2* )

Figure 12.5 A movement away from (x∗1 , x∗2 ) not in the x1- or x2-direction increases
the value of the function

The requirement to take account of all possible directions of change in the
x-vector is what complicates the algebra of the second-order conditions just as
it complicates the determination of concavity and convexity (see section 11.4).
The second-order partial fii tells us about the curvature of the function in the
xi-direction. If the function value decreases with a move from (x∗1 , . . . , x∗n) in
the xi-direction, as is necessary if this point is to be a maximum, then we have
fii(x

∗
1 , . . . , x∗n) < 0. However, it is not sufficient to state this as a condition for

all i, because it takes no account of movements away from the x-vector that are
not in any xi-direction. For this, we require the total differential.

Given some function with continuous partial derivatives, its total differential
for arbitrary changes dxi gives the change in the function in an arbitrary direc-
tion. Suppose this function is the total differential dy. At the stationary point
(x∗1 , . . . , x∗n), this total differential dy= df (x∗1 , . . . , x∗n)= 0. If, for any (small)
movement away from this point dy becomes negative, that means the function is
decreasing and (x∗1 , . . . , x∗n) yields a maximum. If, for any (small) movement away,
dy becomes positive, this means the function value is increasing and (x∗1 , . . . , x∗n)

yields a minimum. Thus sufficient conditions for a local maximum or minimum can
be expressed in terms of what happens to dy as we move away from (x∗1 , . . . , x∗n)

in any direction, namely in terms of the second-order differential d2y. We can put
this more formally as follows:
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We have a function y = f (x1, . . . , xn) or y = f (x), with x = (x1, . . . , xn).
At a point x∗ consider the total differential

dy = f1(x∗) dx1 + f2(x∗) dx2 + · · · + fn(x∗) dxn

where the differentials dxi are to be interpreted as small given numbers. This is
of course just a function of the vector x and as in chapter 11, we can take the
differential of this function to obtain the second-order differential

d(dy) ≡ d2y = [d(f1(x∗) dx1)]+ [d(f2(x∗) dx2)]+ · · · + [d(fn(x∗) dxn)]

= [f11(x∗) dx1 dx1 + f12(x∗) dx1 dx2 + · · · + f1n(x∗) dx1 dxn]

+ [f21(x∗) dx2 dx1 + f22(x∗) dx2 dx2 + · · · + f2n(x∗) dx2 dxn]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ [fn1(x∗) dxn dx1 + fn2(x∗) dxn dx2 + · · · + fnn(x∗) dxn dxn]

=
∑

i

∑
j

fij (x∗) dxi dxj

This expression is a quadratic form (see chapter 10). Now suppose that d2y <

0 for arbitrary vectors of values (dxi) (which may have to be very small). That
means that in all directions the value of dy is decreasing around the point x∗. But,
if dy is zero at x∗, as it must be if x∗ is an extreme value, then dy is negative in a
neighborhood of x∗. That means that the function is decreasing in the neighborhood
of x∗, and so if the first-order conditions are satisfied at x∗, then this is a local
maximum of the function. We refer to this as a local maximum because we only
use information about the behavior of dy in a small neighborhood of x∗, not over all
possible vectors x. On the other hand, a global maximum would be the maximum
of the function taken over all possible vectors x.

We have

Theorem 12.3 It is sufficient for x∗ to yield a local maximum of the C2 function y = f (x) that

fi(x∗) = 0, i = 1, . . . , n

and the quadratic form

d2y(x∗) =
∑

i

∑
j

fij (x∗) dxi dxj < 0, i, j = 1, . . . , n

That is, d2y is negative definite, or since d2y = dxT H dx, the Hessian matrix H

is negative-definite.
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Proof

By using the Taylor series expansion (definition 11.1 in section 11.6), we can
expand f (x) around the point x∗ to get, for any x̂ in the neighborhood of x∗ (i.e.,
close to x∗),

f (x̂) = f (x∗)+ dy(x∗)+ d2y(ξ)

where ξ lies between x∗ and x̂. Since, fi(x∗) = 0 for all i = 1, 2, . . . , n, we have

dy(x∗) = [f1(x∗) f2(x∗) . . . fn(x∗)]

⎡
⎢⎢⎢⎣

(x̂1 − x∗1 )

(x̂2 − x∗2 )
...

(x̂n − x∗1 )

⎤
⎥⎥⎥⎦= 0

Moreover, since d2y(x) < 0, it must also be the case that for x̂ sufficiently close
to x∗, and hence ξ close to x∗, d2y(x̂) < 0 and d2y(ξ) < 0. These results together
give us

f (x̂)− f (x∗) = d2(ξ) < 0

In other words, f (x̂) is less than f (x∗) for any x̂ near x∗ if fi(x∗) = 0 and
d2y(x∗) < 0. Thus x∗ yields a local maximum.

From this proof we see that if f (x) is a strictly concave function on x ∈ R
n,

then, if fi(x∗) = 0, i = 1, 2, . . . , n, it must be the case that x∗ is a unique global
maximum. This follows clearly if d2f (x) < 0 for all x ∈ R

n, a sufficient condition
for strict concavity of f .

Theorem 12.4 Suppose that y= f (x) is a strictly concave function defined on x∈R
n. If at

x = x∗ all first derivatives vanish,

fi(x∗) = 0, i = 1, 2, . . . , n

then x∗ yields a unique global maximum.

By a similar argument, simply noting that x∗ yields a minimum of the function
if d2y is positive in a neighborhood of x∗, we can also obtain the following two
theorems:
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Theorem 12.5 It is sufficient for x∗ to yield a local minimum of the function f (x) that

fi(x∗) = 0, i = 1, . . . , n

and the quadratic form

d2y =
∑

i

∑
j

fij (x∗) dxi dxj > 0, i, j = 1, . . . , n

That is, d2y is positive definite, or since d2y = dxT H dx, the Hessian matrix H

is positive definite (see definition 10.13).

Theorem 12.6 Suppose that y = f (x) is a strictly convex function defined on x ∈ R
n. If at

x = x∗ all first derivatives vanish,

fi(x∗) = 0, i = 1, 2, . . . , n

then x∗ yields a unique global minimum.

We will now apply these conditions to a number of examples. Before doing
so, we should note that these conditions are sufficient but not necessary—there
are cases in which they are not satisfied at a maximum point. For example, the
principal minors may all be zero at the maximum (or minimum) point. At this point
you will find it useful to review quadratic forms in section 10.3.

Example 12.2 For each function given in example 12.1, determine whether the stationary point
is a local or global maximum, minimum, or saddle point.

Solution

(i)

y = 2x2
1 + x2

2

f1 = 4x1, f2 = 2x2

f11 = 4, f12 = 0, f21 = 0, f22 = 2 for any x ∈ R
n

F =
∣∣∣∣4 0
0 2

∣∣∣∣ = 8 > 0 for any x ∈ R
n

Applying theorem 12.5 shows that the stationary point (0, 0) yields a unique
global minimum of the function.



12.2 SECOND-ORDER CONDITIONS 489

(ii)

y = 4x1 + 2x2 − x2
1 − x2

2 + x1x2

f1 = 4− 2x1 + x2, f2 = 2− 2x2 + x1

f11 = −2, f12 = 1, f21 = 1, f22 = −2 for any x ∈ R
n

F =
∣∣∣∣−2 1

1 −2

∣∣∣∣ = 4− 1 = 3 > 0 for any x ∈ R
n

Since f11 = −2 < 0, applying theorem 12.4 shows that the stationary point
(3.33, 2.67) is a maximum.

(iii)

y = 4x2
1 − x1x2 + x2

2 − x3
1

f1 = 8− 6x1 − x2 − 3x2
1 , f2 = −x1 + 2x2

f11 = 8− 6x1, f12 = −1, f21 = −1, f22 = 2

This function has stationary points (0, 0) and (2.5, 1.5). At the first of these

f11 = 8 > 0, F =
∣∣∣∣ 8 −1
−1 2

∣∣∣∣ = 15 > 0

Therefore applying theorem 12.5 tells us this point yields a minimum of the
function.

At (2.5, 1.5),

f11 = 8− 15 = −7 < 0, F =
∣∣∣∣−7 −1
−1 2

∣∣∣∣ = −14− 1 = −15 < 0

Neither theorem 12.3 nor theorem 12.5 can be applied in this case. In fact
the function has a saddle point at (2.5, 1.5). This can be seen by noting that
f11 < 0 means that the function reaches a maximum in the x1-direction, while
f22 > 0 means that it reaches a minimum in the x2-direction.

(iv)

y = 2x2
1 + x2

2 + 4x2
3 − x1 + 2x3

f1 = 4x1 − 1, f2 = 2x2, f3 = 8x3 + 2

f11 = 4, f22 = 2, f33 = 8, fij = 0, i �= j for any x ∈ R
n

F =
∣∣∣∣∣∣
4 0 0
0 2 0
0 0 8

∣∣∣∣∣∣
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Thus we have

f11 = 4 > 0,

∣∣∣∣4 0
0 2

∣∣∣∣ = 8 > 0,

∣∣∣∣∣∣
4 0 0
0 2 0
0 0 8

∣∣∣∣∣∣ = 64 > 0 for any x ∈ R
n

Applying theorem 12.5 therefore tells us the function has a unique global
minimum at the stationary point (0.25, 0,−0.25).

Profit-Maximizing Input Choice by a Competitive Firm

Suppose that a competitive firm produces output y using two inputs, labor L, and
capital K . The firm faces a product price p and input prices w and r per unit, and
has a Cobb-Douglas production function y = ALαKβ . In this classic problem,
the firm chooses L and K so as to maximize profit given by

π(L, K) = pALαKβ − wL− rK, α, β > 0

The first-order conditions are, using theorem 12.1,

∂π

∂L
= αpALα−1Kβ − w = 0

∂π

∂K
= βpALαKβ−1 − r = 0

By theorem 12.3, this solution gives a local maximum if the associated quadratic
form is negative-definite. This amounts to the Hessian matrix being negative-
definite, which from part 2 of theorem 11.9 requires the leading principal minors
to alternate in sign starting with a negative. (At this stage you should write out
the 2 × 2 Hessian matrix of second-order partial derivatives.) The first leading
principal minor of the Hessian in this case is the derivative ∂2π/∂L2, or

|H1| = α(α − 1)pALα−2Kβ

which is negative if and only if α < 1. The second leading principal minor is simply
the determinant of H , given by

|H | = αβp2A2L2α−2K2β−2(1− α − β)

which is positive, as required for a maximum if and only if 1 > α+β. (Recall that
α + β < 1 implies decreasing returns to scale, while α + β = 1 implies constant
returns to scale and α + β > 1 implies increasing returns to scale. The latter two
possibilities are not consistent with a competitive market.)
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E X E R C I S E S

1. Take each function given in question 1 of the exercises in section 12.1, and
determine whether the stationary points give a maximum, a minimum, or a
saddle point in each case.

2. Confirm that the solution to the profit-maximization price-discrimination
problem in section 12.1 is a true maximum.

3. Confirm that in the Cournot duopoly example the solution to each firm’s
profit-maximization problem is a true maximum.

4. Confirm that your solution to question 7 of the exercises in section 12.1 yields
a true maximum.

5. Solve the competitive firm’s profit-maximizing use of labor and capital for the
case where y=L0.25K0.5, p= 64, w= 2, and r = 4. Show that the solution
is a true maximum.

6. Suppose that we repeat question 5 with the production function

y = L1/2K3/4

What problem arises? Explain.

7. Consider the problem of maximizing the function

y = −(
x4

1 + x4
2

)
What is the solution? What problem arises in applying theorem 12.3 in this
case?

12.3 Direct Restrictions on Variables
In section 6.3 we considered the case in which the variable on which a function was
defined was restricted to lie in an interval. For example, if a firm is subject to an
output quota, then its output is restricted to lie between zero and some upper limit
equal to the quota. In fact in many economic problems it makes sense to restrict
the values of the variables to be nonnegative, but it is often implicitly or explicitly
assumed that this constraint does not bind at the optimum. Nevertheless, we can
often learn interesting things, or resolve puzzles in which the first-order conditions
appear to give strange results, by taking such restrictions explicitly into account.

The results we developed in section 6.3, for functions of one variable extend
readily to the case of functions of n variables. Thus suppose that each variable
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xi is restricted to an interval ai ≤ xi ≤ bi, i = 1, . . . , n. It can be the case that
for some i, ai is −∞, and for some (not necessarily the same)i, bi is +∞, but we
assume that for at least some i, ai , and/or bi are finite. In what follows our remarks
are aimed at these variables.

Suppose that the point x∗ gives a maximum of the function, subject to the
constraint that each xi-value lies in its given interval. For each xi in turn we must
then have one of three possible cases, which are illustrated in figure 12.6. [Note
that x∗−i is the vector of fixed values (x∗1 , . . . , x∗i−1, x

∗
i+1, x

∗
n).]

(a) (b) (c)

f

xibi
ai xi*0

fi (x*) = 0

f (xi, x–i)*

f

xibi
xi*  = ai0

fi (x*) ≤ 0

f (xi, x–i)*

f

xiai
xi*  = bi0

fi (x*) ≥ 0
f (xi, x–i)*

Figure 12.6 Possible solutions when xi must lie in an interval

Case 1 ai < x∗i < bi . In case 1 we must have fi(x∗) = 0. To see this,
consider the component of the total differential df corresponding to xi, fi(x∗) dxi .
If fi(x∗) �= 0, then it is possible to find a suitably small dxi with the appropriate
sign, such that fi(x∗) dxi > 0. This way the function value can be increased,
contradicting the fact that it is at a maximum. Thus we must have fi(x∗) = 0.
This is, of course, the argument we used for the case in which no constraints were
imposed.
Case 2 ai = x∗i . In case 2 we must have fi(x∗) ≤ 0. To see this, suppose
that fi(x∗) > 0. We are free to choose some dxi > 0, since that keeps xi within
the feasible interval, and we then have fi(x∗) dxi > 0, contradicting the fact that
the function is at a maximum. Thus, we can rule out fi(x∗) > 0 as a possibility.
However, if fi(x∗) < 0, we could only increase the function value by taking some
dxi < 0, which is not permissible because it will violate the constraint. Therefore,
we cannot rule out the possibility that fi(x∗) < 0, nor indeed that fi(x∗) = 0, since
in either case we could not increase the function value by permissible variations
in xi .
Case 3 x∗i = bi . In case 3 we must have fi(x∗) ≥ 0. To see this, suppose that
fi(x∗) < 0. We are free to choose a dxi < 0 such that fi(x∗) dxi > 0, and so the
function value can be increased without violating the constraint. Therefore we can
rule this out. On the other hand, if fi(x∗) > 0, only a dxi > 0 could increase the
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function value, but that violates the constraint, and so the function value cannot
be increased. The function value also cannot be increased by small variations in
xi if fi(x∗) = 0.

We can express these cases more succinctly in

Theorem 12.7 If x∗ is a solution to the problem

max f (x) s.t. ai ≤ xi ≤ bi, i = 1, . . . , n

then one or both of the following conditions must hold:

(i) fi(x∗) ≤ 0 and (x∗i − ai)fi(x∗) = 0
(ii) fi(x∗) ≥ 0 and (bi − x∗i )fi(x∗) = 0

for all i = 1, . . . , n.

The reader should confirm that these conditions aptly summarize the cases just
considered. If ai < x∗i < bi then both conditions hold. Note also that different con-
ditions may hold for different xi .

By exactly the same type of argument, we can also establish

Theorem 12.8 If x∗ is a solution to the problem

min f (x) s.t. ai ≤ xi ≤ bi, i = 1, . . . , n

then one or both of the following conditions must hold:

(i) fi(x∗) ≥ 0 and (x∗i − ai)fi(x∗) = 0
(ii) fi(x∗) ≤ 0 and (bi − x∗i )fi(x∗) = 0

Again, if ai < x∗i < bi , then both conditions hold.

Example 12.3 Solve the following problems:

(i) max y = 10x1 − 5x2 subject to 0 ≤ x1 ≤ 20, 0 ≤ x2 ≤ 20
(ii) max y = x

1/2
1 x

1/2
2 subject to 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

(iii) max y = 4x1 + 2x2 − x2
1 − x2

2 + x1x2 subject to 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10
(iv) max y = 4x1 + 2x2 − x2

1 − x2
2 + x1x2 subject to 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2.67
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Solution

(i) This function is linear and increasing in x1 and linear and decreasing in x2.
In the absence of the interval constraints there would be no solution. We can
guess immediately that the solution is at the upper bound of x1 and the lower
bound of x2:

x∗1 = 20, x∗2 = 0

This point satisfies the necessary conditions in theorem 12.7, since

f1 = 10 ≥ 0, (20− x∗1 )10 = 0

f2 = −5 ≤ 0, (x∗2 − 0)(−5) = 0

at (20, 0).
(ii) This function is monotonically increasing over the given intervals, and so we

can guess that the solution is at the upper bounds of the intervals

x∗1 = 10, x∗2 = 10

This point satisfies the necessary condition in theorem 12.7, since

f1(10, 10) = 1

2
101/2101/2 ≥ 0, (10− 10)f1 = 0

f2(10, 10) = 1

2
101/2101/2 ≥ 0, (10− 10)f2 = 0

(iii) We solved this problem in example 12.1, where we found the maximum was
at (3.33, 2.67). Since this point is interior to both intervals, the constraints
are nonbinding and this continues to be the solution. In this case we have

f1 = 0, (3.33− 0)f1 = (10− 3.33)f1 = 0

f2 = 0, (2.67− 0)f2 = (10− 2.67)f2 = 0

which satisfies the conditions of theorem 12.7.
(iv) Here, we have the same function as previously but the intervals differ. For

x1, the given interval excludes the previously optimal solution. For x2, the
previously optimal value is the upper bound of the interval and is still avail-
able. But beware! Even though still available, this value of x2 need not be
optimal for this new, constrained problem, and we shall in fact see that this
is the case.
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We may be tempted to try the upper bounds of the two intervals, the
point (1, 2.67), as a candidate for the solution. The partial derivatives of the
function are

f1 = 4− 2x1 + x2, f2 = 2− 2x2 + x1

Thus at (1, 2.67) we have

f1 = 4.67 > 0, f2 = 3− 5.34 = −2.34 < 0

We conclude that this point cannot be optimal, because the necessary condi-
tions in theorem 12.7 are violated: we require f2 ≥ 0 when x2 is at the upper
bound of its interval.

We can guess at the likely solution by noting first that for all x1 in the interval
[0, 1] and all x2 in [0, 2.67], we have f1 > 0; this means that the function is in-
creasing in x1. Therefore it makes sense to set x1 at its upper bound x1= 1. As we
just saw, at (1, 2.67) the partial derivative f2 < 0, suggesting that we can increase
the value of the function by reducing x2. But how far? We can find the answer if
we set x1= 1 in the function y and maximize with respect to x2 over the interval
[0, 2.67]: we solve

max y = 3+ 3x2 − x2
2 s.t. 0 ≤ x2 ≤ 2.67

We can guess that we will have an interior solution with the first-order condition

3− 2x2 = 0

implying that x∗2 = 1.5. To check that this satisfies the necessary conditions, we
have

f1 = 4− 2(1)+ 1.5 = 3.5 > 0, f1(1− x∗1 ) = 0

f2 = 2− 2(1.5)+ 1 = 0, f2(1.5− 0) = f2(2.67− 1.5) = 0

and so the conditions hold.

x10

x2

1 3.33

2.67

1.5

L

L

Figure 12.7 Interval constraint
that changes optimal values of both
variables

Figure 12.7 illustrates what is going on in this problem. The level curves reflect
the concave shape of this function. The peak of the function is at (3.33, 2.67), but
in the constrained problem we are restricted to the interval [0, 1] for x1. Then the
point [1, 2.67] is not on the highest attainable level curve. We reach the highest
possible level curve by moving to [1, 1.5]. Note that this is a point of tangency
between the vertical constraint line and the highest possible level curve.

You may be worried about the amount of guesswork in this answer and want a
more systematic approach. This takes the following form. Note that, for any value
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of x1 that may be set, a necessary condition for an optimal solution is that x2 must
maximize the function for that given level of x1. Thus we can solve the problem

max y = 4x1 + 2x2 − x2
1 − x2

1 + x1x2 s.t. 0 ≤ x2 ≤ 2.67

with respect to x2 taking x1 as given. From the first-order condition

2− 2x2 + x1 = 0

this gives the solution value for x2 as a function of x1

x2 = 1+ 0.5x1

Substituting for x2 in the function, we then solve

max y = 4x1 + 2[1+ 0.5x1]− x2
1 − [1+ 0.5x1]2 + x1[1+ 0.5x1]

= 1+ 5x1 − 0.75x2
1 s.t. 0 ≤ x1 ≤ 1

This maximum is clearly achieved at x∗1 = 1, giving the corresponding value
x∗2 = 1+ 0.5x∗1 = 1.5.

Diagramatically the first step in this procedure amounts to finding the locus
of points of tangency of the contours of the function with the vertical lines corre-
sponding to each value of x1. This locus is denoted LL in figure 12.7. Then the
intersection of this locus with the line drawn at x1 = 1 gives the overall solution.

Discriminating Monopoly with an Output Quota

Suppose that a monopoly supplies two countries, its own and a foreign country.
The inverse-demand functions are

p1 = 100− q1

p2 = 80− 2q2

and its total-cost function is

C = (q1 + q2)
2

Thus we assume that there are no cost differences in supplying the two countries.
It is also possible to prevent arbitrage between the markets without cost. Then,
if there are no further constraints, just as in the earlier case of discriminating
monopoly we can solve for the profit-maximizing outputs and prices in the two
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countries by solving

max π(q1, q2) = 100q1 + 80q2 − q2
1 − 2q2

2 − (q1 + q2)
2

We proceed directly to the solution, which gives

q∗1 = 22, q∗2 = 6, p∗1 = $78, p∗2 = $68, π∗ = $1,340

We can conclude that country 2 has the higher demand elasticity at the optimum.
Now suppose that the government of country 2, the foreign country, accuses

the firm of “dumping,” because it is selling in the foreign market at a lower price
than in its home market. In retaliation, it imposes a quota of 4 on imports of the
good. What is the impact on the firm’s outputs in both markets, as well as on its
profits? (The latter will determine how much it can afford to spend on lobbying to
get the decision reversed.) We therefore have to solve the problem

max π(q1, q2) s.t. q2 ≤ 4

where the profit function is as given above. Note that strictly speaking, we should
also impose nonnegativity conditions, but having solved the unconstrained
problem, we can be pretty sure that these will not be binding at the solution.
Applying theorem 12.7 gives the conditions

100− 4q1 − 2q2 = 0

80− 2q1 − 6q2 ≥ 0 and (4− q2)(80− 2q1 − 6q2) = 0

First, we show that we must have q2= 4. If q2 < 4, then the second condition
implies that

80− 2q1 − 6q2 = 0

But we already know that this condition, together with the first, gives a value of
q2 = 6, and so we can rule out this possibility. Thus q2 = 4, its quota, and inserting
this into the first condition and solving for q1 gives the overall solution

q∗1 = 23, q∗2 = 4, p∗1 = $77, p∗2 = $72, π∗ = $1,330

So in country 1 output increases and price falls, while in country 2 price rises and
output falls, which certainly makes that country’s consumers worse off. The firm
also loses a little profit. These effects are illustrated in figure 12.8.
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(c)

MR1 + 2

q1 + q2
0 27 28

MR1 + 2↓

P2
MR2

q2
0 4 6

72
68

MR2

D2

↓

80

Quota

MC1 + 2

(b)

P1
MR1

q1
0 22 23

78

MR1

D1

↓

↓

100

(a)

77
D1 + 2

MC1 + 2

↓

Figure 12.8 Effect of a quota on the discriminating monopoly solution

The least obvious of these results is the effect in country 1. It is an exercise
to show that if marginal costs were constant, there would have been no effect on
country 1. However, because marginal costs are increasing, the reduced output in
country 2 reduces marginal cost below the level of marginal revenue in country 1,
and so it is profitable to expand output there.

What happens to the condition on equality of marginal revenues that we saw
earlier was a key aspect of the (unconstrained) price-discriminating solution? The
marginal revenues in the two markets are given by

R′1(q
∗
1 ) = 100− 2q∗1 = $54

R′(q∗2 ) = 80− 4q∗2 = $64

Thus, as we expected from the fact that the quota is a binding constraint, the firm
would like to switch output from country 1 to country 2.

Finally, we note that the marginal profitability of output in market 2 is positive,
since we have

π2(q
∗
1 , q∗2 ) = 80− 2q∗1 − 6q∗2 = 10 > 0

We call this the shadow price of the output quota to the firm, since it represents
the rate at which profit increases with a small relaxation of the output quota. Note
that the fact that this shadow price is positive explains why the quota is a binding
constraint, as the conditions given above show.
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E X E R C I S E S

1. Solve the following problems:

(a) min y = 3x2
1 + 2x2

2 + 5 subject to 0 ≤ x1 ≤ 10, 2 ≤ x2 ≤ 10

(b) max y = 2x1+ x2− 3x2
1 − 4x2

2 + x1x2 subject to 0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1

(c) max y= 2x1+ x2− 3x2
1 − 4x2

2 + x1x2 subject to 1 ≤ x1 ≤ 2,

1 ≤ x2 ≤ 2

(d) max y = 2x1 + x2 − 3x2
1 − 4x2 + x1x2 subject to 0 ≤ x1 ≤ 1,

1 ≤ x2 ≤ 2

(e) max y = 2x3
1 − 3x1x2 + x2

1 − 2x2
2 subject to 0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1

(f) max y = 2x3
1 − 3x1x2 + x2

1 − 2x2
2 subject to 0 ≤ x1 ≤ 1,

1 ≤ x2 ≤ 2

2. In the model of two-plant monopoly with capacity constraints, assume the
demand function changes to p = 200− (q1 + q2). Find and discuss the new
profit-maximizing solution. What is the shadow price of a small increase in
capacity of plant 2? of plant 1?

3. In the model of discriminating monopoly with an output quota, show that if
marginal cost of production is constant there is no effect of the imposition of
the quota in country 2 on price and output in country 1. Explain this result.

4. Explain why, if a local maximum occurs at x= a with f ′(a)= 0, or at x= b

with f ′(b)= 0, then both the conditions in theorem 12.7 hold. Show a similar
result for theorem 12.8.

C H A P T E R R E V I E W
Key Concepts Cournot duopoly

extreme values
saddle point

shadow price
stationary values

Review Questions 1. State and explain necessary conditions for a point (x∗1 , . . . , x∗n) to yield a
stationary value of a function f over its domain R

n.

2. What types of points make up the set of stationary points?
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3. State and explain sufficient conditions for a point (x∗1 , . . . , x∗n) to yield a local
maximum of a function f over its domain R

n.

4. State and explain sufficient conditions for a point (x∗1 , . . . , x∗n) to yield a local
minimum of a function f over its domain R

n.

5. Explain why these second-order conditions cannot be framed in terms of the
second-order partials fii only.

6. Explain what is meant by the saddle point of a function.

7. State and explain necessary conditions for a point (x∗1 , . . . , x∗n) to yield a local
maximum of the function f subject to the interval constraints ai ≤ xi ≤ bi ,
i = 1, . . . , n.

8. State and explain necessary conditions for a point (x∗1 , . . . , x∗n) to yield a local
minimum of the function f subject to the interval constraints ai ≤ xi ≤ bi ,
i = 1, . . . , n.

Review Exercises 1. Find the stationary values of the following functions and use the second-order
conditions to determine which give maxima, minima, or saddle points:

(a) y = 0.5x2
1 + 2x2

2

(b) y = x1 + x2 − x2
1 − x2

2 + x1x2

(c) y = 10x1 + 2x2 − 0.5x2
1 − 2x2

2 + 5x1x2

(d) y = 2x1x2 − x3
1 − x2

2

(e) y = x3
1 + x3

2 − 4x1x2

(f) y = x1x2 + 2/x1 + 4/x2

(g) y = 2x2
1 − 4x2

2

2. Find the maxima or minima of each of the functions in question 1 subject to
the constraints

0 ≤ x1 ≤ 10 1 ≤ x2 ≤ 20

3. A firm is considering bidding for the franchise to sell cola and hot dogs at
a baseball stadium. It estimates the demand functions for cola and hot dogs
respectively as

DC = 20− 4pC − pH

DH = 15− pC − 5pH
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where DC is demand for cola in thousands (of cans), DH is demand for hot
dogs in thousands, pC is the price of a can of cola in dollars, and pH is the
price of a hot dog. The unit cost of supplying a hot dog is constant at $0.1,
and the unit cost of a can of cola is likewise constant at $0.5.

(a) Find the upper limit to the amount the firm would bid for the franchise.

(b) Interpret the demand functions, in particular the cross-demand effects.

(c) Suppose that cola and hot dogs must be supplied by two separate firms.
What modeling issues arise in analyzing the franchise bids of the two
firms, and how would you deal with them?

4. A company owns an inventory of 100 units of a good. It must sell the entire
inventory over the next three periods. The profit function for sales within any
one period is

π(xt ) = 50xt − 0.5x2
t , t = 1, 2, 3

It wishes to maximize the present value of profit

V = π(x1)+ βπ(x2)+ β2π(x3)

where β = 0.8 is its discount factor. Find the optimal values for x1, x2, and x3;
illustrate and discuss this solution. [Hint: Use the conditionx1+ x2+ x3= 100
to substitute for x3 in the V function and then maximize with respect to x1

and x2.]

5. A monopolist supplies two markets, one at home, the other abroad. The de-
mand functions are

q1 = 10− p1, q2 = 5− 0.5p2

where q1 denotes home sales and q2 foreign sales. The firm’s total-cost func-
tion is

C = 0.5(q1 + q2)
2

(a) Find its profit-maximizing output and prices (no arbitrage between the
markets is possible).

(b) Suppose now that price regulation is imposed in the home market, in
the form of a maximum price of $b. What is the effect of this on prices,
outputs, and profit? Illustrate and explain your results.





Chapter 13 Constrained Optimization

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Farmer’s Land Allocation
• Numerical Version of the Land-Allocation Problem: Example
• Consumer Demand Functions with Cobb-Douglas Utility
• Long-Run Cost Function for a Firm with a Cobb-Douglas Production

Function
• Cost-Minimization with a CES Production Function
• Numerical Version of the CES Cost Function Problem: Example
• Optimization with More Than One Constraint
• Points Rationing: Example
• Constraints in Points Rationing
• Second-Order Conditions for the Land-Allocation Problem: Example
• Second-Order Conditions for the Cost-Minimization Problem: Example
• Second-Order Conditions with a Cobb-Douglas Production Function:

Example

If, when maximizing or minimizing a function, we are free to consider any value
of an x-variable on the real line as a possible solution, then the problem is said to
be unconstrained. Most of the techniques developed in chapters 6 and 12 related
to this case. In many, probably most, economic problems, however, there exist one
or more constraints which restrict the set of x-values we are allowed to consider
as possible solutions. We already examined one type of constraint in chapters 6
and 12, namely that where the x-values are restricted to lie in some interval.
The examples we examined in those chapters showed that such restrictions arise
naturally in economic problems and have important effects on the solution. In
this chapter we develop techniques for dealing with another type of constraint,
that in which the x-variables are restricted to a set of values that satisfy one or
more functional equations. The main topic is the derivation and application of the
method of Lagrange multipliers.
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13.1 Constrained Problems and
Approaches to Solutions

Suppose that we wish to maximize a function f (x1, x2), where f ∈ C2 is a strictly
concave function of the type drawn in figure 12.1 (a) in the previous chapter. In
the absence of constraints, we know from theorem 12.1 that the solution (x∗1 , x∗2 )

satisfies the conditions fi(x
∗
1 , x∗2 ) = 0, i = 1, 2. Now suppose that we impose the

constraint

g(x1, x2) = 0

where g ∈ C2 also. This means that we are only allowed to consider as possible
solutions to the problem those pairs of (x1, x2)-values which satisfy that equation.

In figure 13.1 the function f , is illustrated (a) in three dimensions and (b) by
the associated level curves. The curve G in each part of the figure represents the
set of (x1, x2)-pairs that satisfy a constraint such as the one above. The problem of
maximizing the function subject to the constraint is, stated diagrammatically, the
problem of finding a point on the curve G which gives the highest possible value
of the function. The answer can be seen in figure 13.1 (a), but it emerges more
clearly in figure 13.1 (b). The level curve labeled f ∗ is clearly the highest level
curve of f that can be reached while remaining on the curve G, and so the point
(x∗1 , x∗2 ) is the solution to the problem: it gives the highest value of the function
consistent with satisfying the constraint.

x1
(a) (b)

x2

f(x1, x2)

0 x1

x2

0
x1*

x2*

x1*

x2*

G

f *

G

f *

Figure 13.1 Finding the point on the constraint curve that gives the highest function
value

The most obvious feature about the point (x∗1 , x∗2 ) is that it is a point of tangency
between the curve G and the level curve f ∗. Given the shapes of the level curves
of f and the curve G, it should be clear that any solution to the problem must be
at a point of tangency. This could be tested by shifting the curve G slightly while
keeping its general shape.
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Suppose now that we want to express this diagrammatic solution algebrai-
cally—that would certainly simplify the problem of finding the numerical values
of the solution. We know (recall section 11.3) that we can write the slope of a level
curve of f (x1, x2) as

dx2

dx1
= −f1(x1, x2)

f2(x1, x2)

and the slope of the curve G as

dx2

dx1
= −g1(x1, x2)

g2(x1, x2)

Since at a point of tangency these slopes must be equal, we have that at (x∗1 , x∗2 ),

f1(x
∗
1 , x∗2 )

f2(x
∗
1 , x∗2 )

= g1(x
∗
1 , x∗2 )

g2(x
∗
1 , x∗2 )

Note that this is only one equation in two unknowns and so in itself cannot give
us a solution for the values x∗1 and x∗2 . The second equation we need is given by
the constraint

g(x∗1 , x∗2 ) = 0

since if x∗1 and x∗2 are optimal, then they must be feasible and so satisfy the con-
straint. These two equations taken together allow us to solve for the values x∗1
and x∗2 .

Theorem 13.1 If x∗1 and x∗2 is a tangency solution to the constrained maximization problem

max f (x1, x2) s.t. g(x1, x2) = 0

then we have that x∗1 and x∗2 satisfy

f1(x
∗
1 , x∗2 )

f2(x
∗
1 , x∗2 )

= g1(x
∗
1 , x∗2 )

g2(x
∗
1 , x∗2 )

g(x∗1 , x∗2 ) = 0

Although the diagrammatic approach is suggestive, we now study the problem
algebraically. Consider again the constraint g(x1, x2) = 0, and assume that it can
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be solved to give, say, x2 as a function of x1:

x2 = γ (x1)

This is, in fact, simply the function which gives the curve G in figure 13.1. We know
from the presentation of implicit differentiation (theorem 11.2) that the derivative
of this function is

dx2

dx1
= γ ′(x1) = −g1(x1, γ (x1))

g2(x1, γ (x1))

Now, if we substitute γ (x1) for x2 in the function f , we are left with the uncon-
strained problem in one variable:

max f (x1, x2) = max f (x1, γ (x1)) = max φ(x1)

We maximize the function φ by differentiating and setting the derivative equal to
zero:

φ′ = f1(x
∗
1 , γ (x∗1 ))+ f2(x

∗
1 , γ (x∗1 ))γ ′(x∗1 ) = 0

Then, rearranging this, substituting for γ ′(x∗1 ), and noting that feasibility requires
that x∗2 = γ (x∗1 ) gives

f1(x
∗
1 , x∗2 )

f2(x
∗
1 , x∗2 )

= g1(x
∗
1 , x∗2 )

g2(x
∗
1 , x∗2 )

which is the tangency condition of theorem 13.1.
We now set out the Lagrange multiplier technique for solving constrained

optimization problems, and we shall justify it by showing that it is equivalent to
the two approaches we have just examined. We proceed by introducing a new
variable, λ, the Lagrange multiplier, and by forming the Lagrange function or
Lagrangean

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2)

We then find a stationary point of L with respect to x1, x2, and λ. (Later we show
that this must be a saddlepoint of the Lagrangean) This gives the conditions

∂L
∂x1
= f1(x

∗
1 , x∗2 )+ λ∗g1(x

∗
1 , x∗2 ) = 0

∂L
∂x2
= f2(x

∗
1 , x∗2 )+ λ∗g2(x

∗
1 , x∗2 ) = 0
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∂L
∂λ
= g(x∗1 , x∗2 ) = 0

We have the three equations to solve for the three unknowns, x∗1 , x∗2 , and λ∗. The
justification for the use of the Lagrange method is that these x-values are precisely
the solutions to the original constrained maximization problem we are interested
in. To see this, rewrite the first two conditions as

f1(x
∗
1 , x∗2 ) = −λ∗g1(x

∗
1 , x∗2 )

f2(x
∗
1 , x∗2 ) = −λ∗g2(x

∗
1 , x∗2 )

Then taking ratios of the left-hand and right-hand sides respectively gives

f1(x
∗
1 , x∗2 )

f2(x
∗
1 , x∗2 )

= g1(x
∗
1 , x∗2 )

g2(x
∗
1 , x∗2 )

which is precisely the tangency condition we obtained earlier. Thus eliminating the
Lagrange multiplier from the first two conditions in this way gives us the tangency
condition, and then the third condition is simply the constraint so that we can solve
to obtain the same solution as before. One way of looking at the Lagrange multiplier
procedure is as a way of delivering the tangency conditions for an optimal solution.

We can summarize this by

D e f in i t i o n 13 . 1 The Lagrange method of finding a solution (x∗1 , x∗2 ) to the problem

max f (x1, x2) s.t. g(x1, x2) = 0

consists of deriving the following first-order conditions to find the stationary
point(s) of the Lagrange function

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2)

which are

∂L
∂x1
= f1(x

∗
1 , x∗2 )+ λ∗g1(x

∗
1 , x∗2 ) = 0

∂L
∂x2
= f2(x

∗
1 , x∗2 )+ λ∗g2(x

∗
1 , x∗2 ) = 0

∂L
∂λ
= g(x∗1 , x∗2 ) = 0
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How can we be sure that for some arbitrarily given problem there is always a
unique solution point at a tangency of the constraint curve and level curve of f ,
and that the Lagrange procedure always works in that it delivers this point? Exactly
what role is played by the assumptions on the shapes of the level curves of the
functions f and g? These questions will be considered later, in section 13.3. Here
we will simply show the usefulness of the procedure by applying it to a number
of examples.

Example 13.1 Solve the constrained maximization problem

max y = x0.25
1 x0.75

2 s.t. 100− 2x1 − 4x2 = 0

Solution

The Lagrange function is

L = x0.25
1 x0.75

2 + λ(100− 2x1 − 4x2)

and the first-order conditions are

0.25x−0.75
1 x0.75

2 − 2λ = 0 (13.1)

0.75x0.25
1 x−0.25

2 − 4λ = 0 (13.2)

100− 2x1 − 4x2 = 0 (13.3)

Solving equations (13.1) and (13.2) to eliminate λ gives

x2 = 3

2
x1

and substituting this into equations (13.3) gives the solution

x∗1 =
600

48
, x∗2 =

300

16

The Student’s Time-Allocation Problem

In question 9 of the review exercises at the end of chapter 6, we presented the
following problem.Astudent wishes to allocate her available study time of 60 hours
per week between two subjects in such a way as to maximize her grade average.
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We can formulate the problem as

max
g1(t1)+ g2(t2)

2
s.t. 60− t1 − t2 = 0

where ti is time spent studying subject i= 1, 2 and the gi functions give the ex-
pected grade as a function of study time:

g1 = 20+ 20
√

t1, g2 = −80+ 3t2

This is a constrained optimization problem. In chapter 6 we suggested solving it
by using the constraint to eliminate t2. We can write

t2 = 60− t1

and then solve the unconstrained problem in one variable.
In terms of our discussion in this chapter, 60− t1 is the equivalent of the

function γ .
We will now solve the problem using the Lagrange multiplier method. The

Lagrange function is

L = 20+ 20
√

t1 − 80+ 3t2

2
+ λ(60− t1 − t2)

The first-order conditions are

∂L

∂t1
= 10t

−1/2
1

2
− λ = 0

∂L

∂t2
= 3

2
− λ = 0

∂L

∂λ
= 60− t1 − t2 = 0

Substituting for λ from the second condition into the first gives

5t
−1/2
1 = 3/2

implying that

t∗1 =
(

10

3

)2

= 11.11
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Then substituting for t1 in the constraint gives

t∗2 = 60− 11.11 = 48.89

The conditions we obtained under the Lagrange approach suggest some inter-
esting interpretations of the results. We can interpret λ as the value of the marginal
contribution to the grade average from studying each subject at the optimal so-
lution. (Later in this section we show how λ is to be interpreted generally in
constrained optimization problems; see theorem 13.2.) Thus note that 3/2 is the
contribution to the grade average made by allocating an extra bit of time to study-
ing subject 2, and this is constant because the function g2 is linear. Likewise the
derivative g′1 = 5t

−1/2
1 is the marginal contribution to the grade average from

studying subject 1, and since g1 is a concave function, this marginal contribution
decreases as t1 increases. Then, at the optimum time allocation, these two marginal
time allocations are equal to each other and to λ:

λ∗ = 5(11.1)−1/2 = 3

2

Figure 13.2 illustrates. The distance OT on the horizontal axis represents total
time available (60 hours) so t1 is measured rightward from 0, and t2 is measured
leftward from T . The optimal allocation is characterized by the condition that the
last little bit of time spent studying each subject makes the same contribution to
the grade average. Diverting a small amount of time from one subject to the other
would leave the grade average just about unchanged.

0 T

g'2g'1

11.11
60←

←

48.89

g'1 =  5 t1

g'2 =  3 / 2

–1/2

Figure 13.2 Optimal allocation of study time
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Note that the individual subject grades at the optimal allocation turn out to be
quite different

g1 = 20+ 20
√

11.11 = 86.67

g2 = −80+ 3(48.89) = 66.67

The student ends up with a worse grade in subject 2, even though she spends more
time studying it. What matters, however, is the contribution to grade average at
the margin made by studying each subject (see question 2 of the exercises at the
end of this section).

In the discussion so far, we have considered only maximization problems. The
case of minimization problems, however, is treated similarly. In figure 13.3 we
show a strictly convex function f (x1, x2) and a constraint curve G corresponding
to the constraint g(x1, x2) = 0. The problem is to reach the lowest possible point
on the function while remaining on the constraint curve. The solution is clearly
at point (x∗1 , x∗2 ), a point of tangency. In fact the level curve diagram looks just
like that in the maximization problem, the difference being that the value of the
function falls as we move inward toward the point T . Thus, exactly as before, we
can show that the optimal point must satisfy the tangency conditions

f1(x
∗
1 , x∗2 )

f2(x
∗
1 , x∗2 )

= g1(x
∗
1 , x∗2 )

g2(x
∗
1 , x∗2 )

g(x∗1 , x∗2 ) = 0

x1
(a) (b)

x2

f(x1, x2)

0 x1

x2

0
x1*

x2*

x1*

x2*

G

f *
G

f *

T

Figure 13.3 Constrained minimization

Therefore, for the case of constrained minimization, we have

D e f in i t i o n 13 . 2 The Lagrange method for finding a solution to the problem

min f (x1, x2) s.t. g(x1, x2) = 0
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is to derive conditions for a stationary point of the Lagrange function

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2)

which are

∂L
∂x1
= f1(x

∗
1 , x∗2 )+ λ∗g1(x

∗
1 , x∗2 ) = 0

∂L
∂x2
= f2(x

∗
1 , x∗2 )+ λ∗g2(x

∗
1 , x∗2 ) = 0

∂L
∂λ
= g(x∗1 , x∗2 ) = 0

Since the first-order conditions for maximization and minimization prob-
lems are identical, as they were in the unconstrained case, this tells us that we
need to consider second-order conditions. We study second-order conditions in
section 13.2.

Example 13.2 Solve the following constrained minimization problem:

min y = x1 + x2 s.t. 1− x
1/2
1 − x2 = 0

Solution

The Lagrange function is

L = x1 + x2 + λ
(
1− x

1/2
1 − x2

)
The first-order conditions are

1−
(

λ

2

)
x
−1/2
1 = 0

1− λ = 0

1− x
1/2
1 − x2 = 0

which solve to give

x∗1 =
1

4
, x∗2 =

1

2
, λ∗ = 1
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The Dual Consumer Problem with Cobb-Douglas Utility

In an earlier example of consumer-demand functions with Cobb-Douglas utility,
we examined the problem of maximizing a consumer’s utility function subject
to a budget constraint, and derived the corresponding demand functions. We now
examine a closely related problem, which is called the dual to the previous problem.
In this, we take a fixed value of the utility function, and minimize the expenditure
required to achieve it. That is, we solve

min e = p1x1 + p2x2 s.t. u(x1, x2) = ū

where e is expenditure and ū the required utility level. Note that we are still
choosing quantities x1 and x2, taking prices as given.

We can interpret this problem by thinking of the value of ū as representing a
given standard of living. We are then asking: Given the prices of the goods, what
is the cheapest way to achieve this standard of living?

We again assume the consumer’s preferences are described by a Cobb-Douglas
utility function ū= xα

1 x1−α
2 , and so the consumer’s expenditure-minimization

problem is

min p1x1 + p2x2 s.t. ū− xα
1 x1−α

2 = 0

At this point, we note that we can save ourselves a little work. This problem is in
fact identical to that solved in the example of long-run cost function for a firm with
Cobb-Douglas production function. We just have to replace K by x1, L by x2, r

by p1, w by p2, y by u and β by 1 − α. We are clearly asking the same kind of
question: x1 and x2 are “inputs” into the utility function, and we want to find the
lowest-cost way of “producing” the given utility level. So we can go directly to
the results of the constrained-minimization problem we obtained in that example:

x1 =
(

α

1− α

)(1−α)(
p2

p1

)(1−α)

ū

x2 =
(

1− α

α

)α(
p1

p2

)α

ū

These are compensated-demand functions for the two goods, since they show how
quantities consumed vary with prices (and utility). They are clearly different from
the uncompensated-demand functions we obtained in the earlier consumer demand
example, which for ease of comparison we write out again here:

x1 = αm

p1

x2 = (1− α)m

p2



514 CHAPTER 13 CONSTRAINED OPTIMIZATION

where m is the consumer’s income. One important difference is that the demand
functions in the dual problem include both prices, in a way that suggests that what
really matters is the ratio of the prices.

To see the reason for this, consider figure 13.4. In this figure we see the effect
of a fall in price of good 1, from p0

1 to p1
1. If we are constrained to achieve the same

utility level, then after the price-change expenditure must change by just enough
to allow the initial indifference curve u0 to be reached. Therefore the budget line
slides around u0, causing demand for x1 to change from x0

1 to x1
1 . This is said to be

a compensated-price effect because expenditure has changed by enough to keep
utility constant. If, on the other hand, income (= expenditure) is kept unchanged,
then the budget line rotates outward to B1 as a result of the price change and a new
utility level u1 is achieved, with a change in demand to x2

1 . In this case, we have
an uncompensated-price effect. Thus the first demand function for x1 above gives
us the compensated effect, while the second demand function for x1 gives us the
uncompensated effect.

m 1/p1
1

x1

m1/p2

m0/p2

m 0/p0
1x0

1 x1
1 x2

1

B1

u1

u0

Figure 13.4 Compensated and uncompensated demand changes

Just as we derived the cost function for the firm, so here we can derive a
cost function for the consumer. This is usually called the expenditure function,
since it shows the amount of expenditure required to achieve a given utility level,
at given prices, as a function of that utility level and those prices. Therefore, by
substituting the compensated demand functions for x1 and x2 into the expression
e = p1x1 + p2x2, and rearranging, we obtain the expenditure function

e = apα
1 p

(1−α)
2 ū

where a = (α/(1− α))(1−α) + ((1− α)/α)α .
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The Interpretation of λ

We apparently introduced λ as an artifact to help us generate the conditions we
know give the solution. It turns out, however, that λ has a very important and
interesting economic interpretation in all constrained optimization problems. It is
sufficiently important to summarize it in

Theorem 13.2 The value of the Lagrange multiplier λ at the optimal solution always tells us
the effect on the optimized value of the function f of a small relaxation of the
constraint.

We will prove this important theorem in section 14.3.

E X E R C I S E S

1. Solve the following constrained maximization and minimization problems,
illustrating your answer with diagrams in each case:

(a) max y = 2x1 + 3x2 subject to 2x2
1 + 5x2

2 = 10

(b) max y = x0.25
1 x0.75

2 subject to 2x2
1 + 5x2

2 = 10

(c) min y = 2x1 + 4x2 subject to x0.25
1 x0.75

2 = 10

(d) max y = (x1 + 2)(x2 + 1) subject to x1 + x2 = 21

2. (a) max y = 2x1 + 4x2 − x2 − 0.5x2
2 − 2x1x2 subject to 2x1 + x2 = 10

(b) max y = x1x2 subject to x2
1 + x2

2 = 16

(c) max y = x2
1 + x2

2 subject to (x2
1/25)+ (x2

2/9) = 1

(d) min y = 2x1 + x2 subject to (0.2x−0.5
1 + 0.8x−0.5

2 )−2 = 1

3. In the example on farmer’s-land allocation in this section, solve the problem
in terms of outputs rather than land allocations. Draw the level curves of the
net-revenue function in (y1, y2)-space, and illustrate the solution as a point
of tangency. Show what would happen diagrammatically if the net return to
output 1 rose relative to that of output 2.

4. Short-run cost minimization. In the model of the cost-minimizing firm in this
section, suppose that the firm has a fixed amount of capital K = K0 avail-
able. Solve its cost-minimization problem, derive its cost functions, discuss
their properties, and compare them with the long-run functions derived in the
example.
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5. The consumer has the utility function

u = (x1 − c1)
α(x2 − c2)

1−α, a, b, > 0

where c1 and c2 are interpreted as minimum amounts of the good required for
subsistence. Derive her demand functions, discuss their properties, and com-
pare them with the demand functions derived in the Cobb-Douglas example.

6. Derive the compensated-demand functions and the expenditure function for
the utility function in question 5 and compare to the results obtained in the
Cobb-Douglas example.

7. Consider the cost-minimization problem

min C = rK + wL s.t. ȳ = f (K, L)

Show that, at the optimum, λ∗ is equal to marginal cost.

8. In the example of the student’s time allocation in this section, draw the level
curves of the grade-average function

ḡ = 20+ 20
√

t1 − 80+ 3t2

2

and illustrate the solution as a point of tangency.

13.2 Second-Order Conditions for
Constrained Optimization

We saw in the previous section that the first-order conditions for a maximum and a
minimum of a constrained problem are identical, as in the unconstrained case, and
so it again becomes necessary to look at second-order conditions. One approach
to these is global: assumptions are built into the economic model to ensure that
the objective function and the constraint function(s) have the right general shape.
As we will see in section 13.3, it is sufficient for a maximum (minimum) that the
objective function be quasiconcave (-convex) and that the constraint function(s)
defines a convex set. However, for some purposes, particularly comparative statics
(discussed in the next chapter), it is useful to have the second-order conditions in
local form, in terms of small deviations around the optimal point.

In section 12.2 we saw that the local second-order conditions in the uncon-
strained case could be expressed in terms of the signs of leading principal minors
of the Hessian determinant of the function being optimized. In the constrained
case there is a similar, though more complex, procedure. We will not derive the
conditions rigorously here but simply state and explain them.



13.2 SECOND-ORDER CONDITIONS FOR CONSTRAINED OPTIMIZATION 517

Take first the simplest possible case of a two-variable, one-constraint problem

max f (x1, x2) s.t. g(x1, x2) = 0

The Lagrange function is

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2)

Suppose that the point (x∗1 , x∗2 , λ∗) yields a stationary value of the Lagrange func-
tion, so we have that

∂L
∂x1
= f1(x

∗
1 , x∗2 )+ λ∗g1(x

∗
1 , x∗2 ) = 0

∂L
∂x2
= f2(x

∗
1 , x∗2 )+ λ∗g2(x

∗
1 , x∗2 ) = 0

∂L
∂λ
= g(x∗1 , x∗2 ) = 0

We now derive the Hessian matrix of the Lagrange function

H ∗ =
⎡
⎣ f11 + λ∗g11 f12 + λ∗g12 g1

f21 + λ∗g21 f22 + λ∗g22 g2

g1 g2 0

⎤
⎦

It is to be understood that the partial derivatives in this matrix are all evaluated at
the point (x∗1 , x∗2 , λ∗), which is why the matrix has a ‘∗’ superscript. In the case
where the constraint function is linear (i.e., the gij are zero) as in the standard
consumer problem, this matrix is simply the Hessian of the objective function
bordered by the vector [g1 g2 0].

Theorem 13.3 If (x∗1 , x∗2 , λ∗) gives a stationary value of the Lagrange function L(x1, x2, λ) =
f (x1, x2)+ λg(x1, x2), then

(i) it yields a maximum if the determinant of the bordered Hessian |H ∗| > 0,
and

(ii) it yields a minimum if the determinant of the bordered Hessian |H ∗| < 0.

Example 13.3 Establish that the solution to example 13.1 is a true maximum.
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Solution

The Hessian is

H =

⎡
⎢⎣−0.1875x−1.75

1 x0.75
2 0.1875x−0.75

1 x−1.75
2 −2

0.1875x−0.75
1 x−1.75

2 −0.1875x0.25
1 x−1.25

2 −4

−2 −4 0

⎤
⎥⎦

At the optimal solution, x∗1 = 600/48 = 12.5 and x∗2 = 300/16 = 18.75, we have

H ∗ =
⎡
⎣−0.0003 0.0002 −2

0.0002 −0.0904 −4
−2 −4 0

⎤
⎦

so

|H ∗| = 0.6896 > 0

and we have a maximum.

Second-Order Conditions in the Consumer Problem

Suppose that we have the problem

max u(x1, x2) s.t. m− p1x1 − p2x2 = 0

where u is a utility function and the budget constraint is a special, linear form of
the constraint function g. We are by now familiar with the first-order conditions, so
we proceed directly to the second-order conditions. The condition on the bordered
Hessian determinant is

|H ∗| =
∣∣∣∣∣∣

u11 u12 −p1

u21 u22 −p2

−p1 −p2 0

∣∣∣∣∣∣ = −p2
2u11 + 2p1p2u12 − p2

1u22 > 0

(where we have used the fact that u12 = u21). Now recall from the first-order
conditions that p1 = u1/λ, p2 = u2/λ. Then substituting into the condition above
gives

−u2
2u11 − 2u1u2u12 + u2

1u22

λ2
> 0

Multiplying through by −λ2 gives the condition

u2
2u11 − 2u1u2u12 + u2

1u22 < 0
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But this is just the condition that the utility function be strictly quasiconcave (see
section 11.5). Thus we see that as the usual diagram confirms, the tangency point
between an indifference curve and budget line is a true local maximum when the
indifference curve is strictly convex to the origin; that is, the utility function is
strictly quasiconcave.

So far in this section we have dealt only with problems having exactly two
variables and one constraint. We now extend theorem 13.3 to the case of problems
with n ≥ 2 variables. Suppose that we have the problem

max f (x1, . . . , xn) s.t. g(x1, . . . , xn) = 0

The Lagrange function is

L(x1, . . . , xn, λ) = f (x1, . . . , xn)+ λg(x1, . . . , xn)

The relevant bordered Hessian is now the (n+ 1)× (n+ 1) determinant

|H ∗| =

∣∣∣∣∣∣∣∣∣∣∣

L11 L12 · · · L1n g1

L21 L22 · · · L2n g2
...

...
. . .

...
...

Ln1 Ln2 · · · Lnn gn

g1 g2 · · · gn 0

∣∣∣∣∣∣∣∣∣∣∣
We define the second-order conditions in terms of the principal minors of this
determinant. Thus we have

Theorem 13.4 If the Lagrange function f (x1, . . . , xn)+ λg(x1, . . . , xn) has a stationary value
at (x∗1 , . . . , x∗n, λ∗), then (x∗1 , . . . , x∗n) solves

(i) max f (x1, . . . , xn) s.t. g(x1, . . . , xn) = 0 if the successive principal
minors of |H ∗| alternate in sign in the following way

∣∣∣∣∣∣
L11 L12 g1

L21 L22 g2

g1 g2 0

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
L11 L12 L13 g1

L21 L22 L23 g2

L31 L32 L33 g3

g1 g2 g3 0

∣∣∣∣∣∣∣∣ < 0, . . .

with, |H ∗| itself therefore taking the same sign as (−1)n

(ii) min f (x1, . . . , xn) s.t. g(x1, . . . , xn) = 0 if all the principal minors of |H ∗|
are strictly negative.

Note that in both theorems 13.3 and 13.4 we give sufficient and not necessary
conditions. A vector (x∗1 , . . . , x∗n) may yield an optimal solution of the constrained
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problem and yet not satisfy these conditions. However, in applications of these
theorems in economics, essentially to problems of comparative-statics, it is usually
assumed that these sufficient conditions hold, and so we will not concern ourselves
here with the pursuit of full mathematical generality.

E X E R C I S E S

1. Take each of the optimization problems in question 1 of the exercises in section
13.1 and confirm that the answer you have derived is a true optimum.

2. Take the model of the student’s time allocation in section 13.1 and confirm
that the solution yields a maximum.

3. Take the general model of the farmer’s land allocation in section 13.1 and
confirm that the solutions yield a true constrained maximum.

13.3 Existence, Uniqueness, and
Characterization of Solutions

In sections 13.1 and 13.2 we considered the problem of finding solutions to op-
timization problems, using the method of Lagrange multipliers, without really
considering the question of whether, or under what conditions, this was really
justified. In this section we answer this question.

Consider the problem of maximizing the differentiable function f ∈ C2, and
take the case where the function is strictly increasing (nothing essential in the
propositions depends on this assumption, but it allows a familiar diagrammatic
presentation). It is also convenient to express the idea of a constrained problem
more generally than before: rather than introduce a functional constraint, we will
simply talk in terms of the feasible set in the problem, which is the set of points
from which we are allowed to choose a solution. By the definition of a constrained
problem, this feasible set, denoted X, is a proper subset of the set R

n, n ≥ 1. We
will take n = 1 and n = 2 for illustrative purposes.

The first, most fundamental issue is that of existence: how can we be sure that
a solution to a given optimization problem exists? The answer is given by

Theorem 13.5 (Weierstrass’s theorem) If f is a continuous function, and X is a nonempty,
closed, and bounded set, then f has both a maximum and a minimum on X.

This theorem says that a solution to a maximization or a minimization problem is
guaranteed to exist if the given conditions are satisfied. Note that the conditions are
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not necessary: a maximum or minimum may exist when they are not satisfied, but
then again they may not exist, depending on the particular problem. Figure 13.5
illustrates the kind of problem that a discontinuity may present. In figure 13.5(a)
the function has a discontinuity at x0, and clearly no maximum or minimum exists
in the set X as indicated. The requirement of continuity rules out this kind of case.
Not all types of discontinuity create a problem however, as figure 13.5(b) shows.
Here a maximum exists at x∗ and a minimum at x∗. In most economic models, we
usually assume that the function being maximized or minimized is differentiable,
and since this implies continuity, this first condition is usually satisfied.

(a) X

f(x)

f(x0)

x0

(b)

f(x)

f(x0)

x0 x*x*
X

Figure 13.5 Discontinuities in f

Nonemptiness of X is a necessary condition for a solution to exist. If there
are no x-values from which to choose, there cannot be a solution. If we think
of the feasible set as being defined by some underlying constraints, then the set
being empty is equivalent to these constraints not having a solution. For example,
suppose that the constraints in a particular problem were

3x1 + 6x2 = 8

x1 + 2x2 = 4

x1 + x2 = 6

In this case there is no (x1, x2)-pair that satisfies these equations simultaneously.
Diagrammatically the three lines defined by these equations do not intersect at
one single point. Thus the feasible set is empty. (This incidentally illustrates the
problem of having more constraints than variables, as alluded to in section 13.2.)

Recall from section 2.3 the definition of a bounded set: if X is a bounded set,
then it is impossible to go to infinity in any direction while remaining within the set.
To see what problems may arise when the feasible set is unbounded, consider the
consumer maximization problem. Suppose that there are just two goods, and one
of their prices is zero. Then an unlimited amount of that good can be “bought”—
the budget set is unbounded. If f , the utility function, is increasing in the quantity
of this free good, then the consumer will never be satisfied with a finite amount of
the good. Therefore there is no solution to the problem.
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The kind of problem that can arise when the feasible set is not closed is also
easy to illustrate. Suppose that the problem is

max y = 2x, 0 < x < 1

The feasible set X is the open interval (0, 1); the endpoints of the interval are not
included in the set. The resulting values of y lie in the open interval (0, 2). There
is no solution to the maximization problem in this case (nor to the corresponding
minimization problem) because we can allow x to approach its upper bound of 1
as closely as we like without ever reaching it, and as we do so, the value of y

increases toward 2 without ever reaching it. On the other hand, the problem

max y = 2x, 0 ≤ x ≤ 1

has a solution at x = 1. In this case the feasible set contains its boundary points and
is therefore closed. This is why strict inequalities are to be avoided in formulating
optimization problems. In cases where the function increases as we move to the
boundary of the feasible set, a solution will not exist if the boundary is not included
in the set.

The formal basis for theorem 13.5 is the fact that if f is a continuous function
and X a closed and bounded set, then the image set f (X) is also closed and
bounded. But this image set is a set of real numbers, and a closed and bounded set
of real numbers possesses a maximum and a minimum.

From now on we will assume that the conditions for existence of a solution
are satisfied in any problem we want to consider. The next important question is,
given that a solution exists, will the Lagrange procedure actually give it, or, put
differently, under what conditions will the Lagrange method work? Essentially
the Lagrange method works if and only if it is possible to solve the first-order
conditions for the Lagrange multipliers. This is summarized in the following:

Theorem 13.6 In the problem

max f (x) s.t. g1(x) = 0, g2(x) = 0, . . . , gm(x) = 0,

where x = (x1, . . . , xn) and m < n, if x∗ is a solution to the problem, and if the
n×m matrix G = [gj

i (x
∗)], i = 1, . . . , n, j = 1, . . . , m, has rank m, then there

exist real numbers λ1, . . . , λm, such that x∗ satisfies the n+m conditions

fi(x∗)+
∑

j

λjg
j

i (x
∗) = 0, i = 1, . . . , n

gj (x∗) = 0, j = 1, . . . , m
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Given that the Lagrange multipliers exist, it is straightforward to show that
the first-order conditions for the Lagrange problem do yield the optimal solution
to the constrained problem. Thus, for a maximum, we have

f (x∗)+
∑

j

λ∗j g
j (x∗) ≥ f (x)+

∑
j

λ∗j g
j (x) for all x

since x∗ maximizes the Lagrange function. But then, for all feasible x, gj (x) = 0,
while we know from the first-order conditions that also gj (x∗) = 0, all j , and so
we must have

f (x∗) ≥ f (x) for all feasible x

A similar demonstration holds in the case of a minimum.
Finally, we need to consider the point that the optimality conditions locate only

local, and not global, optima. This question is distinct from that of second-order
conditions, which were dealt with in the previous section. A point may satisfy both
first- and second-order conditions for a maximum, say, but not be the true solution
to the problem, because although it is a maximum relative to a small neighborhood
of points around itself, there is some other point in the feasible set that gives a
higher value of the function f . If we are using methods of solving the problem
that locate only local optima, then we need to know conditions under which the
solution(s) it finds really is (are) what we are looking for.

Figure 13.6 suggests the answer. In figure 13.6 (a) and (b) we have cases
where local maxima are not global maxima. In both cases the local second-order
conditions are satisfied, but moving along the constraint level curve eventually
yields points that are on higher level curves of the function to be maximized.

(a) x*a   a local but not global optimum

x1

x2

x*a

Ta g
f 2

f 1

Ga

Fa

(b) x*b   a local but not global optimum

x1

x2

x*b

Tb

g

f 2
f 1

Gb

Fb

(c) x*c    local and global optimum

x1

x2

Tb

x*c

g(x*)
Gc

Fc

f(x*)

Figure 13.6 Local and global optima
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In figure 13.6 (c) we have a well-behaved case: the local optimum is a unique
global optimum, because no other point on the constraint level curve lies on a
higher f -level curve.

We can express the differences between the cases a little differently with the
help of the tangent lines Ta , Tb, and Tc shown in the figure. The key difference is
that in case (c), the line Tc separates the shaded set Fc from the shaded set Gc.
The only point these sets have in common is the maximum point x∗c , while all
other points in Gc lie below the line and all other points in Fc lie above the line.
Therefore, there can be no feasible points, which must lie in Gc, that give higher
values of the function f than f (x∗c ). On the other hand, in the other two cases no
such separating line can be drawn. The tangent lines Ta and Tb do not separate
the sets Fa and Ga or Fb and Gb, in the sense that one set lies on one side of the
line and the other set on the other side.

This suggests that we can make sure that any local optimum is also a global
optimum by ensuring that the feasible set of points in a problem can be separated,
in the sense just described, from the set of points (such as Fc) which is at least
as good as the locally optimal point. Recall from section 2.5 the definitions of
quasiconcave and quasiconvex functions. In the case in which both f and g are
strictly increasing in x1 and x2, a quasiconcave function will have level curves that
are straight lines or convex to the origin, such as f (x∗) in figure 13.6 (c); and a
quasiconvex function will have level curves that are straight lines or concave to
the origin, such as g(x∗) in figure 13.6 (c). This gives the intuitive explanation for

Theorem 13.7 In a constrained maximization problem,

max f (x) s.t. g1(x) = 0, . . . , gm(x) = 0

if the function f is quasiconcave, and the functions g1, . . . , gm are all quasicon-
vex, then any locally optimal solution to the problem is also globally optimal.

In solving an optimization problem, it is often important to know, not only
that any local optimum is also a global optimum, but also that there is a unique
local and global optimum. The relevant conditions are obtained by a strengthening
of those in theorem 13.7. As figure 13.7 (a) shows, we may have a quasiconcave
function f and a quasiconvex constraint function g, but since these may have
linear segments in their level curves, a local optimum, though still global, may not
be unique. Figure 13.7 (b) shows that strengthening the quasiconcavity condition
on f to strict quasiconcavity guarantees a unique solution. The same would be
true if we strengthened the convexity requirement on g to strict quasiconvexity.
Theorem 13.8 gives the sufficient conditions for uniqueness of the solution to a
maximization problem in the kind of case most frequently encountered.
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(a) (b)
x1

f(x)x2

{x*}

}

g(x)

x1

f(x)
x2

x*

g(x)

Figure 13.7 Uniqueness of the local maximum

Theorem 13.8 In a constrained maximization problem

max f (x) s.t. g1(x) = 0, . . . , gm(x) = 0

where f and g are increasing functions of x, if

(i) f is strictly quasiconcave and the functions gj , j = 1, . . . , m, are all quasi-
convex, or

(ii) f is quasiconcave and the functions gj , j = 1, . . . , m, are all strictly quasi-
convex,

then, a locally optimal solution is unique and also globally optimal.

E X E R C I S E S

1. In each of the problems in question 1 of the exercises at the end of section
13.1, show that the objective function and constraint satisfy the conditions of
theorem 13.7. Consider the application of theorem 13.4 in each case.

2. Draw diagrams of cases in which a feasible set is not closed, or not bounded,
but a solution to the optimization problem exists.

3. Draw diagrams of cases in which the g-function is not quasiconvex, or
the f -function is not quasiconcave, but a local maximum is a global maxi-
mum.

4. Use a figure similar to figure 13.6 to show that if the g-function is quasi-
concave and the f -function is quasiconvex, then a local minimum is a global
minimum.
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5. Discuss the application of theorem 13.6 to the case where we have two vari-
ables and one constraint.

6. Formulate the equivalent of theorem 13.8 for the case of a minimization
problem.

C H A P T E R R E V I E W
Key Concepts Lagrangean

Lagrange function
Lagrange method

Lagrange multiplier
Weierstrass’s theorem

Review Questions 1. Given a maximization or minimization problem with n≥ 2 variables and m≥ 1
constraints (with n > m), form the Lagrange function and write down the first-
order conditions.

2. What interpretation can be placed on a Lagrange multiplier at the optimal
solution?

3. Form the bordered Hessian determinant for a problem with two variables and
one constraint. What sign of the determinant is sufficient to ensure a maximum?
A minimum? Now generalize to n > 2 variables.

4. What conditions on the objective function and the feasible set are sufficient
to ensure existence of a maximum and minimum solution to a constrained
optimization problem? Which of these conditions are necessary?

5. What condition is sufficient to ensure the existence of the Lagrange multiplier(s)
for a given constrained optimization problem?

6. What condition is sufficient to ensure that any local optimum is also a global
optimum?

Review Exercises 1. A firm produces two outputs, which it sells into perfectly competitive markets.
It uses one input, which is available in fixed supply. Each output is produced
according to a strictly concave production function. Formulate and solve the
problem of the optimal allocation of the input between the two outputs. Find
an expression or value for the increase in profit that would result from a small
increase in the amount of the fixed input the firm has available.

2. A firm produces a single output with two inputs according to a CES production
function. It sells the output in two separate markets, in both of which it has a
monopoly. It buys its inputs in competitive markets. Formulate and solve the
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problem of the profit-maximizing choice of inputs, total output, and sales to
the two markets. Interpret the Lagrange multiplier in this problem.

3. An entrepreneur has a fixed sum of money to invest. He can invest it in a
productive investment, which will yield a profit in one year’s time that is an
increasing, strictly concave function of the amount invested. Or, he can put it
in the bank, which will pay him a fixed rate of interest in one year’s time. He
can also borrow from the bank at the same interest rate, against the promise to
repay out of future profits. Formulate and solve the problem of choosing the
amount of productive investment and borrowing or lending from the bank, to
maximize total income available in one year’s time.

4. Two single-output firms have identical cost and demand functions. One maxi-
mizes profit subject to a constraint that its sales revenue equal a certain amount.
The other maximizes sales revenue subject to the constraint that its profit equal
a certain amount. Under what conditions would they produce the same output?





Chapter 14 Comparative Statics

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Comparative Statics Examples
• Government in the Simple Keynesian Model: Example
• Effects of a Change in Income on Price and Quantity: Example
• Effect of a Tax on Monopoly Output: Example
• Effect of a Change in the Discount Factor on Investment: Example
• A Linear IS-LM Model: Example
• Effects of a Wage Change in a Cobb-Douglas Model: Example
• Slutsky Equation for Cobb-Douglas Preferences: Example
• The Profit Function
• Profit Function for a Competitive Firm: Example
• The Indirect Utility Function
• The Expenditure Function
• Expenditure Function for a Consumer: Example

As we discussed in chapter 1, economic models have two types of variables: en-
dogenous variables, whose values the model is designed to explain, and exogenous
variables, whose values are taken as given from outside the model. The solution
values we obtain for the endogenous variables will typically depend on the val-
ues of the exogenous variables, and a central part of the analysis will often be to
show how the solution values of the endogenous variables change with changes
in the exogenous variables. This is the problem of comparative-static equilibrium
analysis or comparative statics.

In the first section of this chapter we illustrate comparative-statics analysis
with some simple examples. In the second section we consider in some depth the
standard methods of comparative statics. In the last section we consider some more
recent developments which take the form of applications of the envelope theorem.

14.1 Introduction to Comparative Statics
We start with four economic models.
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The Simple Keynesian Model of Income Determination

Let Y denote the value of the aggregate supply of goods and services in the econ-
omy. Since this accrues as sales revenue to firms who then pay it out as incomes
to suppliers of inputs, including labor, we also refer to Y as national income. The
aggregate demand for goods and services has two components: consumption de-
mand C and investment demand I . We take I as exogenous, but C is determined
by the consumption function

C = cY , 0 < c < 1

where the constant c is the marginal propensity to consume. The equilibrium
condition is that aggregate supply must equal aggregate demand, or

Y = C + I

implying that when we substitute cY for C and solve for Y ,

Y ∗ = I

1− c

This is illustrated in figure 14.1. Along the horizontal axis we measure Y, along the
vertical, C, I , and aggregate demand C + I . Thus the 45◦ line OE shows the set
of points at which C + I = Y , that is, the set of possible equilibrium points.

C, I

Y*0

E

C'

C

I

C + I

45˚

Y

Figure 14.1 Equilibrium in the simple Keynesian model
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The line OC, with slope c, denotes the consumption function C = cY, and the
horizontal line gives the exogenous investment level I . The line IC ′, also with
slope c, is therefore the aggregate-demand function C+ I = cY + I , and the point
at which this intersects the 45◦ line gives the equilibrium income level Y ∗ at which
aggregate demand is equal to aggregate supply.

The comparative-statics question we ask in this model is: How does a change
in exogenous investment I affect the equilibrium income level Y ∗?

Algebraically, the answer is found simply by regarding Y ∗ as a function of I ,
either implicitly, through the equilibrium condition

(1− c)Y ∗ − I = 0

or explicitly, through the solution

Y ∗ = I

1− c
(14.1)

In either case, by differentiation, it follows that

dY ∗

dI
= 1

1− c
> 0 (14.2)

Therefore an increase in investment increases equilibrium national income by
a multiple 1/(1 − c)—the multiplier (see section 3.3 for a discussion of the
multiplier).

Diagrammatically we illustrate the comparative statics in figure 14.2. An in-
crease in exogenous investment from I to I ′ shifts the aggregate-demand line up
vertically by the same amount, to the new line I ′C ′′, thus giving a higher equilib-
rium income Y ∗∗.

A Linear Market Model

The demand for a good is given by the linear demand function

D = a − bp + cy, a, b, c > 0

where D is the quantity demanded, p is its price, and y is the aggregate consumers’
income.

The supply of the good is given by the linear supply function

S = α + βp, α, β > 0; α < a + cy
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Y

C, I

Y*0

E

C'

C''

I

C + I

45˚

I'

Y**

Figure 14.2 An increase in exogenous investment increases equilibrium income

where S is the quantity supplied. For equilibrium in this market we require that
supply equals demand, implying that

p∗ = a − α + cy

b + β
(14.3)

and equilibrium supply and demand follow from substituting for p∗ into the supply
and demand functions.

We illustrate this solution in figure 14.3. Note that to ensure a solution inside
the positive quadrant, we require the condition a+ cy > α. The comparative-statics
question in this model is: How does a change in consumers’ income y affect the
equilibrium price p∗?

We can regard p∗ as a function of y, either implicitly through

a − α − (b + β)p∗ + cy = 0

or explicitly by

p∗ = a − α

b − β
+ c

b + β
y

In either case, we obtain by differentiation

dp∗

dy
= c

b + β
> 0 (14.4)
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D, S

p

0

cy + a
b

p*

–α

β

α

S = α + βp

a + cy

D = a – bp + cy

Figure 14.3 Equilibrium in a linear market

Thus the effect of an increase in income in this model is to increase the equilibrium
price by an amount which is

1. higher, the greater is c, which gives the effect of a $1 increase in consumers’
income on the quantity demanded;

2. lower, the higher are b and β, the slope coefficients (with respect to the price
axis) of the demand and supply curves.

Diagrammatically we show this effect in figure 14.4. An increase in con-
sumers’ income from y to y ′ shifts the demand curve outward in a parallel fashion,
giving the new point of intersection with the supply curve at p∗∗. Thus the new
equilibrium price has increased.

Output Tax on a Monopoly

A monopoly firm faces the (inverse) linear demand function

p = a − bq, a, b > 0

and has the total-cost function

C = cq2, c > 0

The government imposes a tax of t per unit of output, and the firm’s net of tax-profit
function is
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D, S

p

0

cy + a
b

p*

–α

β

α

S = α + βp

a + cy

p**

cy' + a
b

a + cy'

Figure 14.4 An increase in consumers’ income raises the equilibrium price

π(q, t) = aq − bq2 − cq2 − tq

= (a − t)q − (b + c)q2

Its profit-maximizing output must satisfy the condition (assuming that q > 0 at
the solution)

a − t − 2(b + c)q∗ = 0

which gives the solution

q∗ = a − t

2(b + c)

This is illustrated in figure 14.5. Note that we must assume that a > t to be sure
of a solution with q∗ > 0. The linear demand function and quadratic cost function
give a quadratic profit function.

q

π

a – b
b + c

a – t
2(b + c)

q* =

π' = (a – t) –2(b + c)q* = 0

Figure 14.5 Profit-maximizing
monopoly with tax

In figure 14.6 we show the marginal-profit function

dπ

dq
= a − t − 2(b + c)q

which is linear with a negative slope and cuts the horizontal axis at q∗.
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q

π'(q, t)

a – t
2(b + c)

q* =

π' = (a – t) –2(b + c)qa – t

Figure 14.6 The marginal-profit
function

The comparative-statics question in this model is: How does a change in the
tax rate t affect the profit-maximizing output level q∗? We answer the question by
noting that q∗ is defined as a function of t , either implicitly by

a − t − 2(b + c)q∗ = 0

or explicitly by

q∗ = a

2(b + c)
− t

2(b + c)
(14.5)

In each case differentiation gives

dq∗

dt
= − 1

2(b + c)
< 0 (14.6)

q

π'(q, t)

a – t

q*q**

a – t'

Figure 14.7 An increase in the tax
rate reduces profit-maximizing output

Therefore an increase in the tax rate reduces profit-maximizing output, by an
amount that is smaller, the greater the slopes (with respect to the quantity axis) of
the demand and marginal-cost curves.

We illustrate this result in figure 14.7, in terms of the marginal-profit function.
The increase in the tax rate from t to t ′ shifts the marginal-profit curve down in
a parallel fashion, giving an intersection point with the horizontal axis, namely a
profit-maximizing output, at q∗∗ < q∗.

Optimal Growth

A macroeconomic planner can control the allocation of resources between con-
sumption and investment. The economy exists for only two periods, and the planner
wishes to maximize the utility function

u(C1, C2) = ln C1 + β ln C2, 0 < β < 1

where Ct is consumption in period t = 1, 2 and β is a discount factor.
There is an exogenously given total income, Y 0

1 , in period 1, that must be
allocated between consumption and investment:

C1 + I = Y 0
1

Since the economy no longer exists after period 2, all income available in that
period will be consumed then. The relationship between income (= consumption)
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in period 2 and investment in period 1 is given by the function

C2 = Iα, 0 < α < 1

which is increasing and strictly concave. We want to determine optimal invest-
ment in this economy. We can formulate the problem as one involving I only by
writing

C1 = Y 0
1 − I

and so substituting for C1 and C2 in the objective function gives

v(I ) = ln
(
Y 0

1 − I
)+ β ln(I α)

= ln
(
Y 0

1 − I
)+ αβ ln I

The first-order condition for a maximum of v with respect to I is

v′(I ∗) = − 1

Y 0
1 − I ∗

+ αβ

I ∗
= 0

which implies that

αβY 0
1 − [1+ αβ]I ∗ = 0

Thus the optimal solution is to devote the fraction αβ/(1+αβ) of current income
to investment, and the rest to current consumption.

I

v(I )

αβ

1 + αβ
I* = Y 1

0

ln (Y1
0  – I) + αβ ln I

v'(I*) = 0

Figure 14.8 Optimal investment:
Total utility

I

v'(I )

αβ

1 + αβ
I* = Y 1

0

        –αβ

I
1

Y1
0  – I

 = v'(I )  

Figure 14.9 Optimal investment:
Marginal utility This is illustrated in figures 14.8 and 14.9. Again, note that we have a strictly

concave function (which can be checked by differentiating v a second time) and
the marginal-utility function v′(I ) has a negative slope, though, of course, it is not
linear in this case.

The comparative-statics question in this model is: How does a change in the
initial income Y 0

1 affect the optimal investment, I ∗? We answer this by noting that
I ∗ can be regarded as a function of Y 0

1 , either implicitly through

αβY 0
1 − (1+ αβ)I ∗ = 0

or explicitly by

I ∗ = αβ

1+ αβ
Y 0

1 (14.7)
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Then in either case differentiation gives

dI ∗

dY 0
1

= αβ

1+ αβ
> 0 (14.8)

Therefore an increase in initial income increases optimal investment. Since 0 < α,

β < 1, investment always increases by the same fraction of initial income. More-
over, since αβ/(1 + αβ) is increasing in both α and β (see question 4 of the
exercises in this section), we can say that the higher is α (the more productive is
investment) and the higher is β (the less heavily future utility is discounted), then
the greater is the effect of a change in income on optimal investment, essentially
because the higher then is the share of income that is invested.

This is illustrated in figure 14.10. An increase in Y 0
1 to Ŷ 0

1 shifts the v′(I ) curve
rightward, since the negative part of the function defining that curve decreases.
Then the intercept on the I -axis increases, implying that optimal investment
increases from I ∗ to I ∗∗.

I

v'(I )

I**

        –αβ

I
1

Y1
0  – I

I*

ˆ

Figure 14.10 An increase in
first-period income increases optimal
investment

The analysis of the four models we have worked through is typical of the
kind of analysis we carry out in economics and also simple enough that we can see
clearly how the analysis is carried out. We used the basic relationships in the model
to derive a fundamental equation containing only the endogenous variable, whose
solution we are seeking, the exogenous variable, and the parameters of the model.
The next step is to solve the equation for the endogenous variable as a function of
the exogenous variable (equations 14.1, 14.3, 14.5, and 14.7 in these examples).

The question comparative statics seeks to answer is: What is the effect of a
change in an exogenous variable on the solution value of the endogenous variable?
We answer this by finding the derivative of the equilibrium value of the endogenous
variable with respect to the exogenous variable (equations 14.2, 14.4, 14.6, and
14.8 in these examples.) We are interested in the signs of these expressions because
they give us qualitative information about the direction of change in the equilibrium
value following a change in the exogenous variable. Such qualitative information
can usually also be obtained from a purely diagrammatic analysis, as we saw.
The advantage of the algebraic approach is that it shows very clearly how the
parameters of the model determine the strength and direction of the comparative-
statics effects.

There are two directions in which we now have to generalize the analysis. In
the four models of this section, we assumed specific and quite special functional
forms. We have to consider how the methods can be extended to cover cases in
which the relationships in a model are specified only as general functions, though
possibly with certain restrictions on their shapes, such as concavity or convexity.
Second, the models contained only one endogenous and one exogenous variable.
We want to generalize this to the case of any number of variables of either type.
We look at both of these generalizations in section 14.2.
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E X E R C I S E S

1. In the simple Keynesian model of income determination, assume that c =
0.8, that I = 1,000 initially, and then that I increases to 1,200. Draw the
counterparts of figure 14.2 and solve for the two levels of national income.
What is the value of the multiplier in this case?

2. In the linear market model, take the functions

D = 100− p + 2y

S = 50+ 2p

with y = 10 initially and then y = 20. Draw the counterpart of figure 14.4
and solve for the equilibrium prices.

3. In the model of a profit-maximizing monopoly with tax, take the functions

p = 100− q

C = 0.5q2

and with t = $1 initially, and then t = $2, draw the counterparts of figures 14.5
and 14.7 and solve for profit-maximizing outputs in each case. Also restate
the comparative-statics analysis in terms of the usual diagram with marginal-
revenue and marginal-cost curves. Explain the relation between this diagram
and figures 14.5 and 14.7.

4. In the model of optimal growth assume

α = 0.5, β = 0.8, Y 0
1 = 1,000, Ŷ 0

1 = 1,500

Draw the counterparts of figures 14.8 and 14.10 and solve for the two invest-
ment levels. Also, show that the ratio I ∗/Y 0

1 increases with both α and β.
[Hint: Differentiate αβ/(1+ αβ) with respect to α or β.] Give an economic
(as opposed to mathematical) explanation of why this happens.

5. Determine the comparative-statics effects of changes in the following param-
eters holding exogenous variables fixed:

(a) In the Keynesian model, show the effect on equilibrium national in-
come of a fall in c, both diagrammatically and algebraically. Give an
explanation of this effect in economic terms.

(b) In the linear market model, show the effect of changes in b, β, and c,
with y given and explain the results.



14.1 INTRODUCTION TO COMPARATIVE STATICS 539

(c) In the monopoly model with tax, show the effects of changes in a and
c and explain the results.

6. The demand for housing D is given by the function

D = 100p−1r−2

where p is the price of housing and r is the mortgage interest rate. Treat r as
exogenous. The supply of housing is given by

S = S̄

where S̄ is exogenous. Solve for the equilibrium housing price and then carry
out the comparative-statics analysis with respect to the mortgage interest rate
and the housing supply. Illustrate and explain your answers.

7. The demand for a country’s exports is given by

X = a − br + cYR, a, b, c > 0

where X is export demand, r is the rate of exchange (measured as the value
of the country’s currency in terms of a basket of other countries’ currencies),
and YR is income in the rest of the world. The country’s demand for imports
is given by

Q = α + βr + γ YD, α, β, γ > 0

where Q is import demand and YD is the country’s national income.
Taking first all income as exogenous, solve for the exchange rate that

achieves equilibrium of exports and imports (equilibrium in the balance of
trade). Give the reasons for the signs on the coefficients of r in the X and Q

equations. Then carry out the comparative-statics analysis with respect to the
income variables. Illustrate and explain your results.

Now assume that the exchange rate and income in the rest of the world are
exogenous, and that equilibrium of the balance of trade must be brought about
by adjustments in the country’s income. Solve for the equilibrium income level
and carry out the comparative-statics analysis with respect to the exchange
rate, and the rest of the world income. Illustrate and explain your answer.

What problems arise if, in this model, both the exchange rate and the
country’s income are treated as endogenous?

8. A perfectly competitive firm faces the market price p and produces output y

according to the production function

y = aLb, a > 0, 0 < b < 1
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where L is labor input. It hires labor on a perfectly competitive market at
wage rate w. Formulate its profit function in terms only of the endogenous
variable labor, find the profit-maximizing labor demand, and carry out the
comparative-statics analysis with respect to the output price and wage rate.
Illustrate and explain your answer.

14.2 General Comparative-Statics
Analysis

We now want to generalize the discussion of the previous section. First, we consider
the case in which there is still only one endogenous variable, x, and one exogenous
variable, α, but we do not restrict ourselves to specific functional forms. We assume
only that we have an economic model, the equilibrium solution of which is given
by an equation of the form

f (x∗, α) = 0

where x∗ is the equilibrium value of the endogenous variable x. The function f

is assumed differentiable. Its specific interpretation will depend on the economic
model we are working with. We want to know the effect of a change in α on x∗, and
we interpret this in mathematical terms as wanting to say as much as we can about
the derivative dx∗/dα, assuming it exists. In particular, we want to identify the
sign of this derivative, since that tells us the direction of change in the equilibrium
value x∗ following a change in α.

We proceed as follows: Assume that it is possible to solve the above equation
for x∗ as a differentiable function of α (we will shortly consider the conditions
under which it is possible to do this), and write the resulting solution as x∗(α).
Then insert this into the equilibrium condition to obtain

f (x∗(α), α) = 0

Now differentiate through this equation, which we treat as an identity, with respect
to α, to obtain

fx

dx∗

dα
+ fα = 0

where fx ≡ ∂f/∂x and fα ≡ ∂f/∂α. Then solving this equation, on the assumption
that fx �= 0 gives

dx∗

dα
= −fα(x∗, α)

fx(x∗, α)
(14.9)
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which is the derivative we seek. Note that this is simply an application of
theorem 11.3, the implicit function theorem, and hence note that

• it must be assumed that fx �= 0;
• the partial derivatives fx and fα are evaluated at the equilibrium point

(x∗(α), α), and so can be regarded as given numbers.

Example 14.1 Suppose that we have the implicit function

f (x∗(α), α) = ln x∗ − 2α2 = 0

Find the value dx∗/dα.

Solution

Applying the result in equation (14.9) gives

dx∗

dα
= −fα

fx

= − (−4 α)

(1/x∗)
= 4 αx∗

Effect of Income Change in the Market for a Good

The market-demand function for a good is D(p, y), where p is price and y is
aggregate consumers’ income. The market-supply function for the good is S(p).
Here p corresponds to the endogenous variable x, and y to the exogenous variable
α. Then the equilibrium value of the price p∗ is given by the equality of demand
and supply

D(p∗, y)− S(p∗) = 0

and so the function f corresponds to D−S, or excess demand. The relevant deriva-
tives are Dp − Sp and Dy , and so we have the solution

dp∗

dy
= − Dy

Dp − Sp

Suppose that Dp < 0 (the good is not a Giffen good) and Sp > 0. Then the effect
of an increase in income on equilibrium price depends on whether the good is a
normal good (Dy > 0) or an inferior good (Dy ≤ 0). If Dp > 0 (the good is a Giffen
good), then the good is also necessarily inferior (Dy < 0) and so the effect of an
increase in income on equilibrium price depends on the sign of Dp − Sp.

In general, this analysis tells us that anything could happen, and this is prob-
ably the rule, rather than the exception, in comparative-statics problems.
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The reason for the inability to give a unique sign to the effect dp∗/dy is the
very general nature of the information on which the analysis is based. All we have
are assumptions about the slopes of the various functions, that is, about the signs
of the derivatives Dp, Dy , and Sp. We should not be too surprised therefore if,
based on so little information, nothing very definite comes out of the analysis.

That is not to say that the analysis is useless—far from it. The method leads
us to work systematically through all the logically possible cases and define the
economic assumptions upon which each possible case will arise. In any partic-
ular application, we can then try to find out which particular assumptions are
appropriate—whether the good is normal or not, for example—and then apply the
results for that case. Indeed the generality of the analysis is a strength—we see that
if any particular result is being asserted, then that must rest explicitly or implicitly
on an assumption about the form of the functions in the model. For example, if a
manufacturer claims that an increase in consumers’ incomes will always result in
an increase in the price of the good he produces, he must be implicitly assuming
that his good is a normal good.

Comparative Statics with Several Endogenous and
Exogenous Variables

We have seen that we can extend the comparative-statics method readily to prob-
lems in which only general functional specifications are given. We now go further
and consider the generalization to problems with more than one endogenous and
one exogenous variable.

We begin by considering the case of just two variables of each type. As we
will see, we require one equilibrium or first-order condition—an f -function—for
each endogenous variable. Therefore in a model with two endogenous and two
exogenous variables, the solution will be given by the conditions

f 1(x∗1 , x∗2 , α1, α2) = 0

f 2(x∗1 , x∗2 , α1, α2) = 0

Now the equilibrium solutions for the endogenous variables will depend on both
exogenous variables. We want to derive and sign, if possible, the four derivatives
∂x∗i /∂αj , i, j = 1, 2.

Assume that it is possible to solve these equations for x∗1 and x∗2 as differen-
tiable functions of α1 and α2, x∗1 (α1, α2) and x∗2 (α1, α2). Then inserting these into
the above conditions gives

f 1(x∗1 (α1, α2), x
∗
2 (α1, α2), α1, α2) = 0

f 2(x∗1 (α1, α2), x
∗
2 (α1, α2), α1, α2) = 0
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Regarding these now as identities, we differentiate through with respect to α1,
to obtain

f 1
1

∂x∗1
∂α1
+ f 1

2
∂x∗2
∂α1
+ f 1

α1
= 0

f 2
1

∂x∗1
∂α1
+ f 2

2
∂x∗2
∂α1
+ f 2

α1
= 0

where f i
α1
≡ ∂f i/∂α1, i = 1, 2. Again, the partial derivatives are all evaluated at

the given equilibrium point and so can be regarded as given numbers. We can
therefore write these equations as the linear system

[
f 1

1 f 1
2

f 2
1 f 2

2

][
∂x∗1/∂α1

∂x∗2/∂α1

]
=

[−f 1
α1

−f 2
α1

]

In order to solve this system, we require that the determinant

|D| = f 1
1 f 2

2 − f 2
1 f 1

2 �= 0

Assuming that this condition holds and applying Cramer’s rule, we have the
solutions

∂x∗1
∂α1
=

∣∣∣∣−f 1
α1

f 1
2

−f 2
α1

f 2
2

∣∣∣∣
|D| = −

(
f 1

α1
f 2

2 − f 2
α1

f 1
2

)
|D|

∂x∗2
∂α1
=

∣∣∣∣f 1
1 −f 1

α1

f 2
1 −f 2

α1

∣∣∣∣
|D| = −

(
f 1

1 f 2
α1
− f 2

1 f 1
α1

)
|D|

To sign these derivatives, we then need to know the signs of all the partial deriva-
tives involved. Moreover notice that the numerators and denominators involve dif-
ferences between two terms, and so we may also have to know or assume something
about the relative magnitudes of these terms in order to put signs to the solutions.

In exactly the same way, we can derive the comparative-statics effects of
changes in α2, though the details of this are left to the reader. We now consider
some economic applications.

The IS-LM Model

Consider now an IS-LM model in which aggregate expenditure E is a function
of aggregate income Y and the interest rate R. We will assume that there is an
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exogenous component to expenditure, Ē , so we write

E = Ē + E(Y, R), 0 < EY < 1, ER < 0

where the partial derivatives indicate that we expect expenditure to increase when
income increases and fall when the interest rate rises.

The equilibrium condition is that the aggregate supply and demand for goods
and services must be equal

Y = Ē + E(Y, R)

We have two endogenous variables, Y and R, with one exogenous variable Ē ,
but only one equation, and so we cannot solve for the equilibrium values of the
endogenous variables. What this means is that given a value for the rate of interest,
we can find a value of income that equates the demand and supply of goods and
services, or conversely, given a level of income, we can find a rate of interest that
achieves this equilibrium. But the single condition itself is insufficient to determine
unique equilibrium levels of both variables.

YY*

R

R*

LM

IS

Figure 14.11 Equilibrium in the
IS-LM model This is illustrated in figure 14.11 as the IS curve. The slope is negative because,

given Ē , there is an implicit function relating Y and R:

Y − Ē − E(Y, R) = 0 (14.10)

Then, from the rule for differentiating implicit functions, we have

dR

dY
= 1− EY

ER

< 0

The sign follows from the assumptions on the partial derivatives. An increase in Ē

shifts the IS curve upward. Thus, if we hold Y fixed and treat R and Ē as variable,
then we have

dR

dĒ
= − 1

ER

> 0

The LM curve represents equilibrium in the money market in which the de-
mand for money is

L = L(Y, R), LY > 0, LR < 0

Equilibrium is where the demand for money is equal to money supply, M̄ , an
exogenous constant, giving

L(Y, R)− M̄ = 0 (14.11)
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This condition determines a second relationship between Y and R, graphed as
the LM curve in figure 14.11. This curve shows the set of (Y, R)-pairs at which the
supply and demand for money are equal. For any given interest rate it shows the
level of income required to achieve equilibrium in the money market, or, for any
given income level it shows the interest rate required for the equilibrium. The
positive slope of the curve is explained by keeping M̄ fixed and Y and R variable
in the money-market equilibrium condition. By differentiation, we then have

dR

dY
= −LY

LR

> 0

where the sign is implied by the assumptions on the partial derivatives.
The exogenous money supply is a parameter in the LM relationship. To show

how changes in M̄ affect the LM curve, treat Y as fixed and R and M̄ as variable
in the money-market equilibrium condition. Then differentiating gives

dR

dM̄
= 1

LR

< 0

Therefore an increase in the money supply reduces the interest rate required for
money-market equilibrium at each level of income.

Then, putting equations (14.10) and (14.11) together determines overall equi-
librium values of income Y ∗ and the interest rate R∗:

Y ∗ − Ē − E(Y ∗, R∗) = 0 (14.12)

L(Y ∗, R∗)− M̄ = 0 (14.13)

That is, the values of Y ∗ and R∗ achieve simultaneous equilibrium on the market
for goods and services and the market for money. As figure 14.11 shows, this
corresponds to the intersection of the IS and LM curves. These two conditions are
the counterparts of the functions f 1 and f 2 in the general discussion earlier, with
Y and R corresponding to x1 and x2, and Ē and M̄ corresponding to α1 and α2.

In the comparative-statics analysis, we want to find the effects of changes in the
two exogenous variables, Ē and M̄ , on the equilibrium values of the endogenous
variables Y ∗ and R∗.

Then, applying the general results for the case of a change in Ē , we have the
linear system

[
(1− EY ) −(ER)

LY LR

][
∂Y ∗/∂Ē

∂R∗/∂Ē

]
=

[
1
0

]



546 CHAPTER 14 COMPARATIVE STATICS

We denote, by |D|, the determinant

|D| ≡ (1− EY )LR + LY (ER) < 0

The sign follows unambiguously from the restrictions on the partial derivatives.
The comparative-statics effects are

∂Y ∗

∂Ē
=

∣∣∣∣1 −(ER)

0 LR

∣∣∣∣
|D| = LR

|D| > 0

∂R∗

∂Ē
=

∣∣∣∣ (1− EY ) 1
LY 0

∣∣∣∣
D

= −LY

D
> 0

Thus an increase in investment causes an increase in both national income and the
rate of interest. The increase in demand for investment goods increases income di-
rectly; this increases the demand for money and so raises the rate of interest with the
money supply fixed. This is illustrated in figure 14.12. Although this model is quite
general, the assumptions on the signs of the various partial derivatives, together
with the assumption that EY < 1, are enough to determine the comparative-statics
effects unambiguously.

YY*

R

R*

LM

IS'

Y**

R**

Figure 14.12 An increase in
exogenous investment increases
equilibrium income and the interest
rate

The comparative-statics effects of a change in M̄ are derived in a similar way,
and can also be shown to be unambiguously determined on the given assump-
tions. This is left as an exercise (see question 1 of the exercises at the end of this
section).

Competitive Firm’s Input Demands

A firm sells its output into a perfectly competitive market and so faces a fixed
price p. It also hires labor in a competitive labor market at a wage w and rents
capital on a competitive capital market at rental rate r . It has the production function
f (L, K), which is strictly concave, and it seeks to maximize profit

π = pf (L, K)− wL− rK

Its first-order conditions are

pfL(L∗, K∗)− w = 0

pfK(L∗, K∗)− r = 0

We wish to determine the effects on input demands, L∗ and K∗, of changes in the
input prices. Applying the earlier general results for the effects of a change in the
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wage w gives the linear system

[
pfLL pfLK

pfKL pfKK

][
∂L∗/∂w

∂K∗/∂w

]
=

[
1
0

]

Defining the determinant

|D| = p2(fLLfKK − fKLfLK)

we note that if the second-order sufficient conditions for the problem are satisfied,
then D > 0. That is, the determinant D is precisely the Hessian determinant we
obtain when we formulate the second-order conditions for the profit-maximization
problem. This is an important point that we will take up further below. We then
have the comparative-statics results

∂L∗

∂w
=

∣∣∣∣1 pfLK

0 pfKK

∣∣∣∣
D

= pfKK

|D| < 0

∂K∗

∂w
=

∣∣∣∣ pfLL 1
pfKL 0

∣∣∣∣
D

= −pfKL

|D|

The sign of the first of these derivatives follows from fKK < 0. This in turn follows
from the second-order conditions. Thus the demand curve for labor has a negative
slope. However, in order to sign the effect of a change in the wage rate on the
demand for capital, we need to know the sign of fKL, the effect of a change in the
labor input on the marginal product of capital. It is plausible to assume that this
is positive (though it may not be) and so an increase in the wage rate would also
decrease the demand for capital. We can derive the effects of a change in the rental
rate of capital in a similar way, and this is left as an exercise.

Comparative Statics for Constrained Optimization
Problems

The comparative-statics methods we have developed and illustrated so far do not
allow us to handle the comparative-statics analysis of constrained optimization
problems. This is because the smallest such problem would involve two choice
variables and one constraint, giving a system of three first-order conditions in
three endogenous variables, the two choice variables and the Lagrange multiplier.
We could handle such a problem by substituting from the constraint into the ob-
jective function to give an unconstrained problem. However, to aim for generality,
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we now need to extend the method of comparative statics a little further to deal
with the constrained problem directly.

Thus suppose that the solution of a model is given by three conditions in
three endogenous variables, with any number m of exogenous variables

f 1(x∗1 , x∗2 , x∗3 ;α1, . . . , αm) = 0 (14.14)

f 2(x∗1 , x∗2 , x∗3 ;α1, . . . , αm) = 0 (14.15)

f 3(x∗1 , x∗2 , x∗3 ;α1, . . . , αm) = 0 (14.16)

where the functions f k , k = 1, 2, 3, are all differentiable.Assume that it is possible
to solve for each endogenous variable as a differentiable function of the exogenous
variables

x∗i = xi(α1, . . . , αm), i = 1, 2, 3

Substituting these back into the functions f k and differentiating with respect to
any αj , j = 1, . . . , m, gives the linear system

⎡
⎢⎣

f 1
1 f 1

2 f 1
3

f 2
1 f 2

2 f 2
3

f 3
1 f 3

2 f 3
3

⎤
⎥⎦
⎡
⎢⎣

∂x∗1/∂αj

∂x∗2/∂αj

∂x∗3/∂αj

⎤
⎥⎦ =

⎡
⎢⎣
−f 1

αj

−f 2
αj

−f 3
αj

⎤
⎥⎦

where all the partial derivatives are evaluated at the point

(x∗1 , x∗2 , x∗3 ;α1, . . . , αm)

and so are given numbers. Given that the determinant |F | of the left-hand matrix is
nonzero, we can solve for ∂x∗i /∂αj by using Cramer’s rule. This involves forming
the determinant |Fij | by replacing the ith column of |F | with the column

⎡
⎢⎣
−f 1

αj

−f 2
αj

−f 3
αj

⎤
⎥⎦

and evaluating

∂x∗i
∂αj

= |Fij |
|F | , i = 1, 2, 3; j = 1, . . . , m



14.2 GENERAL COMPARATIVE-STATICS ANALYSIS 549

When the model is one of constrained optimization, the functions f k will be the
first-order partial derivatives of the Lagrange function and the equilibrium condi-
tions are the first-order conditions. In that case, the determinant |F | is the Hessian
determinant of the system. Recall that the sufficient second-order conditions are
expressed in terms of the sign of |F |. These conditions can be used to help sign
the comparative statics. We see how this works out in some examples.

The Slutsky Equation

In chapter 13 we considered the problem of a consumer’s optimal choice of con-
sumption quantities. The solution to this problem takes the form of a set of de-
mand functions, one for each good. A major aim of the analysis is to show how
the consumer’s demand for a good varies with prices, and so this is a problem
in comparative-statics analysis. In this example, we consider this problem for the
case of two goods, x1 and x2. The consumer’s demands for these goods are given
by the solution to the problem

max u(x1, x2) s.t. p1x1 + p2x2 = m

Here the endogenous variables are the demands x1 and x2, and the exogenous
variables are the prices p1 and p2, and income m.Applying the Lagrangean method
gives the first-order conditions

u1(x
∗
1 , x∗2 )− λ∗p1 = 0

u2(x
∗
1 , x∗2 )− λ∗p2 = 0

m− p1x
∗
1 − p2x

∗
2 = 0

We now look at the effects of changes in prices and income on the demands.
Applying the standard method leads to

∂x1

∂p1
=

∣∣∣∣∣∣
λ∗ u12 −p1

0 u22 −p2

x∗1 −p2 0

∣∣∣∣∣∣
|D| = −λ∗p2

2

D
+ x∗1 (p1u22 − p2u12)

D
(14.17)

∂x2

∂p2
=

∣∣∣∣∣∣
u11 0 −p1

u21 λ∗ −p2

−p2 x∗2 0

∣∣∣∣∣∣
|D| = −λ∗p2

1

D
+ x∗2 (p2u11 − p1u21)

D
(14.18)
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∂x1

∂m
=

∣∣∣∣∣∣
0 u12 −p1

0 u22 −p2

−1 −p2 0

∣∣∣∣∣∣
|D| = − (p1u22 − p2u12)

D
(14.19)

∂x2

∂m
=

∣∣∣∣∣∣
u11 0 −p1

u21 0 −p2

−p1 −1 0

∣∣∣∣∣∣
|D| = − (p2u11 − p1u21)

D
(14.20)

where the determinant |D| is given by

|D| =
∣∣∣∣∣∣

u11 u12 −p1

u21 u22 −p2

−p1 −p2 0

∣∣∣∣∣∣
Now the condition for a maximum to this problem is that the determinant of the
Hessian is positive. This is exactly the determinant |D|, so |D| > 0 by the second-
order condition.

Next, consider the sign of the partial with respect to income, say ∂x∗1/∂m. The
theory places no restrictions on the signs of u22 and u12. Thus we have no way
of saying whether the numerator is positive or negative. Likewise we have no
way of saying whether the numerator in the expression for ∂x∗2/∂m is positive or
negative. Therefore the effects on demands of changes in income cannot be deter-
mined unambiguously. This lack of a definite sign for the effect of an increase in
income on the demand for a good is a strength of the theory, rather than a weakness,
and gives rise to a classification of goods into one of three types: normal goods,
for which demand increases when income increases; strictly inferior goods, for
which demand falls as income increases; and weakly inferior goods, for which the
demand remains unchanged as income increases.

This discussion helps in determining the effect of price on demand. For
example, using equation (14.19) in equation (14.17) we may write

∂x∗1
∂p1
= −λ∗p2

2

|D| − x∗1
∂x1

∂m
(14.21)

This is referred to as the Slutsky equation for the effect of a change in p1 on
the demand for x1. The first term, or substitution effect, is clearly negative, since
|D| > 0 and λ∗ = u1/p1 > 0 also. The second term, or the income effect, depends
on the sign of ∂x∗1/∂m. If x1 is normal, then ∂x∗1/∂m > 0 and so ∂x∗1/∂p1 < 0. If
x1 is weakly inferior, then ∂x∗1/∂m = 0 and again ∂x∗1/∂p1 < 0. If x1 is strictly
inferior so that ∂x∗1/∂m < 0, then the two effects work against each other. The
substitution effect may dominate so that again ∂x∗1/∂p1 < 0, or the two effects
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may cancel (so the demand curve at that point is vertical), or the income effect
may dominate so that ∂x∗1/∂p1 > 0 and the demand curve is positively sloped. This
is the case of the Giffen good.

The general method may be summarized in

D e f in i t i o n 14 . 1 The general method of comparative statics Given that the n equations

f 1(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0

f 2(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f n(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0

can be solved to give the equilibrium values of the n endogenous variables x∗1 ,

x∗2 , . . . , x∗n as differentiable functions of the m exogenous variables α1, . . . , αm,
we have that

∂x∗i
∂αj

= |Fij |
|F | , i = 1, . . . n; j = 1, . . . m

where |F | �= 0 is the determinant

|F | =

∣∣∣∣∣∣∣∣∣

f 1
1 f 1

2 · · · f 1
n

f 2
1 f 2

2 · · · f 2
n

...
...

. . .
...

f n
1 f n

2 · · · f n
n

∣∣∣∣∣∣∣∣∣
and |Fij | is formed by replacing the ith column of |F | by the j th column of the
n×m matrix

⎡
⎢⎢⎢⎣
−f 1

α1
−f 1

α2
· · · −f 1

αm

−f 2
α1
−f 2

α2
· · · −f 2

αm

...
...

. . .
...

−f n
α1
−f n

α2
· · · −f n

αm

⎤
⎥⎥⎥⎦

Note that

• It must be assumed that |F | �= 0.
• The partial derivatives are evaluated at the initial equilibrium point and so are

given numbers.
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• Where the system of equations represents the first-order conditions of a maxi-
mization or minimization problem, the second-order conditions for this prob-
lem will give the sign of the determinant |F |, since this is the bordered Hessian
determinant found in the analysis of second-order conditions.

You should check that all the examples considered are particular applications of
this method.

We have stressed that the system of equations in definition 14.1 are assumed
to yield solutions for the n endogenous variables as differentiable functions of the
m exogenous variables. The key theorem that gives the conditions under which
this may be done is simply an extension of theorem 11.3.

Theorem 14.1 (Implicit function theorem) Given an equation system

f 1(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0

f 2(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f n(x∗1 , x∗2 , . . . , x∗n;α1, . . . , αm) = 0

let (x∗1 , . . . , x∗n;α0
1, . . . , α

0
m) be a point satisfying these equations, and let the

functions have continuous partial derivatives up to the rth order, over some open
set of points in R

n+m around (x∗1 , . . . , x∗n;α0
1, . . . , α

0
m). If the determinant

|F | =

∣∣∣∣∣∣∣∣∣

f 1
1 f 1

2 · · · f 1
n

f 2
1 f 2

2 · · · f 2
n

...
...

. . .
...

f n
1 f n

2 · · · f n
n

∣∣∣∣∣∣∣∣∣
�= 0

wheref k
i ≡ ∂f k/∂xi , and these partial derivatives are all evaluated at (x∗1 , . . . , x∗n ;

α0
1, . . . , α

0
m), then the equation system defines x1, . . . , xn as functions of the αj s

in some neighborhood of (x∗1 , . . . , x∗n;α0
1, . . . , α

0
m). These functions also have

continuous partial derivatives up to the rth order. In that neighborhood we have

⎡
⎢⎢⎢⎣

f 1
1 f 1

2 · · · f 1
n

f 2
1 f 2

2 · · · f 2
n

...
...

. . .
...

f n
1 f n

2 · · · f n
n

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

∂x∗1/∂αj

∂x∗2/∂αj

...

∂x∗n/∂αj

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−f 1

αj

−f 2
αj

...

−f n
αj

⎤
⎥⎥⎥⎦

for each j = 1, . . . , m.
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This theorem provides the basis for the general method of comparative statics set
out in definition 14.1. For that purpose all we need is for the functions f i to possess
continuous first derivatives.

E X E R C I S E S

1. In the general IS-LM model, what are the comparative-statics effects of a
change in the money supply?

2. In the model of the competitive firm’s input demands, what are the
comparative-statics effects of a change in the price of capital r?

3. Derive and interpret the Slutsky equations for a consumer with utility func-
tions (a) u = x1x2, (b) u = √x1 + x2.

4. In the general IS-LM model, assume that the partial derivative ER is positive
rather than negative. Derive the implications of this for the comparative statics
of the model.

5. Derive the Slutsky equations for the case in which the consumer buys three
goods, where the consumer’s problem is

max u(x1, x2, x3) s.t. p1x1 + p2x2 + p3x3 = m

and u is strictly quasi-concave.

6. The demand function for coffee is given by

Dc = 100− 2pc + 0.5pt

and that for tea is given by

Dt = 120− pt + 0.75pc

where pc is the price of coffee and pt is the price of tea. The respective supply
functions are

Sc = 10+ pc + 5wc

St = 5+ 2pt + 2wt

where wc and wt are the indexes of weather conditions affecting production
of coffee and tea respectively. Interpret these supply and demand functions.
Give the comparative-statics effects on equilibrium prices of changes in the
weather conditions variables.
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7. Countries 1 and 2 trade with each other, under fixed exchange rates. The
relevant functions are

Country 1 Country 2

Consumption functions C1 = 0.8Y1 C2 = 0.7Y2

Investment I1 = I 0
1 I2 = I 0

2
Imports Q1 = 0.3Y1 Q2 = 0.5Y2

Find the effects of a change in each country’s exogenous investment on the
equilibrium income levels in both countries. Explain your results. [Note: One
country’s imports are the other country’s exports. Aggregate demand in coun-
try 1 is C1 + I 0

1 + Q2 while aggregate supply is Y1 + Q1 and similarly for
country 2. Equilibrium in each country requires aggregate demand to equal
aggregate supply.]

14.3 The Envelope Theorem
In the comparative-statics analysis of constrained maximization and minimization
problems, it is often helpful to use an approach based on the envelope theorem,
instead of, or as well as that based on the implicit function theorem. Thus suppose
that we have the problem

max
x1,x2

f (x1, x2;α) s.t. g(x1, x2;α) = 0

where α is an exogenous variable. The Lagrange function for this problem is

L(x1, x2, λ;α) = f (x1, x2;α)+ λg(x1, x2;α)

and the first-order conditions are

f1(x
∗
1 , x∗2 ;α)+ λ∗g1(x

∗
1 , x∗2 ;α) = 0

f2(x
∗
1 , x∗2 ;α)+ λ∗g2(x

∗
1 , x∗2 ;α) = 0

g(x∗1 , x∗2 ;α) = 0

If we assume that the functions f and g possess continuous first and second deriva-
tives, and that the determinant

|D| =
∣∣∣∣∣∣
f11 + λ∗g11 f12 + λ∗g12 g1

f21 + λ∗g21 f22 + λ∗g22 g2

g1 g2 0

∣∣∣∣∣∣ �= 0
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then we can apply the implicit function theorem. This amounts to saying we can
solve for the endogenous variables as differentiable functions of the exogenous
variable in the neighborhood of the optimal point, so the value of the function f

in the same neighborhood is

f (x1(α), x2(α);α) ≡ V (α)

and V is known as the value function for the maximization problem. The value
function expresses directly the idea that the maximized value of the function f

depends, via the maximization procedure, only on the exogenous variable in the
problem.

In the same way we can write the Lagrange function as a function of the
parameter

L = f (x1(α), x2(α);α)+ λ(α)g(x1(α), x2(α);α)

We now notice an interesting fact. Consider the total derivative of the Lagrange
function with respect to α. This is

dL
dα
= (f1 + λg1)

dx1

dα
+ (f2 + λg2)

dx2

dα
− g

dλ

dα
+ (fα + λgα)

Now, at the optimal point, we have fi + λgi = 0, i = 1, 2, and g = 0, and so if
we evaluate dL/dα at the optimal point, the first three terms vanish, and we are
left with

dL
dα
= fα + λ∗gα = ∂L

∂α

That is, although a change in α induces changes in the values of the endogenous
variables, for small enough changes at the optimal point, the effects of these
changes on the Lagrange function can be ignored because the partial derivatives
of the Lagrange function with respect to the endogenous variables are zero at
that point.

The envelope theorem establishes a connection between the derivatives of
the value function and the derivatives of the Lagrange function, with respect to
the parameter α, at the optimal point. Thus for the value function, using the chain
rule of differentiation, we have

dV

dα
= f1

dx1

dα
+ f2

dx2

dα
+ fα
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Substituting for f1 and f2 from the first-order conditions gives

dV

dα
= −λ∗

(
g1

dx1

dα
+ g2

dx2

dα

)
+ fα

at the optimal point. We can write the constraint as

g(x1(α), x2(α), α) = 0

where, because the xi are optimal solutions to the constrained problem and there-
fore satisfy the constraint, this equality holds identically. Then differentiating with
respect to α we have

g1
dx1

dα
+ g2

dx2

dα
= −gα

Substituting into the expression for dV/dα gives

dV

dα
= fα + λ∗gα = ∂L

∂α

which is the form the envelope theorem takes for this example.
The envelope theorem tells us that we can find the effect of a change in

the exogenous variable on the optimized value of the objective function simply by
taking the partial derivative of the Lagrange function with respect to the exogenous
variable at the optimal solution to the problem.

Theorem 14.2 (Envelope theorem) Given the problem

max f (x1, . . . , xn;α1, . . . , αm)

s.t.

g1(x1, . . . , xn;α1, . . . , αm) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gK(x1, . . . , xn;α1, . . . , αm) = 0

and the corresponding value function V (α1, . . . , αm), and Lagrange function
L = f +∑

λkg
k , we have that

∂V

∂αj

= ∂L
∂αj

= fαj
+

K∑
k=1

λjg
k
αj

, j = 1, . . . m
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A very simple, but important, application of the envelope theorem gives the
interpretation of a Lagrange multiplier in an optimization problem. Suppose that
we have the problem

max f (x1, . . . , xn) s.t.

g1(x1, . . . , xn)+ α1 = 0
. . . . . . . . . . . . . . . . . . . . . . . .

gK(x1, . . . , xn)+ αK = 0

where the exogenous variables αk (k = 1, . . . , K), only enter in the constraints as
“constraint constants,” the Lagrange function becomes

L = f (x1, . . . , xn)+
K∑

k=1

λk[gk(x1, . . . , xn)+ αk]

Applying the envelope theorem directly gives

∂V

∂αk

= ∂L
∂αk

= λ∗k

Thus the Lagrange multiplier measures the rate at which the value function changes
when the corresponding constraint is tightened or relaxed slightly. This interpre-
tation of the Lagrange multiplier is of fundamental importance in economic appli-
cations of methods of constrained optimization. One implication is immediate: if
a constraint is nonbinding at the optimum, so that a small tightening or relaxing of
it has no effect on the solution, then the associated Lagrange multiplier will take
the value zero at this optimum.

Long-Run and Short-Run Cost Curves

It is not obvious from the statement of the envelope theorem why it should have
been given this name. The reason is that the theorem was discovered as a result of
the investigation of the relationship between short-run and long-run cost curves.
This relationship can be described in the following terms:

The long-run total-cost curve is the envelope of the family of short-run
cost curves generated by varying the level of the fixed input.

The envelope theorem allows this relationship to be established rigorously.
To illustrate, we consider the following example.
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The long-run cost function for a firm was derived in chapter 13. In general,
the problem is

min C = wL+ rK s.t. y = f (L, K)

for a giveny. Given that the conditions for the implicit function theorem are met, the
first-order conditions yield functions L(w, r, y) and K(w, r, y), and substituting
for L and K in the objective function gives the value function, which in this case
is the long-run cost function

C = wL(w, r, y)+ rK(w, r, y) = C(w, r, y)

This gives the minimized production cost as a function of the exogenous variables,
input prices and output. However, in all of what follows we hold input prices
constant and so simply write the long-run cost as C(y). In figure 14.13 we draw
the long-run total-cost curve, which shows how minimized costs vary with output
holding input prices constant.

y

C
C(y)

Figure 14.13 Long-run total-cost
curve

We define the short-run cost minimization problem of the firm by assuming
that one of the inputs, typically K , is fixed in amount and that the cost associated
with K is a fixed cost. Denote the fixed amount of capital by Ka , and let Fa = rKa

denote the corresponding fixed cost. Then the firm’s short-run cost-minimization
problem is

min
L

c = wL+ Fa s.t. y = f (L, Ka)

The solution is that cost is minimized by using as little of the variable input as
possible, subject to producing the required output level, since the lower is L the
lower is cost. But, since K is given, this amounts simply to finding the value of L

that satisfies the constraint. We write this solution value as

L = φ(y, Ka)

and the minimized short-run cost is then given by the short-run total-cost function

c = wφ(y, Ka)+ Fa = c(y, Ka)

which is the value function for this short-run problem. (Again, we suppress input
prices because they are assumed constant.)

Now define ya as the value of y for which

C(y) = c(y, Ka)
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(a)

ya

Fa

c(ya, ka ) = C(ya)

ya

F''a

y y'a

F'a

c(y, K''a ) c(y, K'a )c(y, Ka)
C(y)

C, c C, c

Fa

y

Short-run and long-run cost functions (b) Envelope relation

Figure 14.14

The relation between the long-run and short-run costs is illustrated in figure
14.14 (a). The short-run cost curve has a vertical intercept of Fa and is every-
where above the long-run cost curve except at ya , where they just touch.

Now letting output y vary, and holding K fixed at Ka in the first problem,
while allowing K to vary in whatever way is required for optimality in the second
problem, implies the inequality

c(y, Ka) ≥ C(y)

since imposing a constraint—that K =Ka—cannot improve the outcome of an
optimization problem. In fact we know that for this cost-minimization problem
the inequality will hold strictly when y �= ya .

The choice of the capital level Ka here is arbitrary. By changing it, say, to
K ′a , there is another input level, y ′a at which long-run and short-run total costs are
just equal. Repeating this for each possible level of capital generates a family of
short-run cost curves, each of which touches the long-run curve at only one point,
as in figure 14.14 (b). Thus the long-run curve is said to be the envelope of the
short-run curves (see also question 7 of the exercises at the end of this section).

The Shadow Wage Rate

A central planner controls an economy with two sectors, producing outputs x1 and
x2 respectively. This economy is very small relative to the rest of the world, and
so takes as given the world prices p1 and p2 for the goods. The planner wishes to
maximize the value of national output Y at these world prices. Labor is the only
input and this is available in fixed total amount L0. The production functions in
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the two sectors are

x1 = a1L
b
1, x2 = a2L

b
2, ai > 0; 0 < b < 1; i = 1, 2

where Li is the amount of labor used in sector i. The planner’s problem is

max Y = p1x1 + p2x2 s.t. xi = aiL
b
i , i = 1, 2

L1 + L2 = L0

We can use this information to write the Lagrange function as

L = p1a1L
b
1 + p2a2L

b
2 + λ(L0 − L1 − L2)

The first-order conditions are

bpiaiL
b−1
i − λ∗ = 0, i = 1, 2

L0 − L1 − L2 = 0

Solving these conditions then gives

L1 = c1(p1, p2)L
0, L2 = c2(p1, p2)L

0

where

c1(p1, p2) =
[

1+
(

p1a1

p2a2

)1/(b−1)
]−1

and

c2(p1, p2) = 1− c1(p1, p2)

Thus sector i receives a share ci of total labor input, which is independent of the
total scale of the economy and depends only on the relative output prices.

The optimized value of national output is then

Y ∗ = p1x
∗
1 + p2x

∗
2

= p1a1[c1(p1, p2)L
0]b + p2a2[c2(p1, p2)L

0]b

= V (p1, p2, L
0)

where V is the value function. We are now interested in the derivatives of this
function, namely the effects on national income of changes in the available labor
L0 and the world prices pi .
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Notice that L0 is a constraint constant. Therefore we can apply the envelope
theorem immediately to obtain

∂V

∂L0
= λ∗

That is, the value of the Lagrange multiplier given by the solution to the problem
measures the effect on the value of national output of a small change in labor
supply. We could interpret this as saying that the social planner would be prepared
to pay a maximum of λ∗ to obtain a small amount of extra labor. Note that λ∗ has
the dimension “$/unit of labor,” just like the wage rate, and so we refer to this as
the shadow wage rate.

Consider now the effect of a change in a world price, say p1, on the value
of national output. On the face of it this could seem to involve some tricky dif-
ferentiation, but notice that the prices appear only in the objective function of the
problem and not in the constraint. Then using the envelope theorem gives

∂V

∂p1
= x∗1 = a1[c1(p1, p2)L

0]b

Therefore, if we know the level of output in a sector at the optimal solution, we
also know the effect on the value of national output of a small change in its price.

E X E R C I S E S

1. For the shadow-wage-rate model, let p1 = 1, p2 = 2, a1 = 100, a2 = 50,
b = 0.5, and L0 = 1000. Calculate the optimal labor allocations, outputs, and
the shadow wage rate. Write out the value function and confirm the results
for the derivatives of this function numerically.

2. Show that the indirect utility function derived in the expenditure function
example on the website is strictly quasiconvex in prices. Explain why it cannot
be restricted to be convex in prices, nor convex or concave in income.

3. A competitive firm has the production function

x = L0.5K0.3

Derive its profit function and confirm this chapter’s results on its derivatives.

4. Derive the indirect utility and expenditure functions for a consumer with the
utility function

u = x0.6
1 x0.4

2
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with prices p1 = 1, p2 = 2, and income m = 100. Then find:

(a) The amount of extra income we would have to give the consumer to
allow her to maintain the utility level initially reached, when we increase
the price of good 1 to p1 = 2

(b) The maximum amount of income the consumer would be prepared to
pay to induce us not to increase the price of good 1 to p1 = 2

Show that these two amounts can be expressed in terms of differences in
values of the expenditure function.

5. A consumer has utility function

u = (x1 − c1)
a(x2 − c2)

1−a

where c1, c2 > 0 are interpreted as subsistence levels. Derive her indirect util-
ity and expenditure functions. (Note: The demand functions for this problem
were derived in the answer to exercise 5 for section 13.1.)

6. For the constrained optimization problems exercise 1 at the end of section 13.1,
derive the value function as a function of the constraint constant in each case.

7. Given the envelope relation between the long-run and short-run total-cost
curves shown in figure 14.14 (b), show that this implies that:

(a) At an output such as ya in figure 14.14 (b), short-run marginal cost
∂c(ya, ka)/∂y equals long-run marginal cost C ′(ya).

(b) Short-run average cost c(ya, ka)/ya equals long-run average cost
C(ya)/ya .

Sketch the implied average and marginal cost curves.

C H A P T E R R E V I E W
Key Concepts comparative statics

envelope theorem
fundamental equation
implicit function

implicit function theorem
shadow wage rate
Slutsky equation
value function

Review Questions 1. (a) What does comparative-statics analysis do?

(b) How does it do it?
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2. What are the sufficient conditions under which we can carry out the
comparative-statics analysis of a general economic model?

3. In a model based on an optimization problem, how may the second-order
conditions help us in the comparative-statics analysis?

4. How do we proceed if the sign of the comparative-statics effect cannot be
determined unambiguously?

5. What is the value function in a constrained optimization problem? Name some
economic examples of value functions.

6. State, prove, and explain the envelope theorem.

7. What does the envelope theorem tell us about the interpretation of a Lagrange
multiplier in a constrained optimization problem? Give some examples of such
Lagrange multipliers and their interpretations.

Review Exercises 1. For each of the following constrained optimization problems, find the
comparative-statics effects of a change in the α-variables, and derive and sketch
the value functions:

(a) max y = x0.25
1 x0.75

2 subject to 2x1 + 4x2 = α

(b) max y = 2x1 + 3x2 subject to α1x
2
1 + 5x2

2 = α2

(c) max y = x0.25
1 x0.75

2 subject to 2x2
1 + 5x2

2 = α

(d) min y = 2x1 + 4x2 subject to x0.25
1 x0.75

2 = α

(e) max y = (x1 + 2)(x2 + 1) subject to x1 + x2 = α

(f) min y = α1x1 + x2 subject to (x1 + 2)(x2 + 1) = α2

2. Compare and explain the difference in the comparative-statics results for the
following IS-LM models:

(a) Consumption function: C = 0.8Y + 30r

Investment function: I = I 0 + 0.1Y − 10r

Demand for money: 30+ 0.2Y − 10.5r

M0 = 100, I 0 = 20

(b) Consumption function: C = 0.8Y − 30r

Investment function: I = I 0 + 0.1Y − 10r

Demand for money: 30+ 0.06Y − 60r

M0 = 100, I 0 = 20
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(c) Consumption function: C = 0.8Y − 30r

Investment function: I = I 0 + 0.1Y − 10r

Demand for money: 50+ 0.5Y − 0.11r

M0 = 100, I 0 = 20

3. A consumer has the utility function

u = u(x11, x12)+ βu(x21, x22), 0 < β < 1

where xti is the amount of good i= 1, 2 consumed in period t = 1, 2. The
prices of the goods are p1 and p2, and are the same in each period. The
consumer’s income in period t is mt and not necessarily equal in both
periods.

(a) Assume first that the consumer has separate budget constraints in each
period. Derive the indirect utility function and comment on its form. In-
terpret the Lagrange multipliers in this problem. Under what conditions
are they equal?

(b) Now assume it is possible to borrow or lend income between the two
periods at a fixed interest rate r . Show that the consumer cannot be worse
off as a result of this. Give conditions under which she is strictly better
off. Obtain the indirect utility function in this case.

4. The demand functions for two goods are given by

Di = Di(p1, p2, y), i = 1, 2

where p1 and p2 are prices and y is consumers’ income. The supply functions
are

Si = Si(pi), i = 1, 2

Carry out a general comparative-statics analysis of the effect of a change in
consumers’ income on the equilibrium prices of the goods.

5. A consumer has the strictly quasiconcave indirect utility function

u = v(m1)+ βv(m2), 0 < β < 1

where mt is income available for expenditure on consumption in period
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t = 1, 2. Her wealth constraint is

m1 + m2

1+ r
= m̄1 + m̄2

1+ r

where r is the interest rate at which she can borrow or lend and m̄t is the exoge-
nously endowed income in period t . Derive and interpret the Slutsky equations
for the effect of changes in the interest rate on the choice of income in period
t = 1, 2.

6. A firm produces two outputs and wants to maximize sales revenue, subject to
the constraint that its net of tax profit (1 − τ)π must be no less than a given
value, π0. Here, τ is the rate of profit tax. Analyze the comparative-statics
effects of a change in the profit’s tax rate on the firm’s output choices and
compare these to the case of a profit-maximizing firm.





Chapter 15 Concave Programming and the
Kuhn-Tucker Conditions

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Cost Minimization
• The Linear-Programming Problem

In the constrained optimization problems of chapter 13, we used the case where
the function constraints are always equalities. This is usually referred to as the
“classical optimization problem.” However, sometimes this is not the most sensible
formulation of a problem from the point of view of economics, and problems can
arise that require us to set the constraints as weak inequalities. In this chapter we
develop the necessary conditions for solutions of this type of problem. Because it is
assumed that the objective and constraint functions are all concave, it is generally
referred to as the concave-programming problem.

15.1 The Concave-Programming Problem
We can write the concave-programming problem in a simple form as

max
x1,x2

f (x1, x2) s.t. g(x1, x2) ≥ 0, x1, x2 ≥ 0 (15.1)

The name concave programming was used to distinguish this type of problem
from that of linear programming, which is a special case of concave programming.
The word “concave” appears because the functions f and g are assumed to be con-
cave. We discuss the reasons for this below. We also assume the functions to be
differentiable. Note also the non-negativity conditions on the variables. More gen-
eral forms of the problem are obtained by increasing the numbers of variables and
constraints.Also problems in which the f or g functions are convex can be handled
by noting that if a function is convex, then its negative is concave (see section 2.4).

As with optimization with equality constraints, there are first-order, necessary
conditions for the solution (x∗1 , x∗2 ) to the problem in equation (15.1). These con-
ditions are known as the Kuhn-Tucker (K-T) conditions. We proceed by first
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stating the rule for deriving the K-T conditions, and then provide the argument to
justify this rule. The reader who is prepared to accept the justification can proceed
directly to the applications in the problem solutions.

D e f in i t i o n 15 . 1 (Kuhn-Tucker conditions) To derive the K-T conditions for solution of the
problem

max f (x1, x2) s.t. g(x1, x2) ≥ 0, x1, x2 ≥ 0

where both functions are concave and differentiable, we first form the Lagrange
function

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2)

and then maximize it with respect to the variables x1 and x2, and minimize it with
respect to the variable λ, subject to the constraints x1, x2, λ ≥ 0. This yields the
K-T conditions

∂L
∂xi

= fi(x
∗
1 , x∗2 )+ λ∗gi(x

∗
1 , x∗2 ) ≤ 0, x∗i ≥ 0

x∗i
∂L
∂xi

= 0, i = 1, 2

∂L
∂λ
= g(x∗1 , x∗2 ) ≥ 0, λ∗ ≥ 0

λ∗
∂L

∂λ
= 0

You should refer to section 12.3, where we develop the necessary conditions
for maximization and minimization subject to nonnegativity conditions on the
variables.

We will explore the interpretation of the K-T conditions in the context of some
economic applications. Note that we have introduced a kind of optimization proce-
dure that we have not encountered earlier in this book, that of finding a maximum
of a function with respect to some variables and a minimum of the function with
respect to one or more others. This procedure is called finding a saddle point of a
function. We have already discussed the general idea of a saddle point of a func-
tion in section 12.1. Essentially then, solving the concave-programming problem
involves finding a saddle point of the Lagrange function.
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The justification for this procedure is provided by the Kuhn-Tucker theorem.
Here we will state this theorem and prove a version of it for the simple case of
one constraint and two variables. Later we will give a more general statement, but
without proof.

Theorem 15.1 (Kuhn-Tucker theorem) Given the problem

max f (x1, x2) s.t. g(x1, x2) ≥ 0, x1, x2 ≥ 0

if f and g are concave and differentiable, and if there exists a point (x0
1 , x0

2)

such that g(x0
1 , x0

2) > 0 (this is called Slater’s condition), then there exists
a Lagrange multiplier λ∗ such that the K-T conditions given in definition 15.1
are both necessary and sufficient for the point (x∗1 , x∗2 ) to be a solution to this
problem.

Proof

First we show that if f and g are concave and differentiable, if Slater’s condition is
met, and if (x∗1 , x∗2 ) is a solution to the concave-programming problem, then there
exists a λ∗ such that (x∗1 , x∗2 , λ∗) satisfies the K-T conditions, and these conditions
are necessary conditions for a solution.

We first make use of an important fact about concave functions. Suppose that
we have two concave functions h1(x1, x2) and h2(x1, x2) defined for all x1, x2 ≥ 0.
Suppose also that there is no point (x0

1 , x0
2) in this domain such that h1(x

0
1 , x0

2) > 0
and h2(x

0
1 , x0

2) > 0. Then it is always possible to find numbers p1, p2 ≥ 0, not
both zero, such that for all (x1, x2) in the domain

p1h1(x1, x2)+ p2h2(x1, x2) ≤ 0

In words, as long as there is no point in the domain at which the function values
are simultaneously positive, it is always possible to find nonnegative weights such
that the weighted sum of the function values is nonpositive—the negative value
of one of the functions can be made to at least offset the positive value of the other
function (if one exists) for fixed weights p1 and p2. Figure 15.1 illustrates for a
number of pairs of concave functions.

This fact can be used directly to establish the proposition we want to prove.
Consider the following pair of inequalities, involving the constraint function and
objective function of the concave-programming problem,

g(x1, x2) > 0

f (x1, x2)− f (x∗1 , x∗2 ) > 0
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x

hi(x)
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(a) (b) (c)

hi(x) hi(x)p1 > 0,  p2 > 0
p1 = 0,  p2 > 0 p1 > 0,  p2 ≥ 0

h1(x)
h2(x)

h1(x)

h2(x)

h1(x)

h2(x)

00 0

Figure 15.1 Fundamental property of concave functions

for x1, x2 ≥ 0, with (x∗1 , x∗2 ) a solution to the concave-programming problem. By
the definition of a solution, no pair of x-values in the domain can satisfy these
strict inequalities, since that would imply that there exists a feasible point that
is better than the optimal point. Therefore there exist p1, p2 ≥ 0, not both zero,
such that

p1[f (x1, x2)− f (x∗1 , x∗2 )]+ p2g(x1, x2) ≤ 0

implying that

p1f (x1, x2)+ p2g(x1, x2) ≤ p1f (x∗1 , x∗2 )

Since p2 ≥ 0 and g(x∗1 , x∗2 ) ≥ 0, we must have p2g(x∗1 , x∗2 ) ≥ 0. But if we set
x1 = x∗1 and x2 = x∗2 in the first inequality, we also have p2g(x∗1 , x∗2 ) ≤ 0. Thus
we must have p2g(x∗1 , x∗2 ) = 0, and so we can add this to the right-hand side
of the second inequality without affecting it. Also for any p ≥ 0, we must have
pg(x∗1 , x∗2 ) ≥ 0, and finally we can write

p1f (x1, x2)+ p2g(x1, x2) ≤ p1f (x∗1 , x∗2 )+ p2g(x∗1 , x∗2 )

≤ p1f (x∗1 , x∗2 )+ pg(x∗1 , x∗2 )

for all p ≥ 0, x1, x2 ≥ 0. This is almost, but not quite, the result we are after. If
we now define λ∗ = p2/p1 and λ = p/p1, we can write

f (x1, x2)+ λ∗g(x1, x2) ≤ f (x∗1 , x∗2 )+ λ∗g(x∗1 , x∗2 ) ≤ f (x∗1 , x∗2 )+ λg(x∗1 , x∗2 )

for all λ ≥ 0, x1, x2 ≥ 0. Thus we appear to have the result that under the condition
of concavity of f and g, with an optimal solution to the concave-programming
problem (x∗1 , x∗2 ) we can always associate a Lagrange multiplier λ∗ ≥ 0 such that



15.1 THE CONCAVE-PROGRAMMING PROBLEM 571

(x∗1 , x∗2 ) maximizes and λ∗ minimizes the Lagrange function subject to x1 ≥ 0,

x2 ≥ 0, λ ≥ 0.
In defining λ∗and λ, we implicitly assumed that p1 �= 0, so that we could

divide through by it. However, this may not always be warranted. Thus suppose
that g(x1, x2) ≤ 0 for all x1, x2 ≥ 0. Then we could choose p1 = 0, p2 > 0 as
our weights. In that case it would not be possible to define λ and λ∗ (refer, e.g.,
to figure 15.1 (b)). For the result to hold, we therefore need a further condition
known as a constraint qualification, which is Slater’s condition in definition 15.1:
there exist x0

1 , x0
2 ≥ 0 such that g(x0

1 , x0
2) > 0.

Intuitively this condition implies that p1 can never be set at 0, since if it
were, p2 must be positive and the inequality could not then be satisfied (see
figure 15.1 (c)). Thus, for a problem satisfying Slater’s condition, with the con-
straint function taking on a strictly positive value somewhere in the domain, the
Lagrange procedure always works. (See exercise 1 in this section for a problem in
which Slater’s condition is not satisfied and the Lagrange procedure does not work.)

The inequalities we have just derived define (x∗1 , x∗2 , λ∗) as a saddle point
of the Lagrange function and so they are referred to as the saddle-point condi-
tions. Given the differentiability of f and g, they are then equivalent to the K-T
conditions, because both are equivalent to the statements

(x∗1 , x∗2 ) maximizes f (x1, x2)+ λ∗g(x1, x2) for all x1, x2 ≥ 0
λ∗ minimizes f (x∗1 , x∗2 )+ λg(x∗1 , x∗2 ) for all λ ≥ 0

To complete the proof, we now have to show that a point (x∗1 , x∗2 ) that satisfies
the saddle-point conditions, or equivalently the K-T conditions, is a solution to
the concave-programing problem, so these conditions are sufficient as well as
necessary. From the saddle-point condition we have the inequality

f (x∗1 , x∗2 )+ λ∗g(x∗1 , x∗2 ) ≥ f (x1, x2)+ λ∗g(x1, x2) for all x1, x2 ≥ 0

From the second K-T condition in definition 15.1, we have that if λ∗ > 0, then
g(x∗1 , x∗2 )= 0, and that if g(x∗1 , x∗2 ) > 0, then λ∗ = 0. In the first case, the inequality
becomes

f (x∗1 , x∗2 ) ≥ f (x1, x2)+ λ∗g(x1, x2)

Since for feasible (x1, x2) we must have g(x1, x2) ≥ 0, it follows that

f (x∗1 , x∗2 ) ≥ f (x1, x2)

In the second case, if λ∗ = 0, the same inequality follows immediately.

This concludes our discussion of the theoretical basis for the K-T conditions. We
now turn to applications of the conditions.



572 CHAPTER 15 CONCAVE PROGRAMMING AND THE KUHN-TUCKER CONDITIONS

The Consumer’s Problem

The consumer’s problem, when we allow for the consumer to spend less than the
maximum available and when we explicitly allow for nonnegativity constraints, is

max u(x1, x2) s.t. m− p1x1 − p2x2 ≥ 0 and x1, x2 ≥ 0

The Lagrange function is

L = u(x1, x2)+ λ(m− p1x1 − p2x2)

and the K-T conditions are

∂L
∂xi

= ui − λ∗pi ≤ 0, x∗i ≥ 0, x∗i (ui − λ∗pi) = 0, i = 1, 2 (15.2)

∂L
∂λ
= m− p1x

∗
1 − p2x

∗
2 ≥ 0, λ∗ ≥ 0, λ∗(m− p1x

∗
1 − p2x

∗
2 ) = 0 (15.3)

We need only consider cases in which at least one of the demands is positive at the
optimum. Then from the first condition we see that if x∗i > 0 and its marginal utility
ui is positive, we must also have λ∗ > 0. It follows from the second condition that
the budget constraint must be satisfied as an equality; that is, it is a binding con-
straint. Since it is usually assumed in consumer theory that ui > 0—this is known
as the “non-satiation” assumption—we have the justification for always taking the
budget constraint as an equality rather than a weak inequality.

Next suppose that x∗1 > 0, x∗2 > 0. Then condition (15.2) becomes ui = λ∗pi ,
i = 1, 2, giving the condition

u1

u2
= p1

p2

This is the condition that the indifference curve be tangent to the budget constraint,
as illustrated in figure 15.2 (a).

There are, however, two further cases to consider, namely those in which one
of the goods has a zero value at the optimum. Take the case

x∗1 > 0, x∗2 = 0

From condition (15.3) we then have x∗1 = m/p1, while condition (15.2) implies
that

u1 = λ∗p1

u2 ≤ λ∗p2
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(a) (b)

x2

u

00

x2

(x1* , 0)

x2*

x1

Figure 15.2 Solution possibilities for the consumer’s problem

giving

u1

u2
≥ p1

p2

(Be sure you can explain the direction of this inequality.) This solution is illustrated
in figure 15.2 (b). There is not an interior tangency solution, because along the
budget constraint the indifference curves are everywhere steeper than the budget
line. At the corner solution, the slope of the indifference curve is either equal to,
or greater in absolute value than, that of the budget line, as the condition above
states. The reader should now derive the condition and draw the diagram for the
case in which x∗1 = 0, x∗2 > 0.

In the usual textbook treatment of the consumer’s problem, a case is presented
in which both goods are positive. However, if we consider a world with many
goods and not just two, it is clear that the corner solution is in fact the rule since
no one consumes something of every good in existence. The intuitive explanation
of the equilibrium can be put as follows: at the point (x∗1 , 0) in figure 15.2 (b), the
consumer can exchange one unit of good 1 for p1/p2, units of good 2 but would
require u1/u2 units of good 2 to be just as well off, and since u1/u2 ≥ p1/p2,
she will not want to make the trade.

E X E R C I S E S

1. Consider the problem

max x1 + x2 s.t. −(
x2

1 + x2
2

) ≥ 0 and x1, x2 ≥ 0
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Try solving it using the K-T conditions. What problems arise? Why? [Hint:
Check Slater’s condition].

2. In the cost-minimization problem, what consequences follow from assuming
the following cases?

(a) It is possible to produce output using only labor

(b) One of the input prices may be zero

3. Solve the problem

max u = (x1 + a)xb
2 s.t. p1x1 + p2x2 ≤ m and x1, x2 ≥ 0

where a, b ≥ 0. Discuss the economics of the solution.

4. Solve the following problems:

(a) max y = 3x1 + 2x2 subject to 4x1 + x2 ≤ 10 x1, x2 ≥ 10

(b) max y = 8x1 + 2x2 subject to 4x1 + x2 ≤ 10 x1, x2 ≥ 10

(c) max y = 10x1 + 2x2 subject to 4x1 + x2 ≤ 10 x1, x2 ≥ 10

5. A central planner uses labor L to produce two outputs, x1 and x2, according
to the production functions

x1 = 10L1 − 0.5L2
1

x2 = 8L2 − 0.75L2
2

where Li is labor allocated to sector i = 1, 2. She wishes to maximize the
value of total output

V = 4x1 + 5x2

where 4 and 5 are the world prices of x1 and x2 respectively.

(a) Assuming that there are 12 units of labor available, find the optimal
labor allocation and the shadow price of labor.

(b) Assume now that there are 20 units of labor available. What is the new
optimal labor allocation and the shadow price of labor?

(c) Illustrate and explain your results in each case.

(Note: Formulate the problem as having just one constraint by substituting
for x1 and x2 in the V function.)
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6. Solve the cost-minimization problem

min wL+ rK + vR s.t. Ra(L+ bK)c − y ≥ 0 and R, L, K ≥ 0

where R is raw material, L labor, and K capital, and a, b, c > 0, with
a + c < 1. Interpret the production function in this problem.

15.2 Many Variables and Constraints
In the previous section, we developed and applied the K-T conditions for the case
of one constraint and two variables. We now extend the discussion to the case
of any number of variables and constraints. Note that it is not necessary to make
any assumption about the relation between the number of variables and number of
constraints, as we had to do in the classical case, because the constraints are now
in the form of inequalities and we do not have to worry that more constraints than
variables cause an empty feasible set.

By using exactly the same method of proof as we used in the previous section,
it is possible to prove

Theorem 15.2 (Kuhn-Tucker theorem) Given the problem

max f (x1, x2, . . . , xn) s.t.

g1(x1, x2, . . . , xn) ≥ 0

g2(x1, x2, . . . , xn) ≥ 0

. . . . . . . . . . . . . . . . . . . . .

gm(x1, x2, . . . , xn) ≥ 0

x1, x2, . . . , xn ≥ 0

if all the functions f and gj , j = 1, . . . , m are concave and differentiable, and
there exists a point (x0

1 , x0
2 , . . . , x0

n) such that gj (x0
1 , x0

2 , . . . , x0
n) > 0, all j =

1, . . . , m, then there exist m Lagrange multipliers λ∗j such that the following
conditions are necessary and sufficient for the point (x∗1 , x∗2 , . . . , x∗n) to be a
solution for this problem:

fi(x
∗
1 , x∗2 , . . . , x∗n)−

∑
λ∗j g

j

i (x
∗
1 , x∗2 , . . . , x∗n) ≤ 0, x∗i ≥ 0

x∗i
(
fi −

∑
λ∗j g

j

i

)
= 0, i = 1, . . . , n

gj (x∗1 , x∗2 , . . . , x∗n) ≥ 0, λ∗j ≥ 0

λ∗j g
j (x∗1 , x∗2 , . . . , x∗n) = 0, j = 1, . . . , m
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We note that the K-T conditions for the general problem are derived by forming
the Lagrange function

L = f (x1, x2, . . . , xn)+
∑

λjg
j (x1, x2, . . . , xn)

and then maximizing it with respect to the xi and minimizing it with respect to the
λj subject to the nonnegativity conditions xi ≥ 0, λj ≥ 0.

We now use this in an economic application.

Time Constraint

Time is generally a scarce resource, as is income. Moreover it generally takes
time to buy and consume goods. Let us take the simple case of two goods, and
suppose that one unit of good 1 takes t1 units of time to consume and that one unit
of good 2 takes t2 units of time. The total time available for consumption is T .
The consumer has a utility function defined on goods alone, u(x1, x2). Then her
problem is

max u(x1, x2) s.t.

p1x1 + p2x2 ≤ m

t1x1 + t2x2 ≤ T

x1, x2 ≥ 0

If the first constraint is a money-budget constraint; the second could be thought of
as a time-budget constraint. It clearly makes sense to express these as inequalities
since to make them equalities would imply, in general, that at most one consump-
tion bundle can be bought. When we write them as inequalities, we allow for the
possibility that the consumer may have too much time and not enough money or
the converse.

The Lagrange function for the problem is

L = u(x1, x2)+ λ1(m− p1x1 − p2x2)+ λ2(T − t1x1 − t2x2)

and the K-T conditions are

∂L
∂xi

= ui − λ∗1pi − λ∗2ti ≤ 0, x∗i ≥ 0, x∗i (ui − λ∗1pi − λ∗2ti) = 0, i = 1, 2

∂L
∂λ1
= m− p1x

∗
1 − p2x

∗
2 ≥ 0, λ∗1 ≥ 0, λ∗1(m− p1x

∗
1 − p2x

∗
2 ) = 0

∂L
∂λ2
= T − t1x

∗
1 − t2x

∗
2 ≥ 0, λ∗2 ≥ 0, λ∗2(T − t1x

∗
1 − t2x

∗
2 ) = 0
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These conditions define five possible cases of interest, but two of these in-
volve the possibility that one of the x-values is zero. Since we discussed this kind
of case earlier, we will not do that here but simply assume both variables are
strictly positive at the optimum. Then the first condition becomes a strict equality.
Given nonsatiation, so that ui > 0, the first condition implies immediately that both
λ-values cannot be zero—at least one constraint must bind. Thus we have three
cases to consider:

Case 1 λ∗1 > 0, λ∗2 > 0. The second and third conditions then become equalities
and as a result we can solve them for the optimal x-values. Cramer’s rule yields

x∗1 =
mt2 − Tp2

p1t2 − p2t1

x∗2 =
Tp1 −mt1

p1t2 − p2t1

Diagrammatically, as figure 15.3 (a) shows, this solution occurs at the intersection
of the two lines corresponding to the two constraints. The highest possible indif-
ference curve touches the kink formed by the intersection of the lines. The feasible
set in the problem is, of course, the shaded area. We can use the first condition to
obtain the condition for this case

u1

u2
= λ∗1p1 + λ∗2t1

λ∗1p2 + λ∗2t2

This says that the marginal rate of substitution lies between the values p1/p2 and
t1/t2, as is readily confirmed in the diagram.

x1*

(a) (b)

x2

u

0

x2*

x1

T/t2

M/p1

t1x1 + t2x2 = T

p1x1 + p2x2 = M

x2

c

0 x1

T/t2

M/p1

t1x1 + t2x2 = T

p1x1 + p2x2 = M

b

Figure 15.3 Solution possibilities in the time-constraint problem
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Case 2 λ∗1 > 0, λ∗2 = 0. Only the money-budget constraint is binding. In that
case the first condition yields simply

u1

u2
= p1

p2

Thus we have a standard tangency solution with the money-budget constraint.
This case may occur because the time-budget constraint lies everywhere above
the money constraint, or because the preferences of the consumer are such that
a tangency occurs only on the part of the boundary of the feasible set formed
by the money-budget constraint. This latter case is illustrated in figure 15.3(b).
This is a case in which the consumer has time to spare, while money is relatively
scarce—the case usually considered in models of the consumer.
Case 3 λ∗1 = 0, λ∗2 > 0. Only the time constraint is binding. In that case the first
condition yields

u1

u2
= t1

t2

This is a tangency with the time constraint, as illustrated in figure 15.3 (b). Such
a consumer has money to spare but not enough time in which to spend it all!

E X E R C I S E S

1. A consumer has the utility function

u = x1x2

and she faces the money-income constraint

2x1 + 3x2 ≤ 100

and the time constraint

x1 + 4x2 ≤ 80

Solve for her utility-maximizing consumption bundle and the values of the
shadow prices of the constraints.



CHAPTER REVIEW 579

2. Suppose that it is possible to exchange money for time at a fixed wage rate w

(e.g., you could hire someone to buy and prepare food, or be hired for that pur-
pose). Show that the two budget constraints in the “time-constraint problem”
collapse to one. How does this budget line relate to those drawn in figure
15.4? Explain why the existence of this market cannot make anyone worse
off and makes some people better off as compared to the situation shown in
figure 15.4.

3. A planner in a small, open economy has the utility function

u = x1x2

where xi is the aggregate consumption of good i = 1, 2. Production in the
economy takes place according to the production functions

y1 = 10l0.5
1 , y2 = 5l0.5

2

where yi is output and li is labor in sector i. The world prices of the goods
are p1 = $10 and p2 = $8. The total amount of labor available in the
economy is 1,000 units. Find the utility-maximizing outputs, consumptions,
and labor allocations. What is the shadow wage rate at the solution? Illustrate
and explain your answers.

4. A planner in a small, open economy has a utility function

u = x1x2

and production takes place according to the production functions

y1 = 10L1 − 0.5L2
1, y2 = 10L2 − L2

2

The world prices of the goods are p1 = $10 and p2 = $5. The total amount
of labor available in the economy is five units. Find the utility-maximizing
outputs, consumptions, and labor allocations, and the solution value of the
shadow wage rate. Compare your solution to that of the previous problem.
Now assume that the economy has 20 units of labor. Solve the problem again
and compare this solution to the previous two.

C H A P T E R R E V I E W
Key Concepts concave programming

Kuhn-Tucker conditions
saddle point

saddlepoint conditions
shadow price
Slater’s condition
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Review Questions 1. What are the characteristic features of a concave-programming problem?

2. What is meant by a saddle point of the Lagrange function?

3. State the Kuhn-Tucker (K-T) conditions for both a maximization problem and
a minimization problem.

4. The point that satisfies the K-T conditions for a concave-programming prob-
lem must be an optimal solution for that problem. Why is this so?

5. Why is any linear-programming problem a special case of the concave-
programming problem?

Review Exercises 1. A worker has the utility function

u = x1x2

where x1 is income and x2 is leisure. Her budget constraint is given by

x1 = m+ w(T − x2)

where m is nonwage income, w is the given wage rate, and T is total time
available to be divided between work and leisure. There is, however, a maxi-
mum number of hours she can work, given by H ≤ T . Formulate and solve
the problem of optimal choice of income and leisure (or work) given this
constraint. Illustrate your results.

2. Aconsumer has the utility function u(x1, x2) defined on two goods. The budget
constraint is of the usual kind. However, she is rationed in the market for each
good in that there is a maximum, x̄i of each good i = 1, 2, that she is able to
buy. Solve the consumer’s optimization problem and discuss the form of her
demand functions for the goods.

3. An investor has a given income of $1,000 this period and is certain also to
receive an income of $1,000 next period. He can lend money for one period
at an interest rate rL = 0.05, or he can borrow money for one period at an
interest rate of rB = 0.15. His utility function is

u = log x1 + 0.8 log x2

where xt is his consumption in period t = 1, 2. Find his utility-maximizing
borrowing or lending. [Hint: First sketch the feasible set.]
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4. A central planner wants to allocate three resources to the production of two
goods. The production technology is linear, and the following table gives the
amount of each input required to produce one unit of the given output:

Output
x1 x2

L 2 3
Input K 2.5 2

R 3 0.5

The planner wants to maximize the value of output at world prices, which are
$10 for x1 and $8 for x2. The resource availabilities are

L0 = 100, K0 = 100, R0 = 90

Find the optimal resource allocation and the associated shadow prices of the
resources.

5. A consumer has the utility function

u = x1x2

where x1 is meat and x2 potatoes. The price of meat is $10 per pound and
that of potatoes is $1 per pound. She has an income of $80. In addition to her
budget constraint, she has a subsistence-calorie constraint: she must consume
at least 1,000 calories. One pound of potatoes yields 20 calories, one pound of
meat yields 60 calories. Find her optimal consumption bundle. Now suppose
that the price of potatoes rises to $1.60 per pound. Find the new optimal
bundle. Explain your results, and discuss their significance for the concept of
a Giffen good.

6. A monopolist supplies a market with the inverse-demand function

p = 100− (q1 + q2)

where q1 is output produced at plant 1 and q2 output produced at plant 2. The
total-cost functions at the plants are

C1 = q2
1 , C2 = 1.25q2

2

Each plant has a fixed-maximum capacity of 12 units of output.
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(a) Suppose that the firm is able to expand capacity by one unit at only one
plant. Which plant should it choose?

(b) Suppose now that the firm is able to invest in expanding capacity by four
units in total. How should that be allocated between the two plants?

(c) If instead the firm is able to invest 10 units of capacity output, how
should that be allocated?

Illustrate and explain your answers in each case.
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Chapter 16 Integration

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• More on Consumer Surplus Measurement

In this chapter, we address the question of whether knowing the derivative of a
function, f ′(x), allows one to determine, or recover, the original function f (x).
Since this process is the reverse of differentiation it is referred to as antidifferen-
tiation, although it is also referred to as finding the indefinite integral. Related to
this concept is the definite integral of a function, which is the area beneath a curve
between two points. The process of integration is very useful in economics as it re-
flects the relationship between stocks and flows (e.g., investment and capital stock)
and marginal and total concepts (e.g., marginal and total cost). It also provides the
basic mathematics required to do the dynamic analysis of chapters 17 to 25.

16.1 The Indefinite Integral
Given the function f (x) = x2, we know from the rules of differentiation that its
derivative is f ′(x) = 2x. Therefore, having been told that the derivative of some
function is f ′(x) = 2x, one might expect that we can determine, by reasoning in
reverse, that the function that has this derivative is f (x) = x2. However, since
for any constant value C, the function f (x) = x2+C has this same derivative,
it is clear that we cannot recover entirely the form of the original function simply
by knowing its derivative. In general, since the derivative of a constant is zero, it
follows that if the function f (x) has derivative function f ′(x), then any function
g(x) = f (x) + C also has derivative function f ′(x). Therefore, knowing the
derivative of a function allows one to determine the function itself only up to some
unknown constant term that must be added to it. This process is called antidiffer-
entiation for the obvious reason that it is the inverse operation of differentiation.
We say that the derivative of the function f (x) = x2 + C is f ′(x) = 2x and that
the antiderivative of f ′(x) = 2x is the function x2 + C.
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Although the term antidifferentiation is perhaps a more obvious one to use
for the process that is the reverse of differentiation, this operation is more usually
referred to as integration. Also the antiderivative of a function is referred to as
the indefinite integral. Later in this chapter we introduce the definite integral.
We usually drop the qualifier (i.e., definite vs. indefinite) if no confusion is likely.

Although the process of integration is just the inverse of differentiation, there
is some added notation to be learned. Rather than referring to the function by
f (x) and its derivative by f ′(x), it is more common to use F(x) to refer to the
function and f (x) as its derivative (i.e., if f (x) = dF(x)/dx, then F(x) is the
antiderivative or integral of f (x)). Since knowing the derivative function f (x)

only allows us to recover the function itself up to some arbitrary constant, we say
that the (indefinite) integral of f (x) is F(x) + C, where C is referred to as the
constant of integration. Symbolically we write∫

f (x) dx = F(x)+ C

In this notation f (x) is called the integrand. Since

dF(x)

dx
= f (x)

an alternative notation for the integral of f (x) is
∫

dF(x) where

∫
f (x) dx ≡

∫ (
dF(x)

dx

)
dx or

∫
dF(x)

Since the process of integration is just the inverse of differentiation, each rule
of differentiation implies a corresponding rule of integration, and so the rules of
integration given below have their counterparts in section 5.4.

Rules of Integration

Rule 1 Power rule:

∫
xn dx = xn+1

n+ 1
+ C, n �= −1

Rule 2 Integral of a sum:∫
[f (x)± g(x)] dx =

∫
f (x) dx ±

∫
g(x) dx
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Rule 3 Integral of a constant multiple:∫
kf (x) dx = k

∫
f (x) dx

Rule 4 Exponential rule: ∫
ex dx = ex + C

Rule 5 Logarithmic rule:

∫
1

x
dx = ln(x)+ C, x > 0

Example 16.1 Integrate each of the following:

(i)
∫

x3 dx

(ii)
∫
(x2 + x5) dx

(iii)
∫

15x2 dx

Solution

(i) Using rule 1,

∫
x3 dx = x4

4
+ C

(ii) Using rule 2,

∫
(x2 + x5) dx =

∫
x2 dx +

∫
x5 dx

= x3

3
+ C1 + x6

6
+ C2

= x3

3
+ x6

6
+ C, where C = C1 + C2

(Note that each of the integrals in this example has a constant of integration,
which we can combine into a single constant.)
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(iii) Using rule 3, ∫
15x2 dx = 15

∫
x2 dx

= 15

[(
x3

3

)
+ C1

]
= 5x3 + C, where C = 15C1

(Again, note the combining of constants 15 and C1.) Each of these may be
checked by differentiating the solution in each case to arrive at the integrand.

The rules of integration given above follow directly from the rules of differ-
entiation. For example, to prove rule 1, we simply need to note that

d[xn+1/(n+ 1)+ C]

dx
= 1

(n+ 1)
(n+ 1)xn = xn

Just as for the rules of differentiation, the rules of integration can be combined
to obtain more general results. For example, given a function made up of a sum of
an arbitrary number of functions,

h(x) = f 1(x)+ f 2(x)+ · · · + f n(x) =
n∑

i=1

f i(x)

successive application of rule 2 implies that

∫
h(x) dx =

∫ (
n∑

i=1

f i(x)

)
dx =

n∑
i=1

∫
f i(x) dx

Therefore, for a particular example such as the one below, we can integrate an
expression made up of a sum of terms by integrating each term separately and then
summing the result∫

(x2 + 3x4 + 6x5) dx = x3/3+ 3x5/5+ x6 + C

(Check by differentiating the right side to obtain the integrand.)
Also, there are straightforward generalizations of rules 4 and 5. For example,

since by the chain rule of differentiation

d
[
ef (x)

]
dx

= f ′(x)ef (x)
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it follows that ef (x) is the antiderivative of f ′(x)ef (x); that is,∫
f ′(x)ef (x)dx = ef (x) + C

Therefore, if the integrand is composed of the function ef (x) multiplied by the
derivative of f (x), that is, is of the form f ′(x)ef (x), then one can immediately
write down the integral. For example∫

2xex2
dx = ex2 + C

A similar effect resulting from the chain rule applies to functions involving
the logarithm. That is, since

d[ln(f (x))]

dx
= f ′(x)

f (x)

it follows that

∫
f ′(x)

f (x)
dx = ln(f (x))+ C

The chain rule procedure is not always useful. For example, to find the integral
of a function involving a term like ef (x), it requires that this term just happens to be
multiplied by f ′(x). Thus, for example, the chain rule cannot be used to evaluate∫

2x3ex2
dx. Nevertheless, there are some important applications for this rule.

The examples above will probably convince you that finding the integral of
an arbitrarily chosen function is not always a straightforward task. It is generally
easier to check that a specified function is the integral of some original function
if the result is provided. For example, it is not so easy to guess a result such as

∫
(x3 + ex)(3x2 + ex) dx = (x3 + ex)2

2
+ C

although it is easy to check its validity (i.e., just differentiate (x3 + ex)2/2 to
obtain the integrand). With a little practice, however, one can recognize certain
types or patterns of integration problems that initially appear quite complex but
are actually fairly easy to solve, including the example above. In section 16.5 we
present techniques of integration that substantially extend the range of integrals
that can be easily evaluated.

The simple rules of integration given above make it possible to solve many
simple problems and to generate several economic applications of integration.
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The rate of change of an economic variable, for example, is the derivative of
that variable, and so integration allows one to obtain a variable upon knowing its
derivative. The following examples illustrate this type of relationship.

The Relationship between Marginal- and Total-Product Functions

Let Q(L) represent the total-product function and MP(L) the marginal-product
function, where L is the single input labor. Since the marginal-product function
is the derivative of the total-product function, we can write MP(L)= dQ(L)/dL.
Since integration is the reverse of differentiation, then the total-product function is
simply the integral of the marginal-product function, Q(L) = ∫

MP(L) dL. Thus,
if one is told that the marginal product of an input is constant, MP(L) = a, a a
positive constant, then we know that the total-product function is linear since

Q(L) =
∫

adL = a

∫
dL = aL+ C

Economic intuition tells us that if L = 0, then Q = 0, and so

Q(0) = a0+ C = 0 ⇔ C = 0

which means we can write simply that Q(L) = aL. In fact it often turns out to
be the case for this sort of problem that some intuitive economic condition can be
invoked to solve for the constant of integration, C.

The Relationship between the Growth in the Money Supply and the
Stock of Money in the Economy

Suppose that a central bank has decided to increase the money supply by a constant
amount, $k per year, for the foreseeable future. Letting M(t) represent the stock
of money in the economy at time t , it follows that

dM(t)

dt
= k

and so

M(t) =
∫

k dt = k

∫
dt = kt + C

Suppose that we let M0 represent the current stock of money (i.e., M(0) = M0).
This implies that

M(0) = k(0)+ C = M0 ⇒ C = M0
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and so we can rewrite M(t) as

M(t) = kt +M0

Now, if the consumer price level is a constant function of the money supply, we
can write

P(t) = βM(t) = βkt + βM0, β > 0

and deduce that the rate of increase in prices will be the constant fraction βk (since
dP (t)/dt = βk).

Note that M(t) is an example of a stock variable in economics, while the rate
at which it changes over time, dM(t)/dt , is the related flow variable.

Generally speaking, the process of finding integrals involves being able to
determine what function, when differentiated, will produce the integrand. For
cases in which this is not so easy to do, one can refer to tables in such publications
as the CRC Standard Mathematical Tables or use a symbolic software program
such as Mathematica or Maple. All of the exercises for section 16.1, however,
require only the application of the simple rules given earlier in this section.

E X E R C I S E S

1. Evaluate the following integrals:

(a)
∫

(x4 + 2x3 + 4x + 10) dx

(b)
∫

x2/3 dx

(c)
∫

10ex dx

(d)
∫

6xex2
dx

(e)
∫

3x2 + 2

(x3 + 2x)
dx

2. Evaluate the following integrals:

(a)
∫

(6x3 + 10x2 + 5) dx

(b)
∫

(x1/2 + 5x−2/3) dx
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(c)
∫

2ex dx

(d)
∫

8x2ex3
dx

(e)
∫

2x3 + 1

x4 + 2x
dx

3. Evaluate the following integrals. Use the information provided in order to
determine the constant of integration.

(a) F(x) =
∫

2 dx, F (0) = 0

(b) F(x) =
∫

6x dx, F (0) = 5

(c) F(x) =
∫

(5x3 + 2x + 6) dx, F (0) = 0

(d) F(x) =
∫

2x dx, F (3) = 10

4. Evaluate the following integrals. Use the information provided in order to
determine the constant of integration.

(a) F(x) =
∫

dx, F (0) = 0

(b) F(x) =
∫

x1/2 dx, F (0) = 5

(c) F(x) =
∫

(2x3 + 4x) dx, F (0) = 0

(d) F(x) =
∫

x−1/2 dx, F (4) = 8

5. A firm uses one input, labor (L), to produce output (Q). The marginal-product
function for the input is MP(L)= 10L1/2. Find the production function, Q(L).
Assume that Q = 0 if L = O.

6. Let MP(L) = aLb be the marginal product of labor for a firm using a single
input (L) to produce output (Q). Assume that Q= 0 if L= 0. Find the pro-
duction function Q(L). Discuss how the value of b determines whether or not
there is diminishing, increasing, or constant marginal productivity of labor.
Use diagrams to explain the relationship between the appropriate conditions
that must be imposed on the marginal-product function and the total-product
function in order to give rise to diminishing, increasing, or constant marginal
productivity of labor.
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7. Prove the second rule of integration∫
[f (x)± g(x)] dx =

∫
f (x) dx ±

∫
g(x) dx

by using the corresponding rule of differentiation.

16.2 The Riemann (Definite) Integral
The Riemann integral, or definite integral, of a function defined on some inter-
val is the area underneath the curve over that interval. For example, consider the
function f (x) = 2x over the interval 0 ≤ x ≤ 1 drawn below. Since the area
of a triangle is one-half times the base times the height, it is clear that the area
beneath the curve defined by f (x) over this interval is 1 (see figure 16.1). We
will use this example to introduce the mathematical apparatus used to define for-
mally the area under a curve and show how to compute it using the process of
integration.

f(x)

x

2

1

f(x) = 2x

Area = 1

Figure 16.1 Area under the curve
f (x) = 2x on the interval [0, 1]

We first need to motivate the idea of a partition over an interval. Let [a, b] be
a closed interval, and for convenience, let us use x0 = a and xn = b as equivalent
notation for the endpoints. A partition for the interval [a, b] or [x0, xn] is a set of
subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn]

determined by values

x = x0, x1, x2, . . . , xn

that satisfy the condition that

a = x0 < x1 < x2 < · · · < xn = b

For our example, [a, b] = [0, 1], and so the xi values satisfy the condition that

0 = x0 < x1 < x2 < · · · < xn = 1

We will let Ii = [xi−1, xi] refer to the ith interval or subinterval of the partition.
Thus the partition is composed of a set of closed subintervals that cover the interval
[0, 1] and that overlap only at the endpoints.

For example, by choosing the points x0 = 0, x1 = 0.2, x2 = 0.7, and x3 = 1,
we obtain the following partition of [0, 1] (see figure 16.2):

{[0, 0.2], [0.2, 0.7], [0.7, 1]}
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f(x)

x0 0.2 0.7 1

∆1 = 0.2 ∆2 = 0.5 ∆3 = 0.3

Figure 16.2 Partition {[0, 0.2],[0.2, 0.7],[0.7, 1]} over the interval [0, 1]

with corresponding lengths

�1 = 0.2, �2 = 0.5, �3 = 0.3

D e f in i t i o n 16 . 1 A set of points x0, x1, x2, . . . , xn satisfying the properties a= x0 < x1 < x2 < · · ·
< xn= b generates a set ofn subintervals, [x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn],
which induces a partition of the closed interval [a, b]. The length of each subin-
terval is �i = xi − xi−1, i = 1, 2, . . . , n.

D e f in i t i o n 16 . 2 Suppose that the set of subintervals Ii = [xi−1, xi], i = 1, 2, . . . , n is a partition
on the closed interval [a, b]. Let ωi ∈ [xi−1, xi], i = 1, 2, . . . , n be an arbitrary
set of points from the set of subintervals. Then

S =
n∑

i=1

f (ωi)(xi − xi−1) =
n∑

i=1

f (ωi)�i

is called a Riemann sum for the function f (x) over the subinterval [a, b].

If we arbitrarily choose a point ωi in each subinterval, namely ωi ∈ Ii ≡
[xi−1, xi], i = 1, 2, . . . , n, we can then define a set of rectangles with dimensions
determined by the length of each subinterval, �i , and height equal to f (ωi). The
sum of the areas of such a set of rectangles is called a Riemann sum (definition 16.2).

For our example we choose ω1= 0.2, ω2= 0.6, and ω3= 0.8, implying
that f (ω1)= 0.4, f (ω2)= 1.2, and f (ω3)= 1.6. The result (see figure 16.3) is

S = (0.4× 0.2)+ (1.2× 0.5)+ (1.6× 0.3) = 1.16
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f(x)

1

f(x) = 2x

x.8.7.6.2

.4

1.2

1.6

A1

A2

A1 = 0.4 × 0.2
A2 = 1.2 × 0.5
A3 = 1.6 × 0.3

Ai = f(wi) . ∆i}
A1 + A2 + A3 = 1.16

A3

Figure 16.3 Example of a Riemann sum for the function f (x) = 2x over the
subinterval [0, 1] using the same partition of [0, 1] as in figure 16.2

Now suppose that we think of such a sum S as an approximation of the area
under the curve f (x)= 2x over the interval [0, 1]. This may not seem a very
intuitively pleasing idea, since both the subintervals (partition) to use and the
particular points within each subinterval are chosen in an arbitrary manner. The
area that is computed, then, depends on these choices and so is not well-defined.
However, if one finds that upon making finer and finer partitions (such that the
length of the widest subinterval approaches zero) a convergent sequence of values
for S is generated, then it is sensible to think of the limit of such a sequence as
being the area under the curve. To illustrate such a process consider the partition
defined by

xi = i

n
, i = 0, 1, 2, . . . , n

which generates subintervals

[
0,

1

n

]
,

[
1

n
,

2

n

]
,

[
2

n
,

3

n

]
, . . . ,

[
n− 1

n
, 1

]

This set of subintervals satisfies the requirements of a partition on [0, 1], and
there is a natural sense in which the partition is finer for larger values of n. (Note
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that the width of each subinterval is 1/n.) For example, with n = 4 we get the
partition

[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1]

which is illustrated in figure 16.4.

f(x)

1

f(x) = 2x

x0.750.50.25

0.5

1

1.5

A2

A4

2

A3

Smin = A2 + A3 + A4 = 0.75(A1 = 0)

f(x)

1

f(x) = 2x

x0.750.50.25

0.5

1

1.5

B2

B4

2

B3

Smax = B1 + B2 + B3 + B4 = 1.25

B1

00

Figure 16.4 Examples of a lower sum (Smin) and an upper sum (Smax)

Next consider the following two extreme ways of choosing the points ωi

within each of the subintervals. First, choose the ωi values to generate the smallest
possible value for the Riemann sum S; that is, choose ωi ∈ [xi−1, xi] such that
f (ωi) ≤ f (x) for all x ∈ [xi−1, xi]. Refer to these values as ωi and the sum they
generate as the lower sum Smin, where

Smin =
n∑

i=1

f (ωi)�i

Next, choose a set of ωi ∈ [xi−1, xi] values to generate the largest possible value
for the Riemann Sum S; that is, choose ωi such that f (ωi) ≥ f (x) for all x ∈
[xi−1, xi]. Let us refer to these values as ω̄i and the sum they generate as the upper
sum Smax, where
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Smax =
n∑

i=1

f (ω̄i)�i

For our example, it is easy to see that the values ωi are found by choosing the
leftmost point of each subinterval, while the values ω̄i are found by choosing the
rightmost point of each subinterval (see figure 16.4). The result is that

Smin = 0(0.25)+ 0.5(0.25)+ 1(0.25)+ 1.5(0.25) = 0.75

while

Smax = 0.5(0.25)+ 1(0.25)+ 1.5(0.25)+ 2(0.25) = 1.25

Now it is clear that Smin is always an underestimate of the area under the
curve, while Smax is always an overestimate of the area under the curve. If, upon
using finer and finer partitions, we discover that the values for Smin and Smax both
converge to the same number, S∗, then it makes sense intuitively to say that the
area under the curve is well defined and that S∗ is in fact the value of this area.
For our example an increase in n leads to a finer partition (�i = 1/n ∀i) and as
n→∞ the values for Smin and Smax do in fact converge to the same value.

To see this formally, note that we choose the ωi values to generate Smin by
choosing the leftmost points of the subintervals [xi−1, xi], namely ωi = xi−1. For
the partition xi = i/n, where i = 0, 1, 2, 3, . . . , n, this gives

Smin =
n∑

i=1

f (ωi)�i =
n∑

i=1

f (xi−1)�i

=
n∑

i=1

2

(
i − 1

n

)(
1

n

)
= 2

n2

n∑
i=1

(i − 1)

Now, since

n∑
i=1

(i − 1) = 0+ 1+ 2+ · · · + (n− 1) =
(

n

2

)
(n− 1)

we get

Smin =
(

2

n2

)[(
n

2

)
(n− 1)

]
= n2 − n

n2
= 1− 1

n

Similarly we choose the ω̄i values to generate Smax by choosing the rightmost
points of the subintervals [xi−1, xi], namely ω̄i = xi . For the partition xi = i/n,
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where i = 0, 1, 2, 3, . . . , n, this gives

Smax =
n∑

i=1

f (ω̄i)�i =
n∑

i=1

f (xi)�i

=
n∑

i=1

2

(
i

n

)(
1

n

)
= 2

n2

n∑
i=1

i

Now, since

n∑
i=1

i = [1+ 2+ · · · + n] = n+ 1

2
n

it follows that

Smax =
(

2

n2

)(
n+ 1

2
n

)
= n2 + n

n2
= 1+ 1

n

Notice that, as expected, Smax > Smin. However, as the partition becomes
arbitrarily fine (i.e., as n→∞) the two values converge to the same limit:

lim
n→∞Smax = lim

n→∞Smin = 1

If this is the case, we say that the function is integrable and that this limit is the
area under the curve.

D e f in i t i o n 16 . 3 A function is said to be integrable on the closed interval [a, b] if for every ε > 0,
there is some value δ > 0 such that

∣∣∣∣∣
n∑

i=1

f (ωi)�i − L

∣∣∣∣∣< ε

for any partition on [a, b] such that max �i < δ (i.e., the length of the largest
subinterval of the partition is less than δ) and for any selection of points ωi ∈
[xi−1, xi]. We call this value the definite integral of f (x) over the interval [a, b]
and write

∫ b

a

f (x) dx = L
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Notice that for a function to be integrable on an interval [a, b] it must be the
case that as one takes finer and finer partitions of the interval [a, b], using any
set of points ωi within the subintervals, the Riemann sum must become arbitrarily
close (converge) to some value L. In our example, as n→∞, the choices of ωi

leading to either the largest possible or smallest possible values of S converge
to the same value. Thus the Riemann sum converges to this same value for any
arbitrary choice of ωi values.

In regards to the notation
∫ b

a
f (x) dx, the sign

∫
resembles the letter S and

implies a summation process, the value a is called the lower limit and b the upper
limit of the integral, referring to the end points of the interval [a, b], and dx refers
to the interval widths, �i , in the expression for S.

The method of finding the area under a curve using this technique is tedious,
as even the simple example above shows. However, as long as a function is con-
tinuous, we can apply the fundamental theorem of integral calculus, which is
presented below.

Theorem 16.1 (Fundamental theorem of integral calculus) If the function f (x) is continuous
on the closed interval [a, b] and if F(x) is any antiderivative (indefinite integral)
of f (x), then

∫ b

a

f (x) dx = F(b)− F(a)

where F(b) is the antiderivative of f (x) evaluated at the point x= b and F(a) is
the antiderivative of f (x) evaluated at the point x = a. The expression [F(b)−
F(a)] is often denoted by [F(x)]ba .

Notice in this theorem that we ignore the constant of integration since, if included,
it would in any case be subtracted out; that is, [F(b) + C] − [F(a)+C] =
F(b)− F(a).

For our example of finding the area under the curve f (x) = 2x over the
interval [0, 1], the fundamental theorem of integral calculus clearly “works.” That
is, since F(x) = x2 is an antiderivative of f (x) = 2x, we can compute the area
according to the expression

∫ 1

0
2x dx = F(1)− F(0) = 12 − 02 = 1
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More generally, for the interval [0, b] of this function, we get that

∫ b

0
2x dx = [x2]b0 = b2 − 02 = b2

This is clearly correct since the area defined by the interval [0, b] below the
curve f (x) = 2x is (1/2)× b × 2b = b2 (see figure 16.5).

f(x)

x

2b

b

f(x) = 2x

Area =   (b × 2b) = b21
2

Figure 16.5 Area under the curve
f (x) = 2x over the interval [0, b]

For functions that generate substantially more complicated geometric shapes
than that created by the function f (x) = 2x, the fundamental theorem of inte-
gral calculus is immensely useful. Consider the example mentioned earlier of the
function f (x) = (x3+ex)(3x2+ex). It would not be a simple matter to determine
the area between the points x = 0 and x = 1 under this curve using only one’s
knowledge of geometric shapes. However, the antiderivative of this function was
earlier shown to be

F(x) =
∫

(x3 + ex)(3x2 + ex) dx = (x3 + ex)2

2

and so the relevant area is

∫ 1

0
(x3 + ex)(3x2 + ex) dx =

[
(x3 + ex)2

2

]1

0

= (13 + e1)2

2
− (03 + e0)2

2

= (1+ e)2

2
− 1

2
.= 6.38 (using e

.= 2.71)

This result is illustrated in figure 16.6.

f(x)

x

21.2

f(x) = (x3 + ex)(3x2 + ex)

Area = 6.38

1

1

Figure 16.6 Area under the curve
f (x) = (x3 + ex)(3x2 + ex) over the
interval [0, 1]

Although at first glance it may seem to be a remarkable coincidence that the
area under a curve over some interval can be computed by simply subtracting
the values of the antiderivative of the function evaluated at the two end points of
the interval, one can gain an intuitive understanding of the fundamental theorem of
integral calculus using the economic relationship between stocks and flows, such
as the relationship between capital stock and net investment.

Let K(t) be the function that describes the level of capital stock at time t and
I (t) be the rate of net investment (i.e., gross investment less depreciation). Then
K(t +�t)−K(t) is the addition to capital stock that takes place over time period
[t, t +�t] and

K(t +�t)−K(t)

�t
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is the (average) rate at which capital stock changes over this time period. By
definition,

lim
�t→0

(
K(t +�t)−K(t)

�t

)
= dK

dt
= I (t)

where I (t) is the instantaneous rate of net investment at time period t . Thus,
since I (t) is the derivative of K(t), it follows that K(t) is the antiderivative of
I (t), meaning that K(t) = ∫

I (t) dt . Moreover the sum of net investments made
between two points in time represents the change in the level of capital stock
between these two points in time. Over the interval [a, b] we get

K(b)−K(a) =
n∑

i=1

I (ωi)�i =
∫ b

a

I (t) dt

where
∑n

i=1 I (ωi)�i is a Riemann sum taken over a fine partition (max �i → 0)

of the interval [a, b]. This general relationship is illustrated by figure 16.7 and the
following simple example.

Example 16.2 In this economic example we look at the relationship between net investment and
capital stock when the rate of net investment changes discretely over time.

I(t)

t

I(t)

Area = K(b) – K(a)

t = bt = a

Figure 16.7 The change in the
level of capital stock, K(t), between
time periods t = a and t = b; is the
area under the investment function
over the interval [a, b]

We consider a firm that, at the beginning of time period t = 1, has an initial
stock of capital valued at $10,000,000, and so we write K(1) = 10,000,000. For
simplicity we assume that capital does not depreciate and that the firm invests in
new capital at a constant rate of $1,500,000 per year for three years (so we write
I (t) = 1,500,000 for t = 1, 2, 3). The firm’s stock of capital at the end of three
years will then be its initial capital stock plus the sum of net investments made
over the three years. That is,

K(3) = K(1)+ I (1)+ I (2)+ I (3) = 10+ 1.5+ 1.5+ 1.5 = 14.5 mil

Rewriting this gives

K(3)−K(1) = I (1)+ I (2)+ I (3) =
3∑

t=1

I (t)

which is a Riemann sum with �i = 1 for each i. Note that in this example we can
use a partition with �i = 1 rather than choose a fine partition with the maximum
�i → 0 because the rate of investment is constant within each subinterval.

Example 16.3 In this economic example we look at the relationship between net investment and
capital stock when the rate of net investment changes continuously over time.
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Suppose that a firm begins at time t = 0 with a capital stock ofK(0)= $500,000
and, in addition to replacing any depreciated capital, is planning to invest in new
capital at the rate I (t) = 600t2 over the next ten years. The planned level of capital
stock ten years from now is computed according to

K(10) = K(0)+
∫ 10

0
I (t) dt = 500,000+

∫ 10

0
(600t2) dt

The indefinite integral for this function is 200t3 + C, implying that

∫ 10

0
(600t2) dt = [200t3]10

0 = 200(10)3 − 200(0)3 = 200,000

and so

K(10) = 500,000+ 200,000 = 700,000

is the planned level of capital stock at the end of ten years.

The examples above illustrate that the sum of net investment made by a firm
between two periods represents the increase in the firms capital stock. This result
illustrates the general mathematical relationship that

F(b)− F(a) =
∫ b

a

f (x) dx =
n∑

i=1

f (ωi)�i

where f (x) is a flow variable like investment and F(x) is the related stock variable
like capital (i.e., dF(x)/dx = f (x)). The following proposition provides a basis
for this general relationship. Its proof is left as an exercise (question 7) at the end
of this section.

Theorem 16.2 If f is a continuous function on the closed interval [a, b], then for any x ∈ [a, b]
the function F(x) defined by F(x) = ∫ x

a
f (t) dt is an antiderivative of f ; that

is, F ′(x) = f (x).

The relationship of this theorem to theorem 16.1 can be illustrated for the
simple example of f (t) = 2t . For this function we get, according to theorem 16.1,

F(x) =
∫ x

a

f (t) dt = F(x)− F(a) = x2 − a2
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Since a is a constant, F ′(x) = f (x), and so the definite integral with variable x

as upper limit does in fact generate an antiderivative of the integrand.
Strictly speaking, theorem 16.2 should precede theorem 16.1 and be used

to prove it. To see this, let x = b and x = a successively in theorem 16.2 to
get

F(b) =
∫ b

a

f (t) dt + C

and

F(a) =
∫ a

a

f (t) dt + C

The area under a curve over an interval of width zero is zero:

∫ a

a

f (t) dt = 0

As a result we get

F(b)− F(a) =
∫ b

a

f (t) dt + C − C

or

∫ b

a

f (t) dt = F(b)− F(a)

Besides explaining the fundamental theorem of integral calculus, theorem 16.2
can be usefully applied in some economic problems. Returning to the capital
stock/investment example, we get

K(t) =
∫ t

t0

I (x) dx with K ′(t) = I (t)

Therefore the rate of change in capital stock at time t is just the value of the
integrand (rate of investment) at time period t .
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E X E R C I S E S

1. The following computations are to be made for the function f (x) = 3x + 1
over the interval [0, 1].

(a) Use the formula for finding the area of a triangle and a rectangle to find
the area under the function f (x) = 3x + 1 over the interval [0, 1].

(b) Find Smin and Smax for the partition {[0, 1/3], [1/3, 2/3], [2/3, 1]}.
Compare to the area found in part (a). Illustrate with a graph of the
function.

(c) Find Smin and Smax for the partition

{[
0,

1

5

]
,

[
1

5
,

2

5

]
,

[
2

5
,

3

5

]
,

[
3

5
,

4

5

]
,

[
4

5
, 1

]}

Compare to the area found in part (a). Illustrate with a graph. Also
compare your answer to part (b).

(d) Find Smin and Smax for the partition

{[
0,

1

n

]
,

[
1

n
,

2

n

]
, . . . ,

[
n− 1

n
,
n

n

]}

Compare to the area found in part (a). What happens if you take the
limit as n→∞? Discuss in relation to definition 16.3.

2. Repeat parts (b) and (c) of exercise 1 for the function f (x) = x2.

3. Evaluate the following definite integrals. (Note: This exercise is taken from
exercise 1 of exercises 16.1.)

(a)
∫ 1

0
(x4 + 2x3 + 4x + 10) dx

(b)
∫ 8

0
x2/3 dx

(c)
∫ 0

−1
10ex dx

(d)
∫ 2

1
6xex2

dx

(e)
∫ 2

1

3x2 + 2

(x3 + 2x)
dx
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4. Evaluate the following definite integrals. (Note: This exercise is taken from
exercise 2 of exercises 16.1.)

(a)
∫ 5

2
(6x3 + 10x2 + 5) dx

(b)
∫ 64

0
(x1/2 + 5x−2/3) dx

(c)
∫ 1

−1
2ex dx

(d)
∫ 1

0
8x2ex3

dx

(e)
∫ 5

1

2x3 + 1

x4 + 2x
dx

5. Suppose that an economy’s net investment flow is I (t)= 10t1/2. Letting
K(0)=K0 represent the current stock of capital, use the definite integral
to find the level of capital five years from now.

6*. Suppose that an economy’s net investment flow is I (t)= atb. Letting K(1)=
K̄ represent the current stock of capital, find the function representing the
level of capital T years from now. Is it the case that if b < 1, K(T ) will be
finite? Discuss. In section 16.4 we study more formally integrals whose limits
are not finite.

7*. Prove theorem 16.2. (You will need to use property 1 from section 16.3.)

16.3 Properties of Integrals
In this section we will state some simple but useful properties of definite integrals.
We will generally avoid the qualifying term definite and just refer to the properties
of integrals. All of the properties presented here are fairly obvious if you think
of the definite integral as the area beneath a curve. Therefore we only provide
abbreviated proofs of the results.

For example, since
∫ c

a
f (x) dx = F(c) − F(a) is the area under the curve

f (x) between the points x = a and x = c, it follows that if x = b is some point
between a and c, then

∫ c

a
f (x) dx is equal to the area under f (x) between the

points a and b,
∫ b

a
f (x) dx, plus the area between the points b and c,

∫ c

b
f (x) dx.

This property is summarized below and illustrated in figure 16.8.

x

f(x)

ca b

f(x)dx

∫ c

b

f(x)dx

∫ b

a

f(x)

Figure 16.8 Illustration of
property 1
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Property 1 If a, b, and c are points in R such that a < b < c, then∫ c

a

f (x) dx =
∫ b

a

f (x) dx +
∫ c

b

f (x) dx

The proof of property 1 is trivial as the left side of the equation, which is equal to
F(c) − F(a), is clearly equal to the right side of the equation [F(b) − F(a)] +
[F(c)− F(b)] = F(c)− F(a).

Property 2

∫ a

a

f (x) dx ≡ lim
c→a

∫ c

a

f (x) dx = 0

Property 2, that
∫ a

a
f (x) dx = 0, is also obvious from the notion of areas. It

can be derived formally by considering what happens when taking the limit of the
integral

∫ c

a
f (x) dx as the point c approaches the point a:

lim
c→a

∫ c

a

f (x) dx = lim
c→a

[F(c)− F(a)] = F(a)− F(a) = 0
x–3 –2 –1 0 1 2 3

– direction + direction

Figure 16.9 Illustration of
property 3

When first learning about negative and positive numbers we are generally told
that, for example, the negative number −2 is the same distance from the origin
as is the positive number +2 except one moves in the opposite direction (← for
negative numbers), as illustrated in figure 16.9. If we integrate a function f (x)

from point c to a, rather than a to c, then we measure the same area but do so in
the opposite direction. This provides us with the intuition underlying property 3.

Property 3 Reversing the direction of integration changes the sign of the integral. That is,

∫ a

c

f (x) dx = −
∫ c

a

f (x) dx

This property is also easy to prove, since

∫ a

c

f (x) dx = F(a)− F(c) = −[F(c)− F(a)] = −
∫ c

a

f (x) dx
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Up to now we have been treating the integral
∫ c

a
f (x) dx as the area beneath

the curve f (x) and, implicitly, above the horizontal or x-axis. However, if a func-
tion f (x) is negatively valued on the interval [a, c], then the integral

∫ c

a
f (x) dx

refers to the area above the curve f (x) and below the x-axis. In general then,
we say that the integral

∫ c

a
f (x) dx is the area between the function f (x) and

the x-axis over the interval [a, c]. Any area beneath the x-axis is measured as a
negative value. This is clear from the following example, which is illustrated in
figure 16.10.

∫ 2

0
(−2x − 1) dx = [−x2 − x]2

0 = [−4− 2]− [0− 0] = −6

f(x)

2

x

–5

–1

31

(–2x – 1)dx = –6
∫ 2

0

f(x) = –2x – 1

Area = 2

Area = 4

Figure 16.10 Illustration of property 4

Property 4 If a function f (x) is negatively valued on the interval [a, c], a < c, then
∫ c

a
f (x)

dx < 0 where |∫ c

a
f (x) dx| is the area of the region between the curve, f (x),

and the x-axis between the points a and c.
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As an economic application of property 4, consider the following scenario of
a firm’s net investment over a period from t = a to t = c, c > a. Suppose that
there is positive net investment [I (t) > 0] during some subintervals of time and
negative net investment [I (t) < 0] over other subintervals of time as indicated in
figure 16.11. Overall net investment (�I) over the interval t = a to t = c is the
sum of the positive areas less the sum of the negative areas as indicated below.

�I = A1 − A2 + A3 − A4 + A5

The equivalent integral statement is∫ c

a

I (t) dt =
∫ b1

a

I (t) dt +
∫ b2

b1

I (t) dt

+
∫ b3

b2

I (t) dt +
∫ b4

b3

I (t) dt +
∫ c

b4

I (t) dt

I(t)

t

I(t)dt = A1 – A2 + A3 – A4 + A5 
∫ c

a

I(t)

cb4b3b2b1a

A1

A2

A3

A4

A5

Figure 16.11 To compute the integral of a function that alternates between positive
and negative values, add the areas formed above the horizontal axis and then subtract
those areas formed below the horizontal axis

Consumer and Producer Surplus Measures

Measuring the impact that a change in the economic environment has on producers
and consumers is an important exercise in microeconomics. The change under
consideration may be a price change or a change in costs owing to technological
innovation or government policy. We will consider a single price change, or the
elimination of a product’s availability altogether.

If the price of a product were to rise, then the producers of this product would
be better off, while consumers would be worse off. Producer surplus and consumer
surplus, respectively, are measures of these impacts. We first define mathematically
and then explain intuitively the concept of producer surplus.
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D e f in i t i o n 16 . 4 Let MC(q), q ∈ R+ be a continuous marginal-cost function for a firm producing
output level q, and let p = p0 be the price of its product. If q = q0 is the profit-
maximizing output level for this firm (i.e., q0 is determined by p0 = MC(q0)),
then its producer surplus, PS, is

PS = p0q0 −
∫ q0

0
MC(q) dq

provided that this value is nonnegative.

$

q

p0

MC(q)

q0

PS

Figure 16.12 Producer surplus
(PS) for a firm at price = p0

Since the marginal-cost function is the derivative of the total variable cost
function, TVC(q), it follows that

∫ q0

0
MC(q) dq = TVC(q0)− TVC(0) = TVC(q0)

and so PS is simply total revenue less total-variable cost. That is, PS equals profit
without accounting for fixed costs. The qualification that PS is nonnegative is
included because if PS were negative, then the firm could choose to shut down
(q0 = 0) and receive zero producer surplus. Diagrammatically PS is illustrated
in figure 16.12, where we see that PS equals the area below price and above the
marginal-cost curve on the interval [0, q0].

$

q

p0

MC(q)

q0

∆PS
p

q

→

Figure 16.13 Change in producer
surplus resulting from the price
change p0 to p̂

If price were to increase to p = p̂, then the PS would also increase to

p̂q̂ −
∫ q̂

0
MC(q) dq

where q̂ is determined by the relationship p̂ = MC(q̂). The change in producer
surplus resulting from the price increasing from p0 to p̂ is illustrated in figure 16.13
as �PS (p : p0 → p̂).

Rather than working through the expressions for PS at each price p0 and p̂ to
compute �PS, it is simpler to note from figure 16.13 that �PS is the area to the
left of the MC(q) curve from p = p0 to p = p̂. If we were to find the inverse of
the marginal-cost function

q = MC−1(p)

we could write this as the following definite integral:

�PS(p : p0 → p̂) =
∫ p̂

p0

MC−1(p) dp
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These relationships are illustrated by the next example:

Example 16.4 For a profit-maximizing firm with marginal-cost function MC(q) = 2q + 1, find

(i) PS at price p0 = 10
(ii) PS at price p̂ = 15

(iii) �PS from the price change (p : 10→ 15)

Solution

(i) At p0 = 10, MC(q0) = p0 implies that q0 = 4.5, and so

PS(p0 = 10) = (10)(4.5)−
∫ 4.5

0
(2q + 1) dq

= 45− [q2 + q]4.5
0

= 45− 24.75 = 20.25

This corresponds to the area indicated in figure 16.14 (a).

$

q

MC = 2q + 1

PS = 20.25

1 2 3 4 5 6
4.5

→

2

4

6

8

10

12

14

16

$

q

MC = 2q + 1
PS = 49

1 2 3 4 5 6 7 8

2

4

6

8

10

12

14

16

p = 15

(a) (b)

Figure 16.14 Computation of producer surplus at prices p = 10 and p = 15
(example 16.4)
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(ii) At p̂ = 15 equation MC(q̂) = p̂ implies that q̂ = 7, and so

PS(p̂ = 15) = (15)(7)−
∫ 7

0
(2q + 1) dq

= 105− [q2 + q]7
0

= 105− 56 = 49

This corresponds to the area indicated in figure 16.14 (b).
(iii) From (i) and (ii) we see that the impact of the price changing from 10 to 15

is an increase in PS of amount 49−20.25 = 28.75. Alternatively, noting that
the inverse function of MC(q) = 2q + 1 is

MC−1(p) = p

2
− 1

2

we can compute the change in PS according to the formula

�PS =
∫ p̂

p0

MC−1(p) dp

=
∫ 15

10

(
p

2
− 1

2

)
dp

=
[
p2

4
− p

2

]15

10

=
(

152

4
− 15

2

)
−

(
102

4
− 10

2

)
= 28.75

We can see from figure 16.15 (a) that area ABCD measures the �PS
for this example. Since this is the area to the left of the MC curve between
vertical points p = 10 and p = 15, it is equivalent to the area below the
inverse of the MC curve between these two prices, which is the area abcd in
figure 16.15 (b).

Suppose in example 16.4 the price had changed from an initial value of p̂ = 15
to a new, lower price of p0 = 10. We would then write (see property 3 of integrals)

�PS =
∫ 10

15
MC−1(p) dp = −

∫ 15

10
MC−1(p) dp

and so obtain a negative value (−28.75) for the change in producer surplus. This
reflects the outcome that a lower price reduces the surplus of the firm. As a final
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q

MC = 2q + 1
∆PS = Area ABCD

4.5 7

10

15

q

p

q = 0.5q – 0.5

10 15

4.5

7

(a) (b)

p 

A B 

D C 

–0.5

∆PS = Area abcd

b 

a d 

c 

Figure 16.15 Two methods of computing the change in producer surplus. In (b) the
inverse marginal-cost function is used (example 16.4 (c))

note, if a shutdown or start-up decision is not involved when price changes, then
the change in producer surplus is equivalent to a change in the firm’s profit.

We turn now to consumer surplus. Since a consumer’s objective is to purchase
that bundle of affordable goods that she most desires, it is not so obvious as in the
case of the firm how one ought to measure the benefit of a given price change.
Of the various possible measures, consumer surplus is the simplest one used by
economists. We give the definition below and provide detailed examples in the
supplementary material of the Web page http://mitpress.mit.edu/math econ3.

D e f in i t i o n 16 . 5 Let p=D−1(q), q ∈R+, be a continuous, inverse-demand function for some con-
sumer, and let p=p0 be the price of the good purchased. If q = q0 is the cor-
responding amount of this good purchased (i.e., q0 satisfies p0 = D−1(q0)), then
the consumer’s surplus, CS, from the availability of this good (at price p0) is

CS =
∫ q0

0
D−1(q) dq − p0q0

provided this value is nonnegative.
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E X E R C I S E S

1. For a profit-maximizing, perfectly competitive, firm with marginal-cost func-
tion MC(q) = q2 + 3, find the following. Illustrate your results on a graph.

(a) PS at price p0 = 7

(b) PS at price p̂ = 12

(c) �PS resulting from the price change p0 = 7 to p̂ = 12

2. For a profit-maximizing, perfectly competitive, firm with a marginal-cost
function MC(q) = 3q2 + 4q + 2, find:

(a) PS at price p0 = 9

(b) PS at price p̂ = 41

(c) �PS resulting from the price change p0 = 9 to p̂ = 41

Illustrate your results on a graph.

3. For a consumer with demand function q = 10 − 2p1/2, find the following.
Illustrate your results on a graph.

(a) CS at price p0 = 1

(b) CS at price p̂ = 4

(c) �CS resulting from the price change p0 = 1 to p̂ = 4

4. For a consumer with demand function q = 5− p1/3, find:

(a) CS at price p0 = 1

(b) CS at price p̂ = 27

(c) �CS resulting from the price change p0 = 1 to p̂ = 27

Illustrate your results on a graph.

16.4 Improper Integrals
Improper integrals are of two types. The first type we consider involves definite
integrals that are computed over an infinite interval of integration, namely for which
the lower limit approaches −∞, or the upper limit approaches +∞, or both. The
other type involves integrals of functions that are discontinuous at some point(s)
of the interval.

The following definitions apply to improper integrals of the first type where
one or other of the limits of integration is +∞ or −∞ (or both).
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D e f in i t i o n 16 . 6 ∫ +∞
a

f (x) dx = lim
c→+∞

∫ c

a

f (x) dx

if this limit exists.

D e f in i t i o n 16 . 7 ∫ c

−∞
f (x) dx = lim

a→−∞

∫ c

a

f (x) dx

if this limit exists.

D e f in i t i o n 16 . 8 ∫ +∞
−∞

f (x) dx = lim
a→−∞

∫ 0

a

f (x) dx + lim
c→+∞

∫ c

0
f (x) dx

if this limit exists.

There are many instances in economics where we must compute improper
integrals. Consider, for example, the problem of computing consumer surplus
measures for the case of constant elasticity of demand. Recall that this demand
curve can be written as

q = ap−ε, a, ε > 0

or, in terms of the inverse demand function

p =
(

q

a

)−1/ε

where ε is the own price elasticity of demand. The graph of this demand curve
illustrates that it never cuts the p or q axis (see figure 16.16). This means that the
consumer surplus received at price p = p0 is

CS =
∫ ∞

p0

(ap−ε) dp
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p

q

D

 p = (q/a)–1/ε

D

CS

p0

q0
(a)

q

p

D

 q = ap–ε

D

CSq0

p0
(b)

Figure 16.16 Consumer surplus for the demand function q = ap−ε

which is an improper integral of the type identified in definition 16.6. We can use
this to obtain

CS =
∫ ∞

p0

(ap−ε) dp

= lim
p̂→∞

∫ p̂

p0

(ap−ε) dp

= lim
p̂→∞

[
a

1− ε
p1−ε

]p̂

p0

= a

1− ε

[
lim

p̂→∞
p̂1−ε − p1−ε

0

]
(16.1)

The limit in equation (16.1) is well defined and converges if and only if ε > 1.
That is, the consumer surplus has a finite value for the constant elasticity demand
function only if the size of the elasticity of demand is greater than 1.

Example 16.5 For the demand function q = 50p−2, find the consumer surplus if p = 10.

Solution

CS =
∫ ∞

10
50p−2 dp

= lim
p̂→∞

∫ p̂

10
50p−2 dp

= lim
p̂→∞
−50[p̂−1 − 10−1]
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= −50

[
lim

p̂→∞
1

p̂
− 1

10

]

= −50

[
0− 1

10

]
= 5

(see figure 16.17).

p

q

D

 p = (50/q)1/2

D

CS = 5

p = 10

q = 
(a)

q

p

D

 q = 50p–2

D

(b)
1
2

q = 1
2

p = 10

CS = 5

Figure 16.17 Consumer surplus for the demand function q = 50p−2 at price p = 10
(example 16.5)

Example 16.6 For the demand function q = 20p−1, find the expression for computing the con-
sumer surplus at p = 2. What difficulty arises in trying to compute this value?

Solution

CS =
∫ ∞

2

20

p
dp

= lim
p̂→∞

∫ p̂

2

20

p
dp

= lim
p̂→∞

20[ln p̂ − ln 2]

The difficulty in trying to compute this value is that limp̂→∞ ln p̂ is not a finite
value (see figure 16.18).
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p

q

D

 p = 20q–1

D

The area is not finitely 
valued, as p → ∞ 
    (and q → 0).

10
(a)

q

p

D

 q = 20p–1

D

(b)

2

10

2

The area is not finitely 
valued, as p → ∞ 
               (and q → 0).

Figure 16.18 The consumer surplus for the demand function q = 20p−1 at price
p = 2 cannot be computed as it is not finitely valued (example 16.6)

Examples 16.5 and 16.6 illustrate that the value of the integral of a positively
valued function over an interval of infinite length may or may not be finitely valued.
It may seem impossible that the area of a figure with a positive (nonzero) distance in
one dimension and an “infinite” distance in the other dimension could have a finite
area. However, the intuition underlying this possible result can be understood by
reconsidering some results from chapter 3 on series, where we saw that an infinite
sum of positive numbers may or may not be finite in value. For example, we
discovered that the infinite harmonic series is definitely divergent. That is,

lim
N→∞

N∑
n=1

1

n
= 1+ 1

2
+ 1

3
+ · · · = ∞ (16.2)

while the infinite geometric series is convergent (provided |r| < 1); that is,

lim
N→∞

N∑
n=1

arn−1 = a + ar + ar2 + · · · = a

1− r
, |r| < 1 (16.3)

In each of these examples the terms of the sequence that make up the series,
written an = f (n), represent a function with domain being the positive natural
numbers. We can generate analogous results for functions defined on R by using
the integral. For the two examples above we use functions f (x) = 1/x, x ≥ 1, x ∈
R++ and f (x) = arx−1, x ≥ 1, x ∈ R++, which at the values x = 1, 2, 3, . . . take
on the same values as the functions representing the terms of the series in equations
(16.2) and (16.3) respectively. The integrals in equations (16.4) and (16.5) are
analogues to the sums for these two series. Related to the harmonic series we have

lim
c→+∞

∫ c

1

1

x
dx = lim

c→+∞[ln(x)]c1 = lim
c→+∞[ln(c)− ln(1)] = +∞ (16.4)
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and related to the geometric series, for |r |< 1, we have

lim
c→+∞

∫ c

1
(arx−1) dx = lim

c→+∞

[
arx−1

ln(r)

]c

1

= lim
c→+∞

1

ln(r)
[arc−1 − a]

= − a

ln(r)
(16.5)

So, just as for an infinite series, a definite integral defined over an infinite interval
may either converge or diverge.

The other sort of improper integral involves computing the integral over an
interval [a, c] when the integrand, f (x), is not continuous at some point(s) in this
interval. For example, consider the function f (x) = 1/x on the interval [0, 1]. This
function is not continuous at x = 0 as 1/0 is not defined, and moreover the right-
hand limit x → 0+ of the function does not exist; that is, limx→0+ 1/x = +∞. It is
natural to ask whether the area indicated in figure 16.19 (b) is finite. Suppose that
we evaluate the integral of f (x) over the interval [0 + ε, 1], ε > 0 and compute∫ 1

0+ε
(1/x) dx in the limit as ε → 0. If the value of this integral is not finite, we say

the integral, or area, does not exist. This turns out to be the case for this example,
as illustrated below:

lim
ε→0+

∫ 1

0+ε

(
1

x

)
dx = lim

ε→0+
[ln(x)]1

ε

= lim
ε→0+

[ln(1)− ln(ε)] = 0− (−∞) = +∞

If we perform the same exercise with the function f (x) = 1/
√

x = 1/x1/2,
we find that the integral over the same interval does converge as x→ 0+ even
though 1/

√
x →+∞. This is illustrated by the result

lim
ε→0+

∫ 1

0+ε

(
1

x1/2

)
dx = lim

ε→0+
[2x1/2]1

ε

= lim
ε→0+

[2− 2ε1/2] = 2− 0 = 2

In this case we say that the area beneath the function f (x) = 1/
√

x from x = 0
to x = 1 is finite, as is indicated in figure 16.19.
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f(x) = 1/x1/2

x

Area = 2 in lim x → 0+

3
(a)

21

f(x)

f(x) = 1/x

x

This area is not 
finitely valued.

3
(b)

21

f(x)

Figure 16.19 Illustration that
∫ 1

0 1/x dx is not finitely valued while
∫ 1

0 1/
√

x dx is
finitely valued

Present Value of an Infinite Stream of Payments under Continuous
Discounting

In section 3.3 we derived the result that, if interest is compounded continuously
over time, then the present value of $b received at the end of t years’ time is

PV t = be−rt (16.6)

where r is the annual rate of interest. If a series of payments of $b per year are
made at the end of each year indefinitely, then the present value of this stream is

lim
T→∞

T∑
t=1

be−rt (16.7)

Now, if the annual payments are spread out uniformly over the year, rather than
being made as a single annual lump sum, then the present value of the stream of
payments is

PVB = lim
T→∞

∫ T

0
be−rt dt

= lim
T→∞

b

[
e−rt

−r

]T

0

= b lim
T→∞

[−e−rT

−r
− e−r0

−r

]
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= b

[
0+ 1

r

]

= b

r
(16.8)

Notice that the area of the rectangles below the curve be−rt in figure 16.20 illus-
trates the sum of values for the case of lump-sum payments made at the end of each
year, equation (16.7), while the area under the curve represents the value of the
stream of payments when payments are made continuously throughout the year,
equation (16.8). The latter value is higher because the recipient does not have to
wait until the end of the year to obtain the funds.

$

be–rt

t1

b

R1

2 3 4 5

R2 R3
R4 R5 . . .

= entire area under the curve
   be–rt from t = 0 to t = ∞

lim
T→∞

T∑
t=1

be rt = R1 + R2 + R3 + · · ·

lim
T→∞

∫ T

0
be rt

Figure 16.20 Comparison of present value of an infinite stream of payments if
received at the end of each year or spread uniformly over each year

Example 16.7 Find the present value of the infinite stream of payments of amount $1,000 per
year if the annual interest rate is r = 0.04 (4%) and the yearly payments are spread
evenly throughout the year.

Solution

To compute this value, use equation (16.8), with b = $1,000 and r = 0.04, to give

PVB = b

r
= $1,000

0.04
= $25,000
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The following definitions handle all possible cases for defining an improper integral
when there is a single point of discontinuity within the interval of integration [a, c].
The first two cases handle discontinuities at endpoints of [a, c], while the third
covers the possibility of a discontinuity at an interior point of [a, c]. If there were
more than one point of discontinuity over [a, c], then one could use property 1
of integrals (see section 16.3) and apply these definitions iteratively to cover any
finite number of discontinuities.

D e f in i t i o n 16 . 9 If f (x) is continuous at every point in [a, c] except the endpoint x = a, then we
can say that f (x) is continuous on (a, c] and that

∫ c

a

f (x) dx = lim
ε→0+

∫ c

a+ε

f (x) dx

if the limit exists.

D e f in i t i o n 16 . 10 If f (x) is continuous at every point in [a, c] except the endpoint x = c, then we
can say that f (x) is continuous on [a, c) and that

∫ c

a

f (x) dx = lim
∈→0+

∫ c−ε

a

f (x) dx

if the limit exists.

D e f in i t i o n 16 . 11 If f (x) is continuous at every point in [a, c] except an interior point x = b, a <

b < c, then we can say that f (x) is continuous on [a, b) and (b, c] and that

∫ c

a

f (x) dx = lim
ε→0+

∫ b−ε

a

f (x) dx + lim
δ→0+

∫ c

b+δ

f (x) dx

if the limit exists.

Example 16.8 For the demand function q = 5p−1/2 − 1, find the increase in consumer surplus
that would arise if the price fell from p = 4 to p = 0, that is, if it becomes a
free good.
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Solution

Since q→∞ as p→ 0, we must write the change in consumer surplus as the
improper integral

�CS = lim
p̂→0

∫ 4

p̂

[5p−1/2 − 1] dp

= lim
p̂→0

[10p1/2 − p]4
p̂

= [10(2)− 4]− [
lim
p̂→0

(10p1/2)− lim
p̂→0

p̂
] = 16

See figure 16.21.

q

p

D

254

 q = 5p–1/2 – 1

D

 ∆CS

Figure 16.21 Change in
consumer surplus resulting from a
change in price from p = 4 to p = 0
(free good) (example 16.8)

E X E R C I S E S

1. For the demand function q = 30p−2, find the consumer surplus at price p = 2.

2. For the demand function q = 10p−1/2, find the expression for the value of
consumer surplus at price p = 4. What difficulty arises in trying to compute
this value?

3. For the following demand functions, find the expression for the value of the
increase in consumer surplus that would arise if the price fell from p = 1 to
p = 0 (i.e., the good becomes available free of charge). If the value cannot
be computed, explain why that is so.

(a) q = 10p−1/3

(b) q = 25p−2

4. Consider the demand function q =Ap−ε , where A > 0 and ε > 0 are param-
eters.

(a) For some price p0 > 0, find the expression for consumer surplus. Under
what condition on ε will this value exist (i.e., have a finite value)?

(b) Suppose that the price falls from p = p0 to p = 0. Find the expression
for the change in consumer surplus. Under what condition on ε will this
value exist?

(c) How do your answers relate to exercises 1 through 3?

5. Find the present value of the infinite stream of payments of amount $500 per
year if the annual interest rate is r = 0.02 (2%) and the yearly payments are
spread evenly over the year.
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16.5 Techniques of Integration
In this section we present two common techniques of integration that greatly
expand the set of integrals that can be evaluated. The first technique follows directly
from the chain rule of differentiation.

Consider a function F(u), where u is in turn a function of variable x, and so
we write u = g(x). Let f (u) ≡ dF(u)/du, so that F(u) is the antiderivative of
f (u). The chain rule of differentiation implies that

dF(u)

dx
= dF(u)

du

du

dx
= f (u)

du

dx
= f (u)g′(x)

Integrating over this expression gives us the chain rule of antidifferentiation or, as
it is more commonly called, the substitution rule of integration.

The Substitution Rule of Integration

IfF(u) is the antiderivative off (u), namelydF(u)/du = f (u) andu = g(x), then

∫
f (u)

du

dx
dx or

∫
f (g(x))g′(x) dx = F(u)+ C

This rule is useful when the integrand can be decomposed into two (mul-
tiplicative) parts where one part is the derivative of the other. For example, the
integrand in the expression ∫

(x3 + ex)(3x2 + ex) dx

can be decomposed into two multiplicative parts with the second being the deriva-
tive of the first:

d(x3 + ex)

dx
= 3x2 + ex

Therefore, letting u = x3 + ex allows us to write the integral in the form

∫
f (u)

du

dx
dx = F(u)+ C

where f (u) = u, and so F(u) is simply u2/2. Substituting back for u gives us the
result that

∫
(x3 + ex)(3x2 + ex) dx = (x3 + ex)2

2
+ C
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A more general type of application of this technique is illustrated by changing
the example slightly as follows:

Example 16.9 Find the following integral:∫
(x3 + ex)n(3x2 + ex) dx

Solution

In this case, the variable u [or function g(x)] appears in a format in which it is
the argument of a function that is easy to differentiate. Here we make the same
substitution u = x3 + ex and note that the expression for

∫
f (u)(du/dx) dx has

f (u) = un, and so F(u) = un+1/n+ 1. It follows that

∫
(x3 + ex)n(3x2 + ex) dx = (x3 + ex)n+1

n+ 1
+ C

As seen by the examples above, the trick to successfully applying the substitution
rule is to pick out one part of the integrand that is the derivative of another part.
However, to be useful it must also be the case that it is easy to find the antiderivative
of that part of the integrand which is a function of u = g(x). In the examples
presented above f (u) is a polynomial, a function for which it is easy to find the
antiderivative.

The second technique we present in this section is that of integration by
parts. This method can be seen to follow from the product rule of differentiation
or, equivalently, the product rule of total differentials. Consider the functions u =
f (x) and v = g(x). It follows that

d(uv) = u dv + v du

Thus integrating this expression on both sides gives∫
d(uv) =

∫
u dv +

∫
v du

which implies that

uv =
∫

u dv +
∫

v du
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or ∫
v du = uv −

∫
u dv

Noting that du= f ′(x) dx and dv= g′(x) dx, we can also write this expression as∫
g(x)f ′(x) dx = f (x)g(x)−

∫
f (x)g′(x) dx

Integration by Parts

Suppose that we have continuous functions u = f (x) and v = g(x). It follows
that ∫

v du = uv −
∫

u dv

or ∫
g(x)f ′(x) dx = f (x)g(x)−

∫
f (x)g′(x) dx

This technique is useful when faced with an expression that is difficult to
integrate but that can be broken up into two (multiplicative) parts, one part for
which it is easy to find the integral [f ′(x) to f (x)] and a second part [g(x)]
that, when differentiated and then multiplied by f (x), generates an expression
[f (x)g′(x)] that turns out to be easy to integrate. At first glance this may seem a
rather convoluted process. However, with some practice it becomes a reasonably
straightforward exercise and one that turns out to have many useful applications.

Consider, for example, the problem of finding∫
xex dx

Since dex/dx = ex , the derivative or antiderivative of ex is simply ex . Thus the
complication in this problem arises from the presence of the variable x. However,
since dx/dx= 1, if we choose v= x (⇔ dv= dx) and du= ex dx (which implies
that du/dx = ex and hence u = ex), we can use the formula for integration
by parts to rewrite the problem in a way that avoids having x and ex multiplied
together. That is, by making these substitutions we get∫

(x)(ex) dx = exx −
∫

(ex) dx = ex(x − 1)+ C
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Below we check to make sure the derivative of the result, d[ex(x − 1)+ C]/dx,
is indeed the original integrand, xex :

d[ex(x − 1)+ C]

dx
= dex

dx
(x − 1)+ d(x − 1)

dx
ex + dC

dx

= ex(x − 1)+ ex + 0

= xex

It is generally a good idea to make such a check whenever doing any integration
exercise.

Example 16.10 Find the integral ∫
10xe2x dx

Solution

Letting v = 10x and du = e2x dx gives dv = 10 dx and u = e2x/2. Using the
formula for integration by parts gives

∫
10xe2x dx =

(
e2x

2

)
10x −

∫
e2x

2
10 dx

= 5xe2x − 5
∫

e2x dx

= 5xe2x − 5

2
e2x + C

= e2x

(
5x − 5

2

)
+ C

Integrals Depending on a Parameter

It is also useful to know how to differentiate with respect to some parameter that
affects either the limits of an integral or the integrand. The economic applications
of these techniques are primarily in the field of dynamic analysis (see chapter 25),
and it is traditional to use the variable t , which represents time, as the variable of
integration. We will use x as the parameter which may affect either the integrand
or the limits of integration.

First, consider the case in which only the upper limit of an integral, U , depends
on the parameter, x, which we will write as F(x) = ∫ U(x)

a
f (t) dt . By using the

result of theorem 16.2 and the chain rule for differentiation, we obtain the result
that
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F ′(x) = ∂F

∂U
· ∂U

∂x
= f (U) · ∂U

∂x

Recall the intuition from theorem 16.2. That part of the above result giving
∂F/∂U = f (U) implies that a marginal increase in the value of the upper limit
increases the area under the curve described by f (t) at a rate that equals the height
of the curve at that point, which is simply f (U). Similarly, if the lower limit de-
pends on the parameter x, writing this as L(x), then a marginal increase in L of
one unit decreases the area under the curve between the two limits of integration
by the amount f (L). Therefore it follows that if F(x) = ∫ b

L(x)
f (t) dt , then

F ′(x) = ∂F

∂L
· ∂L

∂x
= −f (L) · ∂L

∂x

where the minus sign indicates that the area is reduced by an increase in L (or is
increased by a decrease in L).

Now suppose that it is the integrand that depends on the parameter x, which
we write as F(x) = ∫ b

a
f (t, x) dt . The following result is often referred to as

Leibniz’s rule:

F ′(x) =
∫ b

a

∂f (t, x)

∂x
dt

We do not provide a formal proof for this result, but the intuition is clear. The
expression on the right-hand side of the equality essentially measures the change
in the area under the curve f (t, x) created by changing the value of the parameter
x by some small marginal unit. The rate of change, F ′(x), is found by integrating
over the rate of change in f (t, x) with respect to a change in x between the limits
of integration.

We can summarize these three results for the case where F(x) depends on
the parameter x as a result of both limits of integration depending on x and the
integrand depending on x; namely F(x) = ∫ U(x)

L(x)
f (t, x) dt . This gives us the result

F ′(x) = −f (L, x) · ∂L

∂x
+ f (U, x) · ∂U

∂x
+

∫ U

L

∂f (t, x)

∂x
dt

A further generalization of this result is that if the integrand depends on a pa-
rameter z, which in turn depends on the parameter x, then we can write F(x) =∫ U(x)

L(x)
f (t, z(x)) dt , and applying the chain rule of differentiation, we obtain

F ′(x) = −f (L, z) · ∂L

∂x
+ f (U, z) · ∂U

∂x
+

∫ U

L

∂f (t, z)

∂z

∂z

∂x
dt
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E X E R C I S E S

1. Use the substitution rule to evaluate the following integrals:

(a)
∫

(x3 + 5x)10(3x2 + 5) dx

(b)
∫ (

ex2 + 4x
)(

2xex2 + 4
)
dx

(c)
∫

2(ex + 3x2)(ex + 6x) dx

(d)
∫

2x

(x2 + 2)10
dx

(e)
∫

6x2 + 8

(x3 + 4x)2
dx

2. Use the substitution rule to evaluate the following integrals:

(a)
∫

(6x3 + 3x2 + 8x + 2)3(18x2 + 6x + 8) dx

(b)
∫ (

e4x3 + x2
)(

12x2e4x3 + 2x
)
dx

(c)
∫

(4ex + 2x2)(ex + x) dx

(d)
∫

12x + 2

(6x2 + 2x)3
dx

(e)
∫

15x2 + 6x + 2

(10x3 + 6x2 + 4x + 11)2
dx

3. Use the technique of integration by parts to evaluate the following integrals:

(a)
∫

x2ex dx

[Hint: There are two stages to this problem. For the first stage set v = x2,
and du = ex dx. Use integration by parts again on the result obtained
from the first stage.]

(b)
∫

x3

√
1+ x2

dx

(c)
∫

x ln x dx
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4. Use the technique of integration by parts to evaluate the following integrals:

(a)
∫

x3ex dx

(b)
∫

x√
1+ x

dx

(c)
∫

ln x dx

[Hint: Set u = x and v = ln x (⇒ dv = (1/x) dx)]

C H A P T E R R E V I E W
Key Concepts antidifferentiation

constant of integration
definite integral
flow variable
fundamental theorem of integral

calculus
improper integrals
indefinite integral
integrable
integrand

integration
integration by parts
lower sum
partition
producer surplus
Riemann sum
stock variable
substitution rule of integration
upper sum

Review Questions 1. Explain, using functional notation, the statement “antidifferentiation is the
inverse operation of differentiation” and provide a specific example.

2. What is the difference between an indefinite integral and a definite integral?

3. What is the constant of integration?

4. Why do we ignore the constant of integration when computing a definite
integral?

5. How do the processes of differentiation and antidifferentiation (or integra-
tion) relate to the distinction between a stock and flow variable in an economic
model?

6. What is a partition of an interval?

7. Describe the relationship among the concepts Reimann sum, lower sum,
upper sum, and the definite integral of a function f (x) on the interval
[a, b].

8. What does it mean for a function to be integrable on a closed interval?
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9. Explain, using notation and a graph, the usefulness of the fundamental
theorem of integral calculus.

10. What are the various types of improper integrals?

11. Explain how the substitution rule of integration relates to the chain rule of
differentiation.

12. Explain how the method of integration by parts relates to the product rule of
differentiation.

Review Exercises 1. Evaluate the following integrals:

(a)
∫

x2 dx

(b)
∫

(2x3 + 5x2 + x + 5) dx

(c)
∫ (

n∑
i=0

aix
i

)
dx =

∫ (
a0 + a1x + a2x

2 + · · · + anx
n
)
dx

2. Evaluate the following integrals:

(a) F(x) =
∫

e2x dx, F (0) = 1/2

(b) F(x) =
∫

3x2 + 2

x3 + 2x + 1
dx, F (0) = 0

(c) F(x) =
∫

x2 dx, F (0) = 3

3. If MPL = 5L1/3 is a firm’s marginal-product function, where L is the single
input labor and output is zero when L = 0, find the production function for
the firm.

4. Suppose that a firm begins at time t = 1 with a capital stock of K(1) =
200,000 and, in addition to replacing any depreciated capital, is planning to
invest in new capital at the rate I (t) = 50,000t−3/2 for the forseeable future.
Find the planned level of capital stock T years from now. Will this firm’s
capital stock grow without bound as T →∞? Explain using a graph.

5. For a profit-maximizing firm with a marginal-cost function MC(q) = q3/2+
6, find:

(a) PS (producer surplus) at price p0 = 7
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(b) PS at price p̂ = 70

(c) �PS resulting from the price change p0 = 7 to p̂ = 70.

Illustrate your results with a graph.

6. For a consumer with demand function q = 100− 5p1/2, find:

(a) CS (consumer surplus) at price p0 = 9

(b) CS at price p̂ = 4

(c) �CS resulting from the price change p0 = 9 to p̂ = 4

Illustrate your results with a graph.

7. For the demand function q = 12p−3, find the consumer surplus if p = 1.
Illustrate your result with a graph.

8. Use the technique of integration by parts to find the integral∫
(2+ x)ex dx

9. Use the substitution rule to find the integral∫
(x3 + 4x2 + 3)4(3x2 + 8x) dx

10. For each scenario below find the present value of an infinite stream of pay-
ments of amount $2,000 per year if the annual interest rate is r = 0.05 (i.e.,
5%). For each scenario, assume that interest is compounded continuously.

Scenario A: The yearly payments are spread evenly throughout the year.
Scenario B: The yearly payments are made at the end of each year.
Scenario C: The yearly payments are made at the beginning of each year.

Use a graph (similar to that in figure 16.20) to compare these values and
show that, relative to scenarioA, the answer for scenario B represents a lower
Riemann sum, while that of scenario C represents an upper Riemann sum.





Chapter 17 An Introduction to Mathematics for
Economic Dynamics

Economic dynamics is a study of how economic variables evolve over time. Un-
like economic statics, which is a study of economic systems at rest, the focus of
attention in economic dynamics is on how economic systems change as they move
from one position of rest (i.e., equilibrium) to another. In this sense, economic
dynamics, in adding the dimension of time to economic models, goes a step be-
yond economic statics. Often, however, this added realism and complexity can be
managed only by reducing the complexity of the economic model in some other
direction.

Once we introduce time to economic models, we expand the range of ques-
tions that we can ask and issues that we can study. One of the most studied topics in
economic dynamics is economic growth. What determines how quickly an econ-
omy grows? Why are growth rates different in different economies? Where does
the path of growth lead an economy? Another interesting issue that has received
attention is the dynamics of national debt. The concern is about whether a policy
of persistent budgetary deficits leads inevitably to national insolvency or whether
economic growth, if sufficiently rapid, can allow a nation to outrun insolvency
forever. A third issue in economic dynamics that has been the subject of much re-
search in recent years arises from the fact that most energy and mineral resources
are nonrenewable. Should we be using so much of these resources now or should
we be saving more for future use? What is the optimal rate of depletion of nonre-
newable resources? These are just three examples of issues in economic dynamics.
These three, and others, are explored as applications of the mathematics covered
in the next few chapters on dynamics.

Economic dynamics relies on most of the mathematical tools already devel-
oped in chapters 1 through 16 of this book. In addition, however, it relies ex-
tensively on some mathematics not yet covered, primarily differential equations
and difference equations. We provide an introductory, but thorough, coverage of
differential and difference equations in chapters 18 through 24. Optimization in
economic dynamics relies on mathematical techniques that are extensions of the
techniques covered in chapters 6 and 13: optimal control theory, calculus of vari-
ations, and dynamic programming. Chapter 25 provides an introductory coverage
of the main elements of optimal control theory. We feel it unnecessary to cover
the calculus of variations as it can be used only for a subset of the problems that can
be solved by optimal control theory. We do not cover dynamic programming, since
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to give it a fair treatment would take us too far afield into the realm of economic
dynamics under uncertainty.

17.1 Modeling Time

Time: A Continuous or Discrete Variable?

Variables must be dated in a dynamic model. We have the option of dating variables
at discrete intervals of time (e.g., once per month) or continuously (at every instant
of time). Time is continuous in reality. If we model it this way and date variables
at every instant, we can write

y(t)

for the value of the variable y at date t , where t is a continuous variable that rep-
resents time, or the date. Here t is a real number with larger numbers representing
dates further in the future. The variable y(t) is allowed to change continuously
over time, like the price of copper on the London Metal Exchange.

It is sometimes more convenient to model variables as changing discretely
only once per fixed period of time (like a month or day). If so, we would model
time as a discrete variable and date variables at discrete intervals of time. For this
we write

yt

for the value of the variable y during period t , where t is a discrete variable that
takes on the integer values 0, 1, 2, 3, 4, . . . . The value of y is constant for the
duration of a period and can change only as t changes discretely from one period
to the next. For example, even though consumer prices can change continuously,
the consumer price index in many countries is calculated only once per month. A
data series for the consumer price index then would consist of one price observation
per month, a discrete-time data series.

What Is a Difference Equation?

As the name suggests, a difference equation specifies the determinants of the
difference between successive values of a variable. In other words, it is an equation
for the change in a variable. The difference or change in a variable between two
periods is

�yt = yt+1 − yt , t = 0, 1, 2, . . .
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A difference equation is any equation that contains �yt . In the following example,
pt stands for the consumer price index:

pt+1 − pt = θpt

where 0 < θ < 1. This difference equation says that the change in the consumer
price index from period t to the next period (t + 1) is equal to a fraction, θ , of the
consumer price index in period t . In the next example, mt stands for the money
supply in month t , controlled by the monetary authority:

mt+1 −mt = b + αmt

b > 0, α > 0. This difference equation says that the monetary authorities have a
policy of increasing the money supply every month by an amount b (a constant)
plus a fraction α of the previous period’s money supply.

If you wish to use the information in a difference equation to figure out what
the consumer price index or the money supply must actually be for any month,
then you are faced with the problem of solving the difference equation.

What Is a Differential Equation?

Adifferential equation is like a difference equation in that it expresses how a vari-
able changes over time except that time is considered to be a continuous variable.
Hence the differential of y can be expressed formally as the difference between
successive values of y when the length of a period becomes extremely small:

dy

dt
= lim

h→0

yt+h − yt

h

The differential of y is just the derivative of y with respect to the continuous
variable time. We reserve a special notation for the time derivative of a variable:

ẏ ≡ dy

dt

That is, we put a dot over a variable to indicate its time derivative. A differential
equation, then, is any equation that contains ẏ.

In the following example, K(t) is the capital stock in an economy at time t :

K̇ = I (t)− δK(t)

where 0 < δ < 1 is the depreciation rate. This differential equation says that the
change in the capital stock is equal to new investment, I (t), less depreciation
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of existing capital, δK(t). Given this relationship and knowledge of the path of
investment, I (t), you might wish to determine the size of the capital stock at some
point in time. If so, the problem you face is to solve the differential equation.

There are different types of difference and differential equations. In the re-
mainder of this chapter, we provide a brief classification of the different types and
show what types will be studied in the next few chapters.

Classification of Difference Equations

A difference equation is any equation that contains a difference of a variable. A
difference equation can be classified according to its order (whether it contains
a first difference, second difference or higher difference), whether it is linear or
nonlinear, and whether it is autonomous or nonautonomous.

1. Order The order of a difference equation is determined by the highest
order of difference contained in the equation. For example, a first-order dif-
ference equation contains only the first difference of a variable: the differ-
ence in the variable between two consecutive time periods (yt+1 − yt ). A
second-order difference equation also contains the second difference of a vari-
able: the difference in the variable between every two successive time periods
(yt+2 − yt ).

In practice, this means that a first-order difference equation contains variables
at most one period apart, such as

yt+1 = 3yt + 2

whereas a second-order difference equation contains variables at most two periods
apart, such as

yt+2 = 2yt+1 + 3yt + 2

or, equivalently,

yt = 2yt−1 + 3yt−2 + 2

An nth order difference equation, then, contains variables at most n periods apart.
In this book, we will be concerned only with first- and second-order difference

equations.

2. Autonomous A difference equation is said to be autonomous if it does not
depend on time explicitly; otherwise, it is nonautonomous. For example,

yt+1 = 2yt + 3t
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is nonautonomous because it depends explicitly on the variable t . On the other
hand,

yt+1 = 2yt + 3

is an autonomous difference equation because it does not depend explicitly on
the variable t .

In this book autonomous difference equations are emphasized, since these
are more common in economics. However, we also show how to solve nonau-
tonomous, linear difference equations.

3. Linear or nonlinear A difference equation is nonlinear if it involves any
nonlinear terms in yt , yt+1, yt+2, and so on. It is linear if all of the y terms are
raised to no power other than 1. For example,

yt+1 = 2y2
t + 3

is a nonlinear, autonomous, first-order difference equation, and

yt+1 = 2 log yt + 3

is a nonlinear, autonomous, first-order difference equation. But

yt+1 = 2yt + 3t2

is a linear, nonautonomous difference equation. Note that the word linear applies
only to whether the equation is linear in y terms. It can be nonlinear in t and still
be a linear (in y) difference equation although, of course, it is nonautonomous
in that case.An example of a linear, autonomous, second-order difference equa-
tion is

yt+2 = 5yt+1 + 2yt + 3

and an example of a nonlinear, autonomous, second-order difference equation is

yt+2 = 5yt+1 + 2

yt

+ 3

We concentrate on linear difference equations in this book, but include a chapter
on nonlinear first-order difference equations that leads naturally to a discussion
of the fascinating subject of chaos.

4. Solutions The concept of a solution to a difference equation is different from
other solution concepts discussed so far in this book. We are quite familiar with



638 CHAPTER 17 AN INTRODUCTION TO MATHEMATICS FOR ECONOMIC DYNAMICS

the concept of a solution to an algebraic equation: the solution is a variable.
However, a solution to a difference equation is itself a function that makes the
difference equation true.

There are usually many solutions to a difference equation. For example,
consider the linear, first-order difference equation

yt+1 = 2yt , t = 0, 1, 2, . . .

A solution is the function

yt = 2t

To verify that this is a solution, check that it makes the difference equation
true. To do this, first note that the solution implies that yt+1 = 2t+1. But 2t+1

is equal to 2t (2); but since yt = 2t , our solution says that yt+1 = 2yt , which is
the same as the difference equation.

Another solution is the function

yt = C2t

where C is any arbitrary constant. To check that this, too, is a solution, note that it
implies that yt+1 = C2t+1. But writing 2t+1 as 2t (2) makes this yt+1 = C2t (2).
Using yt = 2t makes this yt+1 = 2yt , which again is the difference equation.

Since C can take on an infinity of values, there is an infinite number of
solutions to this difference equation. It is only when we are given more infor-
mation, such as the actual initial value of y, that we are able to find a unique
solution. For example, if we are given that y0 = 1, then we know that C must
equal 1 to make the solution satisfy this equality.

In the vast majority of cases, it is usually not possible to find a solution to a
difference equation. In particular, most nonlinear difference equations cannot be
solved explicitly for the underlying function yt . Instead, we would have to resort
to numerical techniques with the aid of a computer to obtain a solution. Or, we
could do a qualitative analysis to determine some of the properties of the solu-
tion without actually obtaining an explicit solution. Linear difference equations
of any order, however, can always be solved explicitly. We study linear, first-
order difference equations in chapter 18, nonlinear, first-order difference equa-
tions in chapter 19, and linear, second-order difference equations in chapter 20.

Classification of Differential Equations

A differential equation is any equation that contains a differential, or deriva-
tive. In this book, we will study only ordinary differential equations. Ordinary
differential equations contain only ordinary derivatives as opposed to partial deriva-
tives. An example of a partial differential equation is given later.
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1. Order The order of a differential equation is determined by the highest order
of derivative contained in the equation. For example, a first-order differential
equation contains only the first derivative of a function, whereas a second-
order differential equation contains the second derivative (and possibly the first
derivative). An example of a second-order differential equation is

3ÿ + 2ẏ + y = 2

Note that two dots over a variable indicate its second derivative with respect
to t . An example of a third-order differential equation is

d3y

dt3
+ 4

d2y

dt2
+ 2

dy

dt
+ y = 2

We have not used the “dot” notation for a third-order equation because it is too
cumbersome to place more than two dots over a variable.

In this book we will be concerned with only first- and second-order ordinary
differential equations.

2. Autonomous A differential equation is said to be autonomous if it does not
depend on time explicitly; otherwise, it is nonautonomous. For example,

ẏ + 5y = t

is a nonautonomous first-order differential equation. But

ẏ + 5y = 3

is an autonomous first-order differential equation. As with difference equa-
tions, we place more emphasis on autonomous differential equations, but we
also show solution techniques for nonautonomous first- and second-order dif-
ferential equations.

3. Linear or nonlinear A differential equation is nonlinear if it involves any
nonlinear terms in y, ẏ, ÿ, and so on. It is linear if all of the y terms are raised
to no power other than 1. For example,

ẏ + t2y = cos t

is a linear, but nonautonomous first-order differential equation, whereas

ẏ + y2 = 2

is a nonlinear, autonomous, first-order differential equation.
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We cover linear differential equations of the first- and second-order, and
include a chapter on nonlinear first-order differential equations.

4. Solutions A solution to a differential equation is a function that makes the
differential equation true. As with difference equations, there are usually many
solutions to a differential equation. For example, consider the linear, first-order
differential equation

ẏ = b

One solution is

y(t) = bt

Another is

y(t) = bt + 1

The general solution is

y(t) = bt + C

where C is an arbitrary constant that can take any value. To verify that this
is indeed a solution, differentiate it and see that the derivative of y does equal b.

Since C can take any value, there is an infinity of solutions to this differ-
ential equation. However, if we are given more information, such as the initial
value of y, we can determine the value of C. For example, if we are given
that y(0)= 3, which means the value of y at t = 0 was 3, then the value of C

must be 3.

As with difference equations, we cannot solve nonlinear differential equations
in general. However, it is possible to obtain explicit solutions for linear differen-
tial equations of any order. We study linear first-order differential equations in
chapter 21, nonlinear first-order differential equations in chapter 22, and linear
second-order differential equations in chapter 23.

Differential Equations in Economic Statics and Partial
Differential Equations

Differential equations need not apply only to equations that are functions of time.
Any equation that contains a derivative is a differential equation. For example,
suppose that we know that the marginal-cost function for a firm is given by

dc(x)

dx
= b
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where c(x) is the total-cost function defined on non-negative real values of x,
where x is the output of the firm, and dc(x)/dx is the marginal-cost function, which
is equal to a constant b. This is a differential equation and its solution is found by
integration to recover the primitive function, which in this case is the total-cost
function. The solution is

c(x) = bx + C

where, as before, C is an arbitrary constant of integration. If we also know, for
example, that c(0) = F , which means that even when the output of the firm is
zero, costs are equal to F (fixed costs), then the solution becomes

c(x) = bx + F

Any equation containing an ordinary derivative is an ordinary differential equation.
Thus differential equations can arise in economic statics as well as in economic
dynamics. The techniques for solving and analyzing ordinary differential equations
are the same in both cases. However, because our concern is with developing the
tools required for economic dynamics, we adopt the convention of making all
differentials refer to derivatives with respect to the variable time, as opposed to
allowing differentials to refer to derivatives with respect to an arbitrary variable,
such as x in the preceding example.

An equation containing partial derivatives is called a partial differential
equation. As an example of the latter, suppose a household-utility function
depends on the consumption of two goods, x and y, and suppose the marginal
utility from consuming x depends on how much x and y are being consumed.
Then the marginal-utility function could be

∂u(x, y)

∂x
= αxα−1yβ

where u is the utility function and α and β are each between 0 and 1. This is
a partial differential equation because it contains the partial derivative of the
function u. In this book, we will deal only with ordinary differential equations.

C H A P T E R R E V I E W
Key Concepts autonomous equation

difference equation
differential equation
linear equation
nonautonomous equation

nonlinear equation
order of an equation
ordinary differential equation
partial differential equation
time derivative
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Review Questions 1. Provide an example of a variable that varies continuously over time and an
example of a variable that varies discretely over time.

2. Explain the difference between autonomous and nonautonomous difference
equations and differential equations.

3. How would you determine the order of a difference or differential equation?

4. Explain how the concept of a solution to a difference or differential equation
differs from the concept of the solution to an algebraic equation.

5. Explain the difference between ordinary and partial differential equations.

Review Exercises Classify each of the following according to: (a) order, (b) linear or nonlinear,
(c) autonomous or nonautonomous, and (d) difference or differential equation.

1. yt+1 − yt = 0

2. yt+2 + 3yt+1 + 2yt = 1

3. yt + 2yt−1 = t3

4. yt+2 + 2yt = 0

5. yt+1 = 2y2
t + 3t

6. yt+4 + 6yt+3 + yt+2 = 3yt

7. 10yt+2 − yt = e2t

8. 2yt+1 − 5/yt = 2

9. yt+2 + tyt+1 − 3yt = 10

10. yt+1 = (log t)yt + 1

11. ẏ = (t + 1)/y

12. ẏ + 2y = 5

13. ÿ + 2t ẏ + 3y = 1

14. ÿ + 2y2 = t

15. ẏ = y/2+ et

16. ÿ + 2ẏ + 2 = log y

17. d3y/dt3 + 10 d2y/dy2 = 1

18. 5ẏ = 2y + 10t

19. ÿ = 2ẏ − y/2+ et

20. ẏ = 2y3 + t



Chapter 18 Linear, First-Order Difference
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Modified Cobweb Model
• A Partial Adjustment Model of Energy Demand
• Practice Exercise

In the next three chapters we introduce some elementary techniques for solving
and analyzing the kinds of difference equations that are common in economics.
We begin in this chapter with linear, first-order difference equations. In the next
chapter we introduce nonlinear, first-order difference equations, including the
famous logistic equation used extensively in the study of chaos. In chapter 20
we examine linear, second-order difference equations.

18.1 Linear, First-Order, Autonomous
Difference Equations

In this section we explain how to solve linear, first-order difference equations that
are autonomous.

D e f in i t i o n 18 . 1 The general form of the linear, first-order, autonomous difference equation is
given by

yt+1 = ayt + b, t = 0, 1, 2, . . . (18.1)

where a and b are known constants.

This difference equation is of the first-order because the largest difference to
appear is a first difference (a difference of one period); it is linear because the yt+1
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and yt terms are not raised to any power other than 1. It is autonomous because a

and b are constants. If a or b vary with t , the difference equation is nonautonomous.
This case is the subject of section 18.2.

Notice that an equation of the form gyt+1 = hyt + k can always be put in the
form of equation (18.1) by dividing through by g, provided that g is nonzero.

Solving a difference equation means finding the underlying function of time,
yt , that gives rise to it. We begin by doing this directly for the case in which the
initial condition, y0, is known.

If y0 is known, then at t = 0, equation (18.1) implies that

y1 = ay0 + b

At t = 1,

y2 = ay1 + b = a(ay0 + b)+ b

After simplifying, we have

y2 = a2y0 + b(a + 1)

At t = 2,

y3 = ay2 + b = a[a2y0 + b(a + 1)]+ b

which becomes

y3 = a3y0 + b(a2 + a + 1)

The expressions for y1, y2, and y3 reveal a pattern developing. Let’s conjecture
that the solution for yt is

yt = aty0 + b(at−1 + at−2 + · · · + a + 1) (18.2)

It turns out that this conjecture is correct, but rather than take it on faith, we really
should prove it. Before doing so, simplify the expression by noting that inside the
brackets is a sum of t terms in a geometric progression. We can reduce the sum,
using what we learned in chapter 3, to

1+ a + a2 + · · · + at−1 =
⎧⎨
⎩

1− at

1− a
if a �= 1

t if a = 1
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Therefore the conjectured solution to the difference equation can be expressed as

yt =
⎧⎨
⎩aty0 + b

(
1− at

1− a

)
if a �= 1; t = 0, 1, 2, . . .

y0 + bt if a = 1
(18.3)

We now prove that our conjecture leading to equation (18.3) is correct.

Theorem 18.1 The function yt given by equation (18.3) is the unique solution to the linear,
autonomous, first-order difference equation (18.1), where y0 is the given initial
condition.

Proof

We prove this for the case a �= 1 in two steps (and leave the proof for the case
a = 1 to the reader). In the first step, we prove that equation (18.3) is a solution.
In the second, we prove that there is only one solution.

Step 1 If equation (18.3) is a solution for yt , then it satisfies equation (18.1);
i.e., yt+1 is equal to ayt + b. Let’s try this. From equation (18.3) we see that

yt+1 = at+1y0 + b

(
1− at+1

1− a

)

Now add and subtract the term ab(1− at )/(1− a) to the right-hand side to get

yt+1 = at+1y0 + ab(1− at )

1− a
− ab(1− at )

1− a
+ b

(
1− at+1

1− a

)

This becomes

yt+1 = a

[
aty0 + b

(
1− at

1− a

)]
+ b

1− a
[1− at+1 − a(1− at )]

Substituting the solution for yt into the above and simplifying gives

yt+1 = ayt + b

1− a
(1− a)

and therefore

yt+1 = ayt + b

Thus equation (18.3) is a solution to equation (18.1).
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Step 2 We now prove that there is only one solution. To do this, we use the
method of proof by induction. Since y0 is given as part of the problem, the value
for y1 is uniquely determined by the straightforward calculation y1 = ay0 + b. In
addition, if any value yt is known (as it is given that y2 can be calculated from y1,
then y3 can be calculated from y2, etc.), then yt+1 is also uniquely determined by
the calculation yt + 1= ayt + b. Thus the solution to the difference equation with
y0 given, is unique. Putting the two parts of this proof together then allows us to
conclude that the solution exists and is unique.

Example 18.1 Suppose that you deposit $100 at t = 0 in a bank account. Assume that interest,
at the annual rate of 10%, is deposited in the account at the end of each year. How
much money is in the bank account after seven years?

Solution

The amount of money in the account in year t + 1 is 10% larger than in year t .
The difference equation, then, is

yt+1 = 1.1yt

In this case, we have that a = 1.1, b = 0, and y0 = 100. The solution is

yt = 100(1.1)t

After 7 years, y7 = 100(1.1)7 = $194.87.

Example 18.2 Suppose you deposit $100 at the beginning of every year, starting at t = 0, in a
bank account that earns 10% interest per year. Derive an expression showing the
amount of money in the account at the beginning of year t .

Solution

In year t + 1 the account is $100 larger than in the previous year, and has earned
10% interest on the previous year’s balance. The difference equation then is

yt+1 = 1.1yt + 100

We have a = 1.1 and b = 100. The solution is

yt = 100(1.1)t + 100

(
1− (1.1)t

1− 1.1

)
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We could use this expression to calculate the amount of money in the account
after t years (assuming the interest rate remains constant). For example, in year 25,
there would be $10,918.17 in the account.

The General Solution

So far we have found the solution to the linear, autonomous, first-order difference
equation directly when the initial value of y is known. Here we step back for
a moment and show that although there is only one solution that satisfies both
the difference equation and the initial condition, there is, in general, an infinite
number of solutions to the linear, first-order difference equation itself.

As an example, consider the difference equation

yt+1 = 5yt , t = 0, 1, 2, . . . (18.4)

A solution to this difference equation is a function defined over t = 0, 1, 2, . . .

that makes the difference equation a true statement for all possible values of t in
the domain. A solution is

yt = 5t

We can verify that this equation is a solution by showing that it satisfies the original
difference equation. At t + 1 the equation above becomes

yt+1 = 5t+1

But this equation can be simplified to get

yt+1 = 5(5t ) = 5yt

which shows that it does satisfy the difference equation and is therefore a solution.
However, another solution is

yt = 2 · 5t

which can be verified as follows:

yt+1 = 2 · 5t+1 = 5 · (2 · 5t ) = 5yt

There are many more solutions to the difference equation (18.4). We can
express the solution, in general, by writing

yt = C5t (18.5)
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where C is an arbitrary constant. To verify that this function is a solution, ensure
that it satisfies the difference equation (18.4):

yt+1 = C5t+1 = 5(C5t ) = 5yt

The general solution to equation (18.4) is equation (18.5). Because C can be any
value, there is, in general, an infinite number of solutions to the difference equa-
tion itself. This leads us to a formal statement of the general solution to the linear,
first-order, autonomous difference equation:

Theorem 18.2 There exists a constant C such that any solution to the linear, first-order, au-
tonomous difference equation can be expressed as

yt =

⎧⎪⎨
⎪⎩

Cat + b

(
1− at

1− a

)
if a �= 1; t = 0, 1, 2, . . .

yt = C + bt if a = 1
(18.6)

Proof

The theorem can be proved either by direct substitution of equation (18.6) into
the difference equation, as was done in theorem 18.1, or by simply noting that we
could set C equal to the initial value of y and then apply theorem 18.1.

Theorem 18.2 expresses the general solution to the difference equation (18.1).
As such, we know that it satisfies that difference equation. If we also require the
solution to satisfy an initial condition, then we will have to choose a particular
value for the constant C.

Example 18.3 Solve the difference equation

yt+1 = 0.5yt + 10

Solution

Applying theorem 18.2 gives

yt = C(0.5)t + 10

(
1− (0.5)t

1− 0.5

)

as the general solution.



18.1 LINEAR, FIRST-ORDER, AUTONOMOUS DIFFERENCE EQUATIONS 649

Example 18.4 Solve the difference equation in example 18.3 and ensure that it also satisfies the
initial condition: y0 = 1.

Solution

Setting t = 0 in the general solution in example 18.3 gives

y0 = C + 0

Therefore we must set C= 1 to satisfy the given initial condition. The solution
becomes

yt = (0.5)t + 10

(
1− (0.5)t

1− 0.5

)

Although it is important to remember that the general solution to a linear,
first-order difference equation involves an infinite number of particular solutions,
we will be working with initial value problems exclusively for the remainder of
this chapter.

The Steady State and Convergence

A difference equation determines the value of yt+1, given the value of yt . Gener-
ally, the value of y changes over time, tracing out the dynamic path of the variable.
However, a property of autonomous difference equations that is important in eco-
nomics, is that they often have a steady state. A steady state is the value of y at
which the dynamic system becomes stationary (so it is sometimes called the sta-
tionary value of y). That is to say, yt+1 takes the same value as yt for all values
of t . In a linear, autonomous, first-order difference equation, there always exists a
steady state, as long as a �= 1. We show how to find it below.

D e f in i t i o n 18 . 2 The steady-state or stationary value in a linear, first-order, autonomous difference
equation is defined as the value of y at which the system comes to rest. This implies
that yt+1 = yt .

To find the steady-state value of y, which we will call ȳ, set yt+1 = yt ≡ ȳ in
the difference equation. This gives

ȳ = aȳ + b



650 CHAPTER 18 LINEAR, FIRST-ORDER DIFFERENCE EQUATIONS

Solving for ȳ gives

ȳ = b

1− a
, a �= 1

If a = 1, there is no steady-state solution.
If y ever becomes equal to its steady-state value, it will remain at that value

for all successive time periods. The important question then is: If y starts off at
any arbitrary value, will it always tend to converge towards its steady-state value?

To answer this question, rearrange the solution stated in equation (18.3) to get

yt = at

(
y0 − b

1− a

)
+ b

1− a
if a �= 1; t = 0, 1, 2, . . . (18.7)

Inspection of this expression makes it apparent that the question of convergence
and divergence is determined entirely by the term at , since this is the only term in
the solution that depends on t . If this term converges to zero as t goes to infinity,
then yt converges to b/(1− a). On the other hand, if this term diverges to infinity
as t goes to infinity, then yt will diverge also. It is therefore imperative that we
understand the behavior of at as t →∞.

We can think of the term at , with t = 0, 1, 2, . . . , as a sequence of numbers

{at } = 1, a, a2, a3, . . . , at , . . .

In chapter 3 we learned that a sequence like this converges to zero as t goes to
infinity if |a|< 1 and diverges if |a|> 1. This gives us our main convergence result:

Theorem 18.3 In the case of a linear, autonomous, first-order difference equation, yt converges
to its steady-state value, b/(1− a), if and only if |a|< 1.

While convergence is guaranteed if |a|< 1, the path that yt takes over time is
very different, depending on the sign of a. If 0 < a < 1, then yt will converge
monotonically to b/(1− a). We know this because each term in the sequence {at }
is smaller than the previous one. For example, if a = 1/2, the sequence is

{(
1

2

)t}
= 1,

1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . .

However, if−1 < a < 0, yt will converge to b/(1− a) on an oscillating path. We
know this because each term in the sequence {at } will have the opposite sign to
the previous one. For example, if a = −1/2, the sequence is
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{(
−1

2

)t}
= 1,−1

2
,

1

4
,−1

8
,

1

16
,− 1

32
, . . .

So far we have found that if a is positive, the path of yt is monotonic and if a

is negative, yt oscillates between positive and negative values. In either case, the
path of yt converges to the steady-state value only if the absolute value of a is less
than 1. There are three additional cases that warrant separate consideration:

(i) If a = 0, we see from equation (18.7) that yt is constant over time and equal
to b.

(ii) If a = 1, we see from equation (18.3) that yt diverges to infinity if b > 0 and
minus infinity if b < 0.

(iii) If a = −1, then yt oscillates between the two values y0 and b − y0.

Example 18.5 Let yt denote the number of individuals in a population of fish. Let the dynamic
behavior of the fish population be governed by the difference equation

yt+1 = ayt + 10

Find the steady-state number of fish and sketch a graph of yt , first for the case
a = 0.5 and second for the case a = −0.5.

y

1 2 3 4 5 6 7

10

20

t

Figure 18.1 Approach path in
example 18.5 for a = 0.5

Solution

The steady-state value of y is found by setting yt+1 = yt = ȳ. This gives

ȳ = 10

1− a

The solution to the difference equation can be expressed as

yt = at

(
y0 − 10

1− a

)
+ 10

1− a

Clearly, if |a|< 1, then yt converges to 10/(1− a) as t goes to infinity. Thus, if
a = 0.5, then yt approaches the steady-state value ȳ = 20 smoothly. In figure 18.1
we show an approach path starting from an initial value of 10.

y

1 2 3 4 5 6 7

6.7

10

t8

Figure 18.2 Approach path in
example 18.5 for a = −0.5

If a=−0.5, yt converges to ȳ= 20/3= 6.7 on an oscillating path. In
figure 18.2 we show an approach path again starting from 10. In both cases yt

is very close to its respective steady-state value after 7 or 8 time periods.
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The Cobweb Model of Price Adjustment

In most markets, suppliers must commit to a supply decision before they know the
price at which their product will sell. For example, in some agricultural markets,
farmers plant their crops in the spring and harvest them in the fall when prices
may be quite different than they were in the spring. In some labor markets (e.g.,
those for lawyers, teachers, nurses) individuals commit to an investment in human
capital by entering a specialized university training program but do not learn their
employment and salary prospects until they graduate some years later. What are
the implications of this type of lag in the supply process for the behavior of market
price over time?

We use the following model of price determination to investigate this question.
We will learn that price oscillations are inevitable if suppliers make their supply
decision as if the current price will prevail when their supply reaches the market.

Let the market-demand function be given by

qD
t = A+ Bpt

where qD
t is the quantity demanded in period t and pt is the market price that

prevails in period t .
We assume that supply decisions are made one period before the product

reaches the market. Thus the supply reaching the market in period t is decided
upon in period t − 1 on the basis of what suppliers expect price to be in the next
period. Let Et−1(pt ) represent this expected price. Then the quantity supplied in
period t is assumed to be given by

qS
t = F +GEt−1(pt )

To close this model, we need to specify the way in which price expectations
are formed. In the basic cobweb model, the assumption is

Et−1(pt ) = pt−1

which means that suppliers expect the next period price to equal the current price.
Assuming that the price adjusts to clear the market each period, then supply

and demand will be equal in each period. This means that

A+ Bpt = F +Gpt−1

Rearranging and solving for pt gives

pt = G

B
pt−1 + F − A

B
(18.8)
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which shows that the time path of price is governed by a linear, autonomous, first-
order difference equation (expressed in terms of t and t−1 instead of t+1 and t).
The steady-state price, which we shall call p̄, is found by setting pt = pt−1 = p̄.
Doing this and rearranging gives

p̄ = A− F

G− B

Note that the steady-state price is also the price at which supply equals demand.
Comparing equation (18.8) to the form in equation (18.1), we see that

a = G

B
and b = F − A

B

Applying theorem 18.1 gives the solution

pt = p0

(
G

B

)t

+ F − A

B

(
1− (G/B)t

1−G/B

)

Rearranging this result and using the expression for p̄ gives

pt = (p0 − p̄)

(
G

B

)t

+ p̄ (18.9)

Price converges to p̄ if and only if −1 < G/B < 1, for only then will the first
term in equation (18.9) go to zero as t goes to infinity. Unfortunately, there is no
particular reason for the ratio G/B to satisfy this condition, since it is just the
ratio of the slopes of the supply and demand functions. Thus price may or may not
converge, depending on the relative slopes.

Usually B < 0 (demand slopes negatively) and G > 0 (supply slopes posi-
tively). As a result B/G is usually negative. The implication is that price oscillates
in this model because (G/B)t will be alternately positive and negative as t is an
even- or odd-numbered period. If |G/B|< 1, then price follows an oscillating but
converging path to its steady-state level. If |G/B|> 1, then price follows an os-
cillating path but the oscillations become larger and larger over time. In this case,
price never converges to its steady-state equilibrium.

p

qq1 q3 q2

p0

p2

p3

p1

D

S

Figure 18.3 Price adjustment in
the basic cobweb model

In figure 18.3 we depict the case of a stable market in which price converges to
the steady-state equilibrium price. The market begins out of equilibrium (for some
unspecified reason such as a demand shift) at price p0. In period 0, suppliers plan
to produce the quantity q1 for period 1. When this quantity reaches the market
in period 1, price rises to p1 to clear the market. In period 1, suppliers plan to
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produce the amount q2 for period 2. When this quantity reaches the market in
period 2, price falls to p2 to clear the market. At this price, suppliers plan q3 for
period 3. In period 3, price rises to p3 to clear the market. Notice that price went
from p0 up to p1, down to p2, and then up to p3. This process of price oscillations
continues as price gradually converges to its steady-state equilibrium value where
the supply and demand curves intersect. The diagram gives one the impression of
a cobweb; hence, we call this the cobweb model.

Although the oscillations of the cobweb model may be its most interesting
feature, its most disturbing feature is that it may be highly unstable. Since the
absolute value of the ratio G/B is just as likely to exceed 1 as it is to be less
than 1, divergence is just as likely as convergence. This undesirable feature of the
cobweb model is a direct result of the assumption that suppliers form extremely
naive price expectations. Even as price oscillates and price expectations are never
realized (i.e., price in period t is never equal to price in period t − 1), the model
assumes that suppliers continue to forecast that the current price will prevail in the
next period. In the next example, price expectations are formed in a slightly more
sophisticated way. As we will see, this change makes the model more stable.

Summary of Convergence Analysis

For the difference equation

yt+1 = ayt + b

the solution is

yt =
{
at (y0 − ȳ)+ ȳ if a �= 1, t = 0, 1, 2, . . .

y0 + bt if a = 1

where

ȳ = b

1− a
if a �= 1

is the steady-state (stationary) equilibrium that exists when a �= 1.
The steady-state equilibrium is stable (yt converges to ȳ) if and only if

−1 < a < 1

The path of yt as it approaches ȳ (called the approach path) is

• monotonic if a is positive (and less than 1)
• oscillatory if a is negative (and greater than −1)
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Furthermore, if a ≥ 1, then yt diverges from ȳ monotonically. If a <−1, then
yt diverges from ȳ with ever-increasing oscillations. If a = −1, then yt never
approaches ȳ but instead alternates in value between y0 and b− y0. If a = 0, then
yt is constant and equal to b.

E X E R C I S E S

1. For each of the following difference equations:

(a) Obtain the general solution (i.e., when y0 is unspecified).

(b) Obtain the unique solution for the case when y0 is known.

(c) Solve for the steady state if it exists and indicate whether or not yt

converges to the steady state.

(i) yt+1 = 2yt − 10

(ii) yt+1 = yt

(iii) yt = 0.5yt−1 + 1

2. Repeat exercise 1 for the following difference equations:

(i) yt+1 = 0.1yt + 9

(ii) yt = yt−1 − 1

(iii) yt+1 = 5yt − 2

For exercises 3 and 4, you will need the following information: Interest is paid
into most bank accounts more frequently than once per year. For example, if the
interest is paid twice per year, we have semiannual compounding; if it is paid once
per month, we have monthly compounding. Let r be the annual interest rate and
let n be the number of periods of compounding per year. If there are T years, then
the interest rate per period is r/n and the total number of periods is nT .

3. If you invest $1,000 today in a savings account that pays interest at the rate
of 0.5% per month, how much money will be in the savings account after
120 months?

4. Suppose you deposit $50 at the beginning of every month in a bank account
that earns 1% interest per month. How many months will it take before you
have $4175.00 in your account?

5. A firm has a capital stock in period 0 of K0, and invests a constant amount,
I , that augments the capital stock at the end of each period. However, a
proportion δ of the capital stock depreciates during each period. Write out the
difference equation for the capital stock and solve it.
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6. Solve the difference equation for price in the basic cobweb model for the fol-
lowing values of the parameters of the supply and demand equations. Assume
that p0 = 2.

(a) B = −10, G = 5, A = 100, F = 25.

(b) B = −10, G = 20, A = 100, F = 10.

(c) B = −10, G = 10, A = 100, F = 20.

In each case, sketch a diagram showing the supply and demand curves, the
equilibrium price and quantity, and the cobweb of price movements. Be par-
ticularly careful to indicate whether or not price converges to the equilibrium
price.

7. Suppose that aggregate consumption in period t , Ct , is a linear function of
aggregate income in the previous period, Yt−1

Ct = A+ BYt−1

where A, B > 0 are constant. If aggregate investment is a constant amount,
I , and aggregate income is equal to consumption plus investment

Yt = Ct + I

write out the difference equation for aggregate income and solve it. What
restriction must be placed onB to ensure that income converges monotonically
to the steady-state equilibrium? What is the short-run (one period) and the
long-run (steady state) impact of an increase in I on aggregate income?

18.2 The General, Linear, First-Order
Difference Equation

If a and b in the linear difference equation vary over time, the difference equation is
nonautonomous. However, rather than refer to this version as the nonautonomous
linear, first-order difference equation, we will just call it the general version of the
linear, first-order difference equation because everything else is a special case, in-
cluding the autonomous case (a and b constant), and three possible nonautonomous
cases (a and b both vary over time, a constant but b varies over time, a varies over
time but b constant).

D e f in i t i o n 18 . 3 The general form of the linear, nonautonomous first-order difference equation is
given by
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yt+1 = atyt + bt , t = 0, 1, 2, . . . (18.10)

where at and bt are known functions defined over t = 0, 1, 2, . . . .

Like its autonomous counterpart, the difference equation (18.10) can be solved
directly if y0 is known. Since a0 and b0 are also known, we have

y1 = a0y0 + b0

With y1 now determined, y2 is given by

y2 = a1y1 + b1 = a1a0y0 + a1b0 + b1

since a1 and b1 are known. Next, y3 is given by

y3 = a2y2 + b2

= a2a1a0y0 + a2a1b0 + a2b1 + b2

since a2 and b2 are known. Looking at the successive solutions for y1, y2, and y3

reveals an emerging pattern. We conjecture that the solution for yt is

yt = (at−1at−2 · · · a0)y0 + (at−1at−2 · · · a1)b0

+ (at−1at−2 · · · a2)b1 + · · · + at−1bt−2 + bt−1

Amore compact way of expressing this solution is to use the multiplication symbol
�. We then have

yt =
t−1∏
i=0

aiy0 + b0

t−1∏
i=0

ai

a0
+ b1

t−1∏
i=1

ai

a1
+ · · ·

+ bk

t−1∏
i=k

ai

ak

+ · · · + bt−1

t−1∏
i=t−1

ai

at−1

Simplifying this expression one step further gives the following:

Theorem 18.4 The unique solution to the general, linear, first-order difference equation that also
satisfies initial condition y0 is

yt =
t−1∏
i=0

aiy0 +
t−1∑
k=0

bk

t−1∏
i=k

ai

ak

, t = 0, 1, 2 . . . (18.11)
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Proof

To prove this is a solution, we show it satisfies the difference equation. We do this
by calculating yt+1−atyt and showing it is indeed equal to bt . First, calculate yt+1:

yt+1 =
t∏

i=0

aiy0 +
t∑

k=0

bk

t∏
i=k

ai

ak

Next, calculate atyt . This gives

atyt = at

t−1∏
i=0

aiy0 +
t−1∑
k=0

bk

t−1∏
i=k

aiat

ak

which simplifies to

atyt =
t∏

i=0

aiy0 +
t−1∑
k=0

bk

t∏
i=k

ai

ak

Subtract atyt from yt+1. All terms cancel except the t th term in the summation in
the expression for yt+1. But that term is simply equal to bt . Therefore equation
(18.11) is a solution. That it is the only solution follows directly from the fact
that with y0 known, y1 can be directly calculated from y0, and hence yt+1 can be
directly calculated from yt .

Three special cases can arise. First, suppose that at = a, a constant, but bt varies.
In this case equation (18.11) becomes

yt = aty0 +
t−1∑
k=0

bka
t−k−1 (18.12)

On the other hand, if bt = b, a constant, but at varies, then equation (18.11) becomes

yt =
t−1∏
i=0

aiy0 + b

t−1∑
k=0

t−1∏
i=k

ai

ak

(18.13)

Finally, if both a and b are constant, we have

yt = aty0 + b

t−1∑
k=0

at−k−1 (18.14)
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We can simplify this further by writing out the terms in the summation

t−1∑
k=0

at−k−1 = at−1 + at−2 + · · · + a0 for k = 0, 1, 2, . . . , t − 1

and noticing that we can re-express this summation as

t−1∑
k=0

at−k−1 =
t−1∑
k=0

ak

Substituting into equation (18.14) gives

yt = aty0 + b

t−1∑
k=0

ak

This reduces to

yt =
⎧⎨
⎩aty0 + b

(
1− at

1− a

)
if a �= 1

y0 + bt if a = 1

which we have already shown, in section 18.1, to be the solution to the special
case of the autonomous difference equation.

Example 18.6 Solve yt+1 = (t + 1)yt + 3t .

Solution

Here at = (t + 1) and bt = 3t . Therefore the solution, using equation (18.11), is

yt =
t−1∏
i=0

(i + 1)

[
y0 +

t−1∑
k=0

3k

(0+ 1)(1+ 1)(2+ 1) · · · (t − 1+ 1)

]

which can be simplified to

yt = t!

[
y0 +

t−1∑
k=0

3k

k!

]
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A Multiplier Model with Exogenous Growth

Suppose that aggregate consumption in period t is given by

Ct = A+ BYt−1

where 0 < B < 1 is the marginal propensity to consume out of the previous year’s
income. Assume that the aggregate national income is equal to investment plus
consumption

Yt = Ct + It

and assume that investment is given by

It = (1+ g)t

where g > 0 is the exogenous growth rate in investment spending. After substitut-
ing the consumption and investment functions into the national income identity,
we obtain the following first-order linear difference equation:

Yt = BYt−1 + A+ (1+ g)t

Comparing this to the general form in definition 18.3, at =B, a constant, and
bt = A+ (1+ g)t . By equation (18.12) then, the solution is

Yt = BtY0 +
t−1∑
k=0

[A+ (1+ g)k]Bt−1−k

Because 0 < B < 1, the solution shows that the first term on the right-hand side
goes to zero as t goes to infinity. As a result Yt converges to the second term as
t goes to infinity. The second term can therefore be thought of as the long-run
growth path of national income.

E X E R C I S E S

1. For given y0, solve

yt+1 = α

t + 1
yt
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2. For given y0, solve

yt+1 = ayt + t

3. For given y0, solve

yt+1 = (t + 1)yt + b

4. For given y0, solve

yt+1 = ayt + βt

5. For given y0, solve

yt+1 = αtyt + b

6. A firm invests It in its capital stock in period t where

It = I0(1+ g)−t

and where I0 and g are positive constants. If a portion, δ, of the capital stock
depreciates each period, write out the difference equation for the capital stock
and solve it, given that the initial value of the capital stock is K0.

7. If you invest $100 per year (at the beginning of the year) in a bank account
that pays the going annual interest rate, rt , (interest compounded annually),
write out the difference equation and solve it as far as possible as a function
of the sequence for rt .

C H A P T E R R E V I E W

Key Concepts approach path
cobweb model
convergence
divergence

monotonic path
oscillating path
stationary value
steady state

Review Questions 1. Explain the difference between the general form and the autonomous form of
the linear, first-order difference equation.

2. Explain the difference between the solution in equation (18.3) and the solution
in equation (18.6).
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3. Explain what is meant by the steady state of a linear, first-order difference
equation.

4. Explain why not all linear, first-order difference equations have a steady state.

5. Explain the difference between monotonic convergence and oscillatory con-
vergence.

6. State and explain the necessary and sufficient conditions for convergence in
a linear, autonomous, first-order difference equation.

Review Exercises 1. For each of the following difference equations:

(a) Obtain the general solution (i.e., when y0 is unspecified).

(b) Obtain the unique solution for the case when y0 is known.

(c) Solve for the steady state if it exists and indicate whether or not yt

converges to the steady state.

(i) yt+1 = 0.8yt + 1

(ii) yt+1 = yt + 10

(iii) yt+1 + 0.1yt = 9.9

2. Repeat exercise 1 above for the following difference equations:

(i) yt+1 + yt = 0

(ii) 2yt+1 = yt − 6

(iii) yt+1 = 0.5yt + 50

3. For each of the following difference equations:

(a) Obtain the unique solution that satisfies the given value for y0.

(b) Calculate the values for y1, y2, y3, y4, and y5 directly from the difference
equation, and observe the speed of convergence to the steady state, if it
exists.

(c) Calculate the value for y5 from the solution obtained in (a) and check
that it matches the value obtained in (b).

(i) yt+1 + yt = 2, y0 = 2

(ii) yt+1 = 3yt − 1, y0 = 1

(iii) yt+1 = 0.5yt + 50, y0 = 50

(iv) 3yt+1 + 2yt = 1, y0 = 2

(v) yt+1 = yt + (−1)t , y0 = 2



CHAPTER REVIEW 663

(vi) yt+1 = −yt + (−1)t , y0 = 2

(vii) yt+1 = (−1)tyt + 1, y0 = 2

4. Repeat exercise 3 above for each of the following difference equations:

(i) yt+1 = −0.1yt + 9.9, y0 = 15

(ii) yt+1 = −2yt + 12, y0 = 10

(iii) yt+1 = 10yt + 90, y0 = −5

(iv) yt+1 = 0.5yt + (−1)t , y0 = 2

(v) yt+1 = (−0.5)tyt + (−1)t , y0 = 2

(vi) yt+1 = (0.5)tyt + 1, y0 = 2

5. A perfectly competitive industry has the following supply function:

Qt = F +Gpt, F, G > 0; t = 0, 1, 2, . . .

The demand for this product is a function of price and the lagged value of
quantity

Qt = A+ Bpt + θQt−1, A > 0, B < 0; 0 < θ < 1; t = 1, 2, 3, . . .

This says that current quantity demanded is equal to a fraction θ of last period’s
value of quantity plus a constant A, plus an amount that depends negatively
on price, Bpt . A demand function such as this might apply to a commodity
characterized by habit formation (like cigarettes).Alternatively, it might apply
to a raw material input in production, like energy, which is used in conjunction
with a capital stock that is fixed in the short run, leading to slow adjustments
of energy demand to price changes.

Assuming that the market clears each period, derive a first-order differ-
ence equation for quantity, Q. Solve the difference equation, find the steady
state, and determine whether quantity converges monotonically, in oscilla-
tions, or not at all.

6. Suppose now that a perfectly competitive industry has supply function

Qt = F +Gpt + αQt−1, F, G > 0, 0 < α < 1; t = 1, 2, 3, . . .

which says that the current quantity supplied is equal to a fraction α of lagged
supply as well as a function of current price. (Can you think of an economic
rationale for such a supply function?)

Assuming that the demand function is given by

Qt = A+ Bpt , A > 0, B < 0; t = 0, 1, 2, . . .
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and that the market clears each period, derive a first-order difference equation
for quantity, Qt . Solve it, find the steady-state equilibrium, and determine
whether quantity converges monotonically, in oscillations, or not at all.

7. Assume that we can model the unemployment rate as

Ut = α + βUt−1, α, β > 0; t = 1, 2, 3, . . .

where Ut is the unemployment rate in period t . Labor economists refer to
the steady-state level of unemployment in this model as the natural rate of
unemployment. Solve this difference equation (assume that U0 is known),
solve for the natural rate of unemployment, and determine the necessary and
sufficient condition for Ut to converge to the natural rate of unemployment.

(a) Suppose that there are occasional shifts of (shocks to) the demand for
labor causing it to sometimes rise and sometimes fall. These shifts trans-
late into occasional decreases and increases in the unemployment rate.
The modified model of unemployment that captures these shifts is

Ut = α + βUt−1 + et , α, β > 0; t = 1, 2, 3, . . .

where et is a term that is typically assumed to be equal to zero on
average, but which actually varies over time (representing random shifts
or shocks), being sometimes positive and sometimes negative. Obtain
the solution to this difference equation.

(b) Prove that the solution obtained in (a) can be expressed as

Ut = βtU0 + α

1− β
(1− βt )+ e0β

t−1 + e1β
t−2

+ e2β
t−3 + · · · + et−2β + et−1

Discuss the following statement: “If 0 < β < 1, the effect of past shocks
wears off over time and the unemployment rate tends to converge toward
the natural rate; however, recent shocks prevent it from actually getting
there."

(c) Suppose that U0= 6, α= 3, β = 0.5, e0= 3, e1= e2= e3= 0, e4=−1,
and e5= 0. Find the natural rate of unemployment, and calculate the
values of U1 to U6.

(d) Suppose that U0 = 6, α = 1.2, β = 0.8, and e0 to e5 are as given above.
Find the natural rate of unemployment, calculate the values of U1 to U6,
and compare the results to those obtained in (c).



Chapter 19 Nonlinear, First-Order Difference
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• An Economic Growth Model
• A Malthusian Growth Model
• Practice Exercises

In the previous chapter we saw that linear, first-order difference equations can be
solved explicitly. We will see in the next chapter that this is also true for linear,
second-order difference equations. Nonlinear difference equations, on the other
hand, cannot be solved explicitly in general. However, it is still possible to obtain
qualitative information about the solution by analyzing the nonlinear difference
equation with the aid of a phase diagram. This technique can be very useful in
economics because we are often mainly concerned with the qualitative properties
of dynamic models. In this chapter we do this analysis for first-order difference
equations, and we focus on the problem of determining the stability properties of
the solution. Our analysis will lead us to a brief consideration of the study of chaos.

19.1 The Phase Diagram and Qualitative
Analysis

The general expression for the nonlinear, first-order difference equation is

yt+1 = g(yt , t), t = 0, 1, 2, . . .

However, we will consider only autonomous, nonlinear difference equations; that
is, nonlinear difference equations that do not depend on time explicitly.

D e f in i t i o n 19 . 1 The nonlinear, first-order, autonomous difference equation is expressed as

yt+1 = f (yt ), t = 0, 1, 2, . . . (19.1)
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If there exists a steady-state equilibrium (or equilibria if there are more than
one), it is found as usual by setting yt+1 = yt = ȳ, where ȳ is a steady-state value
of y. In general, this gives

ȳ = f (ȳ)

The main concern in doing a qualitative analysis of a nonlinear difference
equation is to determine whether or not yt converges to a steady-state equilibrium.
If it does, then no matter what the starting value, y0, the path of yt will eventually
lead to the value ȳ. Then, even though we cannot solve for yt explicitly as a function
of t , we can say where its path always leads. If it does not converge, then we might
try to determine whether yt diverges endlessly, or whether it cycles back and forth
between particular values, or whether it displays chaotic behavior.

To make things concrete, consider a specific example for a function f that
gives the following nonlinear difference equation:

yt+1 = yα
t , α > 0; t = 0, 1, 2, . . . (19.2)

The steady-state (or stationary) values of y are found by setting yt+1 = yt = ȳ.
Doing this and rearranging yields

ȳ(ȳ
α−1 − 1) = 0

Therefore ȳ = 0 and ȳ = 1 are the steady-state values. If yt ever becomes equal
to 0 or 1, it will remain at that value forever. How can we determine whether yt

converges to one of these values?
It is helpful to construct a phase diagram to see whether yt tends to move

toward or away from the steady-state values. A phase diagram for a difference
equation is a graph showing yt+1 against yt . As a result it is just a graph of f (yt ).
The steady-state points will be located at intersections of f (yt ) with the 45◦ line,
for it is along this line that yt+1 = yt .

We have drawn the phase diagram for equation (19.2) in figure 19.1 for the
case α = 1/2. We confine our diagrams to the positive quadrant because economic
variables are constrained typically to be nonnegative.

To determine the dynamic behavior of yt , consider an arbitrary initial value
such as y0 = 0.5. Given y0, the value for y1 is found by following a vertical line
up from y0 to the function, and then tracing across horizontally to the vertical
axis. This procedure gives us y1 = f (y0). To find y2, we first make y1 the current
value of y by transposing it onto the horizontal axis. We do this by extending a
horizontal line from y1 to the 45◦ line and then down to the horizontal axis. Now
use the diagram to find y2 = f (y1). This gives the y2 shown on the vertical axis. To
find y3, repeat the same steps: first make y2 the current value of y by transposing
it onto the horizontal axis. Then use the diagram to find y3= f (y2). As we do this,
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yt+1

yt+1 � yt
α

yt

y2
y1

1

0 0.5 1 1.5y1 y2

Figure 19.1 Phase diagram for equation (19.2) when α = 1/2

notice that each successive value of y is getting closer to the stationary point ȳ= 1.
We conclude that yt appears to be diverging from the point ȳ = 0 but converging
to ȳ= 1 from an arbitrary starting point 0 < y0 < 1.

We next investigate the motion of the system to the right of the steady-state
point ȳ= 1. Consider a value for y0 such as 1.5. Finding the value of y1, then y2,
and so on, in the same way as we did above, we see that yt again appears to be
converging to the point ȳ= 1 from a starting point y0 > 1.

We conclude that from any starting point y0 > 0, the path of yt appears to
converge to ȳ = 1 making ȳ = 1 a stable equilibrium. On the other hand, the
point ȳ = 0 is an unstable equilibrium because for y > 0, yt diverges from 0. We
will confirm these conclusions with a more rigorous test presently.

Example 19.1 Construct the phase diagram and conduct a qualitative analysis of the difference
equation

yt+1 = y2
t

Solution

We have drawn the phase diagram in figure 19.2. Starting at y0 = 0.5, for example,
we find the value y1 as before, and then transpose this value onto the horizontal
axis by using the 45◦ line. The value for y2 is then found by tracing a line up to f (y)

to obtain y2= f (y1). Already we see that the system is moving away from ȳ= 1
but toward ȳ= 0. Indeed, continuing with this procedure, we see that yt converges
to ȳ= 0.



668 CHAPTER 19 NONLINEAR, FIRST-ORDER DIFFERENCE EQUATIONS

yt+1

yt+1 � yt
2

yt

1

0 0.5 1 1.5

Figure 19.2 Phase diagram for example 19.1

Next, starting to the right of the point ȳ= 1, we consider a value such as
y0= 1.5. Using the diagram to find the successive values of yt , we see rather
quickly that yt increases monotonically. We conclude that the point ȳ = 1 is an
unstable equilibrium and the point ȳ = 0 is a locally stable equilibrium.

Why is the point ȳ = 1 stable when α = 1/2 but not when α = 2? The
crucial difference between these two cases, and the factor that determines whether
or not a steady-state point is stable, is the slope of f (ȳ); this is the slope of
the curve in the phase diagram where it intersects the 45◦ line. However, we
postpone consideration of this important point until we have examined the case of
a negatively sloping phase diagram.

Example 19.2 Draw the phase diagrams and conduct a qualitative analysis of the difference
equation (19.2) when α = −1/2 and α = −2.

Solution

In figures 19.3 and 19.4 we have drawn phase diagrams for the difference equation
(19.2) for the cases of α = −1/2 and α = −2 respectively. There is only one
steady-state point now, namely ȳ = 1.

Starting at y0 = 0.5 in figure 19.3, we find the value of y1 as usual, and
use the 45◦ line to transpose y1 onto the horizontal axis. This time the system
overshoots the stationary point in the sense that y1 is larger than 1. However, we
will see that the system converges nevertheless, albeit in an oscillatory fashion.
Find y2 = f (y1), and transpose this value onto the horizontal axis. Note that again
the system overshoots the steady-state point, this time in the opposite direction,
but is closer to ȳ = 1 than was y0. It appears that the system is indeed converging.
Find y3 = f (y2), and transpose its value onto the horizontal axis; its value is closer
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yt+1

yt+1 � yt
–.5

yt

1

0 0.5 1

Figure 19.3 Phase diagram for example 19.2 when α = −1/2

yt+1

1

0 0.9

yt+1 � yt
–2

yt1

Figure 19.4 Phase diagram for example 19.2 when α = −2

to ȳ = 1 than was y1. Thus, although the system is oscillating around ȳ = 1, the
oscillations are becoming smaller over time. If we continued this procedure, we
would observe a cobweb approach path to ȳ = 1. In addition, if we chose y0 > 1,
such as y0 = 1.5, we would find a qualitatively similar, oscillating but convergent,
approach path. We conclude that ȳ = 1 appears to be a stable equilibrium, although
we wait for a more rigorous test to confirm this.

In figure 19.4, the phase diagram is drawn for α=−2. Starting at y0= 0.9,
we find y1= f (y0), and we transpose this value onto the horizontal axis. Then we
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find y2= f (y1), and we transpose this value onto the horizontal axis. As above,
the system is oscillating. But unlike the stable case, we now find that y2 is farther
away from ȳ= 1 than was y0. In other words, the system appears to be diverging.
This is confirmed by continuing this procedure. We find that y3 is further from y0

than was y1 and so on. The system is oscillating, and the oscillations are becoming
larger over time. We conclude that ȳ= 1 is an unstable equilibrium.

So far we have discovered that for the difference equation (19.2), the point
y = 1 is a steady-state point no matter what the value of α. We have also found
that it appears to be a stable steady-state point (i.e., yt converges to it from any
y0 > 0) when α = −1/2 or 1/2 but is unstable when α = −2 or 2. It would be
useful if we could draw conclusions about the stability of the point ȳ = 1 for any
value of α without having to resort to a phase diagram each time. Fortunately there
is a way to do this, not just for this example but for any autonomous, nonlinear
difference equation. The key, as hinted at above, is the slope of the graph in the
phase diagram as it intersects the 45◦ line. A steady-state point is stable if and
only if the absolute value of this slope is less than 1 at ȳ. Because the slope of the
function as it cuts the 45◦ line is just the derivative of f evaluated at ȳ, we can
state this result as follows:

Theorem 19.1 A steady-state equilibrium point of any first-order, autonomous, nonlinear dif-
ference equation is locally stable if the absolute value of the derivative, f ′(ȳ), is
less than 1 and is unstable if the absolute value of the derivative is greater than
1 at that point.

The implications of this theorem are powerful. It says that for any autonomous,
first-order difference equation, we can determine whether a steady-state point is
locally stable by taking the derivative of f and evaluating that derivative at the
point ȳ. If its absolute value is less than 1, we know the point is locally stable. If
not, we know it is unstable. And we can do all of this without any knowledge of
the solution to the difference equation!

Although powerful, this result does have one limitation: it can be used only to
determine local stability. If ȳ is locally stable, the system converges to ȳ from any
point in the neighborhood of ȳ. However, it does not necessarily converge to ȳ

from all points (this would be called global stability), such as ones far away from
the steady state. Although there is no general test for global stability in nonlinear
dynamics, the phase diagram analysis, combined with the test for local stability, can
usually tell us what we need to know about global stability. This is demonstrated
in the example below.
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Example 19.3 Use theorem 19.1 to determine the local stability properties of

yt+1 = yα
t

for different values of α.

Solution

The derivative of f is

f ′(yt ) = αyα−1
t

Evaluating the derivative at the stationary point ȳ = 1 gives

f ′(1) = α

Applying theorem 19.1, we conclude that the point ȳ = 1 is locally stable only
when −1 < α < 1. For all other values, ȳ = 1 is unstable. This result explains
and confirms our phase diagram analyses.

For α > 0, we found another steady-state point to be ȳ = 0. Evaluating the
derivative at this point gives

f ′(0) = 0 if α > 1 (19.3)

f ′(0) = undefined if 0 < α < 1. (19.4)

We conclude that if α > 1, the point ȳ = 0 is locally stable. However, the phase
diagram analysis in figure 19.2 proved that it is not globally stable. That is, we found
that yt converges to 0 from any yt < 1 but does not converge to 0 for any yt ≥ 1.

When 0 < α < 1, equation (19.4) shows that the point ȳ is unstable because
the derivative becomes infinitely large (α divided by 0).

We found that the difference equation (19.2) led to oscillations in yt when
α=−1/2 and α=−2 but that yt moved monotonically when α= 1/2 or α= 2.
It turns out that the sign of the slope of the graph in the phase diagram determines
whether yt oscillates or moves in one direction. We state this important point as
follows:

Theorem 19.2 A first-order difference equation will lead to oscillations in yt if the derivative
f ′ is negative for all yt > 0, but yt will move monotonically if the derivative is
positive for all yt > 0.
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Before proceeding, we make two comments about theorems 19.1 and 19.2.
First, both apply to linear as well as nonlinear first-order difference equations.
Second, theorem 19.2 does not apply if the derivative f ′ changes sign as a function
of yt as it does in section 19.2. In that case, yt can display very complex behavior
involving both monotonic and oscillatory segments.

E X E R C I S E S

1. For the difference equation

yt+1 = 3

16
+ y2

t

find the steady-state points, determine whether they are locally stable using
theorem 19.1, and sketch a phase diagram to investigate the global stability.

2. For the difference equation

yt+1 = 2− 3y2
t

find the steady-state points, determine whether the one in the positive quadrant
is locally stable using theorem 19.1, and sketch a phase diagram to investigate
the global stability.

3. For the difference equation

yt+1 = 4+ 9

4yt

find the steady-state points, determine whether the one in the positive quadrant
is locally stable using theorem 19.1, and sketch a phase diagram to investigate
the global stability.

4. For the difference equation

yt+1 = 1+ 3

4yt

find the steady-state points, determine whether the one in the positive quadrant
is locally stable using theorem 19.1, and sketch a phase diagram to investigate
the global stability.
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19.2 Cycles and Chaos
Up to this point we have considered only nonlinear difference equations for which
the slope, f ′, does not change sign. The implication is that the graph of yt+1 against
yt in phase diagrams is either monotonically increasing or decreasing, but never is
hill-shaped or valley-shaped. In the remainder of the chapter, we consider nonlinear
difference equations that produce hill-shaped curves in the phase diagram. This
kind of difference equation can lead to very interesting dynamic behavior, such as
cycles that repeat themselves every two or more periods, and even chaos, in which
there is no apparent regularity in the behavior of yt . Providing a formal analysis
of these nonlinear difference equations is beyond the scope of this book; however,
we hope to give students a rudimentary exposure to the subject.

Consider the first-order, nonlinear difference equation

yt+1 = ryt (1− yt ), t = 0, 1, 2, . . . (19.5)

The steady-state points, ȳ, are obtained by solving

ȳ − rȳ(1− ȳ) = 0

Simplifying gives

ȳ

(
1− r

r
+ ȳ

)
= 0

The two steady-state points are

ȳ = 0 (19.6)

and

ȳ = r − 1

r
(19.7)

A strictly positive steady-state equilibrium exists only if r > 1. We will therefore
assume that r > 1. If r ≤ 1, then the steady states are 0 and negative respectively,
which are of no interest in economics.

To determine the stability properties of these two equilibria, we apply theorem
19.1, which requires that we evaluate the derivative of equation (19.5) at the points
ȳ. We get

dyt+1

dyt

= r − 2ryt =
{
r at ȳ = 0

2− r at ȳ = (r − 1)/r
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This result tells us that the point ȳ = 0 is unstable given our assumption that r > 1;
the point ȳ = (r−1)/r is locally stable only if |2− r| < 1. Expressed differently,
the positive steady-state point is locally stable if and only if

1 < r < 3

Let’s draw the phase diagram for this difference equation. We know that the
graph cuts through the 45◦ line at the points 0 and (r− 1)/r . From our calculation
of the slope, we know that the graph peaks at y = 1/2 (where the slope is 0). This
information, plus a quick calculation that shows that the second derivative of the
function is negative (= −2r), assures us that the graph is hill-shaped. Whether the
peak of the graph occurs to the left or right of the point ȳ = (r − 1)/r depends
on whether r is larger or smaller than 2. If smaller than 2 (but larger than 1),
the graph intersects the 45◦ line to the left of the peak. As a result, the slope of the
graph is positive at the stable steady-state point. The more interesting cases arise
when r > 2, which makes the slope of the graph negative at the steady-state point.
Figure 19.5 shows the phase diagram for the case in which 2 < r < 3. This satisfies
the condition for local stability and also makes the slope of the graph negative at
the stable steady-state point.

yt+1

yty00 y

Figure 19.5 Path of yt that converges monotonically at first, but eventually oscillates
as it converges to the steady state

Because the slope is negative but less than 1 in absolute value, yt converges
to ȳ from either direction (within a neighborhood) but the approach paths will
oscillate locally. The phase diagram helps us to see what goes on globally. For
example, starting at y0 in figure 19.5, which is definitely outside the neighborhood
of ȳ, the slope is positive. This condition causes yt to increase monotonically for
a few time periods as shown. However, as yt approaches the neighborhood of
ȳ, the slope becomes negative, causing yt to begin oscillating as it converges to
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the steady state. This is interesting dynamic behavior, but even more fascinating
dynamics occur when r ≥ 3.

What happens when r ≥ 3? First, the point ȳ = (r−1)/r is no longer a stable
steady state. However, an important characteristic of a hill-shaped phase diagram,
which does not apply to a monotonic phase diagram, is that when the steady-state
point is unstable, the path of yt does not diverge endlessly to infinity or zero.
Instead, although it never converges to ȳ, yt oscillates within a bounded range and
could even converge to a regular periodic behavior.

Figure 19.6 shows the phase diagram for the case of r = 3.5. We know that
f ′(ȳ) is negative in this case so that paths oscillate in the region of the stationary
point. We also know that f ′(ȳ), being smaller than−1, is outside the stable range.
As a result, paths do not converge to the steady-state point, ȳ. However, they also
do not diverge to zero or infinity. The reason is that f (y) is nonmonotonic, causing
the phase curve to be hill-shaped. Consider what happens in figure 19.6 as a path
diverges from ȳ. Beginning at y0, the path diverges for two time periods. That is,
y1 is further away from ȳ than was y0; y2 is even further away. However, the path
next runs into the positively sloped region of the phase curve, causing it to bounce
back towards ȳ. This returns the path immediately to the negatively sloped region
of the phase curve, which leads once again to diverging oscillations. However, the
path will eventually run into the positively sloped region again, which pushes it
back toward ȳ again and thereby keeps the path within finite bounds. Although it
never reaches ȳ, it also never gets too far away.

y

yt+1

yty2 y0 y10

Figure 19.6 Phase diagram when r = 3.5

So far we have found that for 1 < r < 3, yt converges to the steady-state point
and for r ≥ 3, yt will not converge to the steady-state point but neither will it
diverge endlessly. What is interesting is that for values of r slightly larger than 3,
yt converges to a stable limit cycle, two periods long. That is, regardless of the
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starting value, yt converges to a path that cycles back and forth in successive
periods between two values. In the language of nonlinear dynamics, it is said
that the system bifurcates at r = 3, which means that it changes from having one
steady-state value, ȳ, to having an equilibrium in which there are two values
between which the path of y oscillates. If r is as large as about 3.5, the two-period
limit cycle itself becomes unstable and the system bifurcates again, producing a
different stable limit cycle, this one being four periods long.

Figure 19.7 shows the phase diagram for r = 3.2. At this value, we get a limit
cycle of two periods. Starting at any value, such as at y0 shown in the diagram, yt

eventually converges to the path shown, which alternates back and forth between
ȳH and ȳL (H and L stand for high and low respectively).

yL yH

yL

yH

yt+1

yty00

Figure 19.7 Stable limit cycle of two periods when r = 3.2

Higher values of r produce repeated bifurcations and hence, repeated dou-
blings of the period of the limit cycles. Eventually, however, at some values of r ,
the time paths do not have cycles of any length, although they continue to be
bounded. This is said to be chaos. Roughly speaking, this means that the path of yt

fluctuates in an apparently random fashion over time, not settling down into any
regular pattern whatsoever.

One of the important findings in the study of chaotic systems is the extreme
sensitivity of the path of yt to the initial value, y0. This finding is sometimes
metaphorically called the butterfly effect after the notion that a butterfly disturbing
the air in Beijing today could affect weather systems in New York next month.
Seemingly insignificant changes in the initial value, y0, produce such large differ-
ences in the path of yt , that the new path seems to bear no resemblance whatsoever
to the original one. This is very different from stable dynamic systems in which all
paths, regardless of their initial values, converge to the same steady-state point. Fig-
ure 19.8 shows two paths of yt , both generated from equation (19.5) when r = 3.7
but one starts at y0 = 0.20 and the other starts at y0 = 0.21. In the diagram the two
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t

y

0

Figure 19.8 Small differences in initial conditions that can lead to very different
chaotic paths

paths look identical for the first four or five time periods. However, any similarity
between the two paths disappears very rapidly.

The paths of yt in figure 19.8 look like the plots of random variables, but
they are of course completely determined by the difference equation. This finding
has led some economists to argue that some of the apparently random fluctuations
of the business cycle could indeed be due, in some part at least, to the inher-
ently nonlinear dynamic relationships in the economy. Most of these models are
too complex to consider in this book; however, we provide on the Web page,
http://mitpress.mit.edu/math econ3, a relatively simple example of an economic
model that is capable of generating stable equilibria, cycles, or chaos depending on
parameter values. One final point of information before proceeding is that chaos is
not produced only by nonlinear difference equations; nonlinear differential equa-
tions can also produce chaotic behavior, provided that they are of the third-order
or higher.

E X E R C I S E S

1. For the difference equation

yt+1 = 3

2
yt (1− yt )

find the steady-state points; determine which of them are stable; and in a phase
diagram, sketch the path of yt starting from y0 = 2/3.
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2. For the difference equation

yt+1 = 5

2
yt (1− yt )

find the steady-state points; determine which of them are stable; and in a phase
diagram, sketch the path of yt starting from y0 = 1/3.

3. Suppose that a firm’s advertising expenditures affect profits as follows:

�t = aEt(1− Et)

where � is profit and E is advertising expenditure. Assume further that the
firm devotes a constant share, b, of its profits to the next year’s advertising
campaign. In particular, assume that

Et+1 = b�t

Derive the difference equation for advertising expenditure. Find the steady-
state values of E and derive the conditions the parameters must satisfy for Et

to converge to a steady state.

4. For the model in exercise 3, what happens if the parameter values are such
that ab= 3? Given E0= 0.690, calculate Et for t = 1, 2, 3, 4 to four decimal
places.

5. Suppose that the world’s Minke whale population is governed by the following
difference equation:

yt+1 = 2yt (1− yt )−H, t = 0, 1, 2, . . .

where H is the world harvest of whales. Now suppose that the International
Convention on Whaling has been signed by all nations and limits the annual
harvest of Minke whales to H = 0.08. Find the steady-state value of the popu-
lation and draw the phase diagram. Calculate yt for t = 1, 2, 3, 4 if y0 = 0.75
to 4 decimal places.

C H A P T E R R E V I E W

Key Concepts butterfly effect
chaos
global stability
locally stable equilibrium

phase diagram
stable limit cycle
steady-state equilibrium
unstable equilibrium
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Review Questions 1. Explain the construction of a phase diagram for a nonlinear, first-order au-
tonomous difference equation and explain the significance of the 45◦ line.

2. Explain the value and the limitations of relying on a phase diagram to analyze
the dynamic properties of a nonlinear difference equation.

3. Explain the difference between a locally stable and a globally stable steady
state.

4. Describe the necessary and sufficient condition for a steady state to be locally
stable.

5. Explain the conditions under which a convergent approach path is likely to
be (i) monotonic and (ii) oscillatory.

6. Explain the meaning of a stable limit cycle of two periods.

Review Exercises 1. For the difference equation

yt+1 = 2yt − 10y2
t

find the steady-state points and analyze the dynamic behavior of yt in the
phase diagram.

2. For the difference equation

yt+1 = 1

2
y2

t − yt

find the steady-state points and analyze the dynamic behavior of yt in the
phase diagram.

3. For the difference equation

yt+1 = ayt − by2
t

find the steady-state points. How is the stability affected by b?

4. Let the aggregate consumption function be

Ct+1 = a + bY α
t , 0 < α < 1; 0 < b < 1

where C is aggregate consumption and Y is aggregate income. Assuming that

Yt = Ct + I
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where I is a constant level of aggregate investment, derive the difference
equation for aggregate income. Draw a phase diagram and determine the
behavior of Yt . In particular, does it converge to a steady-state value or not?

5. Consider the following nonlinear cobweb model. Let the market-demand
curve for corn be

QD
t = 2− Pt

Let the market-supply curve for corn be

QS
t = P

1/2
t−1

In equilibrium, supply equals demand. Derive the first-order difference equa-
tion for price implied by this model. Find the steady-state price level,
determine whether it is stable, and conduct a qualitative analysis of the dy-
namic behavior of price in this model.

6. Suppose that the Atlantic codfish population is governed by the following
difference equation:

yt+1 = 6yt − 6y2
t −H, t = 0, 1, 2, . . .

where H is the constant annual harvest of codfish. If H = 2/3, find the steady-
state value of the population and sketch the phase diagram. Determine whether
the steady state is stable.

7. Suppose that the Peruvian shrimp population is governed by the following
difference equation:

yt+1 = 3yt − 3y2
t −H, t = 0, 1, 2, . . .

where H is the constant annual harvest of shrimp. If H = 7/48, find the
steady-state values of the population and determine which is stable.

8. For review exercise 7, if the annual harvest is increased to H = 1/3, how are
the steady state and the dynamics of the population affected?



Chapter 20 Linear, Second-Order Difference
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Multiplier-Accelerator Model
• Practice Exercises

In this chapter we turn to linear difference equations of the second order. We focus
our attention on the autonomous case in section 20.1 and consider a special nonau-
tonomous case in section 20.2. In addition we introduce a new solution technique
in this chapter. The technique involves breaking up the relatively difficult problem
of finding the general solution to the difference equation into two parts, each of
which is easier to solve than the whole. Not only does this simplify matters in this
chapter, but it proves to be indispensable in later chapters in solving differential
equations, and systems of difference and differential equations.

20.1 The Linear, Autonomous,
Second-Order Difference Equation

We begin with the case of a second-order, linear difference equation that is
autonomous; that is, one that does not depend explicitly on time.

D e f in i t i o n 20 . 1 The general form of the linear, autonomous, second-order difference equation is

yt+2 + a1yt+1 + a2yt = b, t = 0, 1, 2, . . . (20.1)

This equation is linear because yt , yt+1, and yt+2 are not raised to any power
other than 1. It is of the second-order because the largest difference to appear in
the equation is a two-period difference. It is autonomous because it has constant
coefficients, a1 and a2, and a constant term, b. If the coefficients or term vary
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with t , then the equation in nonautonomous. In section 20.2 we consider the case
of a varying term.

We wish to find the general solution to equation (20.1), by which we mean an
expression that includes all possible solutions as special cases. It is easier to break
this problem up into two parts. In the first part, instead of finding all the solutions
to equation (20.1), find just one. One that will usually suffice is the steady-state
solution, ȳ. In the second part, find the general solution of the homogeneous form
of equation (20.1), by which we mean the form that occurs when the term b is set
equal to zero. The reason for the two-part attack is that adding these two solutions
together gives us the general solution to equation (20.1)! We restate this important
result more formally.

Theorem 20.1 If yp is any particular solution to equation (20.1), such as the steady-state
solution, and yh is the general solution to the homogeneous form of equation
(20.1) then the general solution of the complete difference equation in equation
(20.1) is given by

yt = yh + yp

where we have dropped the t subscripts on yh and yp for convenience.

We do not prove the theorem at this point. Stating it, however, gives a good
indication of the organization of our approach in this section. We begin with a thor-
ough analysis of the problem of finding the general solution to the homogeneous
form of equation (20.1). Following this, we solve the relatively easy problem of
finding the steady-state solution, for this will serve as the particular solution we
need to apply theorem 20.1. We then go on to study the convergence properties of
the solution.

The General Solution of the Homogeneous Equation

Our first problem is to solve the homogeneous form of equation (20.1). This is
given by:

D e f in i t i o n 20 . 2 The homogeneous form of the linear, autonomous, second-order difference equa-
tion is

yt+2 + a1yt+1 + a2yt = 0, t = 0, 1, 2, . . . (20.2)
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Note that the only difference between this and the complete equation is the absence
of the b term in the homogeneous form. We proceed by first stating the general
solution; we then go on to provide a justification for it.

Theorem 20.2 The general solution to the homogeneous form of the linear, autonomous, second-
order difference equation is as follows:

• If a2
1 − 4a2 > 0 (real and distinct roots),

yh = C1r
t
1 + C2r

t
2 (20.3)

• If a2
1 − 4a2 = 0 (real and equal roots),

yh = C1r
t + C2tr

t (20.4)

• If a2
1 − 4a2 < 0 (complex roots),

yh = a
t/2
2 (C1 cos θt + C2 sin θt) (20.5)

where C1 and C2 are arbitrary constants (the values for which would be
determined by initial conditions if given) and r1 and r2 are given by

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2
(20.6)

and, in the case of complex roots, where θ can be calculated using either of
the following relationships:

cos θ = −a1

2a
1/2
2

, sin θ =
√

4a2 − a2
1

2a
1/2
2

Theorem 20.2 uses terminology that we have not yet encountered in the study
of difference equations: roots. As we will see, every linear, second-order differ-
ence equation has associated with it two roots, sometimes called eigenvalues or
characteristic roots. Like the roots of any quadratic equation, they can be real val-
ued (distinct or equal) or complex valued. As theorem 20.2 indicates, the solution
takes slightly different forms depending on which of these cases arises. We will
analyze the three cases individually after providing a justification (rather than a
formal proof) for theorem 20.2.
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If we knew nothing about the form of the solution to the homogeneous differ-
ence equation (20.2), how could we go about finding it? We know that the solution
to the homogeneous version of the first-order difference equation is of the form
yt = Art (where r = a) and A is an arbitrary constant. Why not try the same form
for the second-order difference equation? Thus suppose that we try

yt = Art

as a solution to equation (20.2). If this is a solution, then it has to satisfy equation
(20.2). To see if it does, first note that the proposed solution implies that yt+1 =
Art+1 and yt+2 = Art+2. Substituting these and our proposed expression for yt

into equation (20.2) gives

Art+2 + a1Art+1 + a2Art = 0

Simplifying gives

(r2 + a1r + a2)Art = 0

Our proposed solution will therefore work provided that we choose values for r

that satisfy the quadratic equation (r2+a1r+a2) = 0 (since we rule out the trivial
solutions r = 0 and A = 0). This quadratic equation is known as the characteristic
equation of difference equation (20.2).

D e f in i t i o n 20 . 3 The characteristic equation of the linear, second-order difference equation with
constant coefficients is

r2 + a1r + a2 = 0

The values of r that solve the characteristic equation are known as the roots (or
eigenvalues or characteristic roots) of the characteristic equation. There are two
roots that solve this equation; we will call them r1 and r2. Their values are given
in equation (20.6).

Suppose the two roots that solve the characteristic equation are real valued
and different. Then we have actually found two solutions that satisfy equation
(20.2). They are

y
(1)
t = A1r

t
1 and y

(2)
t = A2r

t
2 (20.7)
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Let’s confirm that y
(1)
t is a solution to equation (20.2) (and we leave it to the reader

to do the same for y
(2)
t ). Given y

(1)
t in equation (20.7), then

y
(1)
t+1 = A1r

t+1
1 and y

(1)
t+2 = A1r

t+2
1

Substituting these values into equation (20.2) gives

y
(1)
t+2 + a1y

(1)
t+1 + a2y

(1)
t = A1r

t+2
1 + a1A1r

t+1
1 + a2A1r

t
1

= A1r
t
1

(
r2

1 + a1r1 + a2
)

= 0

The final equality follows because we know that r1 solves the characteristic equa-
tion. Therefore y

(1)
t satisfies equation (20.2) and is a solution.

Although having two solutions may appear to present a problem, since we
are, after all, looking for one general solution, in fact the general solution is a
linear combination of two linearly independent solutions. As a result we actually
require two solutions. Intuitively the reason for this is that two linearly independent
solutions are required in order to recover the two constants that are lost in taking
the first and then the second difference of the underlying equation for yt . The real
problem arises therefore in the case of real-valued but equal roots. That is, when
a2

1 − 4a2 = 0, so that r1 = r2, we appear to have just one solution. However, it is
possible even in this case to find a second distinct solution. Rather than derive it,
we state it and then verify that it is correct.

If r1 = r2 = r , the two distinct solutions are

y
(1)
t = A1r

t and y
(2)
t = A2tr

t (20.8)

These are linearly independent of one another (and are therefore distinct) because
one cannot be made equal to the other by multiplying it by any constant. It is
possible to verify that both of these are solutions to equation (20.2) by substitution
as was done above. We do this for the second solution.

Given y
(2)
t = A2tr

t , then

y
(2)
t+1 = A2(t + 1)rt+1 and y

(2)
t+2 = A2(t + 2)rt+2

Substituting these values into equation (20.2) gives
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y
(2)
t+2 + a1y

(2)
t+1 + a2y

(2)
t = A2(t + 2)rt+2 + a1A2(t + 1)rt+1 + a2A2tr

t

= A2r
t [(t + 2)r2 + a1(t + 1)r + a2t]

= A2r
t [t (r2 + a1r + a2)+ r(2r + a1)]

= A2r
t [0+ r(−a1 + a1)]

= 0

The second-to-last equality follows from the previous one because r solves the
characteristic equation and because the case of equal roots arises only when
a2

1 − 4a2 = 0, which means that r = −a1/2.
We now have derived two solutions to equation (20.2) for the case of real-

valued, different roots and for the case of real-valued but equal roots. As we
mentioned above, the general solution is obtained by taking a linear combination
of the two distinct solutions. We state this formally:

Theorem 20.3 Let y(1) and y(2) be the two solutions to equation (20.2) given by equation (20.7)
in the case of different roots or by equation (20.8) in the case of equal roots. The
general solution to the homogeneous difference equation (20.2) is

yt = C1y
(1)
t + C2y

(2)
t

where C1 and C2 are arbitrary constants.

The implication of the result above is that the general solution is the one given
in equation (20.3) or equation (20.4), depending on whether the roots are equal
or different. Rather than provide a formal proof, we demonstrate the validity of
theorem 20.3 by the following example:

Example 20.1 Solve the following difference equation and prove that the solution is the general
solution:

yt+2 − 6yt+1 + 8yt = 0, t = 0, 1, 2, . . . (20.9)

Solution

The characteristic equation is r2 − 6r + 8 = 0, for which the roots are 2 and 4.
Thus the two distinct solutions are
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y
(1)
t = 2t and y

(2)
t = 4t

According to theorem 20.3, the general solution is

yt = C12t + C24t (20.10)

where C1 and C2 are arbitrary constants, the values for which would be determined
by initial conditions.

To prove that we have found the general solution, we need to prove (i) that
equation (20.10) is a solution to equation (20.9) and (ii) that any solution to equation
(20.9) can be expressed as equation (20.10). Only then have we verified that we
have found an expression that includes all solutions as special cases.

The first part is relatively easy to prove by direct substitution. Using equation
(20.10) to calculate yt+2 and yt+1, substitute into equation (20.9) to get

yt+2− 6yt+1+ 8yt = C1[2t+2− 6(2t+1)+ 8(2t )]+C2[4t+2− 6(4t+1)+ 8(4t )]

= C12t [22− 6(2)+ 8]+C24t [42− 6(4)+ 8]

= 0

Therefore equation (20.10) is a solution to equation (20.9).
The second part is a bit more difficult to prove. Let y ′ represent any arbitrary

solution. Can we find unique values of C1 and C2 that make this solution a special
case of our general solution? In other words, do there exist C1 and C2 that make
the following true?

y ′t = C1y
(1)
t + C2y

(2)
t

The answer is yes. Given initial values for y ′, say y ′0 and y ′1, we can determine the
values of the constants by making the solution satisfy these initial conditions as
follows:

y ′0 = C1y
(1)
0 + C2y

(2)
0

y ′1 = C1y
(1)
1 + C2y

(2)
1

Substituting the values at t = 0 and t = 1 from equation (20.10) gives

y ′0 = C1 + C2

y ′1 = 2C1 + 4C2
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This is a system of two equations in two unknowns. Provided these are linearly
independent equations (which is why the two solutions must be linearly indepen-
dent), they can be solved for unique values of C1 and C2. Doing this gives

C1 = 2y ′0 −
y ′1
2

and C2 = −y ′0 +
y ′1
2

This tells us we can find unique values for C1 and C2 that make the first two values
(at t = 0 and t = 1) of any arbitrary solution just a special case of our general
solution. But if we have any two consecutive values of y ′t , such as y ′0 and y ′1, then
the next value, y ′2, is uniquely determined by the difference equation; and then y ′3
is uniquely determined, and so on. Thus, if we have found unique values of C1

and C2 that make the first two values of y ′ a special case of our general solution,
then all subsequent values (from t = 2 onwards) must also be a special case of
our general solution. This verifies that (20.10) is the general solution.

Example 20.2 Solve the following homogeneous difference equation:

yt+2 + 4yt+1 + 3yt = 0

Solution

The roots are

r1, r2 = −4

2
± 1

2

√
16− 12

Therefore the roots are −1 and −3. The solution to the homogeneous difference
equation then is

yt = C1(−1)t + C2(−3)t

Example 20.3 Solve the following difference equation:

yt+2 − 4yt+1 + 4yt = 0

Solution

The roots of this homogeneous difference equation are

r1, r2 = 4

2
± 1

2

√
16− 16
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Therefore both roots are 2. Using theorem 20.2, we find the solution to be

yt = (C1 + C2t)2
t

Complex Roots

If the roots of the characteristic equation of the second-order difference equation
turn out to be complex-valued numbers, (this occurs if a2

1 − 4a2 < 0), we can still
obtain a solution, as we shall now show. However, some students will have to re-
view the section on complex numbers and trigonometric functions, which appears
at http://mitpress.mit.edu/math econ3, before they can understand the details of
what follows.

When a2
1 − 4a2 < 0, we can write the algebraic solution to the characteristic

equation as

r1, r2 =
−a1 ±

√
(−1)

(
4a2 − a2

1

)
2

=
−a1 ±

√−1
√

4a2 − a2
1

2

Using the concept of the imaginary number, i = √−1, the roots of the character-
istic equation can then be written as the conjugate complex numbers

r1, r2 = h± vi

where

h = −a1

2
, v =

√
4a2 − a2

1

2

The solution to the homogeneous difference equation becomes

yh = c1(h+ vi)t + c2(h− vi)t (20.11)

To make equation (20.11) easier to interpret, we use the fact that a complex
number can be expressed in polar or trigonometric form as

h± vi = R(cos θ ± i sin θ)

where R = √h2 + v2 is said to be the absolute value of the complex roots and
cos θ = h/R and sin θ = v/R. Next we make use of de Moivre’s theorem (see the
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appendix) to reduce equation (20.11) to a more easily interpreted expression. This
theorem states that

[R(cos θ + i sin θ)]n = Rn[cos θn+ i sin θn]

Thus equation (20.11) becomes

yh = c1R
t(cos θt + i sin θt)+ c2R

t(cos θt − i sin θt) (20.12)

This can be simplified further by noting that

R = (h2 + v2)1/2 =
(

a2
1

4
+ 4a2 − a2

1

4

)1/2

= (a2)
1/2

By collecting like terms and defining new constants that subsume those in equation
(20.12), we obtain the solution for the homogeneous form of the linear, first-order
difference equation in the case of complex roots

yh = a
t/2
2 (C1 cos θt + C2 sin θt) (20.13)

In deriving this, we have set C1 = c1 + c2 and C2 = (c1 − c2)i. C1 and C2 are
real-valued numbers even though they are functions of the imaginary number. As
shown in the appendix, this is because c1 and c2 are themselves conjugate complex
numbers. Another way to verify that C1 and C2 are real valued is to use the initial
conditions (y0 and y1 given) to evaluate C1 and C2. Thus we obtain a real-valued
solution to the difference equation. Also note that a2 > 0 is guaranteed in the case
of complex roots because a2

1 − 4a2 < 0 only if a2 > 0.

Example 20.4 Solve the following homogeneous difference equation:

yt+2 − 2yt+1 + 2yt = 0

Solution

The roots are

r1, r2 = 2

2
± 1

2

√
4− 8

which are complex valued since they involve the square root of a negative number.
We write them as

r1, r2 = 1± i
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From equation (20.5) the solution to the homogeneous form is

yt = 2t/2(C1 cos θt + C2 sin θt)

where the value of θ can be found by solving

cos θ = h

R
= 1√

2

From trigonometric tables (some parts of which are included in the appendix), we
find that cos(π/4) = 1/

√
2. Therefore θ = π/4 and the solution becomes

yt = 2t/2

[
C1 cos

(
π

4
t

)
+ C2 sin

(
π

4
t

)]

The Complete Solution

The complete solution to the second-order difference equation (20.1) is obtained
by applying theorem 20.1. This tells us that by adding together the general solu-
tion to the homogeneous form and a particular solution to the complete form in
equation (20.1), we obtain the general solution to the complete equation. We now
turn to the problem of finding a particular solution.

For autonomous difference equations, the particular solution we look for is the
steady-state value of y. As usual, this occurs when yt is stationary, which implies
that yt+2 = yt+1 = yt which, as before, we call ȳ.

Setting yt+2 = yt+1 = yt = ȳ gives

ȳ + a1ȳ + a2ȳ = b

Solving gives

ȳ = b

1+ a1 + a2
, a1 + a2 �= −1

If a1+a2 = −1, a steady-state solution does not exist. In that case we would have
to find an alternative particular solution to use in obtaining the general solution.
The particular solution to use in this case is yp = At , where A is a constant to be
determined using the method outlined in section 20.2. For the remainder of this
section, we will assume that a1 + a2 �= −1, which guarantees the existence of a
steady-state solution.

Adding ȳ to the solution to the homogeneous form gives the general solution
to the complete difference equation (20.1):
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Theorem 20.4 The general solution to the complete difference equation in equation (20.1), when
a1 + a2 �= 1, is as follows:

• If a2
1 − 4a2 > 0 (real and distinct roots),

yt = C1r
t
1 + C2r

t
2 +

b

1+ a1 + a2
(20.14)

• If a2
1 − 4a2 = 0 (real and equal roots),

yt = C1r
t + C2tr

t + b

1+ a1 + a2
(20.15)

• If a2
1 − 4a2 < 0 (complex roots),

yt = a2
t/2(C1 cos θt + C2 sin θt)+ b

1+ a1 + a2
(20.16)

where C1 and C2 are arbitrary constants (the values for which would be
determined by initial conditions, if given) and r1, r2, and θ are defined in
theorem 20.2.

Example 20.5 Solve the following difference equation:

2yt+2 + 8yt+1 + 6yt = 32

Solution

Put the difference equation in standard form by dividing through by 2. This gives

yt+2 + 4yt+1 + 3yt = 16

The homogeneous form of this difference equation is

yt+2 + 4yt+1 + 3yt = 0

which is identical to the one solved in example 20.2. We therefore use that solution
and add to it the particular solution to the complete equation given by the steady-
state solution. The steady-state solution is obtained by solving

ȳ + 4ȳ + 3ȳ = 16
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which gives ȳ = 2. Therefore the general solution to the complete equation is

yt = C1(−1)t + C2(−3)t + 2

Example 20.6 Solve the following difference equation:

yt+2 − 4yt+1 + 4yt = 5

Solution

The homogeneous form of this difference equation is identical to the one solved in
example 20.3. We therefore use that solution and add to it the particular solution
to the complete equation given by the steady-state solution. This is obtained as the
solution to

ȳ − 4ȳ + 4ȳ = 5

which gives ȳ = 5. Therefore the general solution to the complete equation is

yt = (C1 + C2t)2
t + 5

Example 20.7 Solve the following difference equation:

yt+2 − 2yt+1 + 2yt = 10

Solution

The homogeneous form of this difference equation is identical to the one solved in
example 20.4. Using that solution plus the steady-state solution gives the general
solution to the complete equation. The steady-state solution is obtained as the
solution to

ȳ − 2ȳ + 2ȳ = 10

which gives ȳ = 10. The general solution to the complete equation then is

yt = 2t/2

[
C1 cos

(
π

4
t

)
+ C2 sin

(
π

4
t

)]
+ 10
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Initial Values

If the solution to a second-order difference equation is required to satisfy two
specified initial conditions, the values of the constants must be set accordingly.
The following example demonstrates the procedure for doing this.

Example 20.8 Solve for the constants in examples 20.5, 20.6, and 20.7 that make the solutions
satisfy the initial conditions y0 = 1 and y1 = 2.

Solution

At t = 0, the solution to example 20.5 becomes

y0 = C1 + C2 + 2

At t = 1, the solution becomes

y1 = −C1 − 3C2 + 2

Setting y0 = 1 and y1 = 2 and solving these two equations for C1 and C2 gives
C1 = −3/2 and C2 = 1/2. The solution to example 20.5 which also satisfies the
initial conditions then is

yt = −3

2
(−1)t + 1

2
(−3)t + 2

The solution to example 20.6 at t = 0 is

y0 = C1 + 5

At t = 1, the solution is

y1 = (C1 + C2)2+ 5

Setting y0 = 1 and y1 = 2 and solving gives C1 = −4 and C2 = 2.5. The solution
to example 20.6 which also satisfies the initial conditions then is

yt = (−4+ 2.5t)2t + 5

The solution to example 20.7 at t = 0 is

y0 = C1 + 10
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At t = 1, the solution is

y1 =
√

2

(
C1 cos

π

4
+ C2 sin

π

4

)
+ 10

But cos(π/4) = 1/
√

2 and sin(π/4) = 1/
√

2. Therefore

y1 =
√

2

(
C1√

2
+ C2√

2

)
+ 10

Solving gives C1 = −9 and C2 = 1. The solution becomes

yt = 2t/2

[
−9 cos

(
π

4
t

)
+ sin

(
π

4
t

)]
+ 10

The Steady State and Convergence

We have found the complete solution to the linear, autonomous, second-order
difference equation. Our concern now is to determine the conditions under which
yt converges to its steady-state value, ȳ, and under what conditions it diverges.
The following theorem states these conditions:

Theorem 20.5 The path of yt in a linear, autonomous, second-order difference equation con-
verges to the steady-state value ȳ from any starting value, where

ȳ = b

1+ a1 + a2

if a1 + a2 �= −1, if and only if the absolute values of both roots are less than 1.

Proof

We consider three cases:

Real and distinct roots The solution in this case is

yt = C1r
t
1 + C2r

t
2 + ȳ

To determine if yt converges, take the limit of the solution for yt as t →∞. It is
apparent that the result depends entirely on the behavior of the terms involving rt

1
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and rt
2. From our analysis of first-order difference equations, we know that these

terms converge to 0 if the absolute values of r1 and r2 are less than 1, and diverge
otherwise. Thus, yt converges to ȳ if and only if

|r1|< 1 and |r2|< 1

Note that both roots must be less than 1 in absolute value. If just one of them is
greater than 1 in absolute value, yt will diverge.
Real and equal roots The solution in this case is

yt = C1r
t + C2tr

t + ȳ

If the root r is greater than 1 in absolute value, yt clearly diverges. If the absolute
value of the root is less than 1, yt converges to ȳ but it is a bit more difficult to see
this than in the previous case. It is clear that C1r

t goes to 0 as t → ∞ if |r|< 1,
but the limit of C2tr

t as t → ∞ is not so clear. We can ignore C2 because it is
a constant. The term tr t is of the form (∞× 0) in the limit. To evaluate this, we
convert it to t/r−t so that its limit is in the form (∞/∞) when |r|< 1 and then
l’Hôpital’s rule (see section 5.4) can be applied. Using the differentiation rule that
dax/dx = ax ln(x), take the derivative of the numerator and denominator with
respect to t to get 1/[−rt ln(r)]. We now take the limit of this expression as t →∞
and see that the denominator goes to infinity, so the whole term goes to 0. Thus,
both terms involving t go to 0 as t →∞ if and only if |r|< 1.
Complex roots The solution in this case is

yt = a
t/2
2 (C1 cos θt + C2 sin θt)+ ȳ

where cos θ = h/R; sin θ = v/R, where h = −a1/2, v = (4a2 − a2)1/2/2,
and R = a

1/2
2 . The appendix at the end of the book shows that the cosine and

sine functions are bounded between −Ci and Ci, i=1, 2 respectively, as t→∞.
Thus, the convergence of yt is entirely determined by the behavior of the term
a

t/2
2 . If a

1/2
2 < 1, this term converges to 0; otherwise, it diverges. Recalling that√

a2 =
√

h2 + v2 is the absolute value of the complex root, h+ vi, then we again
have found that yt converges if and only if the absolute value of the root is less
than 1.

The Cobweb Model

In chapter 18 we examined a model of price determination in which suppliers form
their supply decision for next period on the basis of this period’s price. We found
that the model is highly unstable because it leads to explosive price oscillations
unless the slope of the supply function is less than the absolute value of the slope of
the demand function. We criticized the model for the naive way in which suppliers
are assumed to form price expectations.
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We will consider an alternative specification of the price expectations process
here that leads to a second-order difference equation for price instead of a first-
order difference equation, as was the case in chapter 18.

As before, suppose that the supply function for period t is

QS
t = F +GEt−1(pt )

where QS is the quantity supplied and Et−1(pt ) is the price that suppliers in period
t − 1 expected to prevail in period t . We assume that

Et−1(pt ) = pt−1 − ρ�pt−2

where

�pt−2 = pt−1 − pt−2

is the price change from period t − 2 to period t − 1, and ρ is a parameter, which
we discuss below. The price expectation process modeled here is one in which
suppliers in period t − 1 use information on the (then) current price, pt−1, and the
price change over the previous period, �pt−2, to predict the next period price.

If 0 ≤ ρ ≤ 1, suppliers expect the next price change, Et−1(pt ) − pt−1, to
be in the opposite direction of the previous price change, �pt−2. This would be a
reasonable expectation given our knowledge of the oscillations that occur in the
cobweb model. On the other hand, if −1 ≤ ρ ≤ 0, suppliers expect the next price
change to be in the same direction as the previous price change. We will investigate
the stability properties of this model for both positive and negative ρ.

The demand function is given by

QD
t = A+ Bpt

Equilibrium occurs when QD
t = QS

t . After making substitutions we find that this
condition gives

A+ Bpt = F +G[pt−1(1− ρ)+ ρpt−2]

Simplifying gives

pt − G

B
(1− ρ)pt−1 − G

B
ρpt−2 = F − A

B
, t = 2, 3, 4 . . .

This second-order difference equation for price holds for all t ≥ 2. We rewrite it
for convenience as
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pt+2 − G

B
(1− ρ)pt+1 − G

B
ρpt = F − A

B
, t = 0, 1, 2, . . . (20.17)

To solve the complete equation, we begin by obtaining the general solution to its
homogeneous form. This is

pt+2 − G

B
(1− ρ)pt+1 − G

B
ρpt = 0, t = 0, 1, 2, . . . (20.18)

The roots of this difference equation are

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2

where a1 = −G(1− ρ)/B and a2 = −Gρ/B.
The solution to the homogeneous form of the difference equation is

ph = C1r
t
1 + C2r

t
2 (20.19)

Note that if ρ < 0, then the roots are real valued and distinct in the normal case of
downward-sloping demand, B < 0, because the expression under the square root
symbol is then positive. On the other hand, if ρ > 0, the roots could turn out to be
real valued (distinct or equal) or complex valued.

The steady-state solution, which we will call p̄ (assuming that it exists), pro-
vides a particular solution to the complete difference equation. This is obtained by
solving

p̄ − G

B
(1− ρ)p̄ − G

B
ρp̄ = F − A

B

which gives

p̄ = F − A

B −G

the usual market-clearing price. The general solution to the complete equation
then is

pt = C1r
t
1 + C2r

t
2 + p̄

Price converges to its steady-state value if the absolute values of both roots
are less than 1. However, it is difficult to tell if this condition is satisfied in this
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model. We consider two numerical examples of this model and then conduct a
more general stability analysis.

Example 20.9 Determine the solution to the difference equation in the cobweb model and deter-
mine whether price converges to its steady-state value when the parameter values
are as follows: B = −16, G = 13, A = 60, F = 2, and ρ = −3/13.

Solution

Using the expressions shown for a1 and a2 in the cobweb model, we get

a1 = −13

−16

(
1+ 3

13

)
= 1

a2 = −13

−16

3

13
= 3

16

The roots therefore are

r1, r2 = −1

2
± 1

2

√
1− 3

4
= −3

4
,−1

4

The steady-state value of price is

p̄ = 2− 60

−16− 13
= 2

The general solution then is

pt = C1

(
−3

4

)t

+ C2

(
−1

4

)t

+ 2

Because the absolute values of both roots are less than 1, price converges to a
value of 2 as t goes to infinity, regardless of the value of the constants C1 and C2

(and therefore regardless of the starting values for p0 and p1).
We arbitrarily chose starting values of p0 = 6 and p1 = 1 and obtained values

for the constants of C1 = 0 and C2 = 4. We then calculated pt for t = 0, 1, 2, 3, . . .

and obtained the following sequence of values: 6.000, 1.000, 2.250, 1.938, 2.016,
1.996, 2.001, 2.000, 2.000, . . . .As we see, price converges to its steady-state value
rather quickly in this example.

Example 20.10 Determine the solution to the difference equation in the cobweb model and deter-
mine whether price converges to its steady-state value when the parameter values
are as follows: B = −2, G = 3/2, ρ = 1/3, F = 10, and A = 27.5.
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Solution

In this case we obtain a1 = 0.5, a2 = 0.25, and find that the roots turn out to be
complex valued. The homogeneous solution then is

ph = (0.5)t [C1 cos(θt)+ C2 sin(θt)]

The value of θ is determined by using either the relationship that cos(θ) = h/R

or sin(θ) = v/R. We shall use the former. Recalling that h = −a1/2, then

cos(θ) = h

R
= −0.25

0.5
= −0.5

Since cos(2π/3) = −0.5, we conclude that the value of θ is 2π/3. The homoge-
neous solution becomes

ph = (0.5)t
[
C1 cos

(
2π

3
t

)
+ C2 sin

(
2π

3
t

)]

After calculating the steady-state price to be 5, the general solution to the
complete difference equation becomes

pt = (0.5)t
[
C1 cos

(
2π

3
t

)
+ C2 sin

(
2π

3
t

)]
+ 5

Figure 20.1 depicts the motion of price given by this equation. Because (0.5)t

approaches 0 quickly as t increases, the cyclical fluctuations in price are damped

pt

t

P0

0 1 2 3 4 5 6 7 8 9

5

Figure 20.1 Path of price in the cobweb model for the case of complex roots
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quite rapidly, leading to fairly rapid convergence. For a larger value of
√

a2, such
as 0.95, the damping would be more gradual leading to a slower convergence. Of
course, if a2 > 1, price would diverge in explosive oscillations.

Convergence Revisited

So far we have determined that the condition for convergence is that the absolute
values of both roots be less than 1. Although this was indeed the case in the
previous numerical examples of the cobweb model, a fair question to ask is whether
the stability of these examples was just a lucky choice of parameter values or
whether the modification of the price expectation formation process has added
some stability to the inherently unstable cobweb model.

To answer this question, we have to determine what restrictions on the co-
efficients of the difference equation guarantee that the roots of the characteristic
equation will have an absolute value less than 1. The following conditions do this:

Theorem 20.6 The absolute value of the roots of the characteristic equation for the linear, au-
tonomous, second-order difference equation are less than 1 if and only if the
following three conditions are satisfied:

(i) 1+ a1 + a2 > 0
(ii) 1− a1 + a2 > 0

(iii) a2 < 1

Before providing an explanation of these conditions, let us check that the parame-
ters in example 20.10 satisfy these restrictions. We have a1 = 0.5 and a2 = 0.25.
Since both a1 and a2 are positive, condition (i) is satisfied. Checking condition
(ii), 1 − 0.5 + 0.25 = 0.75 > 0 so this, too, is satisfied. Finally, condition (iii) is
satisfied because a2 = 0.25.

Panels (a), (b), (c), and (d) in figure 20.2 display graphs of the characteristic
equation

f (r) = r2 + a1r + a2

for different values of a1 and a2.
The roots that solve the characteristic equation occur at the intersection of the

function with the horizontal axis. We seek to determine the parameter restrictions
that ensure both intersections occur between −1 and +1.

In the first three panels of figure 20.2, the roots are between −1 and +1.
Notice that in all three cases, f (1) > 0 and f (−1) > 0; in fact these are necessary
conditions for the roots to be between −1 and +1. Panel (d) is an example where
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f(r)

r0–1 1
(a)

f(r)

r0–1 1
(b)

f(r)

r0–1 1
(c)

f(r)

r0–1
1

(d)

Figure 20.2 (a) Roots positive but less than 1; (b) roots negative but greater than −1;
(c) absolute values of both roots less than 1, but one root positive and one root negative;
(d) one root exceeding 1

one of the roots exceeds 1; notice that f (1) < 0 in this case. Hence conditions (i)
and (ii) in theorem 20.6 are the necessary conditions f (1) > 0 and f (−1) > 0.

Although these conditions rule out most of the other possibilities, such as the
roots equal to −1 and +1, one root less than −1 and one root larger than +1, one
root less than −1 and one between −1 and +1, and one root between −1 and +1
and one larger than +1, they do not rule out two important possibilities. Namely,
both roots could be less than −1 or both roots could be greater than +1, and the
conditions f (1) > 0 and f (−1) > 0 would be satisfied. Thus we need an additional
condition to rule out these two possibilities. In each of these cases, the product of
the two roots exceeds +1. But, since the product of the characteristic roots of a
quadratic function is equal to a2, then we need only add the condition that a2 < 1
to the two conditions we already have. These three together then comprise the
necessary and sufficient conditions for both roots to be between −1 and +1.

Example 20.11 Use theorem 20.6 to determine whether the cobweb model has been made more
or less likely to converge to its steady state by modifying the price expectations
process in the basic cobweb model.
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Solution

We do this separately for the cases ρ > 0 and ρ < 0.

Case 1 0 < ρ < 1
The first condition for stability in theorem 20.6 is

(i) 1+ a1 + a2 > 0. In the modified cobweb model, we get

1+ a1 + a2 = 1− G

B
(1− ρ)− G

B
ρ

= 1− G

B

which is positive for the usual case of downward-sloping demand. The first
condition for stability is therefore satisfied. The second condition is

(ii) 1− a1 + a2 > 0. We get

1− a1 + a2 = 1+ G

B
(1− ρ)− G

B
ρ

= 1+ G

B
(1− 2ρ)

which is positive if ρ > 1/2 (when B < 0). The third condition is
(iii) a2 < 1. We get

a2 = −G

B
ρ

which is less than 1 if

−G

B
<

1

ρ

We conclude that, compared to the basic cobweb model, the modified model
is more stable when ρ > 0. (Recall that ρ > 0 means that suppliers expect the price
change to be in the opposite direction to the most recent price change.) We reach
this conclusion as follows. First, condition (i) is always satisfied. Second, if the
absolute value of G/B is less than 1, (the requirement for convergence in the
basic model), conditions (ii) and (iii) are also always satisfied. So the modified
model is at least as stable as the basic model. But for ρ > 1/2, condition (ii) is
satisfied no matter what the absolute value of G/B and condition (iii) requires the
absolute value of G/B to be less than 1/ρ which is a larger number than 1. Thus
the conditions for convergence in this modified version are less restrictive than
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in the simple version. In other words, the model is likely to converge for a larger
range of parameter values.
Case 2 −1 < ρ < 0

(i) For the first stability condition, we get

1+ a1 + a2 = 1− G

B
(1− ρ)− G

B
ρ

= 1− G

B

As above, the first condition is always satisfied for the usual case of
downward-sloping demand.

(ii) For the second condition, we get

1− a1 + a2 = 1+ G

B
(1− ρ)− G

B
ρ

= 1+ G

B
(1− 2ρ)

which is positive if

−G

B
<

1

1− 2ρ

(iii) For the third condition, we get

a2 = −G

B
ρ

which is less than 1 for the usual case of B < 0.

The first and the third condition are always satisfied (for the case of B < 0) but the
second presents a problem. It is satisfied only if the absolute value of G/B is less
than a number less than 1 (since 1/(1− 2ρ) < 1). We conclude that the modified
model is less stable than the simple model if ρ < 0. (Recall that ρ < 0 means that
suppliers expect the price to change in the same direction as the most recent price
change.)
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A Model of Cournot Duopoly

Suppose there are only two firms in a market. Let xt be firm 1’s output in period
t and yt be firm 2’s output in period t . The market- (inverse-) demand function is
assumed to be

p(x + y) = 120− (x + y)

Assume costs are zero for both firms. Firm 1 must choose how much output to
produce in period t + 1. We apply the Cournot assumption that each firm chooses
its output for t+1 to maximize profit in the belief that the other firm will maintain
its output level at the period t value. Since cost is zero, profit in t + 1, πt+1, is just
price times quantity. For firm 1, profit is

πt+1 = (120− xt+1 − yt )xt+1

The first-order necessary condition for choosing xt+1 to maximize πt+1 is

120− yt − 2xt+1 = 0

Firm 2 has a symmetrical maximization problem so we would obtain a similar-
looking first-order condition with the roles of x and y reversed. Together, these
two first-order conditions give the following reaction functions for the two firms:

xt+1 = 60− 1

2
yt

yt+1 = 60− 1

2
xt

Using the second reaction function to substitute for yt in the first reaction function
gives the following second-order difference equation for x:

xt+1 − 0.25xt−1 = 30, t = 1, 2, . . .

We rewrite this in the more familiar form

xt+2 − 0.25xt = 30, t = 0, 1, 2, . . .

In terms of the coefficients of the general form of the second-order difference
equation, this problem gives

a1 = 0, a2 = −0.25, b = 30
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The stationary value of xt , which we call x̄, is obtained by setting xt+2 = xt and
solving the difference equation, which gives

x̄ = 40

Does xt converge to 40? Theorem 20.5 gives the answer before even solving the
difference equation:

(i) 1+ a1 + a2 = 1+ 0− 0.25 = 0.75 > 0
(ii) 1− a1 + a2 = 1− 0− 0.25 = 0.75 > 0

(iii) a2 = −0.25 < 1

All three conditions are satisfied, so we can be sure that xt converges to 40. This
is confirmed by calculating the roots, which are 1/2 and−1/2. The solution to the
difference equation then is

xt = C1(0.5)t + C2(−0.5)t + 40

Example 20.12 Suppose that the initial conditions in the Cournot duopoly model are x0 = 50 and
x1 = 30. Find the values of the constants that ensure that the solution also satisfies
these initial conditions.

Solution

Setting t = 0 and x0= 50 and solving gives C1= 10−C2. Setting t = 1 and x1= 30
and solving gives C2= 15. The solution to this initial-value problem then is

xt = −5(0.5)t + 15(−0.5)t + 40

E X E R C I S E S

1. Solve the following difference equations:

(a) yt+2 − yt = 0

(b) 2yt+2 − 5yt+1 + 2yt = 4

(c) yt+2 + 2yt+1 + yt = 16

(d) yt+2 − 6yt+1 + 18yt = 26
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2. Solve the following difference equations:

(a) yt+2 + 1

2
yt+1 − 3

16
yt = 6

(b) 9yt+2 − 6yt+1 + yt = 4

(c) yt+2 + 2yt+1 + 4yt = 21

(d) 3yt+2 − 9yt+1 − 12yt = −48

3. Suppose that there are only two firms supplying a market which has demand
function

p(x + y) = A− B(x + y)

where x is firm 1’s output level and y is firm 2’s output level. Find and solve the
second-order difference equation for x, assuming each firm makes a Cournot
conjecture about the other firm’s output level.

4. As in exercise 3, suppose that only two firms supply the market and each
makes a Cournot assumption about the other’s output level. Let the (inverse-)
demand function be

p(x + y) = 126− (x + y)

Now suppose the firms have cost functions given by

C(x) = 1

2
x2, C(y) = 1

2
y2

Profit for firm 1 is now

πt+1 = (126− xt+1 − yt )xt+1 − 1

2
x2

t+1

A similar expression can be derived for firm 2’s profit.

(a) Find the second-order difference equation for x.

(b) Use theorem 20.6 to determine whether or not price converges to its
steady-state level.

(c) Solve the difference equation.

5. Consider the following multiplier-accelerator model of an economy. Let ag-
gregate national income, Y , be equal to

Yt = Ct + It +Gt
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where C, I , and G are consumption, investment, and government expenditure,
respectively. Assume that government expenditure is constant at Ḡ. However,
assume that consumption is given by

Ct = mYt

where 0 < m < 1 is the marginal propensity to consume. In addition assume
that investment is a fraction α of the growth of national income in the previous
year

It = α(Yt−1 − Yt−2)

Derive the second-order difference equation for national income implied by
this model and solve it. Use theorem 20.6 to determine what restrictions on
the parameters of the model must be made to ensure convergence.

6. For the modified cobweb model examined in this chapter, find the complete
general solution for the following two sets of parameter values and determine
whether price converges to the equilibrium.

(a) ρ = −1/2, G = 10, B = −20, F = 20, A = 140

(b) ρ = −1/2, G = 10, B = −50, F = 20, A = 260

20.2 The Linear, Second-Order Difference
Equation with a Variable Term

When the term bt is not constant, then the linear, second-order difference equation
is nonautonomous. The method of solving a nonautonomous difference equation
still involves adding together the solution to the homogeneous form and a par-
ticular solution to the complete equation. However, we can no longer rely on
using the steady-state solution as a particular solution since it no longer exists
necessarily. Even when b is constant, a steady-state solution does not exist when
1+ a1+ a2= 0. In this section, we explain an alternative technique for finding a
particular solution.

Various techniques have been developed for finding a particular solution when
bt is not constant. We provide an introduction to one of these techniques, known
as the method of undetermined coefficients. This method relies on one’s ability
to “guess” the form of the particular solution. While this might at first seem an
arbitrary approach, we provide three guidelines that can be followed.

Case 1 If bt is an nth degree polynomial in t , say pn(t), then assume that the
particular solution is also a polynomial. That is, assume that
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yp = A0 + A1t + A2t
2 + · · · + Ant

n

where the Ai are constants to be determined using the procedure outlined in ex-
ample 20.13 below.
Case 2 If bt is of the form kt , where k is some constant, then assume that

yp = Akt

whereA is a constant to be determined using the procedure outlined in the economic
application at http://mitpress.mit.edu/math econ3.
Case 3 If bt is of the form ktpn(t), then assume that

yp = Akt(A0 + A1t + A2t
2 + · · · + Ant

n)

An important exception to these guidelines for guessing solutions should be
noted. If any term in the assumed solution is also a term (solution) of the homo-
geneous solution disregarding multiplicative constants, then the assumed solution
must be modified as follows. Multiply the assumed solution by tk , where k is the
smallest positive integer such that the common terms are then eliminated. Two
examples below illustrate this procedure.

Example 20.13 Solve yt+2 − 3yt+1 + 2yt = 10.

Solution

The characteristic equation is r2 − 3r + 2 = 0, with roots 1 and 2. Therefore the
solution to the homogeneous form is

yh = C12t + C2

We wish to find a particular solution but we note that 1+ a1+ a2 = 1− 3+ 2 = 0
for this problem. Thus, we cannot find a stationary value for y to use as a particular
solution. The alternative is to use the method of undetermined coefficients to find
a particular solution. Because bt in this case is a constant (a polynomial of order
0), we would first try a particular solution of the same form, that is, yp = A, where
A is a constant to be determined. However, this is the same as the constant term,
C2, in the homogeneous solution, disregarding the multiplicative constant. As a
result we need to modify our “guess” by trying yp = At . (Note that another way of
knowing that the first guess would not work is by the fact that we know a constant
solution does not exist; otherwise, we would have used it.)

The particular solution must satisfy the difference equation. We use this fact
to solve for A. Substitute the particular solution into the difference equation to get
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A(t + 2)− 3A(t + 1)+ 2At = 10

Solving this gives us A[t + 2 − 3t − 3 + 2t] = 10, for which we get A = −10.
Therefore the particular solution is yp = −10t , so the general solution to the
complete equation is

yt = C12t + C2 − 10t

Example 20.14 Solve yt+2 − 3yt+1 + 2yt = 1+ t .

Solution

The homogeneous solution is the same as for the previous example. Only the par-
ticular solution will differ. Because the form of bt now is a first-degree polynomial
in t , our initial “guess” for the particular solution is

yp = A0 + A1t

However, the same problem arises here as in the previous example. That is, our
“guess” has a term in common (ignoring multiplicative constants) with the homo-
geneous solution. Specifically, both have a constant term. Thus we multiply our
first guess by t to obtain our next trial solution

yp = A0t + A1t
2

This trial solution has no terms in common with the homogeneous solution so
we may proceed. Substituting the particular solution into the complete differ-
ence equation (after obtaining the yt+2, and yt+1 terms for the particular solution)
produces

{A0(t + 2)+A1(t + 2)2} − 3{A0(t + 1)+A1(t + 1)2} + 2{A0t +A1t
2} = 1+ t

Now collect constant terms, terms in t , and terms in t2:

(A1 − A0 − 1)− t (2A1 + 1)+ t2(0) = 0

Since this must hold for all values of t , each of the terms in brackets must be
identically equal to zero.

A1 = −1

2
and A0 = −3

2
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The complete solution to the difference equation therefore is

yt = C12t + C2 − 3

2
t − 1

2
t2

E X E R C I S E S

1. Solve the following difference equations:

(a) yt+2 − 3yt+1 + 2yt = 12

(b) yt+2 − 5

2
yt+1 + yt = 3t

(c) yt+2 + 2yt+1 + yt = t

2. Solve the following difference equations:

(a) 9yt+2 − 6yt+1 − 3yt = 4

(b) yt+2 − 2yt+1 + 3

4
yt = 5+ 3t

(c) 3yt+2 − 9yt+1 − 12yt = 3t

C H A P T E R R E V I E W

Key Concepts characteristic equation
characteristic roots
complete solution
complex roots
convergence
eigenvalues
homogeneous form

initial values
particular solution
real and distinct roots
real and equal roots
steady state
method of undetermined coefficients

Review Questions 1. Explain the usefulness of theorem 20.1.

2. What is the characteristic equation and what role does it play in finding the
solution to a linear, second-order difference equation?

3. How are the two solutions to a homogeneous, linear, second-order difference
equation (given by the two roots) used to obtain the general solution?
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4. Under what conditions is the particular solution given by the steady-state
solution?

5. If initial conditions are given, should the values of the arbitrary constants, C1

and C2, be determined after obtaining the general solution to the homogeneous
form, or only after obtaining the general solution to the complete equation?

6. State the necessary and sufficient conditions for convergence to a steady state
both in terms of the roots and in terms of the coefficients of a linear, second-
order difference equation.

7. When does one use the method of undetermined coefficients to find the par-
ticular solution to a linear, second-order difference equation?

Review Exercises 1. Solve 9yt+2 − 6yt+1 + yt = 16.

2. Solve yt+2 − 5yt+1 + 6yt = 2.

3. Solve 2yt+2 − 5yt+1 + 2yt = 10.

4. Solve yt+2 + 2yt+1 + yt = 120.

5. Solve yt+2 − 2yt+1 + yt = 2.

6. Solve 2yt+2 − 5yt+1 + 2yt = 2t .

7. Solve 3yt+2 − 6yt+1 + 4yt = 14.

8. Solve yt+2 − yt = 1.

9. Find the solutions of the difference equations in review exercises 1, 3, 5, and
7 that satisfy the initial conditions: y0 = 1 and y1 = −1.

10. Find the solutions of the difference equations in review exercises 2, 4, 6, and
8 that satisfy the initial conditions: y0 = 1 and y1 = −1.

11. Two firms share the market for a product. Firm 1’s output is x; firm 2’s output
is y. The two reaction functions of the firms are

xt+1 + βyt = b, β �= 1

yt+1 + αxt = b, α �= 1

Derive and solve the second-order difference equation for x implied by this
model.

12. Suppose that the national product, yt , is composed of production plus in-
vestment. Part of current production is intended for current consumption,
and part is intended to maintain an inventory of consumer goods. Let qt
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be production intended for consumption and xt be production intended for
inventory maintenance. Assuming no lag in the consumption function, then
actual consumption in any period is

Ct = myt

Producers must decide production for period t before Ct is actually known.
Assume that producers expect consumption in period t to be the same as
consumption for period t − 1. They therefore produce an amount

qt = myt−1

for consumption.Assuming that producers wish to maintain a constant inven-
tory, they produce an amount for inventory equal to the difference between
actual and planned sales in the previous period. Planned sales in the previous
period were qt−1, whereas actual sales were an amount Ct−1. Therefore

xt = Ct−1 − qt−1 = myt−1 −myt−2

In period t , national product is yt = qt + xt + Ī , where Ī is an exogenous
and constant investment. Derive the second-order difference equation for yt

implied by this model and obtain the general solution.

13. In the study of econometrics, we sometimes encounter an autoregressive
process, which means that a variable is regressed upon itself. For example, let

yt = βyt−1 + et , β < 1

be the autoregressive process where y is a regressive lagged function of it-
self, and where e is a random error term in the relationship. Often the error
term will have the following form:

et = ρet−1 + ut

where ut also is an error term. However, we assume that the expected value
of ut is zero. In other words, if we took the average value of ut over many pe-
riods, it would be zero. Derive the second-order difference equation implied
for y in this model by eliminating et and et−1 from the equation.

14. For the problem in review exercise 12, let m = 0.25, y0 = 4, Ī = 3, and
y1 = 1. Solve the difference equation.

15. For review exercise 13, set ut equal to its expected value and solve the differ-
ence equation. This solution gives the expected value of yt . Use theorem 20.6
to analyze the convergence properties of this model.





Chapter 21 Linear, First-Order Differential
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• The Dynamics of National Debt Accumulation
• The Dynamics of the IS-LM Model
• Practice Exercises

In the next three chapters we explain techniques for solving and analyzing ordinary
differential equations. We do not attempt to provide exhaustive coverage of the
topic but instead focus on the types of differential equations and techniques of
analysis that are most common in economics. We begin in this chapter with linear,
first-order differential equations. In the next chapter we turn to an examination of
nonlinear, first-order differential equations, and in the chapter after that we examine
linear, second-order differential equations. In this chapter and throughout, we will
solve a large number of examples and economic applications to illustrate the uses
of ordinary differential equations in economics.

21.1 Autonomous Equations
In this section we explain how to solve linear, first-order differential equations that
are autonomous, meaning ones in which the variable t does not enter the equation
explicitly.

D e f in i t i o n 21 . 1 The general form of the linear, autonomous, first-order differential equation is

ẏ + ay = b (21.1)

where a and b are known constants.
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The differential equation is linear because ẏ and y are not raised to any power
other than 1. It is of the first-order because that is the highest-order derivative
in the equation. It is autonomous because the coefficient a and the term b are
constant. If a or b vary with t (i.e., are explicit functions of t), the equation is
nonautonomous—this case is taken up in section 21.2.

The solution method we use in this section relies on the technique of sep-
arating the problem of finding the general solution for the complete differen-
tial equation into two simpler subproblems. If yh denotes the general solution to
the homogeneous form (obtained by setting b= 0) and yp denotes a particular
solution (as opposed to the general solution) to the complete equation, then we
can use the result that

y = yh + yp

That is, the general solution, y, for the complete equation is the sum of the
general solution to the homogeneous form and a particular solution to the complete
equation, such as the steady-state solution. The two subproblems, finding yh and
yp, are relatively easy to solve, and they provide the means by which we will
solve the complete differential equation in this section. After showing how to
find yh and yp, we prove that adding them together provides the desired general
solution.

The Homogeneous Solution

We begin by obtaining the general solution to the homogeneous form of the dif-
ferential equation in definition 21.1.

D e f in i t i o n 21 . 2 The homogeneous form of the linear, autonomous, first-order differential equa-
tion is

ẏ + ay = 0, a �= 0

If a = 0, the solution is easy to obtain by direct integration. It is simply y(t) = C,
where C is an arbitrary constant of integration. From now on, we focus on the
more general case, in which a �= 0.

We can solve the homogeneous form by direct integration after manipulating
it into a suitable form. Subtract ay from both sides of the equation and then divide
through by y. This gives

ẏ

y
= −a
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In this form we can integrate each side with respect to t without too much difficulty.
The integral of the right-hand side is just −at + c1, where c1 is a constant of
integration. The integral of the left-hand side is written as

∫
ẏ

y
dt

Recalling that ẏ is actually dy/dt , this becomes

∫
dy/dt

y
dt

and after canceling the dt terms, this becomes

∫
1

y
dy

Since the integral of 1/y is just ln y+ c2, where c2 is a constant of integration, we
now have integrated both sides, giving

ln y + c2 = −at + c1

To obtain an explicit solution for y, take the antilogarithm of both sides. This gives

y = e−at+c1−c2 (21.2)

= e−at ec1−c2 (21.3)

= Ce−at (21.4)

where C = ec1−c2 is still an arbitrary constant of integration.
This gives the solution to the homogeneous form. To avoid confusion later

on, we will use the notation yh to refer to the solution to the homogeneous form
(the h subscript stands for homogeneous), and write the solution as yh(t) to make
it clear that because it is a solution, we express it as an explicit function of t .

Theorem 21.1 The general solution to the homogeneous form of the linear, autonomous, first-
order differential equation is

yh(t) = Ce−at
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Before proceeding, let’s check that our solution is correct. To do this, it is
sufficient to prove that it satisfies the differential equation. The solution implies that

ẏh = −aCe−at

Substitute this and the solution, yh(t), into ẏ + ay, and then check that it equals 0
as in the original differential equation

−aCe−at + aCe−at

This expression does equal 0, so we can be certain that yh(t) is a correct solution.

Example 21.1 Solve the homogeneous form of the differential equation

ẏ = 3y + 2

Solution

The homogeneous form is

ẏ − 3y = 0

Rewrite this as

ẏ

y
= 3

Integrating both sides gives

ln y + c2 = 3t + c1

Taking the antilogarithm of both sides and simplifying gives the solution:

yh(t) = Ce3t

Example 21.2 Let y represent national energy consumption and suppose it grows at a constant
rate of 2%. Derive and solve the differential equation implied by this statement.

Solution

The rate of growth of something is just its growth divided by its level (ẏ/y). If
the percentage rate of growth is a constant 2%, then the rate of growth itself is
just 0.02. Thus we can express the statement that energy consumption grows at a
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constant 2% as follows:

ẏ

y
= 0.02

The solution, using theorem 21.1, is

y(t) = Ce0.02t

The solution gives the level of energy consumption at time t .

The Particular Solution

Having obtained the general solution to the homogeneous form of the differential
equation in definition 21.1, we now look for a particular solution to the complete
differential equation. A particular solution that is easy to find is the steady-state
equilibrium value of y. The concept of a steady-state value for a differential equa-
tion is identical to that for a difference equation, although the method of finding it
is slightly different.

D e f in i t i o n 21 . 3 A steady-state value of a differential equation is defined by the condition ẏ = 0.
It is the value of y, which we call ȳ, at which y is stationary.

To find the steady-state value of y, set ẏ = 0 in the complete differential
equation in definition 21.1. This gives

0+ aȳ = b

Solving gives

ȳ = b

a

as the steady-state value of y. As long as a �= 0, as we have assumed, there does
exist a steady-state value. In general, we will use the notation yp to stand for
a particular solution to the complete equation. However, in the case of an au-
tonomous, linear, first-order differential equation with a �= 0, we will always use
the steady-state value as the particular solution. That is, we will use

yp = ȳ
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To confirm that ȳ is indeed a particular solution to the complete differential equa-
tion, it is sufficient to substitute it back in and ensure that it satisfies the complete
differential equation. To do this, note that the time-derivative of the solution, ȳ,
is 0. Substitute this and ȳ into the complete differential equation to get

0+ aȳ = b

Substituting the expression for ȳ confirms that ȳ satisfies the complete differential
equation and is therefore a solution.

The General Solution

Because of its importance for linear differential equations, theorem 21.2 restates
why we go to the trouble of finding yh and yp:

Theorem 21.2 The solution to any linear differential equation is equal to the sum of the homoge-
neous solution and any particular solution to the complete differential equation.
That is,

y = yh + yp (21.5)

Proof

Let y1 and y2 be any two solutions of the complete differential equation, and define
z = y1− y2 as the difference between these two solutions. Then we can show that
z is a solution to the homogeneous form of the differential equation. We do this as
follows:

ż = ẏ1 − ẏ2

= (−ay1 + b)− (−ay2 + b)

= −a(y1 − y2)

= −az

Therefore

ż+ az = 0

which means that z satisfies the homogeneous form of the differential equation and
is therefore a solution to its homogeneous form. This result allows us to say the
following: let y be the general solution to the complete differential equation and
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let yp be any particular solution. Since y and yp are two solutions of the complete
equation, then we just proved that z = y − yp is a solution of its homogeneous
form. But, since yh is what we are calling a solution to the homogeneous form, it
follows that yh = y − yp, and from this it follows that y = yh + yp.

If we now use this result to add yh and yp together, the general solution to the
complete equation is given by:

Theorem 21.3 The general solution to the complete autonomous, linear, first-order differential
equation is

y(t) = Ce−at + b

a
(21.6)

Example 21.3 Solve the differential equation

ẏ + 2y = 8

Solution

The homogeneous form is

ẏ + 2y = 0

Therefore the solution to the homogeneous form is

yh(t) = Ce−2t

The particular solution we use is the steady-state value of y, which is obtained by
solving

0+ 2ȳ = 8

This gives

ȳ = 4

The general solution to the complete differential equation is therefore

y(t) = Ce−2t + 4
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Example 21.4 Let K(t) represent the quantity of capital available in an industry at time t . Suppose
that capital depreciates at the rate δ and that the rate of investment in the industry is
a constant Ī . Derive and solve the differential equation implied by these statements.

Solution

If δ > 0 is the constant rate of depreciation, then δK(t) is the total amount of
depreciation at time t . The change in the stock (quantity) of capital then is just
Ī − δK . The differential equation for capital is therefore

K̇ = Ī − δK

The homogeneous form is

K̇ + δK = 0

The solution to the homogeneous form is

Kh = Ce−δt

The particular solution we use is the steady-state solution, which is found by setting
K̇ = 0 and solving. This gives

K̄ = Ī

δ

This tells us that if the capital stock ever reaches the level Ī /δ, depreciation will
just equal new investment, so there will be no further increases or decreases in the
size of the capital stock.

The general solution to the complete differential equation therefore is

K(t) = Ce−δt + Ī

δ

The Initial-Value Problem

When we are also given the initial value for y, i.e., the value of y at t = t0, where
t0 is the initial value of t , then the solution to the initial-value problem is one
which both solves the differential equation and satisfies the initial value of y.
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Example 21.5 Solve the differential equation

ẏ = 0.1y − 1

and ensure that it satisfies the initial condition y(0) = 5 at t = 0.

Solution

The solution to the homogeneous form of the differential equation is

yh(t) = Ce0.1t

The particular solution we use is the steady-state solution, which is

ȳ = 10

The general solution then is

y(t) = Ce0.1t + 10

To find the solution that also satisfies the initial condition, evaluate the general
solution at t = 0. This gives

y(0) = C + 10

To ensure that y(0) = 5, we set C = −5. The solution to this initial-value problem
then is

y(t) = −5e0.1t + 10

As this example demonstrates, the arbitrary constant takes on a particular value
when the solution is also required to satisfy an initial condition. This turns the
general solution into a unique solution that is true only for the given initial con-
dition. In economics, we are almost always interested in the unique solution to a
differential equation that also satisfies a known initial condition.

In general, if the initial time is t0, and the initial condition is y(t0) = y0, then
the general solution at time t0 becomes

y0 = Ce−at0 + b

a
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which means that

C =
(

y0 − b

a

)
eat0

The solution then becomes

y(t) =
(

y0 − b

a

)
eat0e−at + b

a

After simplifying, this becomes

y(t) =
(

y0 − b

a

)
e−a(t−t0) + b

a
(21.7)

Usually we take t0 = 0, in which case the expression simplifies to

y(t) =
(

y0 − b

a

)
e−at + b

a
(21.8)

Example 21.6 Find the solution to the differential equation in example 21.4, which also satisfies
the condition that the capital stock at time t = 0 is known to have been K0.

Solution

The solution to the differential equation itself is

K(t) = Ce−δt + Ī

δ

Setting t = 0 and K(0) = K0 gives

K0 = C + Ī

δ

which means that

C = K0 − Ī

δ
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Substituting for C in the general solution and rearranging gives

K(t) =
(

K0 − Ī

δ

)
e−δt + Ī

δ

as the solution to this initial-value problem.

The Steady State and Convergence

One of the main concerns in economic dynamics is to determine whether the dy-
namic system under analysis [the variable y(t) here] converges to the steady-state
equilibrium or not. For example, if y represents price in a model of market equi-
librium, it is important to know whether it converges over time to an equilibrium
value.

Let us rewrite the solution to the initial-value problem as

y(t) = (y0 − ȳ)e−at + ȳ

We wish to determine whether y(t) converges to ȳ as t goes to infinity. To do this,
we calculate the limit of y(t)

lim
t→∞ y(t) = lim

t→∞[(y0 − ȳ)e−at + ȳ]

The limiting behavior of y(t) is determined entirely by the sign of a. If a > 0,
the term e−at tends toward zero as t gets larger. The limit of y(t) therefore, as
t →∞, is ȳ. On the other hand, if a < 0, the term e−at tends to infinity as t →∞.
Therefore y(t) itself goes to infinity [or negative infinity depending on the sign of
(y0 − ȳ)].

We summarize this important result as

Theorem 21.4 The solution to a linear, autonomous, first-order differential equation, y(t), con-
verges to the steady-state equilibrium, ȳ = b/a, no matter what the initial value,
y0, if and only if the coefficient in the differential equation is positive: a > 0.

Example 21.7 Determine whether the solution for K(t) in example 21.6 converges to the steady
state.
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Solution

We found the solution to the differential equation for the capital stock to be

K(t) =
(

K0 − Ī

δ

)
e−δt + Ī

δ

where Ī /δ is the steady-state value of the capital stock. Inspection of the solution
indicates that K(t) does converge to its steady state because the depreciation rate,
δ, is positive.

Example 21.8 Let y stand for energy demand, and suppose that it grows according to

ẏ = 5y − 10

If energy demand has a value of 100 at time t = 0, determine whether it ever
converges to a steady state.

Solution

Applying the techniques developed in this chapter gives the general solution

y(t) = Ce5t + 2

At time t = 0 the solution must satisfy y(0) = 100. This means

100 = C + 2

Therefore C = 98. The solution becomes

y(t) = 98e5t + 2

(Notice that we could have applied equation 21.8 to obtain this result directly.) Does
energy demand in this model converge to its steady-state value ȳ= 2? Inspection
reveals that y(t) becomes infinitely large as t goes to infinity. Thus energy demand
does not converge to its steady-state value in this model.

The Case of a = 0

If a= 0, the steady-state solution is undefined. What do we do in that case? Because
the differential equation then becomes

ẏ = b
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Figure 21.1 Stable equilibrium

it can be integrated directly to get

y(t) = bt + C

A Walrusian Price Adjustment Model

In competitive markets, price is determined by supply and demand. Figure 21.1
shows a typical supply and demand diagram with the equilibrium price at pe and
the equilibrium quantity at qe.

Is the point (qe, pe) a stable equilibrium? If it is, then even if the market is
temporarily out of equilibrium for some reason, price and quantity will return to
their equilibrium values. If it is an unstable equilibrium, then price and quantity
will not return to the equilibrium if the market is ever put into disequilibrium.

For example, in figure 21.1 the equilibrium is stable because, if price were
ever above pe, there would be excess supply causing price to fall toward pe, and
if price were ever below pe, there would be excess demand, causing price to rise
toward pe.

In figure 21.2 we have allowed for the possibility of a downward-sloping
supply curve. In this diagram the equilibrium is unstable: if price were ever above
pe, there would be excess demand, causing price to rise and therefore diverge from
the equilibrium. Likewise, if price were ever below pe, there would be excess
supply, causing price to fall further away from the equilibrium.S

D

p

0

pe

qe q

Figure 21.2 Unstable equilibrium

How can we determine in general whether an equilibrium is stable or not? An
obvious way is to analyze the dynamics of the model of supply and demand. This
is the task we turn to now.

Theory implies that price rises if there is excess demand and falls if there is
excess supply. Let us suppose that the speed of price change is proportional to the
supply-demand gap. This can be expressed algebraically as follows:

ṗ = α(qD − qS), α > 0 (21.9)

where qD and qS are the quantities demanded and supplied, respectively, and α is a
positive constant that determines the speed of price adjustments. We shall take the
value of α as given. This formulation is consistent with economic theory because
price rises (ṗ > 0) if quantity demanded exceeds quantity supplied and price falls
(ṗ < 0) if quantity supplied exceeds quantity demanded.

Now let us suppose that the demand and supply functions are given by the
following equations:

qD = A+ Bp

qS = F +Gp
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Setting qD = qS and solving for the equilibrium price pe gives us

pe = A− F

G− B
, G �= B

We assume that (A−F)/(G−B) > 0. Normally we would expect demand to
slope negatively, which requires that B < 0, and supply to slope positively, which
requires that G > 0. However, we impose no restrictions on the signs of these
coefficients at this point. Instead, we will see what restrictions we must place on
them in order to ensure that price converges to the equilibrium price.

Substituting the supply and demand equations into equation (21.9) and rear-
ranging gives the following linear differential equation with a constant coefficient
and a constant term:

ṗ − α(B −G)p = α(A− F) (21.10)

To solve, we begin with the homogeneous form, given by

ṗ − α(B −G)p = 0

Rearranging gives

ṗ

p
= α(B −G)

Integrating both sides and taking antilogarithms gives

ph(t) = Ceα(B−G)t

Next we use the steady-state solution as a particular solution. This is found by
setting ṗ = 0 and solving. This gives

0− α(B −G)p̄ = α(A− F)

and therefore

p̄ = A− F

G− B

which is the same as the equilibrium price. This is as it should be because ṗ = 0
when the quantities demanded and supplied are equal.
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The general solution to the complete equation then is

p(t) = Ceα(B−G)t + A− F

G− B

Assuming that we know that at t = 0 the price is p(0)=p0, the solution must
satisfy

p0 = C + A− F

G− B

After setting C to satisfy this condition, and using the expression for p̄, the solution
becomes

p(t) = [p0 − p̄]e−α(G−B)t + p̄ (21.11)

Does market price converge to the steady-state equilibrium value? Inspection
of the solution reveals that the necessary condition for price to converge is

G− B > 0

(since α > 0). Only then will the exponent be negative, making the exponential
term tend to zero as t tends to infinity.

Is this condition likely to be satisfied? It is if demand is negatively sloped
(B < 0) and supply is positively sloped (G > 0), which is the usual case, depicted
in figure 21.1. However, it is satisfied even if demand is positively sloped (B > 0)
as long as G is also positive and is larger than B. It is even satisfied if supply
is negatively sloped (G < 0), as long as demand is also negatively sloped and
G−B > 0. It is not satisfied, however, if both curves are sloping opposite to their
usual directions. That is, it is not possible to satisfy the stability condition if B > 0
and G < 0.

E X E R C I S E S

1. Solve the following linear, first-order differential equations, and ensure that
the initial conditions are satisfied.

(a) ẏ − y = 0 and y(0) = 1

(b) ẏ + 3y = 12 and y(0) = 10

(c) 2ẏ + 1

2
y = 12 and y(0) = 10
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(d) ẏ = 5 and y(0) = 1

(e) ẏ = 6y − 6 and y(0) = 3

2. Solve the following linear, first-order differential equations, and ensure that
the initial conditions are satisfied.

(a) 10ẏ = 5y and y(0) = 1

(b) 4ẏ − 4y = −8 and y(0) = 10

(c) ẏ = 7 and y(0) = 2

(d) ẏ = 2y − 1 and y(0) = 5

(e) ẏ + 2y = 4 and y(0) = 3

3. Let p(t) represent the consumer price index. If the rate of inflation of the
price index is constant at 5% (i.e., the growth rate of p(t) is 5%), and the
price index has a base value of 100 at time t = 0, solve for the expression
showing the price index as a function of time.

4. If income per capita is growing at a constant rate of 3%, how long will it take
to double?

5. Let y(t) be the reserves of oil left in an oil pool at time t . Suppose that
extraction reduces reserves at a constant rate equal to α. (The rate of decline
of reserves is α.) If initial reserves at t = 0 were 500 million barrels, solve
for the expression showing reserves as a function of time.

6. Use the information in exercise 5 and assume that α = 0.1. Find the time at
which 50% of oil reserves have been used up. Find the time at which 95% of
oil reserves have been used up.

7. On the floor of the stock exchange, traders meet to buy and sell stock in various
companies. Suppose that the change in the quantity sold of a particular stock
depends on the gap between the offer price pD and the asking price pS . In
particular, assume that q̇ = α(pD−pS). The inverse-demand function of the
buyers is

pD = a + bq

and the inverse-supply function of the sellers is

pS = g + hq

If initial price is p0 at t = 0, find the equilibrium quantity sold in this market
and find the expression showing quantity sold as a function of time. What
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conditions on the parameters of the inverse demand and supply curves must
hold for the equilibrium to be stable?

21.2 Nonautonomous Equations
If the coefficient, a, or the term, b, in a linear differential equation are functions of
time, the equation is nonautonomous. In that case, the solution technique used in
the previous section will not work in general. In this section, we explain a general
solution technique that works for any linear, first-order differential equation.

D e f in i t i o n 21 . 4 The general form of the linear, first-order differential equation is

ẏ + a(t)y = b(t) (21.12)

where a(t) and b(t) are known, continuous functions of t .

Notice that an equation of the form g(t)ẏ + h(t)y = k(t) can always be put into
the form in definition 21.4 by dividing through by g(t), provided that g(t) is never
equal to zero.

One solution strategy for the general case is to use theorem 21.1, which applies
to any linear, first-order differential equation, whether it is autonomous or not. We
would begin by solving the homogeneous form, and then try to find a particular
solution to the complete equation. The difficulty with this approach is that we
can no longer use the easy-to-find steady-state solution as a particular solution.
The reason is simply that when a(t) and/or b(t) are not constant, there does not
exist, in general, any value of y at which ẏ = 0. Instead, we would have to use
an alternative method for finding a particular solution, such as the the method of
undetermined coefficients, first encountered in chapter 20.

An alternative solution strategy, and the one we adopt here, is to use the concept
of an integrating factor that converts any linear, first-order differential equation
into an equation that can be directly integrated to obtain the general solution. We
begin by stating the general solution, and then explain how it is derived.

Theorem 21.5 The general solution to any linear, first-order differential equation is

y(t) = e−A(t)

[ ∫ t

0
eA(t)b(t) dt + C

]
(21.13)

where A(t) = ∫
a(t) dt
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Before working through some examples, let’s see how the general solution
is derived. The solution technique hinges on the fact that any linear, first-order
differential equation can be multiplied by a known factor which converts it into a
form that can be integrated directly.

Theorem 21.5 makes use of the term A(t), which is defined as the integral of
the coefficient a(t). To see how the general solution is obtained, take the derivative
of the function

eA(t)y(t)

This gives

eA(t)

[
dA(t)

dt
y(t)+ ẏ

]

Since a(t) = dA(t)/dt , we have just shown that

d

dt

[
eA(t)y(t)

] = eA(t)[a(t)y(t)+ ẏ]

This result suggests we use the following technique for solving the differential
equation: multiply through the equation by the term eA(t). This gives

eA(t)[ẏ + a(t)y] = eA(t)b(t)

We just showed, however, that the left-hand side is equal to

d

dt

[
eA(t)y

]
Therefore an equivalent way of expressing the differential equation is

d

dt

[
eA(t)y(t)

] = eA(t)b(t)

In this form, the differential equation can be solved by direct integration. Doing
so gives

eA(t)y(t) =
∫

eA(t)b(t) dt + C



21.2 NONAUTONOMOUS EQUATIONS 733

Dividing by eA(t) gives

y(t) = e−A(t)

[ ∫
eA(t)b(t) dt + C

]

The Integrating Factor

The trick we introduced above was to multiply both sides of the differential equa-
tion by a specific term. This made the differential equation amenable to direct
integration. Terms that do this are called integrating factors. It was discovered
long ago that there is an integrating factor for any linear differential equation, and
it always takes the same form. We state this in the form of a theorem:

Theorem 21.6 The general form of the integrating factor for the linear, first-order differential
equation is

eA(t) (21.14)

where A(t) = ∫
a(t) dt .

In the special case where the coefficient a(t) ≡ a, a constant, then the integrating
factor becomes eat .

Example 21.9 Solve the differential equation

ẏ − 2ty = bt

Solution

In this case we have a(t) = −2t . Therefore

A(t) = −
∫

2t dt = −t2

(We ignore the constant of integration in calculating A(t) because it will be sub-
sumed anyway in the overall constant of integration C.) Multiplying both sides of
the differential equation by the integrating factor gives

e−t2
[ẏ − 2ty] = e−t2

bt



734 CHAPTER 21 LINEAR, FIRST-ORDER DIFFERENTIAL EQUATIONS

The equivalent expression is

d

dt
e−t2

y = e−t2
bt

Integrating both sides gives

e−t2
y =

∫
e−t2

bt dt

which gives

y(t) = et2

[ ∫
e−t2

bt dt + C

]

Careful inspection reveals that the solution can be carried a step further to give

y(t) = et2

[
−be−t2

2
+ C

]

= −b

2
+ Cet2

An Aggregate Growth Model with Technological Change

Consider a simple model of an economy that produces output using only capital.
The amount produced is given by the production function which, we assume,
shifts out over time because of technological change. Letting y denote output, and
k denote capital, we assume that the technical relationship is

y = (a + αk)t1/2

This says that output is a linear function of the amount of capital in the economy
k but that, over time, the entire function increases.

We further assume that a constant share s of output is saved, where 0 < s < 1.
Capital accumulation in the economy is equal to savings. Therefore

k̇ = sy

Substituting for y gives

k̇ = s(a + αk)t1/2
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Rearranging gives

k̇ − sαt1/2k = sat1/2

We wish to solve this to obtain an expression showing k as a function of t . The
coefficient is −sαt1/2. Therefore

A(t) = −
∫

sαt1/2 dt

which can be integrated to obtain

A(t) = −2

3
sαt3/2

An equivalent expression for the differential equation then is

d

dt

[
e−2sαt3/2/3k

] = sat1/2e−2sαt3/2/3

Integrating both sides gives

e−2sαt3/2/3k = sa

∫
t1/2e−2sαt3/2/3 dt + C

The integration on the right-hand side can be taken further to get

e−2sαt3/2/3k = sa

[
−e−2sαt3/2/3

sα

]
+ C

Solving for k(t) gives

k(t) = − a

α
+ Ce2sαt3/2/3

Assuming an initial condition of k(0) = k0, we must set

C = a

α
+ k0
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After substituting, we get

k(t) = − a

α
+

(
a

α
+ k0

)
e2sαt3/2/3

as the explicit solution for capital in this model.
Although we would not expect k(t) to converge to a steady state, given the

nonautonomous nature of the model, it is reasonable to ask whether it converges
to any particular growth path. Inspection of the solution reveals that this is not the
case in this model because the exponential term in the solution grows without limit.

E X E R C I S E S

1. Solve ẏ − y = e2t and y(0) = 1

2. Solve ẏ + 4ty = 0

3. Solve ẏ − 3t−2y = t−2

4. Suppose that an economics professor decides to deduct grade points for as-
signments turned in late in order to provide a stronger incentive to complete
assignments on time. There is an initial penalty of 10 grade points for being
late with an assignment. After that, the number of marks deducted, m, in-
creases by the amount of the time late. In a continuous-time framework, this
means that

ṁ = t

where ṁ is the increase in the grade-point penalty and t is the amount of
time late. Solve the differential equation to obtain an expression for the grade
points deducted as a function of the time late.

5. For exercise 4, let one 24-hour period represent 1 unit of elapsed time. Find the
value of the late penalty after 4 days have elapsed, and after 6 have elapsed.

6. Suppose that an instructor has adopted the practice of deducting grade points
for late assignments. There is an automatic 5-grade-point penalty for being
late and the grade points deducted increase by the square root of the amount
of time late. Solve for the grade points deducted as a function of the time late.

7. Make the following two changes to the economic growth model. First, let the
production function be y = αtk. Second, let savings be given by S = y−βt .
Assuming that k0 > β/α, solve to find the expression for the economy’s cap-
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ital stock as a function of time. What is the steady-state capital stock size?
Does the capital stock converge to the steady state?

C H A P T E R R E V I E W

Key Concepts convergence
general solution
homogeneous form
initial-value problem

integrating factor
particular solution
steady-state value

Review Questions 1. Describe the two-step procedure for obtaining the general solution to the
complete, autonomous, linear, first-order differential equation.

2. Explain what is meant by the steady state of a linear, first-order differential
equation.

3. Under what conditions is the particular solution equal to the steady-state
solution?

4. State and explain the necessary and sufficient condition for convergence in
an autonomous, linear, first-order differential equation.

5. Explain how to find the integrating factor for a first-order differential equation.

6. Explain how to use the integrating factor to help solve a linear, first-order
differential equation.

Review Exercises 1. Suppose that energy consumption E grows at the rate of 2% and was equal
to 2 units at time t0. Solve for energy consumption as a function of time.

2. Suppose that national income Y grows at a rate of g and national population P

grows at a rate of α. Define income per capita as y = Y/P . Solve for income
per capita as a function of time.

3. Let K(t) be the quantity of capital available in an industry at time t . If K(0) =
500 and if the depreciation rate is 5% and the investment rate is a constant
100 units, solve for the expression showing the quantity of capital available
as a function of time. Find the steady-state capital stock, and show that K(t)

converges to the steady state.

4. A perfectly competitive firm maximizes profits by producing the quantity of
output at which marginal cost equals price. Assuming that it takes time for the
firm to change the quantity of output it produces, let it adjust its output level
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in proportion to the gap between price and marginal cost. That is, assume that

q̇ = α[p −MC(q)]

where q is the quantity of output, p is the price of output, and MC(q) is
the marginal-cost function. Let the marginal-cost function be MC(q) = aq,
where a is a positive constant. Solve this differential equation for q(t), find
the steady state for q, and determine whether q(t) converges to the steady
state.

5. Let K∗ be a firm’s desired capital stock. Although K∗ will depend in general
on a number of factors, such as the desired output level of the firm, the price
of output, and the price of capital, assume these factors are constant so that
K∗ is also constant. Because it is costly for the firm to adjust its capital
stock (e.g., workers have to be diverted from producing output to installing
additional machinery), the firm adjusts gradually towards K∗. Specifically,
suppose that the change in the capital stock K is proportional to the gap
between the desired and the current capital stock, where α is the factor of
proportionality that determines the speed of adjustment. Assuming that there
is no depreciation, and assuming that the initial capital stock at t = 0 is K0,
write out the differential equation for the capital stock and solve it. What is the
steady-state stock size? Does K(t) converge to the steady-state stock size?

6. Use the information in review exercise 3, but now let investment grow at the
rate g from an initial level of I0 at time t = 0. Solve for the expression that
shows capital as a function of time. Does K(t) converge to a finite limit?

7. In the growth model of section 21.2, assume that a = 0 and solve the new
differential equation without using the integrating factor.

8. Suppose that the demand for wheat is given by qD = A+Bp but the supply
is given by

qS = F +Gp +H(1− e−µt ), µ > 0

where the last term reflects productivity growth over time. That is, the supply
curve for wheat shifts (smoothly) out over time because of continuous tech-
nological improvements in production. Assume that price adjusts if there is
excess demand or supply according to ṗ = α(qD−qS). Solve this differential
equation for p(t) given p(0) = p0.



Chapter 22 Nonlinear, First-Order Differential
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• Nonlinear Differential Equation Examples
• A Fishery Model with the Harvest Rate Proportional to Stock Size: Example
• An Explicit Solution of the Fishery Model: Example
• The Aggregate Growth Model with Technological Change and Zero

Population Growth: Example
• Practice Exercises

In chapter 21 we saw that we could apply a single solution technique to solve
any first-order differential equation that is linear. When the differential equation
is nonlinear, however, no single solution technique will work in all cases. In fact
only a few special classes of nonlinear, first-order differential equations can be
solved at all. We will examine two of the more common classes in section 22.2.
Even though solutions are known to exist for any nonlinear differential equation of
the first order that satisfies certain continuity restrictions, it is simply not possible
to find that solution in many cases. An alternative commonly used in economics
is to do a qualitative analysis with the aid of phase diagrams. This technique is
examined in section 22.1.

22.1 Autonomous Equations and
Qualitative Analysis

Before attempting a qualitative analysis of an autonomous, nonlinear differential
equation, it is essential to know the conditions under which a solution exists. We
begin by defining the initial-value problem and then state the conditions for the
existence of a solution.
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D e f in i t i o n 22 . 1 The initial-value problem for an autonomous, nonlinear, first-order differential
equation is expressed as

ẏ = g(y) (22.1)

y(t0) = y0 (22.2)

The function g(y) must satisfy the properties stated in theorem 22.1 if we are to
be guaranteed a solution to the initial-value problem.

Theorem 22.1 If the function g and its partial derivative ∂g/∂y are continuous in some closed
rectangle containing the point (t0,y0), then in a neighborhood around t0 contained
in the rectangle, there is a unique solution y= ξ(t) satisfying equations (22.1)
and (22.2).

Theorem 22.1 assures us that a solution to the initial-value problem for nonlin-
ear, first-order differential equations does indeed exist if g(y) satisfies the continu-
ity conditions stated. However, the knowledge that a solution exists by no means
ensures that we will be able to find it. In fact, it is rare in economic applications to
be able to find explicit solutions to nonlinear differential equations. Instead, it is
common to conduct a qualitative analysis, often with the aid of a phase diagram.

Consider the nonlinear, first-order differential equation

ẏ = y − y2 (22.3)

It turns out that equation (22.3) is a member of one of the classes of nonlinear
differential equations that we can solve using some specialized techniques, as
we will later see. However, for now, let us suppose that we do not know these
specialized techniques. It quickly becomes clear that our knowledge of solving
linear differential equations will not help us find a solution to equation (22.3).
Instead, we will attempt a qualitative analysis of the solution with the aid of a
phase diagram. To this end, rearrange equation (22.3) to get

ẏ = y(1− y) (22.4)

For an autonomous, first-order differential equation, we can find the steady-
state values of y by setting ẏ= 0. Doing this in equation (22.4) reveals that the
system will be at rest (ẏ= 0) at

y = 0 and y = 1
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This information is used to construct the phase diagram for equation (22.4) in
figure 22.1.y

0 y11
2

.

Figure 22.1 Phase diagram for
equation (22.4)

The phase diagram of a single differential equation shows ẏ as a function
of y. We are particularly interested in finding the range of y values over which
y is increasing over time (ẏ > 0) and the range over which y is decreasing over
time (ẏ < 0). We can construct the diagram by graphing equation (22.4) with ẏ as
the variable on the vertical axis and y as the variable on the horizontal axis. For
example, we have just determined that the value of ẏ is zero when y= 0 and y= 1.
This gives us two points on the graph. We now want to use equation (22.4) to plot
the rest of the relationship. We can use standard qualitative graphing techniques
to do this. First, determine the value of y at which the curve reaches an extreme
value by taking the derivative of ẏ with respect to y and setting it equal to zero:

dẏ

dy
= 1− 2y = 0

This gives us y= 1/2. Determine whether the curve reaches a maximum or a
minimum at y= 1/2 by taking the second derivative of ẏ with respect to y:

d2ẏ

dy2
= −2

The negative value of the second derivative tells us that the curve reaches a
maximum at y= 1/2. Accordingly we know the curve must have the shape shown
in figure 22.1.

A phase diagram helps us to determine the qualitative properties of a solution
to a differential equation without actually having to solve it. In figure 22.1 we see
that if the value of y ever reaches zero or one, it will remain at that value forever
because ẏ= 0 at each of those values. What happens if y has a value between
zero and one? The phase diagram shows that ẏ > 0 for 0 < y < 1. This means that
whenever the value of y is between zero and one, y will tend to increase over time.
Of course, we already know that if it ever reaches one, the value will remain there.

What happens when y > 1? We see from figure 22.1 that ẏ < 0 for y > 1.
If ever y exceeds one, its value will tend to decrease toward one. Finally, what
happens if y < 0? We see that ẏ < 0 for y < 0, which means that if ever the value
of y is less than zero, its value will continue to decrease.

All this information is placed in the diagram in the form of arrows, to remind
us of the direction of motion of the variable y in the different regions. Our analysis,
summarized in the arrows of motion in figure 22.1, indicates that the tendency is
for y to converge to the value one if it starts at a value exceeding zero, diverge to
−∞ if it starts at a value less than zero, and to remain at zero if it starts at zero.

Thus, without solving the differential equation, we have obtained a great deal
of insight into its solution by relying on a qualitative analysis with the aid of a
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phase diagram. Once we are given an initial condition for y, we can say with
confidence how y will behave over time (increase or decrease) and to what value
it will converge. In particular, provided that y0 > 0, we are able to conclude that
y(t) will converge to the value y= 1.

Stability Analysis

We required two types of information in the above qualitative analysis. First, we
needed to know the steady-state values for y (i.e., the values at which ẏ= 0).
Second, we needed to know the arrows of motion, or the motion of the system
around the steady-state values, to determine whether or not the system would
converge to one of these steady-state values.

We found that the system converged to one of the steady-state values (y= 1)

but not the other (y= 0). We could say that y= 1 is a stable equilibrium and y= 0
is an unstable equilibrium. What makes one stable and the other unstable? In terms
of figure 22.1, the arrows of motion point toward the stable equilibrium but away
from the unstable equilibrium. But what makes the arrows of motion do this? It
turns out that the slope of the ẏ line in figure 22.1, as it cuts through the equilibrium
points, determines whether those equilibrium points will be stable.The slope is neg-
ative at the point y= 1 but it is positive at the point y= 0. Because the slope of the ẏ

line as it cuts through the equilibrium points is just the derivative of ẏ with respect to
y evaluated at the equilibrium points, we can state this new result as the following:

Theorem 22.2 A steady-state equilibrium point of a nonlinear, first-order differential equation
is stable if the derivative dẏ/dy is negative at that point and unstable if the
derivative is positive at that point.

Let us apply theorem 22.2 to the differential equation (22.4).

At y = 0
dẏ

dy
= 1− 2(0) = 1

At y = 1
dẏ

dy
= 1− 2(1) = −1

We conclude that y= 0 is an unstable equilibrium and y= 1 is a stable equi-
librium.

The stability condition (dẏ/dy < 0 at equilibrium values) is intuitively sensi-
ble. It says that if the system is at equilibrium and is somehow pushed away from the
equilibrium point, the motion of y will be in the opposite direction (negative deriva-
tive) of the push. This means that the system will tend to return to equilibrium. If
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the motion of y is in the same direction (positive derivative) as the push (as it is at
y= 0 in figure 22.1), the system will tend to move further away from equilibrium.

Finally it is worth noting that this stability condition does not apply only to
nonlinear, first-order differential equations. It also applies to the linear, first-order
differential equations with constant coefficients: ẏ + ay= b. Here the derivative
dẏ/dy=−a is a constant. Thus the value of y will converge to the equilibrium
(which is b/a) only if a > 0, which is the same convergence condition we derived
in chapter 21.

Example 22.1 Find the steady-state points and determine their stability properties for the
following:

ẏ = 3y2 − 2y

Solution

The steady-state points occur where ẏ= 0. This gives

y(3y − 2) = 0

Therefore y= 0 and y= 2/3 are the steady-state points. Applying theorem 22.2
gives

dẏ

dy
= 6y − 2 =

{−2 at y = 0
2 at y = 2/3

Therefore y= 0 is stable, but y= 2/3 is unstable.

A Fishery Model with a Constant Harvest Rate

Suppose that a fish population grows according to the function

g(y) = 2y

(
1− y

2

)

where y is the stock of fish. The fish population is subjected to a constant level
of harvesting by a fishing industry. If the harvest is a constant amount equal to
3/4, will the fish population reach a steady-state (positive) size, in which case the
harvest is a sustainable activity, or will the fish population decline and become
extinct?

To answer these questions, we conduct a qualitative analysis of the dynamics
of the population. The growth of the fish population is reduced by 3/4 at each
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point in time, owing to the fishing industry. The change in the stock of fish is

ẏ = 2y

(
1− y

2

)
− 3

4

The steady-state value of the population occurs where ẏ= 0 which, after multi-
plying through the brackets, implies that

y2 − 2y + 3

4
= 0

for which the solutions are

y =
2±

√
4− 4

3

4
2

Solving gives y= 1/2 and y= 3/2 as the two steady-state values of the fish pop-
ulation. Are they stable? We can determine the answer by applying theorem 22.2.
First, take the derivative of ẏ with respect to y. This gives us

dẏ

dy
= 2− 2y

Evaluated aty= 1/2, the derivative equals 1, a positive value, indicating instability.
Evaluated at y= 3/2, the derivative equals −1, a negative value, indicating sta-
bility. We conclude that y= 1/2 is an unstable steady-state stock size and y= 3/2
is a stable one.

y

0 y21
2

.

3
2

3
4

Figure 22.2 Phase diagram for the
fishery model with a constant harvest
rate

How can we determine which equilibrium is likely to arise and whether the
fish population is likely to become extinct? A qualitative analysis using the phase
diagram in figure 22.2 will answer these questions.

Rather than graphing the curve for ẏ, we have graphed the curve for g(y)

and the line 3/4 separately. We need only remember that when g(y) > 3/4, the
fish population grows; when g(y) < 3/4, the fish population declines; and when
g(y)= 3/4, the fish population has reached a steady state.

The two steady-state values for y are shown in figure 22.2. What is the motion
of the dynamic system? That is, in which direction does y move when it is not
at one of the steady-state values? The phase diagram makes it clear that when y

is between 0 and 1/2, then g(y) < 3/4, so the population declines, as indicated
by the arrow of motion. When y is between 1/2 and 3/2, then g(y) > 3/4, so
the population grows. Finally, when y is larger than 3/2, then g(y) < 3/4, so the
population declines. We conclude that the fish population will reach the stable
steady-state value of 3/2 and remain there forever, provided that y0 > 1/2. On
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the other hand, if the initial population were less than 1/2, the population would
decline to zero.

The Neoclassical Model of Economic Growth

What determines the long-run growth rate of an economy? The theory of economic
growth was developed to answer this question and is still evolving. One of the
important building blocks for modern refinements of the theory is the model that
Nobel laureate Robert Solow developed in the 1950s.

In this model we assume that output per person in an economy can be expressed
as a concave function of the capital–labor ratio

y = f (k)

where y is output per person and k=K/L is the capital–labor ratio. Here K is
the aggregate capital stock and L is total labor, which is equal to the total number
of persons, assuming, for simplicity, that everyone works. Concavity implies that
f ′(k) > 0 and f ′′(k) < 0.

The economy’s output can be consumed or saved. The economy’s capital
stock, K , increases by the amount of investment, which is by definition equal to
the amount of output saved. We assume a constant savings rate, s. Hence

K̇ = sY

is the change in the capital stock, where Y is aggregate output. Since k=K/L,
then

k̇ = d

dt

(
K

L

)

= LK̇

L2
− KL̇

L2

Rearrange this to obtain

k̇ = K̇

L
− k

L̇

L

The labor force is assumed to grow at the constant rate n. Making this substitution
and the substitution for K̇ gives

k̇ = s
Y

L
− nk
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Since y=Y/L and using y= f (k), this becomes

k̇ = sf (k)− nk

This nonlinear differential equation for the capital–labor ratio describes the growth
of the economy in this model. We want to analyze this differential equation to see
what the assumptions of the Solow model imply about the properties of the growth
path of the economy. Since the labor force is assumed to grow exogenously, does
this mean that the capital–labor ratio, k, and output per person, y, will fall over
time, rise over time, or reach a steady state?

To construct the phase diagram, we first find the steady-state points by setting
k̇= 0. This implies that

f (k)

k
= n

s
, k �= 0

Because f (k) is a monotonic function, we know there is only one value of k > 0
that solves this equation. Call this value k∗. However, we also assume that f (0)= 0,
so that k= 0 also is a steady-state equilibrium. Next we find the slope of the phase
line and the points where the slope is zero:

dk̇

dk
= sf ′(k)− n

The slope equals zero at the point k̂ where

f ′(k̂) = n

s

The second derivative

d2k̇

dk2
= sf ′′(k) < 0

tells us that the curve reaches a maximum at k̂. Comparing the equations implicitly
defining k∗ and k̂, we can conclude that k∗> k̂. This follows from the fact that f (k)

is a concave function (see figure 22.3). The average value of the function, f (k)/k,
is equal to n/s at k∗; the marginal value of the function, f ′(k), is equal to n/s at k̂.

0 kk*k

f (k)
f (k)

slope = n /s

f '(k) = n /s

f (k)
n =

n
s

Figure 22.3 Concavity of f (k)
implies that k∗> k̂

k

0 k

.

k*k

k = s f (k) – nk
.

Figure 22.4 Phase diagram for the
neoclassical growth model

We can put all of this information together to generate the phase diagram
shown in figure 22.4. The k̇ curve equals zero at k= 0 and k= k∗ and reaches a
maximum at k= k̂. The arrows of motion shown follow from the fact that the curve
indicates k̇ > 0 for k < k∗ and k̇ < 0 for k > k∗.We conclude that the point k= 0 is an
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unstable steady-state equilibrium point and the point k= k∗ is a stable steady-state
equilibrium point. Theorem 22.2 confirms this conclusion: the slope of the k̇ func-
tion is negative at k∗, indicating stability, and positive at zero, indicating instability.

The Solow growth model predicts the convergence of the capital–labor ratio
to a constant k∗. Because the labor force is assumed to grow at the rate n, the
model also predicts the convergence of the economy to a steady-state growth path
on which output, capital, and the labor force all grow at the rate n. Empirical tests
of this model indicate that it does a good job of explaining the growth rates of many
countries but suggest that it is not able to account for all of the growth experienced
in most countries. A response to this observation has been to augment the model by
assuming exogenous technological change. Solving this augmented model is posed
as an exercise at the end of this chapter. Although this augmented model is even
better at explaining observed growth rates, many economists believe that relying
on exogenous technological change is an unsatisfactory way to make the model
do a better job of explaining observed growth rates. As a result recent research has
been directed at making technological change endogenous in the growth model.

E X E R C I S E S

1. Use a phase diagram and theorem 22.2 to conduct a qualitative analysis of
ẏ=−y + y2 + 3/16.

2. Use a phase diagram and theorem 22.2 to conduct a qualitative analysis of
ẏ= y − y2 + 3/16.

3. Use a phase diagram and theorem 22.2 to conduct a qualitative analysis of
ẏ= y − y1/2.

4. Use a phase diagram and theorem 22.2 to conduct a qualitative analysis of
ẏ= y1/2 − y.

5. Quantity demanded in a market is given by

qd = p−2

and quantity supplied is given by

qs = 8p

If price adjusts according to ṗ=α(qd − qs), where α > 0 is a constant, con-
duct a qualitative analysis of the dynamics of market price.
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6. Increases in carbon dioxide in the earth’s atmosphere have been cited as a
probable cause of “global warming.” Let y represent the stock of carbon
dioxide and let x > 0 (a constant) represent the flow of carbon dioxide emis-
sions that come from industrial activity. Assume that the dynamics of y are
given by

ẏ = x − ya

where the term ya represents the earth’s capacity to remove carbon dioxide
from the atmosphere and allow its absorption elsewhere (i.e., in trees, oceans).
Conduct a qualitative analysis of this model, first for the case a > 0 and then
for the case a < 0. Comment on your results.

22.2 Two Special Forms of Nonlinear,
First-Order Differential Equations

We now turn to two classes of nonautonomous, nonlinear, first-order differential
equations for which we can obtain explicit solutions.

D e f in i t i o n 22 . 2 The general form of the nonautonomous, first-order differential equation is

ẏ = f (t, y) (22.5)

In this general form, the equation can be a nonlinear function of both y and t .

Bernoulli’s Equation

The differential equation

ẏ + a(t)y = b(t)yn (22.6)

where n �= 0 or 1, is known as Bernoulli’s equation. (If n= 0 or 1, it is a linear
differential equation, which we have already examined.) Note that the differential
equation (22.3) is a Bernoulli equation with n= 2, b(t)=−1, and a(t)=−1.

If we assume that a(t) and b(t) are continuous on some interval T , then we
can transform equation (22.6) into a linear equation through a judicious change of
variable. Provided that y(t) �= 0, we can multiply through by y−n to obtain

y−nẏ + a(t)y1−n = b(t)
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Now define a new variable x= y1−n. This means that ẋ= (1 − n)y−nẏ, and
equation (22.6) becomes

ẋ

1− n
+ a(t)x = b(t)

which is now a linear equation that we can solve with linear techniques. Once
we obtain the solution for x(t), we can transform it back into y(t). However, a
cautionary note is necessary: this procedure is valid only if y(t) �= 0 at every t ∈ T .

An illustration of this technique in a fishery model can be found at http://
mitpress.mit.edu/math econ3.

Separable Equations

We can always write a function f (t, y) in ẏ= f (t, y) as the ratio of two other
functions, M(t, y) and −N(t, y) (where the minus sign is for convenience, as we
shall see). We can then write the differential equation (22.5) as

M(t, y)+N(t, y)ẏ = 0 (22.7)

D e f in i t i o n 22 . 3 Anonlinear, first-order differential equation is separable if M(t, y)=A(t), a func-
tion only of t , and N(t, y)=B(y), a function only of y. A separable, nonlinear,
first-order differential equation can therefore be written as

A(t)+ B(y)ẏ = 0 (22.8)

Why are separable equations singled out for special attention? The reason is
that they can be solved by direct integration, as we now show. Rewrite equation
(22.8) as

A(t) dt + B(y) dy = 0

This equation can be integrated directly to obtain∫
A(t) dt +

∫
B(y) dy = C (22.9)

which is the solution to the separable differential equation. If, in addition, there is
an initial condition y(t0)= y0 to be satisfied, then we can solve the initial-value
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problem in the usual way by applying the initial condition to equation (22.9) to
evaluate C.

In practice, it may be impossible to perform the required integration in equation
(22.9), which means we cannot obtain an explicit solution for y(t), but the growth
model we provide at http://mitpress.mit.edu/math econ3 is an example where an
explicit solution is possible.

E X E R C I S E S

1. Solve

ẏ + 2y = 3

y

2. Suppose that there are X farms in a large geographical region. At time 0, a
technological innovation is introduced to the region and spreads gradually
from farm to farm. Let N(t) be the number of farms that have adopted the
innovation by time t , and asume that the rate of adoption is proportional to
the product of N(t) and X −N(t):

Ṅ = αN(X −N)

Solve for N(t).

3. Solve

ẏ = t2

y

4. Solve

ẏ = t2

y(1+ t3)

5. Solve

ẏ = −t

y2
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6. Suppose that the growth rate of a population falls over time so that the popu-
lation growth is given by

ẏ = t

t2 + 1
y

Solve for y(t).

C H A P T E R R E V I E W
Key Concepts arrows of motion

Bernoulli’s equation
initial-value problem
phase diagram

qualitative analysis
separable equation
stable steady-state equilibrium point
unstable steady-state equilibrium point

Review Questions 1. Explain how a phase diagram for a differential equation differs from a phase
diagram for a difference equation.

2. What is the relationship between theorem 22.2 and the phase diagram?

3. Why is it important to know the convergence property of a steady-state equi-
librium point?

Review Exercises 1. Draw a phase diagram for and solve ẏ= 2y − 6y2.

2. Draw a phase diagram for and solve ẏ= ry(1− ky).

3. Solve the separable, nonlinear differential equation ẏ= t/y.

4. Solve, as far as possible, the separable, nonlinear differential equation

ẏ = t + 1

y4 + 1

5. A perfectly competitive firm maximizes profits by producing the quantity of
output at which marginal cost equals price. Assuming that it takes time for the
firm to change the quantity of output it produces, let the firm adjust its output
level in proportion to the gap between price and marginal cost. That is, assume
that

q̇ = α[p −MC(q)]
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where q is the quantity of output, p is the price of output, and mc(q) is the
marginal-cost function. Let the marginal-cost function be MC(q)= aq2, where
a is a positive constant. Draw the phase diagram for this nonlinear differen-
tial equation for q(t). Determine whether the steady-state equilibrium point is
stable using the phase diagram. Confirm your finding using theorem 22.2.

6. Using the same model as in exercise 5, but now assuming that the marginal-
cost function is given by MC(q)= aq−1, draw a phase diagram and determine
whether the steady-state equilibrium point is stable using the phase diagram
and theorem 22.2.



Chapter 23 Linear, Second-Order Differential
Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Walrusian Price-Adjustment Model with Entry and Exit
• Practice Exercises

Until now we have confined our analysis of differential equations to those of
the first order. In this chapter we will examine linear, second-order differential
equations with constant coefficients. We focus our attention on the autonomous
case in section 23.1 and consider a special nonautonomous case in section 23.2.

23.1 The Linear, Autonomous,
Second-Order Differential Equation

We begin by explaining how to solve a linear, autonomous, second-order differ-
ential equation.

D e f in i t i o n 23 . 1 The linear, autonomous, second-order differential equation (constant coeffi-
cients and a constant term) is expressed as

ÿ + a1ẏ + a2y = b (23.1)

Equation (23.1) is linear because y, ẏ, and ÿ are not raised to any power other
than one. It is autonomous because it has constant coefficients, a1 and a2, and a
constant term, b. If the coefficients or the term vary with t , then the equation is
nonautonomous. In section 23.2 we consider the case of a variable term.

Rather than try to solve the complete equation in one step, we exploit the fact
that the complete solution to a linear differential equation is equal to the sum of
the solution to its homogeneous form and a particular solution to the complete
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equation. In symbols

y = yh + yp (23.2)

where y is the complete solution, yh is the solution to the homogeneous form,
and yp is a particular solution. Many readers are probably familiar with this tech-
nique because we used it in earlier chapters to solve linear, first-order differential
equations and linear difference equations.

The General Solution to the Homogeneous Equation

The first step in solving the linear, autonomous, second-order differential equation
is to solve the homogeneous form of equation (23.1).

D e f in i t i o n 23 . 2 The homogeneous form of the linear, second-order differential equation with con-
stant coefficients is

ÿ + a1ẏ + a2y = 0 (23.3)

To solve this second-order differential equation, we will make use of what we
already know about the solution to its first-order counterpart, the linear, homoge-
neous, first-order differential equation with a constant coefficient. In chapter 21
we learned that solutions to equations of this kind are of the form

y(t) = Aert (23.4)

where the values for A and r are determined by initial conditions and the coefficient
of the equation.Areasonable hypothesis is that solutions to second-order equations
are of the same form. Specifically, let us conjecture that equation (23.4) is a solution
to equation (23.3). If we are right, then equation (23.4) must satisfy equation (23.3).
To see if it does, differentiate equation (23.4) to get

ẏ = rAert (23.5)

and differentiate again to get

ÿ = r2Aert (23.6)

Substitute the hypothesized solution and its derivatives, equations (23.4) to (23.6),
into the left-hand side of equation (23.3) and check that it satisfies the equality in
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equation (23.3). The left-hand side becomes

ÿ + a1ẏ + a2y = r2Aert + a1rAert + a2Aert

= Aert (r2 + a1r + a2)

Ruling out the special (and trivial) case of A = 0, our conjecture is correct if the
expression in brackets is equal to zero, for then our conjectured solution satisfies
equation (23.3). But since r is, as yet, an unspecified parameter in the solution, we
are free to choose it to make the expression in brackets identically equal to zero.
In other words, if we choose r to satisfy

r2 + a1r + a2 = 0 (23.7)

then equation (23.4) is indeed a solution to equation (23.3).
Equation (23.7), known as the characteristic equation, plays an important role

in finding the solution to equation (23.3).

D e f in i t i o n 23 . 3 The characteristic equation of the linear second-order differential equation with
constant coefficients is

r2 + a1r + a2 = 0

The values of r that solve the characteristic equation are known as the charac-
teristic roots (or just the roots) or eigenvalues of the characteristic equation.
Since the characteristic equation is a quadratic in the case of a second-order dif-
ferential equation, there are two roots: we will call these r1 and r2. Their values
are

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2
(23.8)

If the two roots that solve the characteristic equation are different, we actually
have two different solutions to equation (23.3). They are

y1 = A1e
r1t and y2 = A2e

r2t (23.9)

Let us pause to verify that each of these is a solution to equation (23.3). We do
this for the first solution, y1, and leave it to the reader to verify that y2 is also a
solution. Substitute y1 and its first and second derivatives into equation (23.3) and
check that equation (23.3) is then satisfied (i.e., check that the left-hand side does
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equal zero). The first derivative is

ẏ1 = r1A1e
r1t

and the second derivative is

ÿ = r2
1 A1e

r1t

After making substitutions, the left-hand side of equation (23.3) becomes

ÿ + a1ẏ + a2y = r2
1 A1e

r1t + a1
(
r1A1e

r1t
)+ a2

(
A1e

r1t
)

= (
r2

1 + a1r1 + a2
)
A1e

r1t

But this is equal to zero, and therefore satisfies equation (23.3), because the ex-
pression in brackets is the characteristic equation and r1 is chosen to set this
expression equal to zero. Therefore we are certain that y1 is a solution to
equation (23.3).

We have found there are two distinct solutions to the homogeneous form of
a linear, second-order differential equation with constant coefficients. However,
we are trying to find one general solution, namely a solution that represents every
possible solution. It turns out that we actually have found it. Theorem 23.1 provides
the explanation.

Theorem 23.1 Let y1 and y2 be two distinct solutions to the differential equation (23.3). If c1

and c2 are any two constants, then the function y = c1y1 + c2y2 is a solution to
equation (23.3). Conversely, if y is any solution to equation (23.3), then there
are unique constants, c1 and c2, such that y = c1y1 + c2y2.

Proof

We prove only the first part of the theorem. If y1 and y2 are solutions to equation
(23.3), then it follows that

ÿ1 + a1ẏ1 + a2y1 = ÿ2 + a1ẏ2 + a2y2 = 0

We are given that y = c1y1 + c2y2. If y is a solution, then it must be true that

ÿ + a1ẏ + a2y = 0

Let us see if this is true. Use the definition of y to obtain ÿ and ẏ, then substitute
to see if this equation is satisfied. Differentiating the definition of y gives

ẏ = c1ẏ1 + c2ẏ2
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and differentiating again gives

ÿ = c1ÿ1 + c2ÿ2

Substituting gives

ÿ + a1ẏ + a2y = (c1ÿ1 + c2ÿ2)+ a1(c1ẏ1 + c2ẏ2)+ a2(c1y1 + c2y2)

= c1(ÿ1 + a1ẏ1 + a2y1)+ c2(ÿ2 + a1ẏ2 + a2y2)

= 0

Therefore y is a solution to equation (23.3). The second part of the theorem says
that any solution to the differential equation (e.g., one satisfying specific initial
conditions) can be expressed as a linear combination of y1 and y2 through a suitable
choice of the constants c1 and c2. Doing this requires that y1 and y2 be distinct, by
which we mean they must be linearly independent.

The implication of theorem 23.1 is that the general solution to the homogeneous
form in equation (23.3) is

yh = C1e
r1t + C2e

r2t (23.10)

where we have defined new constants: C1 = c1A1 and C2 = c2A2. It is apparent
now that we actually need two distinct solutions, y1 and y2, in order to form
the general solution. A rationale for this is that because two constants are lost in
going from a function y(t) to its second derivative, we actually need two distinct
solutions so that these two constants can be recovered in solving the second-order
differential equation.

If r1 = r2 (the case of repeated roots that occurs if a2
1 − 4a2 = 0), we do

not have two distinct solutions, so theorem 23.1 would not seem to provide the
general solution. However, it is still possible to find two distinct solutions. Rather
than derive a second distinct solution, we will simply state the result and then
verify that it is correct.

If r1 = r2 = r , the two distinct solutions to equation (23.3) are given by

y1 = A1e
rt and y2 = tA2e

rt (23.11)

These solutions are distinct because they are linearly independent. (A1e
rt cannot

be made equal to tA2e
rt by multiplying it by a constant coefficient.) It is also

possible to verify that the second solution will satisfy equation (23.3). To see this,
first note that the case of repeated roots arises only when

a2
1 − 4a2 = 0
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which means the solution to the characteristic equation is r1 = r2 = r = −a1/2.
Next differentiate y2 to get

ẏ2 = A2e
rt + rtA2e

rt

Differentiate again to get

ÿ2 = rA2e
rt + rA2e

rt + r2tA2e
rt

Substitute y2 and its two derivatives (and the value of r) into equation (23.3) and
check. The left-hand side of equation (23.3) becomes

ÿ + a1ẏ + a2y = 2rA2e
rt + r2tA2e

rt + a1(A2e
rt + rtA2e

rt )+ a2(rtA2e
rt )

= A2e
rt [t (r2 + a1r + a2)+ 2r + a1]

= A2e
rt
[
t
(
a2

1

/
4− a2

1

/
2+ a2

)− a1 + a1
]

= A2e
rt

[
t

4

(
4a2 − a2

1

)]

The last expression is equal to zero because a2
1 − 4a2 = 0 in the case of repeated

roots. This proves that y2 is a solution for equation (23.3).
The results we have obtained to this point are summarized in theorem 23.2.

Theorem 23.2 The solution to the homogeneous form of the linear, second-order differential
equation with constant coefficients is

yh(t) = C1e
r1t + C2e

r2t if r1 �= r2 (23.12)

yh(t) = C1e
rt + C2te

rt if r1 = r2 = r (23.13)

where C1 and C2 are arbitrary constants of integration, the h subscript indicates
the solution to the homogeneous equation, and r1 and r2 are given by

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2
(23.14)

Example 23.1 Solve the following homogeneous differential equation:

ÿ + 1

2
ẏ + 3

64
= 0
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Solution

The characteristic equation is

r2 + 1

2
r + 3

64
= 0

for which the roots are

r1, r2 = −1/2±√1/4− 4× (3/64)

2

The roots are r1 = −1/8 and r2 = −3/8. By theorem 23.2, the solution to the
differential equation is

yh(t) = C1e
−t/8 + C2e

−3t/8

Figure 23.1 shows some representative graphs of this solution for different values
of the constants of integration. After explaining how to obtain the complete solu-
tion, we will explain how the constants of integration are determined when initial
conditions are specified as part of the problem.

Example 23.2 Solve the following homogeneous differential equation:

4ÿ − 8ẏ + 3 = 0

y(t)

t0

Figure 23.1 Representative
trajectories for the solution to
example 23.1

y(t)

t0

Figure 23.2 Representative
trajectories for the solution to
example 23.2

Solution

After dividing through by 4, the characteristic equation is

r2 − 2r + 3

4
= 0

for which the roots are r1 = 1/2 and r2 = 3/2. By theorem 23.2, the solution to
the differential equation is

yh(t) = C1e
t/2 + C2e

3t/2

Figure 23.2 shows some representative graphs of this solution for different values
of the constants of integration.
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Example 23.3 Solve the following homogeneous differential equation:

ÿ − 4ẏ + 4 = 0

Solution

The characteristic equation is

r2 − 4r + 4 = 0

for which the roots are r1 = r2 = 2. Using the solution for the case of equal roots
in theorem 23.2, the solution to the differential equation is

yh(t) = C1e
2t + C2te

2t

Figure 23.3 shows graphs of this solution.

y(t)

t0

Figure 23.3 Representative
trajectories for the solution to
example 23.3

Complex Roots

When a2
1 − 4a2 < 0, the characteristic roots are complex numbers. In this case

the solution in theorem 23.2 still applies but needs to be expressed differently.
To see how this is done, first write the algebraic solution to the characteristic
equation as

r1, r2 =
−a1 ±

√
(−1)

(
4a2 − a2

1

)
2

=
−a1 ±

√−1
√

4a2 − a2
1

2

Using the concept of the imaginary number, i = √−1, we can then write the roots
of the characteristic equation as the conjugate complex numbers

r1, r2 = h± vi

where

h = −a1

2
and v =

√
4a2 − a2

1

2

We can now express the solution as

yh = C1e
(h+vi)t + C2e

(h−vi)t = eht (C1e
vit + C2e

−vit )
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As shown in the review section on complex numbers and circular functions at
http://mitpress.mit.edu/math econ3, we can use Euler’s formula to express the
imaginary exponential functions, evit and e−vit , as

ei(vt) = cos vt + i sin vt

e−i(vt) = cos vt − i sin vt

Using these relationships, we write the solution to the homogeneous form of the
differential equation as

yh = eht [C1(cos vt + i sin vt)+ C2(cos vt − i sin vt)]

or as

yh = eht (C1 + C2) cos vt + eht (C1 − C2)i sin vt

Since (C1 + C2) and (C1 − C2)i are arbitrary constants, we can rename them as
A1 and A2

A1 = C1 + C2 and A2 = (C1 − C2)i

An important point is that A1 and A2 are real-valued. The reason is that C1 and C2,
like the roots, are conjugate complex numbers. As shown in the review section at
http://mitpress.mit.edu/math econ3, the sum of two conjugate complex numbers is
always a real number; and the product of i and the difference between two conjugate
complex numbers is also a real number. Consequently we obtain a real-valued
solution to the differential equation even though the roots are complex numbers.

Theorem 23.3 If the roots of the characteristic equation are complex numbers, the solution to the
homogeneous form of the linear, second-order differential equation with constant
coefficients can be expressed as

yh = A1e
ht cos vt + A2e

ht sin vt (23.15)

where

h = −a1

2
and v =

√
4a2 − a2

1

2

When the roots of the characteristic equation are complex-valued, the solu-
tion involves circular, or trigonometric, functions (sine and cosine) of t . This has
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interesting applications to economics because the circular functions are oscillating
functions of t , which leads to cyclical behavior for y(t), much like many real-world
economic variables.

Example 23.4 Solve the following homogeneous differential equation:

ÿ + 2ẏ + 5y = 0

Solution

The characteristic equation is

r2 + 2r + 5 = 0

for which the roots are

r1, r2 = −2

2
± 1

2

√
4− 4× 5

= −1± 2i

In this case h = −1 and v = 2i. By theorem 23.3, the solution is

yh(t) = A1e
−t cos 2t + A2e

−t sin 2t

Figure 23.4 shows a representative trajectory for this solution.

yh(t)

t
0

Figure 23.4 Representative
trajectory for example 23.4

The Particular Solution

We have found the solution to the homogeneous form of equation (23.1). If we
can now find a particular solution to equation (23.1), we will be able to obtain the
complete solution by adding these two solutions together.

As in earlier chapters, the particular solution we look for in the case of an
autonomous equation is the steady-state solution for y. If ȳ is a steady-state value,
it must be true that ÿ = ẏ = 0 at this value. Set ÿ = ẏ = 0 in the complete
differential equation in equation (23.1) to solve for ȳ. This gives

ȳ = b

a2
, a2 �= 0

The steady-state solution exists as long as a2 �= 0. For the remainder of this section,
we assume a2 �= 0. The steady-state solution then serves as the particular solution
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we require:

yp = b/a2

where the p subscript reminds us that this is the particular solution. If a2 = 0,
the steady-state value is undefined and we must instead use a different technique,
explained in section 23.2, to find a particular solution.

Example 23.5 Find the particular solution for the following differential equation:

ÿ − 5ẏ + 2y = 10

Solution

Find the steady-state value by setting ÿ = ẏ = 0, and use this as the particular
solution. This gives

yp = 5

Example 23.6 Find the particular solution for the following differential equation:

2ÿ − 3y = −21

Solution

Find the steady-state value by setting ÿ = 0, and use this as the particular solution.
This gives

yp = 7

The Complete Solution

The complete solution to a second-order differential equation is the sum of the
homogeneous solution and a particular solution

y = yh + yp

In theorem 23.4 we use this result to pull together all we have derived so far in
this chapter.
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Theorem 23.4 The complete solution to the linear, autonomous, second-order linear differential
equation (23.1) (constant coefficients and a constant term) is

y(t) = C1e
r1t + C2e

r2t + b

a2
if r1 �= r2

y(t) = C1e
rt + tC2e

rt + b

a2
if r1 = r2 = r

y(t) = eht (A1 cos vt + A2 sin vt)+ b

a2
if roots are complex numbers

where r1, r2 = −a1/2±
√

a2
1 − 4a2/2, h = −a1/2, and v =

√
4a2 − a2

1/2.

A Price-Adjustment Model with Inventories

In chapter 21 we studied the dynamics of price adjustments in a model of a com-
petitive market. We supposed that price adjusts in response to the demand-supply
gap as follows:

ṗ = α(qD − qS); α > 0

where qD and qS are the quantities demanded and supplied. However, this model
neglects the inventory of unsold merchandise that arises when there is excess
supply. How will the dynamics of price adjustment be affected if we take account
of this inventory? To answer this question, we assume there is downward pressure
on price not only when there is excess supply being produced at the current price,
but also when there is an inventory of unsold merchandise. This idea may be
expressed algebraically as

ṗ = α(qD − qS)− β

∫ t

0
[qS(s)− qD(s)] ds, α > 0, β > 0 (23.16)

The first term is the demand-supply gap at the current price. With α > 0, this term
causes price to adjust upward when there is excess demand and downward when
there is excess supply. The second term is the integral of (accumulated stock of)
past differences between quantity supplied and demanded. As such, it is the inven-
tory of unsold merchandise. With β > 0, this term causes price to adjust downward
when the inventory is greater than zero. To simplify our analysis of this problem,
we assume that the inventory of unsold merchandise is always non-negative so we
can avoid having to introduce a nonnegativity constraint on the inventory. Doing
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so would make the problem more complicated and would divert our attention from
the main task. As a result equation (23.16) is the differential equation we wish to
analyze. Although it appears to be a first-order differential equation, it really in-
volves two orders of differentials, owing to the presence of the time integrals of
supply and demand. To see how this leads to the second-order differential equation
we wish to solve, take the time derivative of both sides of equation (23.16). This
gives

p̈ = α(q̇D − q̇S)− β[qS(t)− qD(t)]

If, as before, we assume that the demand curve is given by qD = A+Bp and the
supply curve is given by qS = F + Gp, then this model of price adjustment is
described by the following linear, second-order differential equation:

p̈ + α(G− B)ṗ + β(G− B)p = β(A− F)

To solve it, we begin with the homogeneous form

p̈ + α(G− B)ṗ + β(G− B)p = 0

The characteristic equation is

r2 + α(G− B)r + β(G− B) = 0

and the characteristic roots are

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2

where a1 = α(G− B) and a2 = β(G− B).
Assuming, for now, that the roots are real-valued and different, we write the

solution to the homogeneous form as

ph = C1e
r1t + C2e

r2t

Now we can find the particular solution. The particular solution we use is the
steady-state value of price. This is found by setting p̈ = ṗ = 0 in the complete
equation, then solving. This gives

pp = p̄ = A− F

G− B
, G− B �= 0
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By theorem 23.3, the complete solution to the linear, second-order differential
equation for price in this model, for the case of distinct, real-valued roots, is

p(t) = C1e
r1t + C2e

r2t + A− F

G− B

Example 23.7 Roots Real and Distinct

Use the following parameter values to solve the differential equation for price in
the price-adjustment model: α = 0.25, β = 0.2, G−B = 20, and A− F = 100.

Solution

We obtain a1 = 5, a2 = 4, and p̄ = 5. The roots then are r1 = −1 and r2 = −4,
and the complete solution is

p(t) = C1e
−t + C2e

−4t + 5

Example 23.8 Roots Real and Equal

Use the following parameter values to solve the differential equation for price in
the price-adjustment model: α = 0.2, β = 0.2, G− B = 20, and A− F = 100.

Solution

The roots are equal, r = −2, and the complete solution is

p(t) = C1e
−2t + C2te

−2t + 5

Example 23.9 Complex Roots

Use the following parameter values to solve the differential equation for price in
the price-adjustment model: α = 0.05, β = 0.5, G−B = 20, and A− F = 100.

Solution

We obtain a1 = 1 and a2 = 10. The roots are r1, r2 = −0.5± 1.5i. The complete
solution is

p(t) = 5+ e−0.5t [A1 cos(1.5t)+ A2 sin(1.5t)]
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The Constants of Integration

We can determine the constants of integration in the complete solution from initial
conditions. Since there are two constants, we require two initial conditions. Usually
initial conditions given are the values of y and ẏ at t = 0.

Example 23.10 If p(0) = 30 and ṗ(0) = −3, solve for the constants of integration in the following
complete solution for price in the price-adjustment model:

p(t) = C1e
−t + C2e

−4t + 5

Solution

To ensure the solution satisfies the given initial conditions, evaluate the solution
at t = 0 to get

p(0) = C1 + C2 + 5

We therefore set C1 = 30−5−C2. To determine the value of the second constant,
first differentiate the solution to get

ṗ = −C1e
−t − 4C2e

−4t

and then evaluate it at t = 0 to get

ṗ(0) = −C1 − 4C2

This gives a second equation for C1: C1 = −4C2 + 3. Using these two equations
to solve for C1 and C2 gives C1 = 97/3 and C2 = −22/3.

Example 23.11 If p(0) = 30 and ṗ(0) = −3, solve for the constants of integration in the following
complete solution for price in the price-adjustment model:

p(t) = C1e
−2t + C2te

−2t + 5

Solution

We can determine the constants of integration using the same procedure as shown
in example 23.10. In this case they are C1 = 25 and C2 = 47.

Example 23.12 If p(0) = 30 and ṗ(0) = −3, solve for the constants of integration in the following
complete solution for price in the price-adjustment model:

p(t) = 5+ e−0.5t [A1 cos(1.5t)+ A2 sin(1.5t)]
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Solution

Evaluating the constants of integration in the case of complex roots requires a
knowledge of some of the properties of circular functions. Evaluating the solution
at t = 0 gives

p(0) = 5+ A1

where we have used the properties that cos 0= 1 and sin 0= 0. Since p(0)= 30, we
set A1= 25. Next, using the properties that d sin x/dx= cos x and d cos x/dx=
−sin x, we obtain

ṗ(0) = −0.5A1 + 1.5A2

Since ṗ(0) = −3, we set A2 = 19/3.

The Steady State and Convergence

It is natural to wonder whether a solution to a linear, second-order differential
equation will converge to the steady-state equilibrium value. If it does, we say the
steady state is a stable equilibrium. On the other hand, if the solution diverges, we
say the steady state is an unstable equilibrium. It is crucial in economic applications
to determine the stability properties of an equilibrium. Only if an equilibrium is
stable can we predict that the relevant economic variables will tend to converge
toward equilibrium values. The importance of this is that we can then use economic
theory to help explain the behavior of economic variables over time. Theorem 23.5
states the conditions for convergence.

Theorem 23.5 The solution to the linear, second-order differential equation with constant coef-
ficients and constant term converges to the steady-state equilibrium if and only
if the real parts of the roots of its characteristic equation are negative. In the case
of real roots, the real parts are the roots themselves. In the case of complex roots,
the real part is h.

Proof

We consider the three possible cases in turn.

Case 1 Roots real and distinct. The complete solution in this case is

y(t) = C1e
r1t + C2e

r2t + b

a2
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To determine if y(t) converges, take the limits as t goes to infinity on both sides
to get

lim
t→∞ y(t) = C1 lim

t→∞(er1t )+ C2 lim
t→∞(er2t )+ b

a2

If r1 and r2 are both negative, the two exponential terms involving t converge to 0
in the limit so that y(t) converges to b/a2. If r1 and r2 are both positive, then the two
terms involving t diverge to infinity so that y(t) diverges to+∞ or−∞ depending
on the signs of C1 and C2. If one root is positive and the other is negative, the term
with the negative root converges to zero, but the other term diverges to infinity,
except in the special case of a zero constant of integration on that term. As a result
y(t) diverges, except in that special case. Thus y(t) converges to its steady-state
equilibrium value of b/a2 for all values of the constants of integration if and only
if both roots are negative.
Case 2 Roots real and equal. The complete solution in this case is

y(t) = C1e
rt + C2te

rt + b

a2

Taking limits on both sides gives

lim
t→∞ y(t) = b

a2
+ C1 lim

t→∞(ert )+ C2 lim
t→∞(tert )

If the repeated root, r , is positive, then y(t) will diverge to positive or negative
infinity. If the root is negative, then y(t) will converge to b/a2; however, this is
a bit more difficult to see than in Case 1. The reason is that the limit of the term
(tert ) is of the form (∞ · 0) when r < 0. To take this limit, we must first convert
it to the form (∞/∞) by writing it as (t/e−rt ). We can then apply l’Hôpital’s
rule, which says that the limit of (t/e−rt ) when r < 0 is equal to the limit of the
derivative of the numerator divided by the derivative of the denominator (with
respect to t). Taking these derivatives gives us (−1/r)ert , the limit of which is
zero for r < 0.
Case 3 Complex roots. The solution in this case is

y(t) = eht (A1 cos vt + A2 sin vt)+ b

a2

where h = −a1/2 and v =
√

4a2 − a2
1 .
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What is the limit of y(t) as t→∞ in this case? First, as is shown in the
appendix, the cosine and sine functions are circular functions bounded between
−Ai and Ai . Thus the term inside the brackets is an oscillating function that is
bounded as t →∞. This term is multiplied by eht , which will grow without limit
if h > 0. On the other hand, if h < 0, then eht converges to zero. As a result
y(t) diverges in ever-increasing oscillations if h > 0 and converges to b/a2 in
ever-decreasing oscillations if h < 0. Since h is often referred to as the real part
of a complex root, we conclude that y(t) converges to b/a2 if the real part of the
complex root is negative.

An interesting special case arises in the case of complex roots when the coeffi-
cient a1 = 0. In this case, eht = 1 and y(t) neither converges to nor diverges from
b/a2. Instead, y(t) itself becomes a circular function that permanently fluctuates
with a regular period and amplitude around the value b/a2.

Example 23.13 Convergence in the Price-Adjustment Model with Inventories

Determine the restrictions on the parameters of the price-adjustment model that
guarantee that all price trajectories (from any initial conditions) converge to the
steady-state equilibrium price.

Solution

The roots of the characteristic equation for this model are

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2

where a1 = α(G − B) and a2 = β(G − B). To ensure that both r1 and r2 are
negative requires a1 > 0 and a2 > 0. To see why, note that if a1 < 0, then one or
both of the roots could be positive. If a1 > 0 but a2 < 0, then one of the roots (r1 =
−a1/2−

√
a2

1 − 4a2/2) is negative but the other one (r2=−a1/2+
√

a2
1 − 4a2/2)

could be positive.
Since α, β > 0, the restrictions that a1 > 0 and a2 > 0 amount to requiring

G − B > 0. This is the same condition required for convergence in the price-
adjustment model examined in chapter 21, where we ignored the effect of inven-
tories on price adjustment. Therefore adding an inventory effect to the model does
not affect the stability of the model.

If a1 > 0, a2 > 0, and a2 is large enough that a2
1 − 4a2 ≤ 0, then the roots are

complex-valued. In this case we require only the real part of the root to be negative,
which means a1 > 0. However, since this case can only arise when a2 > 0, the
condition for convergence is no different in the complex-root case.
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p

p0

q0

D1

D0

S0

q

p

0 q

Figure 23.5 Price must adjust from the initial equilibrium at p0 to the new equilibrium
at p̄

If the stability condition is satisfied, then p(t) converges to p̄ regardless of
whether the roots are real or complex-valued; however, the path p(t) takes toward
p̄ will be very different. We demonstrate this in figures 23.5 to 23.7. Figure 23.5
depicts the market initially in equilibrium at the point (q0, p0), which is where
the initial demand curve, D0, intersects the supply curve. Now suppose that the
demand curve shifts to the left. The new equilibrium is at the point (p̄, q̄).

t

p (t )

0

p0

p

Figure 23.6 Price adjustment is
monotonic if the roots are real valued

If the roots of the characteristic equation are real, distinct, and negative, then
the path that price takes from its initial value, p0, to its new equilibrium value,
p̄, will be monotonic as depicted in figure 23.6. If the roots of the characteris-
tic equation are complex-valued with the real part negative, then the path that
price takes to its new equilibrium value will display oscillations that are damp-
ened over time, as depicted in figure 23.7. As is apparent in figure 23.7, this
price-adjustment model can generate some rather complicated-looking price be-
havior if the characteristic roots are complex-valued: as a result of an exoge-
nous shock (shift of the demand curve) to the market, cycles of economic activity
arise that are gradually dampened over time as the market converges to the new
equilibrium.

t

p (t )

0

p0

p

Figure 23.7 Price adjustment is
oscillatory if the roots are complex
valued

E X E R C I S E S

1. Solve the following linear, second-order differential equations, including the
constants of integration, using initial conditions y0 = 10 and ẏ0 = 8:

(a) 3ÿ + 6ẏ − 9y = −18



772 CHAPTER 23 LINEAR, SECOND-ORDER DIFFERENTIAL EQUATIONS

(b) ÿ + ẏ + 1

4
y = 2

(c) 2ÿ − 1

3
ẏ − 1

3
y = 10

(d) 3ÿ + 6ẏ + 3y = 9

2. Solve the following linear, second-order differential equations. Also solve for
the constants of integration in (a) and (b) using initial conditions y0 = 10 and
ẏ0 = 8.

(a) ÿ + 5ẏ − 6y = 36

(b) ÿ − 5ẏ + 6y = 3

(c) ÿ − 2ẏ + 2y = 1

(d) ÿ + ẏ + 5

4
y = 20

3. In the price-adjustment model with inventories, derive the restriction on the
value of B that ensures price converges to the steady state if α = 0.25,
β = 0.2, A− F = 10, and G = 10.

4. In the price-adjustment model with inventories, derive the restriction on the
value of G that ensures price converges to the steady state if α = 0.05,
β = 0.5, A− F = 10, and B = −2.

23.2 The Linear, Second-Order Differential
Equation with a Variable Term

If the term b(t) in the differential equation is not a constant, then a steady-state
solution will usually not exist. As a result, we have to look for an alternative
to the steady-state solution to serve as a particular solution. This is not difficult
if b(t) is a fairly simple function, but it can become very difficult otherwise.
Various techniques have been developed to find a particular solution but most of
these are beyond the scope of this book. However, the technique introduced in
chapter 20 for finding particular solutions to difference equations applies equally
well to differential equations. This technique, called the method of undetermined
coefficients, is applied below to linear, second-order differential equations with a
variable term to demonstrate its use.

As we explained in chapter 20, this method relies on one’s ability to “guess"
the form of the particular solution. The following are two guidelines that facilitate
this procedure:
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Case 1 If b(t) is an nth degree polynomial in t , say pn(t), then assume that the
particular solution is also a polynomial. That is, assume that

yp = Ant
n + An−1t

n−1 + · · · + A1t + A0

where the Ai are constants, the values of which are determined by substituting
the assumed particular solution into the differential equation and then by equating
coefficients of like terms, as shown in the examples below.
Case 2 If b(t) is of the form eαtpn(t), where pn(t) is a polynomial in t as in
case 1, and α is a known constant, then assume that the solution is given by

yp = eαt
(
Ant

n + An−1t
n−1 + · · · + A1t + A0

)
where the Ai are determined as in case 1.

We should note an important exception to these rules for guessing solutions.
If any term in the assumed solution is also a term of yh (the homogeneous solution)
disregarding multiplicative constants, then the assumed solution must be modified
as follows: multiply the assumed solution by tk , where k is the smallest positive
integer such that the common terms are then eliminated. See example 23.15 below.

Example 23.14 Solve ÿ + 3ẏ − 4y = t2.

Solution

First, we solve for the homogeneous form

ÿ + 3ẏ − 4y = 0

which has the characteristic equation (r2+3r−4) = 0. The roots of this equation
are −4 and 1. Therefore

yh = C1e
−4t + C2e

t

To find a particular solution, we note that b(t) is a second-degree polynomial in t .
We therefore guess that

yp = A2t
2 + A1t + A0

To determine the values of A0, A1, and A2, differentiate this expression to obtain

ẏp = 2A2t + A1
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Differentiate again to obtain

ÿp = 2A2

Since the particular solution must satisfy the differential equation, substitute these
expressions back into the complete differential equation to get

2A2 + 3(2A2t + A1)− 4
(
A2t

2 + A1t + A0
) = t2

Collect like terms to get

−(4A2 + 1)t2 + (6A2 − 4A1)t + (2A2 + 3A1 − 4A0) = 0

For this to hold for all t , each of the expressions in brackets must be identically
equal to zero. This allows us to determine the values of the constants in our assumed
solution. Specifically, we must have

A2 = −1

4
, A1 = −3

8
, A0 = −13

32

Using the fact that y = yh + yp, we have solved the problem as follows:

y(t) = −1

4
t2 − 3

8
t − 13

32
+ C1e

−4t + C2e
t

Example 23.15 Solve ÿ + 3ẏ − 4y = 5et .

Solution

The homogeneous solution is the same as in the previous example. The particular
solution is found by guessing that

yp = A0e
t

However, this has the same form (up to a multiplicative constant) as one of the
terms in yh. We therefore must modify our guess for this procedure to work. We
do this by multiplying our first guess by t (k = 1 here). This gives us

yp = tA0e
t

which no longer is of the same form as any of the terms in yh. We now proceed as
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usual by differentiating yp to get

ẏp = A0e
t + tA0e

t

and

ÿp = 2A0e
t + tA0e

t

Substituting these expressions back into the full differential equation, collecting
like terms, and solving gives us A0 = 1. Therefore the solution is

y(t) = tet + C1e
−4t + C2e

t

A Nonautonomous Pollution Model

The stock of carbon dioxide in the global atmosphere is believed to have a positive
influence on global warming. This stock grows with industrial emissions of carbon
dioxide resulting from the burning of fossil fuels, but it is reduced by a certain
amount because of natural absorption by oceans and vegetation. In this model we
will examine the dynamics of the stock of global carbon dioxide. The stock tends to
increase as industrial emissions grow over time due to growth in global economic
activity. On the other hand, the stock is negatively influenced by stricter pollution
controls being imposed as the global warming problem worsens.

Let y represent the stock of carbon dioxide. Assume that the stock changes
according to

ẏ = x − αy (23.17)

where x represents industrial emissions of carbon dioxide and α > 0 is the para-
meter that determines the rate of carbon assimilation by the natural environment.
Assume further that industrial emissions change over time according to

ẋ = aebt − βy (23.18)

where a, b, and β are positive constants. The first term causes emissions to grow
with t . This term represents the effect of growth in the level of economic activity
on industrial emissions of carbon dioxide. The second term causes emissions to
be negatively influenced by the stock of carbon dioxide. This term represents the
assumption that governments introduce stricter controls on industry’s emissions
of carbon dioxide as the pollution problem worsens.
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Differentiating equation (23.17) gives

ÿ = ẋ − αẏ

Using equation (23.18) to substitute for ẋ and rearranging gives a second-order
differential equation for y

ÿ + αẏ + βy = aebt

This is a nonautonomous, linear, second-order differential equation that we can
solve. Starting with the homogeneous form, which is

ÿ + αẏ + βy = 0

the characteristic equation is

r2 + αr + β = 0

with roots

r1, r2 = −α

2
± 1

2

√
α2 − 4β

Since α and β are assumed positive, then both roots are negative if real, and the
real part is negative if both roots are complex. The solution to the homogeneous
form is

yh = C1e
r1t + C2e

r2t

To find a particular solution, we note the term is an exponential function of t .
Therefore we try a particular solution of the same form

yp = A0e
bt

To determine the coefficient A0, differentiate the trial solution to get

ẏp = bA0e
bt

and differentiate again to get

ÿp = b2A0e
bt
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Now substitute the trial yp and its two derivatives back into the complete differ-
ential equation. This gives

b2A0e
bt + αbA0e

bt + βA0e
bt = aebt

Solving for A0 gives

A0 = a

b2 + αb + β

The particular solution therefore is

yp = a

b2 + αb + β
ebt

and the complete solution to the differential equation is

y(t) = C1e
r1t + C2e

r2t + a

b2 + αb + β
ebt

Inspection of this solution tells us how the stock of carbon dioxide behaves over
time in this model. We have already determined that both roots are negative.
Therefore, as t → ∞, the first two terms in the solution go to zero. If b = 0,
then the third term becomes a/β, and we conclude that the stock of carbon dioxide
converges to this value over time. This would be good news for future generations.
If, on the other hand, b > 0, then the third term is an increasing function of t ; it
therefore grows without limit causing y to also grow without limit.

E X E R C I S E S

Solve the following linear, second-order differential equations:

1. 3ÿ + 6ẏ − 9y = −18e2t

2. ÿ + 5ẏ − 6y = 2et

3. ÿ − 5ẏ + 6y = e−t/2

4. ÿ + ẏ = 2

5. ÿ + 1

2
ẏ = 4

6. Solve the nonautonomous pollution model using the following parameter
values: α = 0.5, β = 1/18, a = b = 1, y0 = 100/14, and ẏ0 = −1.
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C H A P T E R R E V I E W
Key Concepts characteristic equation

characteristic root
complex roots
complete solution
convergence
eigenvalues

homogeneous solution
monotonic trajectory
oscillating trajectory
particular solution
variable term

Review Questions 1. What is the characteristic equation and what role does it play in the solution
to a linear, second-order differential equation?

2. Under what conditions is the particular solution given by the steady-state
solution?

3. Under what conditions will a linear, autonomous, second-order differential
equation produce oscillating trajectories and under what conditions will it
produce monotonic trajectories?

4. State the necessary and sufficient conditions for convergence to a steady state.

5. When does one use the method of undetermined coefficients to find the par-
ticular solution?

Review Exercises 1. Solve the following linear, second-order differential equations:

(a) ÿ − ẏ − 2y = 10

(b) ÿ + 6ẏ + 9y = 27

(c) ÿ + 4ẏ + 5y = 10, y(0) = 2, ẏ(0) = 1

2. Solve the following linear, second-order differential equations:

(a) 4ÿ + 12ẏ − 7y = 28, y(0) = 2, ẏ(0) = 1

(b) ÿ + 6ẏ + 9y = 27t

(c) ÿ + 4ẏ + 5y = 10t2, y(0) = 2, ẏ(0) = 1

3. Consider the following linear, first-order differential equations:

ẏ = a11y + a12x

ẋ = a21y
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Use these equations to derive a linear second-order differential equation for
y. Solve for y(t) and derive the conditions on the parameters that must be
satisfied for y(t) to converge to its steady-state value of y = 0.

4. Consider a model of market equilibrium in which the current supply of firms
is a function of the price that is expected to prevail when the product is sold.
Assume that the market supply equation is

qS(t) = F +Gpe

where pe is the expected price and F and G are constant parameters of the
supply equation. Assume further that suppliers use information about the
actual current price and its first and second derivatives with respect to time to
form their prediction of the price that will prevail when their product reaches
the market. In particular, assume that

pe = p + bṗ + cp̈

where b > c > 0. If the current price is constant, so that ṗ = p̈ = 0, then
suppliers expect the prevailing price to equal the current price. If the current
price is rising, so that ṗ > 0, then suppliers expect the prevailing price to be
higher than current price. How much higher depends on whether the current
price is rising at an increasing rate, p̈ > 0; or at a decreasing rate, p̈ < 0.
Making the necessary substitutions, the supply equation then becomes

qS = F +Gp +Gbṗ +Gcp̈

The remainder of the market equilibrium model is a linear demand equation

qD = A+ Bp

and a linear price-adjustment equation that says that price rises when there is
excess demand and falls when there is excess supply:

ṗ = α(qD − qS)

where α > 0 is a constant which determines how rapidly price adjusts when
the market is out of equilibrium, and A and B are constant parameters of the
demand equation.

Derive the linear, second-order differential equation implied by this
model. Solve this differential equation explicitly. What restrictions must be
imposed on the parameters of the demand and supply functions to ensure
stability of the equilibrium?
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5. Solve the linear, second-order differential equation in exercise 4 for the fol-
lowing parameter values:

(a) α = 0.1, G = 25, B = −20, b = 0.5, c = 0.1

(b) α = 0.4, G = 25, B = −20, b = 0.5, c = 0.1

6. Suppose that rather than responding to the gap between demand and supply,
price only falls when accumulated inventories of unsold merchandise exceed
some critical (and constant) value, Z > 0. We represent this algebraically as

ṗ = β

{
Z −

∫ t

0
[qS(s)− qD(s)] ds, β > 0

}

Assume that qD =A+Bp and qS =F +Gp. Derive and solve the second-
order differential equation implied by this model. Show that the stability con-
dition implies that price neither converges to nor diverges from its equilibrium
value but oscillates forever around the equilibrium.



Chapter 24 Simultaneous Systems of Differential
and Difference Equations

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Walrusian Price Adjustment Model with Entry
• A Markov Model of Layoffs
• Practice Exercises

It is common in economic models for two or more variables to be determined
simultaneously. When the model is dynamic and involves two or more variables, a
system of differential or difference equations arises. The purpose of this chapter is to
extend our single equation techniques to solve systems of autonomous differential
and difference equations.

24.1 Linear Differential Equation Systems
We begin with the simplest case—a system of two linear differential equations—
and solve it using the substitution method. We then proceed to a more general
method, known as the direct method, that can be used to solve a system of linear
differential equations with more than two equations.

The Substitution Method

This method is suited to solving a differential equation system consisting of exactly
two linear differential equations.

D e f in i t i o n 24 . 1 A linear system of two autonomous differential equations is expressed as

ẏ1 = a11y1 + a12y2 + b1 (24.1)

ẏ2 = a21y1 + a22y2 + b2 (24.2)
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The system is linear because it contains only linear differential equations which, as
usual, means that yi and ẏi are not raised to any power other than one. The system
is autonomous because the coefficients, aij , and the terms, bi , are constants. The
equations must be solved simultaneously because ẏ1 depends on the solution for
y2 and ẏ2 depends on the solution for y1.

As in previous chapters on linear differential and difference equations, we
separate the problem of finding the complete solutions into two parts. We first
find the homogeneous solutions and then find particular solutions. The complete
solutions are the sum of the homogeneous and particular solutions. In symbols,

y1 = yh
1 + y

p

1

y2 = yh
2 + y

p

2

where yi is the complete solution, yh
i is the general homogeneous solution for yi ,

and y
p

i is the particular solution for yi .

The General Solution to the Homogeneous Forms

The first step in obtaining a complete solution is to put the differential equation
system into its homogeneous form. This is done by setting the terms in each
equation equal to zero.

D e f in i t i o n 24 . 2 The homogeneous form of the system of two linear, first-order differential equa-
tions (24.1) and (24.2) is

ẏ1 = a11y1 + a12y2 (24.3)

ẏ2 = a21y1 + a22y2 (24.4)

It is possible to convert this system of two first-order differential equations into a
single second-order differential equation using a combination of differentiation and
substitution. Since we already know how to solve a linear, second-order differential
equation, this procedure provides an easy way to find the solution.

To transform the system into a second-order differential equation, differentiate
equation (24.3) to get

ÿ1 = a11ẏ1 + a12ẏ2

This gives a second-order equation but one that still depends on ẏ2. Therefore use
equation (24.4) to substitute for ẏ2. This gives

ÿ1 = a11ẏ1 + a12(a21y1 + a22y2)
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Now use equation (24.3) to get the following expression that can be used to sub-
stitute for y2

y2 = ẏ1 − a11y1

a12
(24.5)

We assume that a12 �= 0. (In cases where this assumption does not hold, we can
solve equation 24.3 as a single differential equation because it would no longer
depend on y2.) Substitute this expression for y2 to get

ÿ1 = a11ẏ1 + a12

(
a21y1 + a22

ẏ1 − a11y1

a12

)

Simplifying and rearranging gives

ÿ1 − (a11 + a22)ẏ1 + (a11a22 − a12a21)y1 = 0 (24.6)

which is a linear, homogeneous, second-order differential equation with constant
coefficients. In chapter 23, equations like these were written in the form

ÿ + a1ẏ + a2y = 0

and the solution was given in theorem 23.2 for the case of real-valued roots and
in theorem 23.3 for the case of complex-valued roots. Applying those theorems to
equation (24.6) gives the solution for y1(t). The solution for y2(t) is then obtained
by substitution. Let’s do this for each of the three types of characteristic roots that
can occur.

1. Real and distinct roots. Theorem 23.2 gives the following solution to equa-
tion (24.6):

yh
1 (t) = C1e

r1t + C2e
r2t (24.7)

where the roots r1 and r2 are the solution to the characteristic equation

r2 − (a11 + a22)r + (a11a22 − a12a21) = 0

and are given by

r1, r2 = a11 + a22

2
± 1

2

√
(a11 + a22)2 − 4(a11a22 − a12a21) (24.8)

The solution for yh
2 (t) is given by equation (24.5), which shows y2 as a

function of the solution for y1 and the derivative of the solution for y1. The
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solution for y1 is given in equation (24.7). Take its derivative

ẏ1 = r1C1e
r1t + r2C2e

r2t

and substitute them both into equation (24.5) to get

yh
2 (t) = r1C1e

r1t + r2C2e
r2t

a12
− a11

a12
(C1e

r1t + C2e
r2t )

Simplifying gives the solution

yh
2 (t) = r1 − a11

a12
C1e

r1t + r2 − a11

a12
C2e

r2t (24.9)

Together, equations (24.7) and (24.9) are the solutions to the homogeneous form
of the system of two linear, first-order differential equations in definition 24.2
when the roots are real and distinct.

2. Real and equal roots. This case occurs when

(a11 + a22)
2 − 4(a11a22 − a12a21) = 0

Theorem 23.2 gives the solution

yh
1 (t) = C1e

rt + C2te
rt (24.10)

The solution for y2(t) is found using equation (24.5) as before. Take the deriva-
tive of equation (24.10),

ẏ1(t) = rC1e
rt + rC2te

rt + C2e
rt

then substitute it and the solution for y2 into equation (24.5). This gives

yh
2 (t) = (rC1 + rC2t + C2)e

rt − a11(C1 + C2t)e
rt

a12

Simplifying gives the solution for y2

yh
2 (t) = (r − a11)C1 + C2 + (r − a11)C2t

a12
ert

3. Complex-valued roots. Theorem 23.3 gives the solution

yh
1 (t) = eht [A1 cos(vt)+ A2 sin(vt)] (24.11)
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where h = (a11 + a22)/2 and v =
√

4(a11a22 − a12a21)− (a11 + a22)2/2.
Again, the solution for y2 is found using equation (24.5). Take the derivative
of equation (24.11),

ẏ1 = heht [A1 cos(vt)+ A2 sin(vt)]+ eht [−vA1 sin(vt)+ vA2 cos(vt)]

then substitute it and the solution for y1 into equation (24.5). This gives

yh
2 (t) = eht

[
(h− a11)A1 + vA2

a12
cos(vt)+ (h− a11)A2 − vA1

a12
sin(vt)

]

Putting these results together gives

Theorem 24.1 The solutions to the homogeneous form of the system of two linear, first-order
differential equations (24.3) and (24.4) are

Real and distinct roots:

y1(t) = C1e
r1t + C2e

r2t

y2(t) = r1 − a11

a12
C1e

r1t + r2 − a11

a12
C2e

r2t

Real and equal roots:

y1(t) = C1e
rt + C2te

rt

y2(t) =
[
r − a11

a12
(C1 + C2t)+ C2

a12

]
ert

where

r1, r2 = a11 + a22

2
± 1

2

√
(a11 + a22)2 − 4(a11a22 − a12a21)

Complex roots:

y1(t) = eht [A1 cos(vt)+ A2 sin(vt)]

y2(t) = eht

[
(h− a11)A1 + vA2

a12
cos(vt)+ (h− a11)A2 − vA1

a12
sin(vt)

]
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where

h = 1

2
(a11 + a22)

and

v = 1

2

√
4(a11a22 − a12a21)2 − (a11 + a22)2

Example 24.1 Solve the following system of homogeneous differential equations:

ẏ1 = y1 − 3y2

ẏ2 =
1

4
y1 + 3y2

Solution

Differentiate the first equation to get

ÿ1 = ẏ1 − 3ẏ2

Use the second equation to substitute for ẏ2. This gives

ÿ1 = ẏ1 − 3(0.25y1 + 3y2)

Finally use the first equation again to obtain an expression for y2:

y2 = −ẏ1 + y1

3
(24.12)

Use this to substitute for y2. This gives

ÿ1 = ẏ1 − 3

(
0.25y1 + 3

−ẏ1 + y1

3

)

Simplify and rearrange to get

ÿ1 − 4ẏ1 +
15

4
y1 = 0
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The characteristic equation is

r2 − 4r + 15

4
= 0

with roots

r1, r2 = 4

2
± 1

2

√
16− 4

(
15

4

)

which gives r1, r2 = 3/2, 5/2. The roots are real and distinct. The solution for y1

then is

y1(t) = C1e
3t/2 + C2e

5t/2

The solution for y2 can now be found using equation (24.12). First, differentiate
the solution for y1 to get

ẏ1(t) =
3

2
C1e

3t/2 + 5

2
C2e

5t/2

then substitute it and the solution for y1 into equation (24.12). After simplifying,
this gives

y2(t) = −1

6
C1e

3t/2 − 1

2
C2e

5t/2

Example 24.2 Solve

ẏ1 = −6y1 − 8y2

ẏ2 = 2y1 + 2y2

Solution

Differentiate the first equation to get

ÿ1 = −6ẏ1 − 8ẏ2

Substitute for ẏ2 to get

ÿ1 = −6ẏ1 − 8(2y1 + 2y2)
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Use the first equation to get

y2 = −6

8
y1 − 1

8
ẏ1

then substitute it into the equation for ÿ1 to get

ÿ1 = −6ẏ1 − 8

[
2y1 + 2

(
−6

8
y1 − 1

8
ẏ1

)]

After simplifying and rearranging, this becomes

ÿ1 + 4ẏ1 + 4y1 = 0

The roots of the characteristic equation for this differential equation are

r1, r2 = −4

2
±

√
16− 4(4)

2

The roots are real and equal

r1 = r2 = −2

Theorem 23.2 gives the solution as

y1(t) = [C1 + C2t]e
−2t

This solution and its derivative in the expression for y2 lead to the following
solution for y2:

y2(t) =
(−1

2
C1 − 1

2
C2t + C2

−8

)
e−2t

The Particular Solutions

We found the solution to the homogeneous form of the system of two linear, first-
order differential equations in definition 24.1. We turn our attention now to the
task of finding particular solutions to that system so that we can add together the
homogeneous and particular solutions to obtain the complete solutions.

The particular solution we always look for in the case of autonomous differ-
ential equations is the steady-state solution.
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D e f in i t i o n 24 . 3 The steady-state solution to a system of two differential equations is the pair of
values ȳ1 and ȳ2 at which ẏ1 and ẏ2 both equal zero.

Set ẏ1 = 0 and ẏ2 = 0 in the complete differential equation system (24.1) and
(24.2) to solve for ȳ1 and ȳ2. This gives

a11ȳ1 + a12ȳ2 + b1 = 0

a21ȳ1 + a22ȳ2 + b2 = 0

This is a linear system of two equations in two unknowns. Solve the first equation
for ȳ1 and substitute it into the second equation to get the solution for ȳ2. The first
equation implies that

ȳ1 = −
a12

a11
ȳ2 −

b1

a11

The second equation implies that

ȳ2 = −
a21

a22
ȳ1 −

b2

a22

Substitute the expression for ȳ1 into the expression for ȳ2. This gives

ȳ2 = −
a21

a22

(
−a12

a11
ȳ2 −

b1

a11

)
− b2

a22

After simplifying and rearranging, this becomes

ȳ2 =
a21b1 − a11b2

a11a22 − a12a21
(24.13)

After substituting this into the expression for ȳ1 and simplifying, we get

ȳ1 =
a12b2 − a22b1

a11a22 − a12a21
(24.14)

The steady-state solutions are given by equations (24.13) and (24.14). They
exist if and only if (a11a22 − a12a21) �= 0, an assumption we make throughout
this chapter. Note that this is analogous to assuming a2 �= 0 in chapter 23 on
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second-order differential equations. If the assumption is violated, it is still possible
to find a particular solution, but it has to be an alternative to the steady-state
solutions.

Provided that a11a22 − a12a21 �= 0, the particular solutions to the complete
system of two linear differential equations are given by the steady-state solutions.
That is,

y
p

1 = ȳ1

y
p

2 = ȳ2

Example 24.3 Find the particular solutions for

ẏ1 = y1 − 3y2 + 1

ẏ2 =
1

4
y1 − y2 + 2

Solution

Set ẏ1 = 0 and solve for ȳ1. This gives

ȳ1 = 3y2 − 1

Set ẏ2 = 0 and solve for ȳ2. This gives

ȳ2 =
1

4
y1 + 2

Substitute the expression for ȳ1 to get

ȳ2 =
1

4
(3y2 − 1)+ 2

Solving gives ȳ2 = 7. Substitute this value back into the expression for ȳ1to get
ȳ1 = 20.

The Complete Solutions

The complete solution to the system of two linear equations in definition 24.1 is
the sum of the homogeneous solutions and the particular solutions. Theorem 24.2
provides the complete solutions for the three types of characteristic roots that can
occur.



24.1 LINEAR DIFFERENTIAL EQUATION SYSTEMS 791

Theorem 24.2 The complete solutions to the system of two linear first-order differential equa-
tions (24.1) and (24.2) are

Real and distinct roots:

y1(t) = C1e
r1t + C2e

r2t + ȳ1

y2(t) = r1 − a11

a12
C1e

r1t + r2 − a11

a12
C2e

r2t + ȳ2

Real and equal roots:

y1(t) = C1e
rt + C2te

rt + ȳ1

y2(t) =
[
r − a11

a12
(C1 + C2t)+ C2

a12

]
ert + ȳ2

where

r1, r2 = a11 + a22

2
± 1

2

√
(a11 + a22)2 − 4(a11a22 − a12a21)

Complex roots:

y1(t) = eht [A1 cos(vt)+ A2 sin(vt)]+ ȳ1

y2(t) = eht

[
(h− a11)A1 + vA2

a12
cos(vt)+ (h− a11)A2 − vA1

a12
sin(vt)

]
+ ȳ2

where

h = 1

2
(a11 + a22)

and

v = 1

2

√
4(a11a22 − a12a21)2 − (a11 + a22)2

and

ȳ1 =
a12b2 − a22b1

a11a22 − a12a21

ȳ2 =
a21b1 − a11b2

a11a22 − a12a21
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Example 24.4 Find the complete solution to the following system of differential equations:

ẏ1 = y1 − 3y2 − 5

ẏ2 =
1

4
y1 + 3y2 − 5

Solution

First, put the system into its homogeneous form:

ẏ1 = y1 − 3y2

ẏ2 =
1

4
y1 + 3y2

This is the homogeneous system solved in example 24.3. The solutions obtained
were

yh
1 (t) = C1e

3t/2 + C2e
5t/2

yh
2 (t) = −1

6
C1e

3t/2 − 1

2
C2e

5t/2

Next, find the steady-state solutions to use as the particular solutions. Set ẏ1 = 0
and ẏ2 = 0 in the complete equations. This gives

ȳ1 − 3ȳ2 − 5 = 0

1

4
ȳ1 + 3ȳ2 − 5 = 0

Solving these gives

ȳ1 = 8 and ȳ2 = 1

Now add the homogeneous and particular solutions together to get the complete
solutions

y1(t) = C1e
3t/2 + C2e

5t/2 + 8

y2(t) = −1

6
C1e

3t/2 − 1

2
C2e

5t/2 + 1
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Initial Conditions

When the complete solutions must also satisfy given initial conditions, the values of
the constants of integration must be set appropriately. Normally initial conditions
are given for y1and y2 at t = 0.

Example 24.5 Find the constants of integration that make the solutions in example 24.4 satisfy
the initial conditions y1(0) = 1 and y2(0) = 3.

Solution

Evaluating the solutions at t = 0 gives

y1(0) = C1 + C2 + 8

y2(0) = −1

6
C1 − 1

2
C2 + 1

Setting y1(0) = 1 and solving the first equation for C1 gives

C1 = 1− C2 − 8

Setting y2(0) = 3 and solving the second equation for C2 gives

C2 = −2

6
C1 − 2 · 3+ 2

Substituting for C1 and solving for C2 gives C2 = −5/2. Using this in the expres-
sion for C1 gives C1 = −9/2. The complete solutions then become

y1(t) = −9

2
e3t/2 − 5

2
e5t/2 + 8

y2(t) = 3

4
e3t/2 + 5

4
e5t/2 + 1

Example 24.6 Find the complete solution to the following system of differential equations with
y1(0) = 4 and y2(0) = 5:

ẏ1 = 2y1 + 5y2 + 2

ẏ2 = −
1

2
y1 − y2 − 5
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Solution

First, put the system into its homogeneous form

ẏ1 = 2y1 + 5y2

ẏ2 = −
1

2
y1 − y2

Differentiate the first equation to get

ÿ1 = 2ẏ1 + 5ẏ2

and use the second equation to substitute for ẏ2. This gives

ÿ1 = 2ẏ1 + 5

(
−1

2
y1 − y2

)

Now use the first equation to substitute for y2 to get

ÿ1 = 2ẏ1 + 5

[
−1

2
y1 −

(
ẏ1 − 2y1

5

)]

After simplifying and rearranging, this becomes

ÿ1 − ẏ1 +
1

2
y1 = 0

The characteristic roots are

r1, r2 = 1

2
± 1

2

√
1− 4 · (1/2) = 1

2
± 1

2
i

where i is the imaginary number
√−1. This is an example of complex-valued

roots.
The solutions to the homogeneous form of the system of differential equations

are

y1(t) = et/2

[
A1 cos

(
t

2

)
+ A2 sin

(
t

2

)]

y2(t) = et/2

[−3A1/2+ A2/2

5
cos

(
t

2

)
+ −3A2/2− A1/2

5
sin

(
t

2

)]
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Next, find the steady-state solutions that will provide the particular solutions we
need. Set ẏ1 = 0 and ẏ2 = 0 in the complete differential equations. This gives

2ȳ1 + 5ȳ2 + 2 = 0

−1

2
ȳ1 − ȳ2 − 5 = 0

Solving these two equations for ȳ1 and ȳ2 gives

ȳ1 = −46, ȳ2 = 18

Finally, add the homogeneous and particular solutions together to get the com-
plete solutions

y1(t) = et/2

[
A1 cos

(
t

2

)
+ A2 sin

(
t

2

)]
− 46

y2(t) = et/2

[−3A1/2+ A2/2

5
cos

(
t

2

)
+ −3A2/2− A1/2

5
sin

(
t

2

)]
+ 18

To make the solutions also satisfy the initial conditions, we must set the con-
stants appropriately. At t = 0, since cos(0) = 1 and sin(0) = 0, the solutions
are

y1(0) = A1 − 46

y2(0) = −3A1/2+ A2/2

5
+ 18

and these must satisfy the given conditions: y1(0) = 4 and y2(0) = 5. Thus

4 = A1 − 46

5 = −3A1/2+ A2/2

5
+ 18

Solving these two equations for A1 and A2 gives A1 = 50 and A2 = 20. The final
complete solutions then are

y1(t) = et/2

[
50 cos

(
t

2

)
+ 20 sin

(
t

2

)]
− 46

y2(t) = et/2

[
−13 cos

(
t

2

)
− 11 sin

(
t

2

)]
+ 18
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The Direct Method

Although the substitution method works well for systems of two differential equa-
tions, it can become cumbersome for larger systems. The following direct approach
to solving a system of linear differential equations circumvents this limitation.

D e f in i t i o n 24 . 4 A linear system of n autonomous differential equations is expressed in matrix
form as

ẏ = Ay + b

where A is an n × n matrix of constant coefficients, b is a vector of n constant
terms, y is a vector of n variables, and ẏ is a vector of n derivatives.

Example 24.7 Write the 2× 2 matrix of coefficients and the vector of two terms in the case of a
system of n = 2 linear, autonomous differential equations.

Solution

The matrix of coefficients is

A =
[

a11 a12

a21 a22

]

and the vector of terms is

b =
[

b1

b2

]

The solution to the complete system of equations is obtained by adding to-
gether the homogeneous solutions and the particular solutions. Begin by putting
the complete system into its homogeneous form

ẏ = Ay (24.15)

We proceed by “guessing" that the homogeneous solutions are of the form

y = kert

where k is an n-dimensional vector of constants and r is a scalar. To see if this
guess is correct, check that the guessed solution and its first derivative satisfy the
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differential equation system. The derivative of the proposed solution is

ẏ = rkert

Substitution of these derivatives and the proposed solutions into the original system
of equations gives

rkert = Akert

Simplifying gives

[A− rI ]k = 0 (24.16)

where I is the identity matrix, and 0 is the zero-vector. We wish to find the values
of r that solve this equation. These values of r make our guessed solution correct.

In chapter 8, we learned that a system of linear homogeneous equations such as
equation (24.16) has a nontrivial solution if and only if the determinant of [A−rI ]
is identically equal to zero. Thus, the solution values for r are found by solving

|A− rI | = 0 (24.17)

which is a polynomial equation of degree n in the unknown number r . This is
known as the characteristic equation of matrix A and its solutions are called
the characteristic roots or the eigenvalues of the A matrix. A nonzero vector k1,
which is a solution of equation (24.16) for a particular eigenvalue, r1, is called the
eigenvector of the matrix A corresponding to the eigenvalue r1.

In the case n = 2, equation (24.17) becomes∣∣∣∣a11 − r a12

a21 a22 − r

∣∣∣∣ = 0

which, after simplifying, gives

r2 − (a11 + a22)r + (a11a22 − a12a21) = 0

which is, of course, the same characteristic equation obtained using the substitution
method.

Before proceeding, it is useful to pause and make note of the fact that in the
case of n = 2, the characteristic equation can be written as

r2 − tr(A)r + |A| = 0
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where tr(A) = a11 + a22 is the sum of the diagonal elements of the coefficient
matrix and |A| = a11a22− a12a21 is the determinant of the coefficient matrix. The
solution for the characteristic roots can then be expressed as

r1, r2 = tr(A)

2
± 1

2

√
tr(A)2 − 4|A|

This expression provides a fast way of calculating the characteristic roots directly
from the coefficient matrix.

In general, there are n equations and n characteristic roots; therefore, there
are n solutions to the system of differential equations. As in the case of a two-
dimensional system of linear equations, the general solution to the homogeneous
form is a linear combination of n distinct solutions.

Theorem 24.3 If y1, y2, . . . , yn are linearly independent solutions of the homogeneous system in
equation (24.15), then the general solution of the system is the linear combination

y(t) = c1y1(t)+ c2y2(t)+ · · · + cnyn(t)

for a unique choice of the constants.

Example 24.8 Solve the following 2×2 system of differential equations using the direct method:

ẏ =
[

4 −1
−4 4

]
y

Solution

In this example, ẏ and y are two-dimensional vectors. The characteristic equation
is

|A− rI | =
∣∣∣∣4− r −1
−4 4− r

∣∣∣∣= 0

which becomes r2−8r+12 = 0. The solutions are r1 = 2 and r2 = 6. For r1 = 2
we want to compute nontrivial solutions for the eigenvectors

[
4− 2 −1
−4 4− 2

][
k1

k2

]
= 0
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This gives 2k1 − k2 = 0. As we often do with eigenvectors, we set k1 = 1 which
gives k2 = 2. Thus the first set of solutions is

y1(t) =
[

1
2

]
e2t

For r2 = 6 the eigenvectors are the solution to

[
4− 6 −1
−4 4− 6

][
k1

k2

]
= 0

which gives−2k1− k2 = 0. With k1 = 1, we get k2 = −2. Thus the second set of
solutions is

y2(t) =
[

1
−2

]
e6t

Since these two solutions are linearly independent, the general solution is

y(t) = C1

[
1
2

]
e2t + C2

[
1
−2

]
e6t

Example 24.9 Solve the differential equation system in example 24.1 using the direct method.

Solution

The coefficient matrix for that system is

A =
[

1 −3
1/4 3

]

The characteristic equation then is∣∣∣∣1− r −3
1/4 3− r

∣∣∣∣ = 0

which gives r2 − 4r + 15/4 = 0. The solutions are r1 = 3/2 and r2 = 5/2. For
r1 = 3/2, the eigenvector is the solution to

[
1− 3/2 −3

1/4 3− 3/2

][
k1

k2

]
= 0
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This gives −k1/2 − 3k2 = 0. With k1 = 1, we get k2 = −1/6. The first set of
solutions then is

y1(t) =
[

1
−1/6

]
e3t/2

For r2 = 5/2, the eigenvector is the solution to

[
1− 5/2 −3

1/4 3− 5/2

][
k1

k2

]
= 0

This gives−3k1/2− 3k2 = 0. With k1 = 1, this gives k2 = −1/2. The second set
of solutions then is

y2(t) =
[

1
−1/2

]
e5t/2

Since these two solutions are linearly independent, the general solutions are

y(t) = C1

[
1
−1/6

]
e3t/2 + C2

[
1
−1/2

]
e5t/2

Examples 24.8 and 24.9 demonstrate the direct method when the characteristic
roots (eigenvalues) are real and distinct. The next example demonstrates the direct
method when the characteristic roots are complex.

Example 24.10 Solve the homogeneous differential equation system

ẏ = Ay, where A =
[

2 −5
2 −4

]

Solution

The characteristic roots are r1 = −1 + i and r2 = −1 − i. For r1 = −1 + i, the
eigenvectors are the solutions to

[
3− i −5

2 −3− i

][
k1

k2

]
= 0

This result gives (3 − i)k1 − 5k2 = 0 or k2 = (3 − i)k1/5. It is easier to set
k1 = 5 this time as this value gives k2 = 3 − i. Since the eigenvectors end up
being multiplied by constants anyway in the general solution, this rescaling has



24.1 LINEAR DIFFERENTIAL EQUATION SYSTEMS 801

no effect on the general solution. The first solution then is

y1(t)

[
5

3− i

]
e(−1+i)t

For r2 = −1− i, the eigenvectors are the solutions to

[
3+ i −5

2 −3+ i

][
k1

k2

]
= 0

This gives (3+ i)k1−5k2 = 0 or k2 = (3+ i)k1/5. With k1 = 5, we get k2 = 3+i.
The second solution then is

y2(t) =
[

5
3+ i

]
e(−1−i)t

The two combine to give the general solution

y(t) = C1

[
5

3− i

]
e(−1+i)t + C2

[
5

3+ i

]
e(−1−i)t

By Euler’s formula, this transforms into

y(t) = C1

[
5

3− i

]
e−t [cos(t)+ i sin(t)]+ C2

[
5

3+ i

]
e−t [cos(t)− i sin(t)]

The right-hand side of the second equation here is

{C1(3− i)[cos(t)+ i sin(t)]+ C2(3+ i)[cos(t)− i sin(t)]} e−t

After combining the real and imaginary parts, and using the fact that i2 = −1, this
becomes

{[(C1 + C2)[3 cos(t)+ sin(t)]+ i(C1 − C2)[−cos(t)+ sin(t)]} e−t

After defining new constants A1 = C1 + C2 and A2 = i(C1 − C2), the general
solution becomes

y(t) =
{
A1

[
5 cos(t)

3 cos(t)+ sin(t)

]
+ A2

[
5 sin(t)

−cos(t)+ 3 sin(t)

]}
e−t
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The Particular Solutions

The steady-state solutions provide the particular solutions we require. Set ẏ = 0
in the complete system of differential equations. This gives

Aȳ + b = 0

for which the solution is

ȳ = −A−1b

provided the inverse matrix A−1 exists. This matrix exists if and only if A is
nonsingular (i.e., the determinant must be nonzero). We have already assumed this
for the case of n = 2. We now assume that |A| �= 0 for any n.

Before concluding this section, we show that any single second-order dif-
ferential equation can be transformed into a system of two first-order differential
equations. The important implication of this is that systems containing higher-
order equations can always be transformed into a system containing only first-
order equations using the technique explained next. It is sufficient therefore to
study first-order systems of differential equations.

Example 24.11 Consider the differential equation

ÿ − a1ẏ − a2y = b

To transform this second-order, linear differential equation into a system of two
first-order, linear differential equations, define a new variable x as

x = ẏ

The definition implies that ẋ = ÿ, which, after substitution into the original second-
order differential equation, gives an equivalent system of two first-order differential
equations

ẋ = a1x + a2y + b

ẏ = x

Comparing this system of equations to the general form in definition 24.1,
we see that x = y1, y = y2, a1 = a11, a2 = a12, a21 = 1, and a22 = 0. This
system can be solved for y(t) and x(t) simultaneously using the methods outlined
in this chapter; of course, in this particular case, we would only be interested in
the solution for y(t).



24.2 STABILITY ANALYSIS AND LINEAR PHASE DIAGRAMS 803

E X E R C I S E S

1. Transform the following second-order differential equations into systems of
two first-order differential equations and solve:

(a) 2ÿ − 5ẏ + y − 10 = 0

(b) ÿ − 2y = 1

(c) ÿ + 10ẏ + y = 1

2. For each of the following systems of linear differential equation systems,
solve using:

(a) the substitution method

(b) the direct method

Ensure the solutions satisfy any initial conditions that are given:

(i) ẏ1 = y1 + 5y2, ẏ2 = 1
4y1 − y2

(ii) ẏ1 = y1 + 5y2 + 18, ẏ2 = 1
4y1 − y2 + 9, and y1(0) = 6, y2(0) = 0

(iii) ẏ1 = 2y1 + y2/2, ẏ2 = 7y1/2− y2 + 15, and y1(0) = 2, y2(0) = 4

(iv) ẏ1 = 3y1 + y2 + 4, ẏ2 = 2y1 + 2y2 − 12, and y1(0) = −2, y2(0) = 5

3. For each of the following systems of linear differential equation systems,
solve using:

(a) the substitution method

(b) the direct method

Ensure that the solutions satisfy any initial conditions that are given:

(i) ẏ1 = −2y1+2y2+12, ẏ2 = y1−3y2−12, and y1(0) = −2, y2(0) = 5

(ii) ẏ1=−y1− 9y2/4+ 2, ẏ2=−3y1+ 2y2− 1, andy1(0)= 20,y2(0)= 2

(iii) ẏ1 = 2y1−2y2+5, ẏ2 = 2y1+2y2+1, and y1(0) = 2.5, y2(0) = −1

24.2 Stability Analysis and Linear Phase
Diagrams

The steady-state solutions to an autonomous system of differential equations are
said to be stable if the system converges to the steady state solutions and unstable
otherwise.As in previous chapters we emphasize the issue of stability here because
of its importance in economic applications.

In chapters 21 to 23 we found that the stability characteristics of differential
equations depend on the signs of the characteristic roots. Roots with negative real
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parts are associated with differential equations that converge to the steady state
(stable); roots with positive real parts are associated with differential equations
that diverge from the steady state (unstable).

In this section we will see that the stability of a system of differential equations
also depends on the signs of the roots of the characteristic equation. Theorem 24.4
states the conditions for convergence.

Theorem 24.4 The steady-state solution of a system of linear, autonomous differential equations
is asymptotically stable if and only if the characteristic roots are negative (the
real part is negative in the case of complex-valued roots).

Proof

Theorem 24.4 applies regardless of the number of equations in the system; however,
we prove it only for the case of two equations. We consider the three possible types
of roots that can occur:

Roots real and distinct. The solutions to the system of two autonomous, linear
differential equations are

y1(t) = C1e
r1t + C2e

r2t + ȳ1

y2(t) = r1 − a11

a12
C1e

r1t + r2 − a11

a12
C2e

r2t + ȳ2

Under what conditions does y1(t) converge to ȳ1 and y2(t) converge to ȳ2?
Inspection of the solutions reveals that if r1 and r2 are negative, the exponential
terms, er1t and er2t , tend to zero in the limit as t goes to infinity. Therefore both
solutions converge to their steady states as t →∞ for all values of the constants
of integrations. Because yi(t) converges to ȳi (i = 1, 2) only as t →∞, the path
yi(t) is asymptotic to the value ȳi . For this reason the steady state is said to be
asymptotically stable if both roots are negative.

If r1 and r2 are positive, the exponential terms tend to infinity as t → ∞.
Hence both solutions diverge from the steady state, except when the constants of
integration are both equal to zero. Therefore the steady state is unstable when both
roots are positive.

If one root is negative and the other is positive, the exponential term containing
the negative root goes to zero as t→∞ but the exponential term containing the
positive root diverges to infinity as t →∞. Hence both solutions diverge from the
steady state except when the constant of integration on the divergent exponential
term is equal to zero. (This special case actually plays an important role in economic
applications so we will have much more to say about it.) Therefore the steady state
is unstable when even one of the roots is positive.
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Roots real and equal. The solutions to the system of two autonomous, linear
differential equations are

y1(t) = C1e
rt + C2te

rt + ȳ1

y2(t) =
[
r − a11

a12
(C1 + C2t)+ C2

a12

]
ert + ȳ2

The equal roots are either positive or negative. If positive, the exponential
terms tend to infinity as t →∞, so both solutions diverge from the steady state. If
negative, both solutions converge to their steady-state values. The proof of this is
identical to the proof of convergence in the case of equal roots for a second-order
differential equation in chapter 23.
Complex roots. The solution in this case is

y1(t) = eht [A1 cos(vt)+ A2 sin(vt)]+ ȳ1

y2(t) = eht

[
(h− a11)A1 + vA2

a12
cos(vt)+ (h− a11)A2 − vA1

a12
sin(vt)

]
+ ȳ2

Since the sine and cosine functions are bounded even as t →∞, the solutions
diverge if the real part of the roots is positive, h > 0, and converge if the real part
is negative, h < 0.

Theorem 24.4 says that y1 and y2 converge to ȳ1 and ȳ2, respectively, if the
roots are negative, no matter what values the constants of integration take. Since
the constants are determined by initial conditions, we can interpret this result
as saying that no matter what the initial conditions, y1(t) and y2(t) will always
converge towards the values ȳ1 and ȳ2 if the roots are negative.

In economic models of dynamic optimization, it is common to obtain a system
of differential equations in which one of the characteristic roots is positive and the
other is negative. We examine this important case next.

Theorem 24.5 If one of the characteristic roots is positive and the other is negative, the steady-
state equilibrium is called a saddle-point equilibrium. It is unstable. However,
y1(t) and y2(t) converge to their steady-state solutions if the initial conditions
for y1and y2, satisfy the following equation:

y2 = r1 − a11

a12
(y1 − ȳ1)+ ȳ2

where r1 is the negative root and r2 is the positive root. The locus of points
(y1, y2) defined by this equation is known as the saddle path.
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Proof

The characteristic roots are real valued if they are of opposite sign. The solutions
are

y1(t) = C1e
r1t + C2e

r2t + ȳ1

y2(t) = r1 − a11

a12
C1e

r1t + r2 − a11

a12
C2e

r2t + ȳ2

Without loss of generality, assume that r1 is the negative root and r2 is the positive
root. Then, y1(t) and y2(t) converge to their steady-state solutions if and only if
C2 = 0. Solving for C1 and C2 in the solutions above gives

C1 = (y1 − ȳ1)(r2 − a11)− a12(y2 − ȳ2)

r2 − r1
e−r1t

C2 = a12(y2 − ȳ2)− (y1 − ȳ1)(r1 − a11)

r2 − r1
e−r2t

where the t arguments for y1 and y2 are suppressed to shorten the expressions.
Setting C2 = 0 and simplifying implies that

y2 = (y1 − ȳ1)
r1 − a11

a12
+ ȳ2

Theorem 24.5 tells us that if even one of the characteristic roots is positive, the
solutions will not converge to the steady state from arbitrarily chosen initial con-
ditions; on the other hand, if the initial conditions for y1 and y2 happen to satisfy
the equation given in theorem 24.5, the solutions will converge. This is called a
saddle-point equilibrium and can only occur for the case of real and distinct roots.
It plays quite an important role in economic dynamics so we will have more to say
about it throughout this chapter and the next.

Linear Phase Diagrams

The phase diagram proved to be a useful tool for conducting a qualitative analysis
of a single nonlinear differential equation in chapter 22. It will prove to be equally
valuable in the analysis of a system of two differential equations. We explain the
construction of a phase diagram, beginning with a system of two linear differential
equations. The method, and the interesting variety of trajectory systems that can
arise, carry over to the analysis of systems of two nonlinear differential equations.

In chapter 22 we constructed phase diagrams for single nonlinear differential
equations by plotting ẏ against y so that we could see the range of y values for
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which ẏ is positive and those for which it is negative. That allowed us to see
whether y converged and, if so, to what value. The objective is the same in the
case of a phase diagram for a system of two differential equations but the method
is slightly different. We explain the method by example.

Example 24.12 Phase Diagram for Both Roots Negative (Stable Node)

Solve the following differential equation system, and draw its phase diagram:

ẏ1 = −2y1 + 2

ẏ2 = −3y2 + 6

Solution

Since a12 = 0 = a21, these differential equations are actually independent of one
another and so can be solved separately as single equations. From chapter 21 the
solutions are

y1(t) = C1e
−2t + 1

y2(t) = C2e
−3t + 2

where C1 and C2 are arbitrary constants of integration. In this system, it is clear
that y1(t) converges to its steady-state solution ȳ1 = 1 and y2(t) converges to its
steady-state solution ȳ2 = 2 because the exponential terms go to zero as t →∞.
The steady-state point (1, 2) is therefore a stable equilibrium.

Suppose that we choose initial values of y0
1 = 3 and y0

2 = 1/2. Figure 24.1
shows the trajectories for y1(t) and y2(t) that emanate from these initial conditions.

y1, y2

y1(0) � 3

y2(0) � 0.5

y2(t)

y1(t)

0

y2 � 2

t

y1 � 1

Figure 24.1 Solutions for y1 and y2 plotted as an explicit function of time
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The y1(t) trajectory falls (since it starts above its steady-state solution) as it con-
verges and the y2(t) trajectory rises (since it starts below its steady-state solution)
as it converges.

Figure 24.1 provides a useful way to “see" the solutions for y1(t) and y2(t).
However, it is not always possible to construct a diagram like figure 24.1 with y1

and y2 plotted as explicit functions of t because explicit solutions cannot always be
obtained (i.e., for nonlinear differential equations). A phase diagram circumvents
this problem and, at the same time, provides a different way to “see" the solution.

10 y1

2

y2 y1 = 0
.

y2 = 0
.

Figure 24.2 Phase diagram for
example 24.12

A phase diagram for a system of two differential equations is drawn with y2

on the vertical axis and y1 on the horizontal axis. The y1, y2 plane is referred to as
the phase plane. We construct the phase diagram for this example in two steps:

Step 1 Determine the motion of y1in the phase plane. Begin by graphing the
locus of points for which ẏ1 = 0. To find these points, set ẏ1 = 0. This gives

y1 = 1

In figure 24.2, a vertical line is drawn at y1 = 1 to show this locus of points.
This line is called the y1 isocline; it divides the phase plane into two regions
or isosectors. In the region to the right of the isocline (y1 > 1), the differential
equation for y1 shows that ẏ1 is negative. In the region to the left of the isocline
(y1 < 1), it shows that ẏ1 is positive.

We have established the motion of y1 in the two regions separated by the y1

isocline: y1 is decreasing to the right (because ẏ1 < 0) of the isocline and increasing
to the left (because ẏ1 > 0) of the isocline. To indicate this motion in the diagram,
we draw horizontal arrows pointing in the appropriate directions.
Step 2 Determine the motion of y2. Begin by graphing the y2 isocline. Setting
ẏ2 = 0 gives

y2 = 2

which is a horizontal line at y2 = 2 in figure 24.2. It too divides the plane into
two regions. Inspection of the differential equation for y2 shows that ẏ2 is negative
above the isocline (for y2 > 2) and positive below the isocline (for y2 < 2). To
indicate the motion of y2 in the diagram, we draw vertical arrows pointing in the
appropriate directions.

The two isoclines intersect where both ẏ1 and ẏ2 equal zero. By definition
24.3, this is the steady-state point. In figure 24.2, this occurs at the point (1, 2).

The arrows of motion give a rough picture of what the trajectories in the
phase plane look like and whether they move towards the steady state. For ex-
ample, to the southeast of the steady-state solution, the arrows of motion indicate
that trajectories in this sector of the phase plane move in a northwesterly direction,
meaning that y1(t) decreases and y2(t) increases over time. Trajectories in the
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southwestern sector of the phase plane move in a northeasterly direction. Tra-
jectories in the northwest move southeast and trajectories in the northeast move
southwest. Overall, the arrows of motion tell us that no matter what sector of the
phase plane we start in, trajectories always move towards the steady state. The
phase diagram then provides a good indication that the steady state is globally
stable.

To get a precise picture of the trajectories requires that we actually plot them
using the solutions to the two differential equations. We do this in figure 24.3.

y2

y1

2

0.5

0 1 3

y1 = 0
.

y2 = 0
.

Figure 24.3 Phase diagram for example 24.12 showing representative trajectories: a
stable node

A trajectory in the y1, y2 phase plane is the path followed by the pair y1, y2.
For example, suppose we start at the point (3, 0.5), the same initial point that
was used in figure 24.1. The trajectory emanating from this initial point travels
northwest over time. Compare this trajectory of (y1, y2) to the trajectories of y1

and y2 plotted against t in figure 24.1. Although time is not explicitly shown
in the phase diagram, it is definitely implicit in the trajectories. For example,
at t = 0, the trajectory is at the point (3, 1/2). After some time has passed,
the pair y1(t) and y2(t) have moved along the trajectory to the northwest. This
means y1(t) has decreased while y2(t) has increased, as shown explicitly in
figure 24.1. After more time has passed, the pair is further along the trajec-
tory which means y1(t) has decreased further while y2(t) has increased further,
as shown in figure 24.1. As t→∞, the pair y1(t) and y2(t) converges to the
point (1, 2) in figure 24.3 just as y1(t) and y2(t) converge to ȳ1 and ȳ2 in fig-
ure 24.1.

An important characteristic of a dynamic system in which both roots are neg-
ative is that no matter what the initial values of y1 and y2, their paths converge
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to the steady state. This is demonstrated in figure 24.3 where a number of rep-
resentative trajectories are drawn. All trajectories in the phase plane converge
asymptotically to the steady state. This kind of equilibrium is called a stable
node.

Example 24.13 Phase Diagram for Both Roots Positive (Unstable Node)

Solve and graph the phase diagram for the differential equation system

ẏ1 = 2y1 − 2

ẏ2 = 3y2 − 6

Solution

The only differences between these equations and those in example 24.12 are the
signs of the coefficients and terms. The solutions are

y1(t) = C1e
2t + 1

y2(t) = C2e
3t + 2

The phase diagram is constructed in the same way as for the system in the previous
example. It has the same isoclines as that system but the motion is exactly opposite.
Thus, the trajectories in the phase diagram, drawn in figure 24.4 have exactly the
same shape but go in the opposite direction to the trajectories for the previous
example. As a result, we see clearly that the system diverges from the steady state
from all points in the phase plane except the steady state itself. The steady state in
this case is called an unstable node.

10 y1

2

y2

y1 = 0
.

y2 = 0
.

Figure 24.4 Phase diagram for example 24.13: An unstable node
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In the case of real and equal roots, the dynamic system is called an improper
node. We do not show a phase diagram here for this case; it is sufficient for our
purposes to note that, if the repeated root is negative, all trajectories converge to
the steady state and if the repeated root is positive, all trajectories diverge from
the steady state.

Example 24.14 Phase Diagram for Roots of Opposite Sign (Saddle Point)

Draw the phase diagram for

ẏ1 = y2 − 2

ẏ2 =
y1

4
− 1

2

Solution

The characteristic equation is

|A− rI | =
∣∣∣∣0− r 1

1/4 0− r

∣∣∣∣ = 0

for which the solutions are r1 = −1/2 and r2 = 1/2. Since the roots are of opposite
sign, the steady-state solution is a saddle-point equilibrium.

y2

y1

2

0 2

y1 = 0
.

y2 = 0
.

Figure 24.5 Phase diagram for
example 24.14

Construct the phase diagram:

Step 1 Determine the motion of y1. Begin by graphing the y1 isocline: setting
ẏ1 = 0 to find the isocline gives the horizontal line y2 = 2. Next, we note that
ẏ1 < 0 below this isocline (when y2 < 2) and ẏ1 > 0 above the isocline (when
y2 > 2). The appropriate horizontal arrows of motion are shown in figure 24.5.
Step 2 Determine the motion of y2. Begin by graphing the y2 isocline: setting
ẏ2 = 0 gives the vertical line y1 = 2. To the right of this line (y1 > 2), ẏ2 > 0
and to the left of it (y1 < 2), ẏ2 < 0. The appropriate vertical arrows of motion are
shown in the phase diagram.

The arrows of motion in figure 24.5 indicate that trajectories in the southwest
and northeast sectors of the phase plane definitely move away from the steady state.
But the arrows of motion in the northwest and southeast sectors show that trajec-
tories move toward the steady state. What do the trajectories actually look like?

Figure 24.6 shows some representative trajectories. Consider an arbitrary start-
ing point in figure 24.6 such as point a. At this point, the arrows of motion indicate
that y1 is decreasing and y2 is increasing. The motion is northwesterly, therefore.
Follow this trajectory along its path. As it gets close to the y1 isocline where
ẏ1 = 0, the motion of y1 slows down but y2 continues to increase. As a result the
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y1 = 0
.

y2 = 0
.

y2

y1

3

2

0 2

c

a

b

d

Figure 24.6 Phase diagram for example 24.14 showing representative trajectories: A
saddle point

trajectory bends upward. As it crosses the y1 isocline, y1 is stationary for an instant
even though y2 keeps increasing. As a result the trajectory must be vertical at the
crossing. From there it proceeds into a new isosector in which both y1 and y2 are
increasing. Thus the trajectory bends back and goes in a northeasterly direction. It
stays in that isosector, traveling ever farther and farther away from the steady state.

Consider a trajectory starting at point b. Like the trajectory that started at a,
the motion is northwesterly; however, this time the trajectory gets close to the y2

isocline where ẏ2 = 0, so the motion of y2 slows down while y1 continues to
decrease. As a result the trajectory bends to the left. As it crosses the y2 isocline, it
is horizontal because y2 is stationary at that point, even though y1 keeps decreas-
ing. In the new isosector, the trajectory turns southwesterly and continues in that
direction, traveling away from the steady state.

Trajectories starting from points c and d are also shown. These have the
mirror-image properties of the trajectories starting from points a and b. These
four arbitrarily chosen trajectories verify that most trajectories end up diverging
from a steady state which is a saddle-point equilibrium. These trajectories also
demonstrate the very important property that trajectories must obey the arrows of
motion and must be horizontal when they cross the y2 isocline and vertical when
they cross the y1 isocline.

Since the steady state is a saddle-point equilibrium, we know that some tra-
jectories do converge to the steady state, provided they start from initial conditions
satisfying theorem 24.5. By theorem 24.5, the saddle path is given by

y2 = 3− 1

2
y1



24.2 STABILITY ANALYSIS AND LINEAR PHASE DIAGRAMS 813

This equation is graphed in figure 24.6; it is a straight line with intercept 3 and
slope−1/2. If the pair of initial conditions for y1 and y2 lie anywhere on this line,
the pair y1(t) and y2(t) converge to the steady state. Since trajectories beginning
anywhere along this line do converge, we can think of the line itself as a trajectory,
but one with the special property that it is the only path that converges to the
saddle-point equilibrium. This is why it is called the saddle path.

Example 24.15 Phase Diagram for Complex Roots with Negative Real Parts (Stable
Focus)

Solve and draw the phase diagram for

ẏ1 = −y2 + 2

ẏ2 = y1 − y2 + 1

Solution

In matrix form, the homogeneous form of this system is

[
ẏ1
ẏ2

]
=

[
0 −1
1 −1

][
y1

y2

]

The roots are

r1, r2 = −1

2
± 1

2

√
1− 4 = −1

2
±
√

3

2
i

y2

y1

2

0 1

y1 = 0
.

y2 = 0
.

Figure 24.7 Phase diagram for
example 24.15

where i is the imaginary number. The steady-state solutions are: ȳ1= 1 and ȳ2= 2.
The complete solutions then are

y1(t) = e−t/2

[
A1 cos

(√
3

2
t

)
+ A2 sin

(√
3

2
t

)]
+ 1

y2(t) = −e−t/2

[(
−A1

2
+
√

3

2
A2

)
cos

(√
3

2
t

)

+
(
−A2

2
−
√

3

2
A1

)
sin

(√
3

2
t

)]
+ 2

Construct the phase diagram for this system.
First, determine the motion for y1. Setting ẏ1 = 0 gives the y1 isocline as the

horizontal line y2 = 2 in figure 24.7. If y2 > 2, then ẏ1 < 0, so above the isocline,
y1 is decreasing; below the isocline, y1 is increasing.
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Second, determine the motion for y2. The y2 isocline occurs along the line
y2 = y1 + 1. This is a straight line in figure 24.7 with intercept 1 and slope 1. To
determine the motion of y2 in the two isosectors created by this line is a bit more
difficult than before because ẏ2 depends on y1 as well as y2. Begin with an arbitrary
point on the isocline; then, holding y2 constant, move to a point to the right. Since
moving to the right increases y1 but leaves y2 unchanged, the differential equation
indicates that ẏ2 becomes positive. This establishes that ẏ2 > 0 to the right of the
isocline. Similarly moving from any point on the isocline to the left decreases
y1 but leaves y2 unchanged. The differential equation indicates that ẏ2 becomes
negative to the left of the isocline.

It is worthwhile reviewing the technique used above to determine the motion
of y2 on either side of the isocline because of the central role it plays in construct-
ing phase diagrams. Effectively this technique is equivalent to taking the partial
derivative of the ẏ2 equation with respect to y1. We see that ∂ẏ2/∂y1 = 1 > 0. This
implies that a horizontal movement to the right (left) in the phase plane increases
(decreases) ẏ2. Thus ẏ2 > 0 to the right of the isocline (on which ẏ2 = 0) and
ẏ2 < 0 to the left of the isocline.

The arrows of motion suggest that trajectories might be spirals. This is indeed
the case but there is nothing about the phase diagram itself that indicates whether
the spirals converge to or diverge from the steady state. However, because the real
part of the characteristic roots is negative, theorem 24.4 tells us that the trajectories
converge. Figure 24.8 shows representative trajectories.

y2

y1

2

0 1

y1 = 0
.

y2 = 0
.

Figure 24.8 Phase diagram for example 24.15 showing representative trajectories: A
stable focus

The trajectories for this system are spirals centered on and converging to the
point (1, 2). The steady state in this case is called a stable focus. The spirals
converge to the steady state because the real part of the complex roots is negative.
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If it had been positive, the trajectories would go in the opposite direction, diverg-
ing from the steady state. This case is called an unstable focus. If the real part
of the complex roots turned out to be zero, trajectories would neither converge
nor diverge. Instead, they would orbit the steady state endlessly. This is called a
center.

Determining Stability from the Coefficient Matrix

Calculating the values of the characteristic roots allows us to determine if a steady
state is stable or unstable; however, it would be helpful if there were a faster and
more direct way of determining stability. It turns out there is: stability can be
determined directly from the coefficients of the differential equations. Theorem
24.6 states the result.

Theorem 24.6 Let |A| = a11a22 − a12a21 be the determinant of the coefficient matrix A in
a system of two linear differential equations, and assume that |A| �= 0. Let
tr(A) = a11 + a22 be the trace of A. The stability properties of the steady-state
equilibrium of the system are determined as follows:

(i) If |A| < 0, the characteristic roots are real and of opposite sign. In this case
the steady state is a saddle-point equilibrium.

(ii) If |A| > 0, the characteristic roots are of equal sign if real-valued but could
have complex values. If tr(A) < 0, the real parts of both roots are negative,
giving an asymptotically stable steady state. If tr(A) > 0, the real parts of
both roots are positive, giving an unstable steady state.

Proof

The proof uses the following two properties of characteristic roots (eigenvalues)
developed in theorems 10.6 and 10.7: the sum of the two roots of matrix A is equal
to the trace of A,

r1 + r2 = tr(A)

and the product of the two roots of A is equal to the determinant A,

r1r2 = |A|

(i) Since |A| = r1r2, then if |A| < 0, r1 and r2 must be of opposite sign.
(ii) If |A| > 0, then r1 and r2 must be either both negative or both positive, if

real valued. Since tr(A) = r1 + r2, they are both negative if tr(A) < 0 and
both positive if tr(A) > 0. If complex valued, the real part of the roots equals
tr(A)/2. Hence, the real part is negative if and only if tr(A) < 0.
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Table 24.1 Types of steady states in systems of two linear differential equations

1. If |A| < 0, then r1, r2 opposite signs Saddle point

2. If |A| > 0, then:
r1 and r2 < 0 Stable node
r1 and r2 > 0 Unstable node
r1 = r2 = r < 0 Improper stable node
r1 = r2 = r > 0 Improper unstable node
r1, r2 complex, a11 + a22 < 0 Stable focus
r1, r2 complex, a11 + a22 > 0 Unstable focus
r1, r2 complex, a11 + a22 = 0 Center

Theorem 24.6 provides a quick method by which we can determine the stability
property of a system of differential equations. We need only calculate the sign of
the determinant and the trace of the coefficient matrix. Table 24.1 summarizes the
stability properties of systems of two linear, autonomous differential equations.

The Dornbusch Model of Exchange-Rate Overshooting

How do the price level and exchange rate in an economy respond to a change
in the money supply? The Dornbusch overshooting model provides a framework
for conducting an interesting analysis of this and related questions. In addition,
it provides a classic example of a system of two linear, first-order differential
equations for which the steady state is a saddlepoint equilibrium.

There are two markets in the model: an asset market in which the exchange
rate, e, is determined, and a goods market in which the domestic price level, p, is
determined. We begin with the asset market.

The demand for money, mD , is given by

mD = −ar + bȳ

where r is the domestic interest rate, ȳ is the domestic level of output, which is
assumed to be constant, and a and b are constant positive coefficients of the money
demand function.

All lowercase variables are in logarithms in the Dornbusch model. As a result
the real supply of money is given by m−p, where m is the exogenous nominal sup-
ply of money. Equilibrium in the asset market requires that supply equals demand

m− p = −ar + bȳ (24.18)

If this economy were not open to trade with other countries, this equation would de-
termine the equilibrium interest rate, r . However, because the economy is assumed
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to be open to trade, international capital movements will force the interest rate to
equal the world interest rate, r∗, in the absence of exchange rate fluctuations. How-
ever, when the exchange rate can change, an interest rate differential equal to the
expected rate of depreciation of the home currency can persist. Symbolically this
means that

r = r∗ + E(ė) (24.19)

where E(ė) is the expected rate of depreciation of the exchange rate. The exchange
rate, e, is defined as the domestic price of foreign currency. Note that it is correct to
interpret ė as a rate of change or depreciation because e is the logarithm of the actual
exchange rate.An example illustrates this relationship: if the U.S. dollar is expected
to depreciate by 1% against other currencies, then the U.S. interest rate will be 1%
higher than the world rate in equilibrium. Investors are not willing to exploit the
interest differential any further because their earnings are denominated in dollars,
which are expected to depreciate by 1%, thereby canceling the higher interest rate.

Dornbusch assumes that economic agents have perfect foresight when fore-
casting exchange rate movements. This means that the expected and actual rates
of depreciation of the exchange rate are assumed to be equal. This implies that

ė = E(ė) (24.20)

Substituting this equation into equation (24.19) and then equation (24.19) into
equation (24.18) gives

ė = p

a
+ bȳ −m

a
− r∗

after some rearranging. This is one of the two linear differential equations in the
model. The second one, which we derive next, describes the dynamics of the
domestic price level.

Whereas we have assumed that the asset market is always in equilibrium
(exchange rate and interest rates adjust continuously), we assume that domestic
prices adjust sluggishly in response to excess demand. Specifically, we assume that

ṗ = α(yD − yS), α > 0

where yDand yS are (the logarithms of) aggregate quantity demanded and supplied
respectively, and α is a speed-of-adjustment coefficient. Under the assumption that
supply is fixed at ȳ and demand is given by

yD = u+ v(e − p)
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where e − p is the relative price of domestic goods and u and v are positive
coefficients of the demand function, the differential equation for price becomes

ṗ = −αvp + αve + α(u− ȳ)

The model is now complete. The system of first-order linear differential equations
is rewritten as

[
ṗ

ė

]
=

[−αv αv

1/a 0

][
p

e

]
+

[
α(u− ȳ)

(bȳ −m)/a − r∗

]
(24.21)

Using theorem 24.2, we have the solutions

p(t) = C1e
r1t + C2e

r2t + p̄ (24.22)

e(t) = r1 + αv

αv
C1e

r1t + r2 + αv

αv
C2e

r2t + ē (24.23)

where

r1, r2 = −αv

2
± 1

2

√
α2v2 + 4αv

a

and where p̄ and ē, the steady-state price and exchange rate respectively, are found
by setting ṗ = ė = 0. This gives

p̄ = ar∗ − bȳ +m

ē = p̄ − u− ȳ

v

The determinant of the coefficient matrix is negative (|A| = −αv/a < 0). As a
result the roots are real valued and of opposite sign. Therefore the steady state is
a saddle-point equilibrium.

The phase plane for the linear system of differential equations in equation
(24.21) is drawn in figure 24.9. The p isocline is obtained by setting ṗ = 0, which
gives the line

p = e + u− ȳ

v

The e isocline is obtained by setting ė = 0, which gives the line

p = p̄
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p

0

p

e e

p = 0
.

e = 0
.

Figure 24.9 Phase diagram in the exchange rate, e, and price, p, phase plane for the
Dornbusch overshooting model

The motion of p in the two isosectors separated by the p isocline is determined
as follows: p is declining in the region above the ṗ = 0 line, and is increasing
in the region below. This is confirmed by calculating that ∂ṗ/∂p = −αv < 0.
(Alternatively, ∂ṗ/∂e = αv > 0 gives the same result.)

The motion of e is determined as follows: e is increasing above the ė = 0 line
and decreasing below it. This is confirmed by calculating ∂ė/∂p = 1/a > 0. The
arrows of motion, some representative trajectories, and the saddle path are shown
in figure 24.9.

Why is this an “overshooting” model? In the phase diagram in figure 24.10,
the economy is initially in long-run equilibrium at point 1 and the relevant isoclines
are those labeled with subscript 1. Now suppose there is an exogenous increase in
the nominal supply of money m. This causes the e isocline to shift up to the one
labeled with subscript 2, but it does not affect the p isocline. As a result p̄ and ē

rise by the same amount (which is clear from the diagram because the slope of the
p isocline is unity). The new long-run equilibrium is at point 2.

The economy cannot jump to the new steady state instantly, however, because
domestic price, p, changes sluggishly. On the other hand, e can adjust instantly.
Given a strong assumption of perfect foresight on the part of economic agents in
the model, the exchange rate will jump to the point e2 to reach the new saddle
path. (Only this jump is consistent with the economy reaching the new long-run
equilibrium at the new steady state.) The economy then follows the saddle path
toward the new steady state. In this model the short-run increase in the exchange
rate therefore overshoots the long-run increase.
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0 e

p

p = 0
.

e2 = 0
.

e2e2e1

p1

p2

e1 = 0
.

2

1

Figure 24.10 Short-run increase in the exchange rate, ē1 to e2, overshooting the
long-run increase, ē1 to ē2

Stability Analysis of Nonlinear Differential Equation
Systems

Differential equation systems often contain nonlinear equations in economic ap-
plications. When this happens in a system of two differential equations, phase dia-
grams are useful in analyzing the dynamics of the system. In addition, the behavior
of the nonlinear differential equation system around the steady state (if it exists)
is given by a linear approximation of the nonlinear model. This is an extremely
useful result because it allows us to ascertain whether a nonlinear system is a stable
or unstable node, a saddle point, a focus, or a center, simply by determining the
signs of the characteristic roots of the linearized system at the equilibrium point.

D e f in i t i o n 24 . 5 A nonlinear system of two autonomous differential equations is expressed in
general as

ẏ1 = F(y1, y2)

ẏ2 = G(y1, y2)

Assume that a steady state exists at the point (ȳ1, ȳ2). Thus F(ȳ1, ȳ2)=
G(ȳ1, ȳ2) = 0. Assuming that F and G have continuous second-order deriva-
tives, we can take a first-order linear approximation to these differential equations
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for y1 and y2 close to (ȳ1, ȳ2). This gives

ẏ1 = F(ȳ1, ȳ2)+
∂F (ȳ1, ȳ2)

∂y1
(y1 − ȳ1)+

∂F (ȳ1, ȳ2)

∂y2
(y2 − ȳ2)

ẏ2 = G(ȳ1, ȳ2)+
∂G(ȳ1, ȳ2)

∂y1
(y1 − ȳ1)+

∂G(ȳ1, ȳ2)

∂y2
(y2 − ȳ2)

But since F(ȳ1, ȳ2) = G(ȳ1, ȳ2) = 0, this reduces to

ẏ1 =
∂F

∂y1
y1 + ∂F

∂y2
y2 −

(
∂F

∂y1
ȳ1 +

∂F

∂y2
ȳ2

)
(24.24)

ẏ2 =
∂G

∂y1
y1 + ∂G

∂y2
y2 −

(
∂G

∂y1
ȳ1 +

∂G

∂y2
ȳ2

)
(24.25)

Since the partial derivatives are all evaluated at a specific point, (ȳ1, ȳ2), they are
all constants. Therefore equations (24.24) and (24.25) can be re-expressed as

ẏ1 = a11y1 + a12y2 + b1

ẏ2 = a21y1 + a22y2 + b2

where a11= ∂F/∂y1, a12= ∂F/∂y2, and so on. The stability property of the steady-
state point (ȳ1, ȳ2) in a linear system of differential equations such as this is de-
termined directly from the coefficient matrix. The coefficient matrix for equations
(24.24) and (24.25) is

A =

⎡
⎢⎢⎢⎣

∂F (ȳ1, ȳ2)

∂y1

∂F (ȳ1, ȳ2)

∂y2

∂G(ȳ1, ȳ2)

∂y1

∂G(ȳ1, ȳ2)

∂y2

⎤
⎥⎥⎥⎦ (24.26)

The following theorem states the relevance of this matrix.

Theorem 24.7 If the determinant of the coefficient matrix in (24.26) is nonzero, the qualitative
behavior of the trajectories of the nonlinear system in definition 24.5 in the neigh-
borhood of its steady-state point (ȳ1, ȳ2) is the same as that of the trajectories of
the linear homogeneous system consisting of (24.24) and (24.25), except if the lin-
ear system is a center. In that case the nonlinear system could be a center or a focus.
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Theorem 24.7 implies that the local stability property of a nonlinear differential
equation system can be determined directly from the coefficient matrix of its lin-
earized form. Thus, the stability results summarized in table 24.1 can be used to
determine the qualitative behavior of the trajectories of a nonlinear system around
its steady state. For example, if the determinant of A in equation (24.26) is nega-
tive, the steady state of the nonlinear system is a saddle point, so the trajectories
display the properties of a saddle point, at least locally. The qualifier that the re-
sults are locally valid is a direct consequence of the fact that the linearization of
the nonlinear system is only valid in the local neighborhood of the steady state.

Example 24.16 Determine the behavior of the trajectories of the following nonlinear differential
equation system in the neighborhood of the steady state:

ẏ1 = ay1 − byb−1
2

ẏ2 = y1 − cy2

where a and c are positive constants and 0 < b < 1.

Solution

The steady state is found by setting ẏ1 = 0 = ẏ2. This gives

y2
(
ac − byb−2

2

) = 0

The solutions are ȳ2 = 0 and

ȳ2 =
(

ac

b

)1/(b−2)

> 0

The solutions for y1 are ȳ1 = cȳ2. We shall focus our attention on the strictly
positive values of the two steady states. The coefficient matrix of the first-order
linear approximation to the nonlinear system is

A =
[

a −(b − 1)by−b−2
2

1 −c

]

The determinant of the coefficient matrix is −ac + (b − 1)bȳ
b−2
2 and is negative

because 0 < b < 1 and a, c > 0, and because ȳ2 > 0. Thus we know immediately
that the strictly positive steady state is a saddle-point equilibrium. We therefore
conclude that the behavior of the nonlinear system is that of a saddle-point equi-
librium in the neighborhood of the steady-state point.



24.2 STABILITY ANALYSIS AND LINEAR PHASE DIAGRAMS 823

Determining the global behavior of a nonlinear system can be a much more
difficult task. However, for many problems encountered in economics, and all of
the problems encountered in this book, the nonlinear differential equation systems
are sufficiently well behaved that the global behavior of the nonlinear system can be
determined using phase diagram analysis in conjunction with theorem 24.7.

Example 24.17 A Nonlinear Phase Diagram

Construct the phase diagram for the nonlinear differential equation system in ex-
ample 24.16.

Solution

The procedure is the same as for a linear system except that qualitative graphing
techniques may have to be substituted for explicit graphing. Begin by analyzing
the motion of y1.

Setting ẏ1 = 0 gives

y2 =
(

a

b
y1

)1/(b−1)

as the y1 isocline. To determine the shape of this equation, it is helpful to determine
its slope and intercepts if possible. As y1→ 0, y2→∞ because the exponent is
negative (0 < b < 1). In addition, as y1→∞, y2→ 0. Thus the graph is asymptotic
to both axes. The slope is

dy2

dy1
= 1

b − 1

(
a

b
y1

)(2−b)/(b−1)

< 0

Figure 24.11 shows the y1 isocline labeled ẏ1 = 0.
The motion of y1 at points off the isocline is determined as follows. We

calculate

∂ẏ1

∂y1
= a > 0

As a result y1 is increasing at points to the right of the isocline. Since the differential
equation is monotonically increasing in y1, we know that y1 must continue to be
increasing everywhere to the right of the isocline. By similar reasoning, ẏ1 <

0 to the left of the isocline. The appropriate horizontal arrows are marked on
figure 24.11.
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y2

y1y10

y2

y1 = 0
.

y2 = 0
.

Figure 24.11 Phase diagram for example 24.16

Now determine the motion of y2. Since ẏ2 is a linear differential equation,
this is relatively straightforward: the y2 isocline is the line y2 = y1/c and y2 is
decreasing above and increasing below the y2 isocline.

Figure 24.11 shows the phase diagram. We have determined that the steady
state is a saddle-point equilibrium, so we know that in the neighborhood of the
steady state there is a saddle path and that all other trajectories diverge. The phase
diagram analysis shows that globally, the behavior of trajectories is consistent with
the presence of a saddle point.

E X E R C I S E S

1. For each of the following differential equation systems, determine whether
the system is a stable or unstable node, saddle point, stable or unstable focus,
or center:

(a) ẏ1 = 10y1 + 3y2 + 2

ẏ2 = −3y1 + y2 + 1

(b) ẏ1 = y1 + 3y2 + 10

ẏ2 = −2y1 + y2 − 5

(c) ẏ1 = 2y1 − 6y2 − 1

ẏ2 = −3y1 + 5y2 + 2

(d) ẏ1 = −2y1 − 4y2 + 5

ẏ2 = −2y1 − 9y2 + 1
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2. Solve the following linear differential equation system, draw the phase dia-
gram, and find the equation for the saddle path:

ẏ1 = 2y1 − 9y2

ẏ2 = −3y1 − 4y2

3. Solve the following linear differential equation system, draw the phase dia-
gram, and find the equation for the saddle path. If y1(0) = 8, what value must
be chosen for y2(0) to ensure that the system converges to the steady state?

ẏ1 = 2y1 − 9y2 + 35

ẏ2 = −3y1 − 4y2 + 70

Assume that b < 0 and all other parameters (α, γ, a, F, G, c̄) are greater
than zero.

Show that if γ is not too large, the equilibrium is a stable node, but that
if γ is large enough, the steady state could be a stable focus.

4. In the Dornbusch model, use the following parameter values: α = 1, v = 1,
a = 4/3, b = 1/3, ȳ = 3.4, m = 3, r∗ = 0.1, and u = 4. Solve for the
steady-state price and exchange rate, p̄ and ē; solve the differential equation
system. If p(0) = 4, to what value must e(0) “jump" to put the economy on
the saddle path?

24.3 Systems of Linear Difference
Equations

The techniques for solving systems of linear difference equations are similar to
those developed in section 24.1 for solving systems of linear differential equations.
We therefore provide a briefer coverage of this topic.

D e f in i t i o n 24 . 6 The general form for a system of two linear difference equations with constant
coefficients and terms is

yt+1 = a11yt + a12xt + b1

xt+1 = a21yt + a22xt + b2

As usual with linear difference or differential equations, the solutions to the
complete equations are equal to the sum of the homogeneous solutions and partic-
ular solutions to the complete equations. We begin by solving the homogeneous
form.
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The Homogeneous Solutions

Begin by putting the difference equation system into its homogeneous form. This
gives

yt+1 = a11yt + a12xt (24.27)

xt+1 = a21yt + a22xt (24.28)

We now show two approaches to solving this homogeneous system of difference
equations. The first is the substitution method; the second is the direct method.

The Substitution Method

In this approach we use substitution to reduce the system of two first-order differ-
ence equations to a single second-order difference equation. From equation (24.27)
we know that

yt+2 = a11yt+1 + a12xt+1

Using equation (24.28) to substitute for xt+1, we write

yt+2 = a11yt+1 + a12(a21yt + a22xt )

which is a second-order difference equation. Since it still depends on xt , we use
equation (24.27) again but this time to get the following expression:

xt = yt+1 − a11yt

a12
, a12 �= 0 (24.29)

Note the restriction a12 �= 0. If this were not true, then yt+1 would not depend on
xt , and we could then solve it directly as a single, first-order difference equation.
Using this to substitute for xt gives

yt+2 = a11yt+1 + a12a21yt + a12a22

(
yt+1 − a11yt

a12

)

After simplifying and rearranging this becomes

yt+2 − (a11 + a22)yt+1 + (a11a22 − a12a21)yt = 0

which is a homogeneous, linear, second-order difference equation with constant
coefficients. Equations like this were solved in chapter 20; theorem 20.2 gives the
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solution (for the case of real and distinct roots):

yt = C1r
t
1 + C2r

t
2 (24.30)

where C1 and C2 are arbitrary constants (the values of which are determined from
initial conditions) and r1 and r2 are the roots of the characteristic equation for this
second-order difference equation, which is

r2 − (a11 + a22)r + (a11a22 − a12a21) = 0

To find xt , we need only substitute the solution for yt back into equation (24.29).
This gives

xt =
C1r

t+1
1 + C2r

t+1
2 − a11

(
C1r

t
1 + C2r

t
2

)
a12

Simplifying this expression gives

xt = r1 − a11

a12
C1r

t
1 +

r2 − a11

a12
C2r

t
2 (24.31)

Together, equations (24.30) and (24.31) give the solutions to the homogeneous
difference equation system in (24.27) and (24.28) for the case of real and distinct
roots.

If the roots turn out to be real and equal or complex valued, we would use
the appropriate solution to the second-order differential equation for yt , followed
by substitution to obtain the solution for xt .

Example 24.18 Solve the following system of homogeneous difference equations:

yt+1 = 6yt + 8xt

xt+1 = yt + xt

Solution

The first difference equation implies that

yt+2 = 6yt+1 + 8xt+1

Substitute for xt+1 to get

yt+2 = 6yt+1 + 8(yt + xt )
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Use the first equation again to get the following expression for xt

xt = −6yt + yt+1

8

and use it to substitute for xt . This gives

yt+2 = 6yt+1 + 8yt + 8

(−6yt + yt+1

8

)

Rearrange this equation to get

yt+2 − 7yt+1 − 12yt = 0

The characteristic equation is

r2 − 7r − 2 = 0

with real and distinct roots r1, r2 = 7/2±√57/2. The solution is

yt = C1r
t
1 + C2r

t
2

The solution for xt is obtained by substituting the solution for yt back into the
expression for xt . This gives

xt = −6

8

(
C1r

t
1 + C2r

t
2

)+ 1

8

(
C1r

t+1
1 + C2r

t+1
2

)
After simplifying, this equations becomes

xt = r1 − 6

8
C1r

t
1 +

r2 − 6

8
C2r

t
2

The Direct Method

The direct method offers an approach that can be extended quite easily to the case
of more than two difference equations.

In matrix form the system of homogeneous difference equations is

yt+1 = Ayt

where A is an n × n matrix of constant coefficients and yt+1 and yt are vectors
of n variables. By analogy with the solution for a single difference equation, we
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postulate the solution to be

yt = krt

where k is a vector of arbitrary constants and r is a scalar. If correct, this solution
must satisfy the system of homogeneous difference equations. Let us substitute
the proposed solution into the difference equations and see if it does indeed satisfy
them:

krt+1 = Akrt

After simplifying and ruling out the trivial solution r = 0, this becomes

(A− rI )k = 0 (24.32)

where I is the identity matrix and 0 is the zero-vector. If we choose r to solve
this system of equations, then our proposed solution works! As in the case of
differential equations, the solution values of r are found by solving

|A− rI | = 0

which is a polynomial of degree n in the unknown number r . As before, this
is the characteristic equation of matrix A and its solutions are the characteristic
roots (eigenvalues) of matrix A. A nonzero vector, k1, which is a solution of
equation (24.32) for a particular eigenvalue, r1, is called the eigenvector of matrix
A corresponding to the eigenvalue r1.

In general, there are n equations and n characteristic roots; therefore, there
are n solutions to the system of difference equations. The general solution to the
homogeneous form is a linear combination of n distinct solutions.

Example 24.19 Solve the following system of homogeneous difference equations:

yt+1 =
[

6 −8
1 0

]
yt

Solution

The characteristic roots are the solution to

|A− rI | =
∣∣∣∣6− r −8

1 0− r

∣∣∣∣ = 0
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which gives the characteristic equation

r2 − 6r + 8 = 0

for which the solutions are r1 = 2 and r2 = 4.
For r1 = 2, the eigenvector is the solution to

(A− rI )k =
[

6− 2 −8
1 0− 2

][
k1

k2

]
= 0

which gives 4k1 − 8k2 = 0. Setting k1 = 1 gives k2 = 1/2. Thus the first set of
solutions is

y1
t =

[
1

1/2

]
2t

For r2 = 4, the eigenvector is the solution to

(A− rI )k =
[

6− 4 −8
1 0− 4

][
k1

k2

]
= 0

which gives 2k1 − 8k2 = 0. Setting k1 = 1 gives k2 = 1/4. Thus the second set
of solutions is

y2
t =

[
1

1/4

]
4t

The general homogeneous solutions then are

yt = C1

[
1

1/2

]
2t + C2

[
1

1/4

]
4t

The Particular (Steady-State) Solutions

The particular solutions to the system of complete difference equations in definition
24.6 that we use are the steady-state solutions, if they exist. Setting yt+1 = yt = ȳ

and xt+1 = xt = x̄ to find the steady state gives

ȳ = a11ȳ + a12x̄ + b1

x̄ = a21ȳ + a22x̄ + b2
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Solving gives

ȳ = (1− a22)b1 + a12b2

(1− a11)(1− a22)− a12a21
(24.33)

x̄ = a21b1 + (1− a11)b2

(1− a11)(1− a22)− a12a21
(24.34)

The steady-state solutions exist provided the denominator in equations (24.33)
and (24.34) is not equal to zero, an assumption we make throughout.

The Complete Solutions

The complete solutions are obtained by adding the particular solutions given in
equations (24.33) and (24.34) to the homogeneous solutions. Theorem 24.8 gives
the complete solutions.

Theorem 24.8 The complete solutions to the general system of two linear difference equations
with constant coefficients and terms in definition 24.6 are

Real and distinct roots:

yt = C1r
t
1 + C2r

t
2 + ȳ

xt = r1 − a11

a12
C1r

t
1 +

r2 − a11

a12
C2r

t
2 + x̄

Real and equal roots:

yt = (C1 + C2t)r
t + ȳ

xt =
[
r − a11

a12
(C1 + C2t)+ r

a12
C2

]
rt + x̄

where

r1, r2 = tr(A)

2
± 1

2

√
(tr(A))2 − 4|A|

tr(A) = a11 + a22, |A| = a11a22 − a12a21
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Complex roots:

yt = Rt [C1 cos(θt)+ C2 sin(θt)]+ ȳ

xt = Rt

[
C1R cos(θ)+ C2R sin(θ)− a11C1

a12

]
cos(θt)

+Rt

[
C2R cos(θ)− C1R sin(θ)− a11C2

a12

]
sin(θt)+ x̄

where R = √|A|, cos(θ) = tr(A)/2R, sin(θ) =
√

4|A| − tr(A)2/(2R)

Example 24.20 Solve the following system of difference equations:

yt+1 = 6yt − 8xt + 10

xt+1 = yt + 1

Solution

The homogeneous form of this system was solved in example 24.19, so we need
only find the particular solutions to complete the solution.

To determine the values of ȳ and x̄, set yt+1 = yt = ȳ and xt+1 = xt = x̄

ȳ = 6ȳ − 8x̄ + 10

x̄ = ȳ + 1

The first equation reduces to

ȳ = 8

7
x̄ − 10

7

Substituting this into the expression for x̄ and simplifying gives x̄ = 3. Substitut-
ing this back into the expression for ȳ and simplifying gives ȳ = 2.

Using the homogeneous solutions obtained in example 24.19, the complete
solutions are

yt = C12t + C24t + 2

xt = C1

2
2t + C2

4
4t + 3



24.3 SYSTEMS OF LINEAR DIFFERENCE EQUATIONS 833

Example 24.21 Solve the following system of difference equations:

yt+1 = 2yt + 1

2
xt + 1

xt+1 = −9

2
yt − xt + 2

Solution

The coefficient matrix is

A =
[

2 1/2
−9/2 −1

]

The roots of the characteristic equation (eigenvalues of A) are

r1, r2 = 1

2
± 1

2

√
1− 4(−2+ 9/4) = 1

2
± 0 = 1

2

The roots are real and equal. The solution, using the substitution method or the
direct method, is given in theorem 24.8 as

yt = (C1 + C2t)

(
1

2

)t

+ ȳ

xt = (−3C1 − 3C2t + C2)

(
1

2

)t

+ x̄

The solutions for ȳ and x̄ are determined by solving

ȳ = 2ȳ + x̄

2
+ 1

x̄ = −9

2
ȳ − x̄ + 2

This gives ȳ = 12 and x̄ = −26.

Example 24.22 Solve the following system of difference equations:

yt+1 = 2yt + 5xt + 2

xt+1 = −1

2
yt − xt − 1
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Solution

The coefficient matrix is

A =
[

2 5
−1/2 −1

]

The roots of the characteristic equation (eigenvalues of A) are

r1, r2 = 1

2
± 1

2

√
1− 4(1/2) = 1

2
± 1

2

√−1 = 1

2
± 1

2
i

where i is the imaginary number. The roots have complex values. The solution
given in theorem 24.8 in this case is

yt = Rt [C1 cos(θt)+ C2 sin(θt)]+ ȳ

xt = Rt

[
C1R cos(θ)+ C2R sin(θ)− a11C1

a12

]
cos(θt)

+Rt

[
C2R cos(θ)− C1R sin(θ)− a11C2

a12

]
sin(θt)+ x̄

where R = √|A| = (1/2)1/2 and ȳ = −2 and x̄ = −6.
To determine the values of θ , we use the fact given that cos(θ) = tr(A)/2R =√

2/2. We therefore know that θ = π/4 (i.e., the inverse cosine of
√

2/2 in radians
is π/4.)

The complete solution then becomes

yt =
(

1

2

)t/2[
C1 cos

(
π

4
t

)
+ C2 sin

(
π

4
t

)]
− 2

xt =
(

1

2

)t/2[
C1
√

1/2 cos(π/4)+ C2
√

1/2 sin(π/4)− 2C1

5

]
cos

(
π

4
t

)

+
(

1

2

)t/2[
C2
√

1/2 cos(π/4)− C1
√

1/2 sin(π/4)− 2C2

5

]
sin

(
π

4
t

)
− 6

Initial Conditions

When the solution is required to satisfy given initial conditions, the constants C1

and C2 take on specific values.
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Example 24.23 Find the values of C1 and C2 that make the solution to the difference equation
system in example 24.20 satisfy y0 = 2 and x0 = 1.

Solution

Setting t = 0 in the solutions given in example 24.20 and setting y0 = 2 and x0 = 1
gives

2 = C1 + C2 + 2

1 = C1

2
+ C2

4
+ 3

Solving these two equations now for C1 and C2 gives, after some simplification,
C1 = −8 and C2 = 8.

Steady States and Stability

In chapters 18 to 20 we learned that single difference equations converge to the
steady state if the characteristic roots, r1 and r2, are between −1 and +1 and
diverge otherwise. The same property holds for systems of difference equations.

Theorem 24.10 A system of two linear difference equations with constant coefficients and terms
is asymptotically stable if and only if the absolute values of both characteristic
roots are less than unity.

Proof

The proof of this theorem is virtually identical to the proof of theorem 20.5 regard-
ing convergence for a second-order difference equation so we do not repeat it here.
The important point is that the terms containing rt converge to zero as t →∞ if
and only if the absolute value of r is less than one.

Example 24.24 Determine whether the system of difference equations in example 24.19 is stable
or unstable.

Solution

We found the roots in this system to be 2 and 4. The system is therefore not stable.
The sequence of points (yt , xt ) generated by this system of equations diverges
from the steady state.
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Example 24.25 Determine whether the system of difference equations in example 24.21 is stable
or unstable.

Solution

We found the roots in this system to be equal, and equal to 1/2. Therefore the
system is asymptotically stable. No matter what the starting values, the sequence
of points (yt , xt ) will always converge to the same steady-state point (ȳ, x̄).

Example 24.26 Determine whether the system of difference equations in example 24.22 is stable
or unstable.

Solution

We found complex roots in this system. The absolute value of the complex roots
is 1/2, however, so the system is asymptotically stable.

Price Wars

In this application, we consider the possible implications of two retail competitors
adopting a particular form of pricing strategy. Let yt be the price charged by retailer
number 1, and let xt be the price charged by retailer number 2. They sell the same
product and are located across the street from one another. Because they sell the
same product, they have the option of cooperating (colluding) to set a common
price or not cooperating. The first option is unlawful per se. The second can lead to
price wars. Suppose that they were to not cooperate. Further suppose that retailer
number 1 adopted the following pricing strategy:

yt+1 = yt − α(yt − xt )

This says that retailer number 1 will set price in period t + 1 equal to what it was
in the previous period minus a fraction α times the difference between its price
and the rival’s price in the previous period. If the rival’s price (xt ) was lower last
period than his own price in the previous period (yt ), retailer 1 will lower his own
price this period. Let us assume that retailer number 2 adopts a symmetric strategy

xt+1 = xt − β(xt − yt )

The only difference is that we allow retailer 2 to have β, which can differ from α.
Like retailer 1, retailer 2 will lower her price in period t + 1 if her rival’s price
in the previous period was lower than her own. Conversely, each of them will raise
their price in this period if their rival’s price in the previous period was higher than
their own price.
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An example makes this model more concrete. Imagine that the two retailers
operate gasoline stations on opposing corners of a busy intersection. The length of a
time period might be one hour. Each owner then is assumed to adopt a price-setting
strategy that follows the lead of the other at rates of α and β respectively.

The problem at hand is to determine the implications of these pricing strategies.
Where do they lead? Do prices tend to converge to stationary values? Are rivals
likely to adopt such pricing strategies?

To answer these questions, the first step is to solve the system of homogeneous
difference equations. Write them in matrix form

[
yt+1

xt+1

]
=

[
1− α α

β 1− β

][
yt

xt

]

The determinant of the coefficient matrix is (1−α)(1−β)−αβ, which simplifies
to 1− α − β. The eigenvalues (roots) therefore are

r1, r2 = 2− α − β

2
± 1

2

√
(2− α − β)2 − 4(1− α − β)

The roots are given by

r1 = 1, r2 = 1− (α + β)

The solutions are

yt = C1 + C2(1− α − β)t

xt = C1 − C2(1− α − β)t

Now suppose that we start the system off at a time that we call t = 0 with prices
established at y0 and x0. We use these as starting values to determine the values of
the constants C1 and C2. Setting t = 0 gives

y0 = C1 + C2

x0 = C1 − C2

Solving for C1 and C2 gives

C1 = y0 + x0

2

C2 = y0 − x0

2
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The solutions then become

yt = y0 + x0

2
+ y0 − x0

2
(1− α − β)t

xt = y0 + x0

2
− y0 − x0

2
(1− α − β)t

Now we can use the solutions to determine the implications of these pricing strate-
gies. Inspection of the solutions reveals that if α + β < 1, the solutions do con-
verge to the average of the two starting prices as t→∞. Thus, if neither retailer
reacts too much to the gap between his or her own price and the rival’s price
(i.e., α + β < 1), the pricing strategies result in each retailer charging the same
price, the average of y0 and x0.

What about the case in which α + β > 1? In this case, 1− α − β < −1. As
a result prices do not converge. On the contrary, they diverge in ever-increasing
oscillations. The dynamic system will evolve into a situation in which one retailer’s
price is so high one day, that sales are zero, while the rival’s price is so low that
sales are enormous but profits are negative because price is below cost. On the
next day the situation is reversed, and reversed again the next day, and so on. This
is clearly a situation that is not beneficial to either retailer. We conclude that if we
observe pricing strategies like these, we should also expect to observe α+β < 1.

E X E R C I S E S

1. Given y0= 6 and x0=−1, solve the following system of difference equations:

yt+1 = yt + 5xt − 10

xt+1 = 1

4
yt − xt + 10

2. Given y0= 4 and x0=−2, solve the following system of difference equations:

yt+1 = 2yt + 1

2
xt + 3

xt+1 = 7

2
yt − xt + 3
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3. Given y0 = 5 and x0 = 8, solve the following system of difference equations:

yt+1 = −yt + 3

4
xt

xt+1 = −3yt + 2xt

4. Given y0 and x0, solve the following system of difference equations:

yt+1 = 2yt − 2xt

xt+1 = 2yt + 2xt

5. Consider a Cournot duopoly model in which two firms share the market for
some product. Each chooses a strategy of producing an amount given by the
following “reaction" functions:

yt+1 = 60− 1

4
xt

xt+1 = 60− 1

4
yt

where y is firm 1’s output and x is firm 2’s output. Solve this system of
difference equations and determine whether the steady state is stable.

6. Replace the reaction functions in exercise 5 with

yt+1 = 60− 1

2
xt

xt+1 = 60− 1

2
yt

Assuming x0 = 60 and y0 = 0, solve the system of difference equations and
plot yt and xt against t for t = 0, 1, 2, 3, 4, 5.

7. Two rival retailers each adopt a price-setting strategy of setting price today
10% lower than its rival’s price yesterday. Write out the system of differ-
ence equations for the two prices, calling retailer 1’s price y and retailer 2’s
price x. Solve the system assuming that y0 = x0. Show that prices converge
to zero.
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C H A P T E R R E V I E W
Key Concepts center

characteristic equation
complete solutions
direct method
eigenvalues
eigenvectors
general form
global stability
homogeneous solutions
improper stable node
improper unstable node
isocline
isosectors
local stability

particular solutions
phase diagram
phase plane
saddle path
saddle point
saddle-point equilibrium
simultaneous system
stable focus
stable node
steady state
substitution method
trajectory
unstable focus
unstable node

Review Questions 1. Explain how the characteristic equation can be derived and how it is used to
find the characteristic roots for a differential or difference equation.

2. Under what conditions is the particular solution given by the steady-state
solution for (a) a system of two differential equations, and (b) a system of two
difference equations?

3. If the steady state of a system of two differential equations is a stable focus,
sketch the paths that y1 and y2 would follow as a function of time.

4. Why is a saddle-point steady state said to be unstable even though the saddle
path converges to the steady state?

5. State the conditions under which a system of differential equations is stable.

6. State the conditions under which a system of difference equations is stable.

Review Exercises 1. Solve each of the following systems of linear differential equations using the
substitution method and determine the stability property of the steady state:

(a)
ẏ1 =

1

2
y1 + 1

4
y2 + 3

ẏ2 = 3y1 + 1

2
y2 + 2
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(b)
ẏ1 = −y1 + 3

4
y2 − 4

ẏ2 = −3y1 + 2y2 − 1

2. Solve each of the following systems of linear differential equations using the
direct method and determine the stability property of the steady state:

(a) ẏ1 = y1 + 5y2 − 10

ẏ2 =
1

4
y1 − y2 + 10

(b)
ẏ1 = 2y1 + 1

2
y2 + 1

ẏ2 =
7

2
y1 − y2 − 8

(c) ẏ1 = 2y1 − 6y2 + 1

ẏ2 = −3y1 + 5y2 + 2

3. Let y be the stock of pollution and x be the flow of pollution from industrial
sources. Some of the stock of pollution is assimilated into the environment
by natural processes. The differential equation for the stock of pollution is

ẏ = −αy + x

where α determines the rate of natural assimilation. Assume that the flow of
industrial emissions of pollution is governed by

ẋ = −βy + a

where a > 0 is a constant. This equation implies that the change in emissions
is negative, the larger is the stock of pollution (e.g., negative feedback owing
to increased government regulation).

Solve this system of linear differential equations and interpret your re-
sults, including a discussion of the stability property of the steady state.

4. Let x be the stock of fish in a commercial fishery, and let N be the stock of
capital (number of fishing boat units). The natural growth rate of the fishery
is governed by the logistic equation studied in earlier chapters: rx(1 − x).
The actual growth of the fishery is its natural growth minus the commercial
harvest. Assuming that each unit of fishing capital catches 1 unit of fish, then
N is the total commercial harvest. The differential equation for the fish stock
then is

ẋ = rx(1− x)−N
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Fishing capital is attracted to the industry if profits can be earned, and leaves
the industry if losses are being made.Assuming that the price of fish is constant
and equal to p, and the unit cost of fishing is c/x, where c > 0 is a constant,
then the differential equation for fishing capital is

Ṅ = α

(
p − c

x

)

where α > 0 is a speed-of-adjustment parameter that determines how rapidly
the stock of fishing capital adjusts.

Draw the phase diagram for this nonlinear system of differential equa-
tions with N on the vertical axis and x on the horizontal axis. Determine the
conditions under which the steady state is asymptotically stable.

5. In the following nonlinear differential equation system, I (t) is a firm’s invest-
ment at time t, K(t) is its capital stock at time t, δ is the rate of depreciation of
capital, and α is a parameter of the firm’s production function with 0 < α < 1.

İ = δI − αKα−1

2

K̇ = I − δK

Find the steady-state point, show that it is a saddle point, and construct the
phase diagram.

6. The following nonlinear differential equation system is a predator-prey model
of two fish species. Let y1 be the population size (in million of kilograms say)
of species 1 and y2 be the population size of species 2. Find the four steady-
state points, determine the local stability properties of each, and draw the
phase diagram.

ẏ1 = 0.8y1

(
1− y1

200

)
− 0.02y1y2

ẏ2 = 0.5y2

(
1− y2

100

)
− 0.01y1y2

7. Solve each of the following systems of linear difference equations using the
substitution method:

(a) yt+1 = yt + xt + 1

xt+1 = yt + xt + 2
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(b) yt+1 = −2yt + 2xt + 1

xt+1 = yt − 3xt + 2

8. Solve each of the following systems of linear difference equations using the
direct method:

(a) yt+1 = 5yt − 4xt + 2

xt+1 = 2yt + xt − 10

(b) yt+1 = −yt + 8xt + 10

xt+1 = 3yt + 4xt − 15

(c)
yt+1 = 1

2
yt + 1

2
xt + 5

xt+1 = 3

10
yt + 1

10
xt + 15





Chapter 25 Optimal Control Theory

The reader is encouraged to consult our website http://mitpress.mit.edu/math
econ3 for the following material useful to the discussion of this chapter:

• A Derivation of the Necessary Conditions in Optimal Control Theory
• Interpretation of λ
• Derivation of the H(T ) = 0 Condition
• Practice Exercise

In this chapter we take up the problem of optimization over time. Such problems
are common in economics. For example, in the theory of investment, firms are
assumed to choose the time path of investment expenditures to maximize the (dis-
counted) sum of profits over time. In the theory of savings, individuals are assumed
to choose the time path of consumption and saving that maximizes the (discounted)
sum of lifetime utility. These are examples of dynamic optimization problems. In
this chapter, we study a new technique, optimal control theory, which is used to
solve dynamic optimization problems.

It is fundamental in economics to assume optimizing behavior by economic
agents such as firms or consumers. Techniques for solving static optimization prob-
lems have already been covered in chapters 6, 12, and 13. Why do we need to learn
a new mathematical theory (optimal control theory) for handling dynamic opti-
mization problems? To demonstrate the need, we consider the following economic
example.

Static versus Dynamic Optimization: An Investment Example

Suppose that a firm’s output depends only on the amount of capital it employs. Let

Q = q(K)

where Q is the firm’s output level, q is the production function and K is the amount
of capital employed. Assume that there is a well-functioning rental market for the
kind of capital the firm uses and that the firm is able to rent as much capital as it
wants at the price R per unit, which it takes as given. To make this example more
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concrete, imagine that the firm is a fishing company that rents fully equipped units
of fishing capital on a daily basis. (A unit of fishing capital would include boat,
nets, fuel, crew, etc.). Q is the number of fish caught per day and K is the number
of units of fishing capital employed per day. If p is the price of fish, then current
profit depends on the amount of fish caught, which in turn depends on the amount
of K used and is given by the function π(K):

π(K) = pq(K)− RK

If the firm’s objective is to choose K to maximize current profit, the optimal amount
of K is given implicitly by the usual first-order condition:

π ′(K) = pq ′(K)− R = 0

But why should the firm care only about current profit? Why would it not take a
longer-term view and also care about future profits? A more realistic assumption
is that the firm’s objective is to maximize the discounted sum of profits over an
interval of time running from the present time (t = 0) to a given time horizon, T .
This is given by the functional J [K(t)]

max J [K(t)] =
∫ T

0
e−ρtπ [K(t)] dt

where ρ is the firm’s discount rate and e−ρt is the continuous-time discounting fac-
tor. J [K(t)] is called a functional to distinguish it from a function.Afunction maps
a single value for a variable like K , (or a finite number of values if K is a vector of
different types of capital) into a single number, like the amount of current profit. A
functional maps a function like K(t)—or finite number of functions if there is more
than one type of capital—into a single number, like the discounted sum of profits.

It appears we now have a dynamic optimization problem. The difference
between this and the static optimization problem is that we now have to choose a
path of K values, or in other words we have to choose a function of time, K(t), to
maximize J , rather than having to choose a single value for K to maximize π(K).
This is the main reason that we require a new mathematical theory. Calculus helps
us find the value of K that maximizes a function π(K) because we can differentiate
π(K) with respect to K to find the maximum of π(K). However, calculus is not,
in general, suited to helping us find the function of time K(t) that maximizes
the functional J [K(t)] because we cannot differentiate a functional J [K(t)] with
respect to a function K(t).

It turns out, however, that we do not have a truly dynamic optimization prob-
lem in this example. As a result calculus works well in solving this particular
problem. The reason is that the amount of K rented in any period t affects only
profits in that period and not in any other period. Thus it is fairly obvious that
the maximum of the discounted sum of profits occurs by maximizing profits at
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each point in time. As a result this dynamic problem is really just a sequence of
static optimization problems. The solution therefore is just a sequence of solutions
to a sequence of static optimization problems. Indeed, this is the justification for
spending as much time as we do in economics on static optimization problems.

An optimization problem becomes truly dynamic only when the economic
choices made in the current period affect not only current payoffs (profit) but
also payoffs (profits) at a later date. The intuition is straightforward: if current
output affects only current profit, then in choosing current output, we need only
be concerned with its effect on current profit. Hence we choose current output to
maximize current profit. But if current output affects current profit and profit at
a later date, then in choosing current output, we need to be concerned about its
effect on current and future profit. This is a dynamic problem.

To turn our fishing firm example into a truly dynamic optimization problem,
let us drop the assumption that a rental market for fishing capital exists. Instead, we
suppose that the firm must purchase its own capital. Once purchased, the capital
lasts for a long time. Let I (t) be the amount of capital purchased (investment)
at time t , and assume that capital depreciates at the rate δ. The amount (stock) of
capital owned by the firm at time t is K(t) and changes according to the differential
equation

K̇ = I (t)− δK(t)

which says that, at each point in time, the firm’s capital stock increases by the
amount of investment and decreases by the amount of depreciation.

Let c[I (t)] be a function that gives the cost of purchasing (investing) the
amount I (t) of capital at time t ; then profit at time t is

π [K(t), I (t)] = pq[K(t)]− c[I (t)]

The problem facing the fishing firm at each point in time is to decide how much
capital to purchase. This is a truly dynamic problem because current investment
affects current profit, since it is a current expense, and also affects future profits,
since it affects the amount of capital available for future production. If the firm’s
objective is to maximize the discounted sum of profits from zero to T , it maximizes

J [I (t)] =
∫ T

0
e−ρtπ [K(t), I (t)] dt

subject to K̇ = I (t)− δK

K(0) = K0

Once a path for I (t) is chosen, the path of K(t) is completely determined because
the initial condition for the capital stock is given at K0. Thus, the functional J

depends on the particular path chosen for I (t).
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There is an infinite number of paths, I (t), from which to choose. A few ex-
amples of feasible paths are as follows:

(i) I (t) = δK0. This is a constant amount of investment, just enough to cover
depreciation so that the capital stock remains intact at its initial level.

(ii) I (t) = 0. This is the path of no investment.
(iii) I (t) = Aeαt . This is a path of investment that starts with I (0) = A and then

increases over time at the rate α, if α > 0, or decreases at the rate α, if α < 0.

These are just a few arbitrary paths that we mention for illustration. In fact any
function of t is a feasible path. The problem is to choose the path that maximizes
J [I (t)]. Since we know absolutely nothing about what this function of time might
look like, choosing the right path would seem to be a formidable task.

It turns out that in the special case in which T =∞ and the function π [K(t),

I (t)] takes the quadratic form

π [K(t), I (t)] = K − aK2 − I 2

the solution to the above problem is

I ∗(t) = a(K0 − K̄ )

r1 − δ − ρ
er1t + δK̄

where r1 is the negative root of the characteristic equation of the differential equa-
tion system that, as we shall see, results from solving this dynamic optimization
problem, and K̄ is the steady-state level of the capital stock that the firm desires,
and is given by

K̄ = 1

2[δ(ρ + δ)+ a]

Figure 25.1 displays the optimal path of investment for the case in which K0 < K̄ .
Along the optimal path, investment declines. In the limit as t → ∞, investment
converges to a constant amount equal to δK̄ (since r1 < 0) so that in the long run
the firm’s investment is just replacement of depreciation.

I(t)

I*(t)

t

I(0)

δK

0

Figure 25.1 Optimal path of
investment over time

How did we find this path? We found it using optimal control theory, which
is the topic we turn to now.

25.1 The Maximum Principle
Optimal control theory relies heavily on the maximum principle, which amounts
to a set of necessary conditions that hold only on optimal paths. Once you know
how to apply these necessary conditions, then a knowledge of basic calculus and
differential equations is all that is required to solve dynamic optimization problems



25.1 THE MAXIMUM PRINCIPLE 849

like the one outlined above. In this section we provide a statement of the necessary
conditions of the maximum principle and then provide a justification. In addition
we provide examples to illustrate the use of the maximum principle.

We begin with a definition of the general form of the dynamic optimization
problem that we shall study in this section.

D e f in i t i o n 25 . 1 The general form of the dynamic optimization problem with a finite time horizon
and a free endpoint in continuous-time models is

max J =
∫ T

0
f [x(t), y(t), t] dt (25.1)

subject to ẋ = g[x(t), y(t), t]

x(0) = x0 > 0 (given)

The term free endpoint means that x(T ) is unrestricted, and hence is free to be
chosen optimally. The significance of this is explored in more detail below.

In this general formulation, J is the value of the functional which is to be
maximized, x(t) is referred to as the state variable and y(t) is referred to as the
control variable. As the name suggests, the control variable is the one directly
chosen or controlled. Since the control variable and state variables are linked by a
differential equation that is given, the state variable is indirectly influenced by the
choice of the control variable.

In the fishing firm example posed above, the state variable is the amount of
capital held by the firm; the control variable is investment. The example was
a free-endpoint problem because there was no constraint placed on the final
amount of the capital stock. As well, the integrand function, f [x(t), y(t), t], was
equal to π [K(t), I (t)]e−ρt , and the differential equation for the state variable,
g[x(t), y(t), t)], was simply equal to I (t)− δK(t).

We will examine a number of important variations of this general specification
in later sections. In section 25.3 we examine the fixed endpoint version of this
problem. This means that x(T ), the final value of the state variable, is specified
as an equality constraint to be satisfied. In section 25.4 we consider the case in
which T is infinity. Finally in section 25.6 we consider the case in which the time
horizon, T , is also a free variable to be chosen optimally.

Suppose that a unique solution to the dynamic optimization problem in defi-
nition 25.1 exists. The solution is a path for the control variable, y(t). Once this is
specified, the path for the state variable is automatically determined through the dif-
ferential equation for the state variable, combined with its given initial condition.
We assume that the control variable is a continuous function of time (we relax this
assumption in section 25.5) as is the state variable. The necessary conditions that
constitute the maximum principle are stated in terms of a Hamiltonian function,
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which is akin to the Lagrangean function used to solve constrained optimization
problems. We begin by defining this function:

D e f in i t i o n 25 . 2 The Hamiltonian function, H , for the dynamic optimization problem in defini-
tion 25.1 is

H [x(t), y(t), λ(t), t] = f [x(t), y(t), t)]+ λ(t)g[x(t), y(t), t]

where λ(t), referred to as the costate variable, is akin to the Lagrange multiplier
in constrained optimization problems.

Forming the Hamiltonian function is straightforward: take the integrand (the func-
tion under the integral sign), and add to it the equation for ẋ multiplied by an, as
yet, unspecified function of time, λ(t).

We can now state the necessary conditions.

Theorem 25.1 The optimal solution path for the control variable, y(t), for the dynamic optimiza-
tion problem in definition 25.1 must satisfy the following necessary conditions:

(i) The control variable is chosen to maximize H at each point in time: y(t)

maximizes H [x(t), y(t), λ(t), t]. That is,

∂H

∂y
= 0

(ii) The paths of x(t) and λ(t) (state and costate variables), are given by the
solution to the following system of differential equations:

λ̇ = −∂H

∂x

ẋ = g[x(t), y(t), t]

(iii) The two boundary conditions used to solve the system of differential equa-
tions are given by

x(0) = x0, λ(T ) = 0

In writing the first necessary condition, we have assumed that the Hamiltonian
function is strictly concave in y. This assumption implies that the maximum of H

with respect to y will occur as an interior solution, so it can be found by setting
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the derivative of H with respect to y equal to zero at each point in time. In section
25.5 we relax this assumption.

The second set of necessary conditions is a system of differential equations.
The first one is obtained by taking the derivative of the Hamiltonian function with
respect to the state variable, x, and setting λ̇ equal to the negative of this derivative.
The second is just the differential equation for the state variable that is given as
part of the optimization problem.

Necessary conditions (i) and (ii) comprise the maximum principle. The nec-
essary conditions in (iii) are typically referred to as boundary conditions. In
free-endpoint problems, one boundary condition is given, x(0), and the other is
provided by a transversality condition, λ(T ) = 0.Ajustification for this transver-
sality condition is provided later in the chapter; for now, we will just say that this
is a necessary condition for determining the optimal value of x(T ), when x(T ) is
free to be chosen optimally.

The maximum principle provides the first-order conditions. What are the
second-order conditions in optimal control theory? In other words, when are
the necessary conditions also sufficient to ensure the solution path maximizes
the objective functional in equation (25.1)? Although it is beyond our scope to
prove it, we state the answer as

Theorem 25.2 The necessary conditions stated in theorem 25.1 are also sufficient for the maxi-
mization of J in equation (25.1) if the following conditions are satisfied:

(i) f (x, y, t) is differentiable and jointly concave in x and y.
(ii) One of the following is true:

g(x, y, t) is linear in (x, y)

g(x, y, t) is concave in (x, y) and λ(t) ≥ 0 for t ∈ (0, T )

g(x, y, t) is convex in (x, y) and λ(t) ≤ 0 for t ∈ (0, T )

The sufficiency conditions are satisfied for all of the problems examined in this
chapter. As a result we need look no further than the necessary conditions to solve
the dynamic maximization problems.

Example 25.1 Solve the following problem:

max
∫ 1

0
(x − y2) dt

subject to ẋ = y

x(0) = 2
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Solution

Step 1 Form the Hamiltonian function.

H = x − y2 + λy

Step 2 Apply the maximum principle. Since the Hamiltonian is strictly concave
in the control variable y and there are no constraints on the choice of y, we can
find the maximum of H with respect to y by applying the first-order condition:

∂H

∂y
= −2y + λ = 0

This gives

y(t) = λ(t)

2
(25.2)

Step 3 The differential equation for λ(t) is

λ̇ = −∂H

∂x
= −1

We now have a system of two differential equations which, after using equation
(25.2), is

λ̇ = −1 (25.3)

ẋ = λ

2
(25.4)

Step 4 We obtain the boundary conditions. This is a free-endpoint problem be-
cause the value for x(1) is not specified in the problem. Therefore the boundary
conditions are

x(0) = 2, λ(1) = 0

Step 5 Solve or analyze the system of differential equations. In this example we
have a system of linear differential equations, so we proceed by obtaining explicit
solutions. Because the first differential equation, (25.3), does not depend on x,
we can solve it directly and then substitute the solution into the second equation.
Solving equation (25.3) gives λ(t) = C1 − t , where C1 is an arbitrary constant
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of integration, the value of which is determined by using the boundary condition,
λ(1) = 0. This gives 0 = C1 − 1 for which the solution is C1 = 1. Therefore we
have λ(t) = 1− t .

Substituting this solution into equation (25.4) gives

ẋ = 1− t

2

to which the solution is

x(t) = t

2
− t2

4
+ C2

where C2 is an arbitrary constant of integration. Its value is determined from the
boundary condition x(0) = 2. This gives 2 = C2.

The solution then becomes

x(t) = t

2
− t2

4
+ 2

To complete the solution to this maximization problem we substitute the solutions
to the differential equations back into equation (25.2). Doing this gives

y(t) = 1− t

2

as the solution path for the control variable. At t = 0, y(0) = 1/2. It then declines
over time and finishes at t = 1 with y(1) = 0.

An Investment Problem

Suppose that a firm’s only factor of production is its capital stock, K , and that its
production function is given by the relation

Q = K − aK2, a > 0

where Q is the quantity of output produced. Assuming that capital depreciates at
the rate δ > 0, then the change in the capital stock is equal to the firm’s investment,
I , less depreciation, δK:

K̇ = I − δK
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If the price of the firm’s output is a constant $1, and the cost of investment is equal
to I 2 dollars, then the firm’s profits at a point in time are

π = K − aK2 − I 2

The optimization problem we now consider is to maximize the integral sum of
profits over a given interval of time (0, T ). A more realistic objective would be to
maximize the present-valued integral sum of profits but we postpone treatment of
this problem to the next section.

max
∫ T

0
(K − aK2 − I 2) dt

subject to K̇ = I − δK

K(0) = K0 (given)

To solve this, we take the following steps:

Step 1 Form the Hamiltonian

H = K − aK2 − I 2 + λ(I − δK)

Step 2 Apply the maximum principle: since the Hamiltonian is strictly concave
in the control variable I , we look for the I that maximizes the Hamiltonian by
using the first-order condition

∂H

∂I
= −2I + λ = 0 (25.5)

Since ∂2H/∂I 2 = −2 is negative, this gives a maximum. The solution is

I (t) = λ(t)

2
(25.6)

Step 3 Form the system of differential equations. λ must obey the differential
equation

λ̇ = −∂H

∂K
= −(1− 2aK − λδ)
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Using equation (25.6) to substitute for I (t), the system is

λ̇ = λδ + 2aK − 1 (25.7)

K̇ = λ

2
− δK (25.8)

Step 4 Obtain the boundary conditions. The boundary condition for K(t) is given
by the initial condition K(0) = K0. The boundary condition for λ(t) is λ(T ) = 0.
Step 5 Solve or analyze the system of differential equations. If the system is
linear, as it is in this example, use the techniques of chapter 24 to obtain an explicit
solution. We do this next. If the system is nonlinear, it is probably not possible to
obtain an explicit solution. In that case, use the techniques of chapter 24 to under-
take a qualitative analysis, preferably with the aid of a phase diagram. In either case
keep in mind that the system of differential equations obtained from employing
optimal control theory provides the solution to the optimization problem.

An explicit solution to the system of differential equations (25.7) and (25.8)
is obtained using the techniques shown in chapter 24. The homogeneous form of
this system, written in matrix form is[

λ̇

K̇

]
=

[
δ 2a

1/2 −δ

][
λ

K

]
(25.9)

The determinant of the coefficient matrix of the homogeneous system is (−δ2−a),
which is negative.We therefore know immediately that the steady-state equilibrium
is a saddle point.

By theorem 24.2, the solutions to the system of differential equations in (25.7)
and (25.8) are

λ(t) = C1e
r1t + C2e

r2t + λ̄ (25.10)

K(t) = r1 − δ

2a
C1e

r1t + r2 − δ

2a
C2e

r2t + K̄ (25.11)

where r1 and r2 are the eigenvalues or roots of the coefficient matrix in equa-
tion (25.9), C1 and C2 are arbitrary constants of integration, and λ̄ and K̄ are the
steady-state values of the system, and serve as particular solutions in finding the
complete solutions.
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If A denotes the coefficient matrix in equation (25.9), its characteristic roots
(eigenvalues) are given by the equation

r1, r2 = tr(A)

2
± 1

2

√
tr(A)2 − 4|A|

where tr(A) denotes the trace of A (sum of the diagonal elements). The roots of
equation (25.9) then are

r1, r2 = ±
√

δ2 + a

The steady-state values of λ and K are found by setting λ̇ = 0 and K̇ = 0. Doing
this and simplifying yields

λ = 1− 2aK

δ

K = λ

2δ

Solving these for λ and K give the steady-state values

λ̄= δ

δ2 + a
, K̄ = 1

2(δ2 + a)

Because the steady state is a saddle point, it can be reached only along the
saddle path and only if the exogenously specified time horizon, T , is large enough
to permit it to be reached.

This leaves only the values of the arbitrary constants of integration to be
determined. As usual, they are determined using the boundary conditions K(0) =
K0 andλ(T ) = 0. First, requiring the solution for K(t) to satisfy its initial condition
gives

K0 = r1 − δ

2a
C1 + r2 − δ

2a
C2 + K̄

After simplifying, this gives

C1 = 2a(K0 − K̄ )− (r2 − δ)C2

r1 − δ
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Next, requiring the solution for λ(t) to satisfy its terminal condition gives

0 = C1e
r1T + C2e

r2T + λ̄

from which we get an equation for C2 in terms of C1:

C2 = −C1e
(r1−r2)T − λ̄e−r2T

Substituting this into the expression for C1 and simplifying gives the solution
for C1:

C1 = 2a(K0 − K̄ )+ (r2 − δ)λ̄e−r2T

(r1 − δ)− (r2 − δ)e(r1−r2)T

Substituting this solution into the equation for C2 and simplifying gives the
explicit solution for C2:

C2 = −2a(K0 − K̄ )e(r1−r2)T − λ̄(r1 − δ)e−r2T

r1 − δ − (r2 − δ)e(r1−r2)T

This completes the solution.
The optimal path of investment is obtained using equation (25.6). If we denote

the solution for λ(t) in equation (25.10) as λ∗(t), then the solution for investment,
denoted I ∗(t) is

I ∗(t) = λ∗(t)
2

This solution gives the path of investment that maximizes total profits over the
planning horizon. Figure 25.2 shows two possible solution paths. When K0 < K̄ ,
the solution is a path like I1(t) that starts high and declines monotonically to 0 at
time T . When K0 > K̄ , the solution is a path of disinvestment like I2(t) that stays
negative from zero to T .

0
t

I1(t )

T

I(t )

I2(t )

Figure 25.2 Solution path I1(t)

for investment when K0 < K̄ ;
solution path I2(t) for investment
when K0 > K̄

An Economic Interpretation of λ and the Hamiltonian

We introduced λ(t) as a sequence or path of Lagrange multipliers. It turns out that
there is a natural economic interpretation of this co-state variable. Intuitively λ(t)

can be interpreted as the marginal (imputed) value or shadow price of the state
variable x(t). This interpretation follows informally from the Lagrange multiplier
analogy. But it can also be shown formally, as we do at http://mitpress.mit.edu/
math econ3, that λ(0) is the amount by which J ∗ (the maximum value function)
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would increase if x(0) (the initial value of the state variable) were to increase by
a small amount. Therefore λ(0) is the value of a marginal increase in the state
variable at time t = 0 and therefore can be interpreted as the most we would be
willing to pay (the shadow price) to acquire a bit more of it at time t = 0. By
extension, λ(t) can be interpreted as the shadow price or imputed value of the
state variable at any time t .

In the investment problem just examined, λ(t) gives the marginal (imputed)
value or shadow price of the firm’s capital stock at time t .Armed with this interpre-
tation, the first-order condition (25.5) makes economic sense: it says that at each
moment of time, the firm should carry out the amount of investment that satisfies
the following equality:

2I (t) = λ(t)

The left-hand side is the marginal cost of investment; the right-hand side is
the marginal (imputed) value of capital and, as such, gives the marginal benefit
of investment. Thus the first-order condition of the maximum principle leads to
a very simple investment rule: invest up to the point that marginal cost equals
marginal benefit.

The Hamiltonian function too can be given an economic interpretation. In
general, H measures the instantaneous total economic contribution made by the
control variable toward the integral objective function. In the context of the in-
vestment problem, H is the sum of total profits earned at a point in time and the
accrual of capital that occurs at that point in time valued at its shadow price. There-
fore H is the instantaneous total contribution made by the control variable to the
integral of profits, J. It makes sense then to choose the control variable so as to
maximize H at each point in time. This, of course, is what the maximum principle
requires.

E X E R C I S E S

1. Solve

max
∫ T

0
−(ay + by2) dt

subject to ẋ = x − y

x(0) = x0

where a, b are positive constants.
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2. Solve

max
∫ T

0
(xy − y2 − x2) dt

subject to ẋ = y

x(0) = x0

3. Solve

max
∫ T

0
−(ay + by2 + cx) dt

subject to ẋ = αx + βy

x(0) = x0

4. Solve

max
∫ T

0
(ay − by2 + f x − gx2) dt

subject to ẋ = x + y

x(0) = x0

5. Solve

max
∫ T

0
(y − y2 − 4x − 3x2) dt

subject to ẋ = x + y

x(0) = x0

6. In equations (25.7) and (25.8) the differential equation system was written
in terms of λ and K . For the same model, transform the differential equation
system into a system in I and K . Solve this system of equations for I (t)

and K(t).
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7. Assume that price is a constant, p, and the cost of investment is bI 2, where b

is a positive constant. Then solve the following:

max
∫ T

0
[p(K − aK2)− bI 2] dt

subject to K̇ = I − δK

K(0) = K0

25.2 Optimization Problems Involving
Discounting

Discounting is a fundamental feature of dynamic optimization problems in eco-
nomic dynamics. In the remainder of this chapter, we assume that ρ is the going
rate of return in the economy, that there is no uncertainty about this rate of return
and that it is constant over time. Recall from chapter 3 that y0 = y(t)e−ρt is the
discounted value (or present value) of y(t). In all of the subsequent models and
examples examined in the chapter, firms and consumers will be assumed to maxi-
mize the discounted value (present value) of future streams of revenues or benefits
net of costs.

The General Form of Autonomous Optimization Problems

Most dynamic optimization problems in economics involve discounting.As a result
time enters the objective function explicitly through the term e−ρt . However, if this
is the only way the variable t explicitly enters the dynamic optimization problem,
the system of differential equations can be made autonomous. The importance of
this fact is that autonomous differential equations (ones in which t is not an explicit
variable) are much easier to solve than nonautonomous differential equations.

We specified the general form of the integrand function in definition 25.1 as
f (x, y, t). If this reduces to some function of just x and y multiplied by the term
e−ρt , say F(x, y)e−ρt , and if the differential equation given for the state variable
does not depend explicitly on t (is autonomous), so that g(x, y, t) specializes to
G(x, y), then we may state
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D e f in i t i o n 25 . 3 The general form of the autonomous optimization problem is

max J =
∫ T

0
F [x(t), y(t)]e−ρt dt (25.12)

subject to ẋ = G[x(t), y(t)]

x(0) = x0

The Hamiltonian function for this problem is

H = F(x, y)e−ρt + λG(x, y)

The maximum with respect to y occurs when

Fy(x, y)e−ρt + λGy(x, y) = 0

assuming an interior solution. Alternatively, we can write this as

Fy(x, y)+ (λeρt )Gy(x, y) = 0

Implicitly, this gives y as a function of x and λeρt , say φ(x, λeρt ). The differential
equation for λ is

λ̇ = −∂H

∂x
= −e−ρtFx(x, y)− λGx(x, y)

After substituting y = φ(x, λeρt ), and multiplying both sides by eρt , this becomes

λ̇eρt = −Fx[x, φ(x, λeρt )]− λeρtGx[x, φ(x, λeρt )] (25.13)

The second differential equation in the system is

ẋ = G[x, φ(x, λeρt )] (25.14)

and the two boundary conditions are x(0) = x0 and λ(T ) = 0.
We have derived the general form of the system of differential equations,

(25.13) and (25.14), for this kind of problem but it is clearly not autonomous
as promised. However, a simple change of variable will transform it into an
autonomous system. When we do this, it will become clear why we wrote the
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differential equation for λ in a slightly different form. Define a new variable µ(t):

µ(t) = λ(t)eρt

Taking the time derivative of this expression yields

µ̇ = ρλeρt + λ̇eρt = ρµ+ λ̇eρt

Substituting for λeρt and λ̇eρt in equation (25.13) then gives the new system of
two differential equations

µ̇ = ρµ− Fx[x, φ(x, µ)]− µGx[x, φ(x, µ)]

ẋ = G(x, φ(x, µ))

It is now a system of differential equations in two variables, µ and x, both
of which are functions of time; however, the variable t does not itself appear
explicitly in either of the differential equations. As a result the transformed system
is autonomous! This makes it easier to solve the system of differential equations.
But perhaps more important, this makes it possible to draw phase diagrams to assist
in the qualitative analysis of nonlinear systems of differential equations. This is
a major advantage. We can rarely draw a phase diagram for a nonautonomous
system because the locus of points at which λ̇ = 0 and ẋ = 0 depends on t and
so moves around over time. In contrast, the locus of points at which µ̇ = 0 and
ẋ = 0 is stationary.

It is possible to create an autonomous system of differential equations when
t enters only through the discounting term using the procedure shown here. How-
ever, an even easier (and more common) procedure is to use a current-valued
Hamiltonian rather than the regular Hamiltonian. We introduce this next.

The Current-Valued Hamiltonian

The purpose for introducing this minor modification to the definition of the Hamil-
tonian function is that it leads automatically to an autonomous system of differen-
tial equations when the variable t enters the optimization problem explicitly only
through the discounting term.

In general, the maximization problem with discounting is defined as

max J =
∫ T

0
e−ρtF [x(t), y(t)] dt (25.15)

subject to ẋ = G[x(t), y(t)]

x(0) = x0 > 0 (given)
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The regular Hamiltonian for this problem is

H = e−ρtF [x(t), y(t)]+ λG[x(t), y(t)]

The current-valued Hamiltonian, H, is defined as

H = Heρt

That is, it is simply the regular Hamiltonian multiplied by eρt . Inverting this
relationship gives

H = He−ρt

which leads us to interpret the regular Hamiltonian as a present-valued
Hamiltonian.

Earlier we defined a new costate variable, µ, as

µ = λeρt

which suggests that we interpret µ as the current-valued costate variable and λ as
the present-valued costate variable. With these relationships, we can now provide
a formal definition of the current-valued Hamiltonian. Because it is slightly dif-
ferent from the regular Hamiltonian, the necessary conditions require some minor
modifications. We present all these first and then proceed to show the justification
for these minor but important changes.

D e f in i t i o n 25 . 4 The current-valued Hamiltonian,H, for autonomous optimization problems con-
forming to definition 25.3, is

H[x(t), y(t), µ(t)] = F [x(t), y(t)]+ µG[x(t), y(t)] (25.16)

and the necessary conditions are

(i) The control variable is chosen to maximize H at each point in time: y(t)

maximizes H[x(t), y(t), µ(t)]. That is,

∂H
∂y
= 0
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(ii) The paths of x(t) and µ(t) (state and costate variables), are given by the
solution to the following system of differential equations:

µ̇− ρµ = −∂H
∂x

ẋ = g[x(t), y(t)]

(iii) The two boundary conditions used to solve the system of differential equations
are given by

x(0) = x0, µ(T )e−ρT = 0

Notice that the only necessary conditions that change are the two involving
the new costate variable, µ. It is easy to see why these changes follow from the
change-of-variable relationships. First, the current-valued Hamiltonian is just

H = Heρt = F [x(t), y(t)]+ λeρtG[x(t), y(t)]

This becomes

H = F [x(t), y(t)]+ µG[x(t), y(t)]

The changes that must be made to the necessary conditions also follow directly
from the change-of-variable definitions. Since H = He−ρt , the y that maximizes
H will necessarily maximize H, since e−ρtplays the role of a constant term when
we are maximizing with respect to y. This is seen more clearly perhaps for inte-
rior solutions where the derivative of H with respect to y equals 0. This implies
that

∂H
∂y

e−ρt = 0

However, since e−ρtcancels out, this is equivalent to setting

∂H
∂y
= 0

Thus this part of the maximum principle does not change at all. We still wish
to maximize the current-valued Hamiltonian at each point in time.



25.2 OPTIMIZATION PROBLEMS INVOLVING DISCOUNTING 865

The maximum principle also requires that the costate variable satisfy the
differential equation

λ̇ = −∂H

∂x
(25.17)

This translates into a comparable differential equation in the new variable µ.
To derive it, note that

−∂H

∂x
= −∂H

∂x
e−ρt (25.18)

and because λ = µe−ρt ,

λ̇ = −ρµe−ρt + µ̇e−ρt

Making the substitutions into equation (25.17) gives

−ρµe−ρt + µ̇e−ρt = −∂H
∂x

e−ρt

Simplifying this gives the differential equation that the new (current-valued) costate
variable must satisfy

µ̇− ρµ = −∂H
∂x

(25.19)

Finally the transversality condition changes slightly. Instead of λ(T ) = 0, we
now have µ(T )e−ρT = 0. If T is finite, this reduces to µ(T ) = 0.

Example 25.2 Solve the following maximization problem:

max
∫ T

0
e−ρt [ax − bx2 − cy2] dt

subject to ẋ = y − αx

x(0) = x0

Solution

Step 1 The current-valued Hamiltonian function is

H = ax − bx2 − cy2 + µ(y − αx)
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Step 2 The maximum of H with respect to the control variable y is found by
solving

∂H
∂y
= −2cy + µ = 0

which gives y = µ/2c.
Step 3 The differential equation for µ is

µ̇− ρµ = −∂H

∂x
= −(a − 2bx − µα)

The system of differential equations then becomes

µ̇ = (ρ + α)µ+ 2bx − a

ẋ = µ

2c
− αx

Step 4 The first boundary condition is x(0) = x0. Because this is a free-endpoint
problem [the value for x(T ) is not given], and because T is finite, the second
boundary condition is µ(T ) = 0.
Step 5 The solution to the system of linear differential equations is given by
theorem 24.2:

µ(t) = C1e
r1t + C2e

r2t + µ̄

x(t) = r1 − ρ − α

2b
C1e

r1t + r2 − ρ − α

2b
C2e

r2t + x̄

where ri, µ̄, and x̄ can be determined directly from the differential equations,
but the Ci are constants of integration whose values are determined using the
two boundary conditions. We leave it as an exercise for students to complete the
solution.

An Investment Problem with Discounting: A Qualitative Analysis

We generalize the investment model here by not committing ourselves to a choice
of a functional form for the firm’s production function. Instead of assuming that
f (K) = K − aK2, we now make a less restrictive assumption: we assume that
f (K) can be any function that satisfies the following properties:
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f (K) is continuous on K ≥ 0 and possesses continuous first and second derivatives
that satisfy

f ′(K) > 0 for K ≥ 0

f ′′(K) < 0 for K ≥ 0

In addition we assume that f ′(0) = ∞ and f ′(∞) = 0. The importance of
these two assumptions will become clear below.

We continue to assume that the price of the firm’s output is $1 and the cost of
investing at the rate I is I 2 dollars. The dynamic optimization problem then is

max
∫ T

0
e−ρt [f (K)− I 2] dt

subject to K̇ = I − δK

K(0) = K0

In this problem the variable t enters the optimization problem only through
the discounting term. We can be sure then that applying the maximum principle to
the current-valued Hamiltonian will lead to an autonomous system of differential
equations.

Step 1 The current-valued Hamiltonian is

H = f (K)− I 2 + µ(I − δK)

Step 2 The necessary condition to maximize H is

−2I + µ = 0

The concavity of H in I ensures that this equation gives a maximum.
Step 3 The current-valued costate variable must satisfy

µ̇− ρµ = −∂H
∂K
= −f ′(K)+ µδ

The system of differential equations then becomes

µ̇ = µ(δ + ρ)− f ′(K) (25.20)

K̇ = µ

2
− δK (25.21)
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Step 4 The boundary conditions are K(0) = K0 and µ(T ) = 0.
Step 5 Because the system of differential equations involves an implicit function,
we cannot obtain an explicit solution. Instead, we perform a qualitative analysis
of the system using a phase diagram.

To draw the phase diagram for the differential equation system in equations
(25.20) and (25.21), we follow the steps outlined in chapter 24.

First, determine the motion of µ. Begin by drawing the isocline for µ. This is
the locus of points in the (µ, K) plane at which µ̇ = 0. Setting equation (25.20)
equal to 0 gives the equation for these points:

µ = f ′(K)

δ + ρ

To graph this equation in the µ, K phase plane, note that it has a negative slope

dµ

dK
= f ′′(K)

δ + ρ
< 0

because f ′′(K) < 0 and δ and ρ are both positive. Next note that our assumption
that f ′(0) = ∞ means that the graph of the equation does not touch the vertical
axis at a finite value of µ; instead, the graph is asymptotic to the vertical axis.
Similarly, our assumption that f ′(∞) = 0 means the graph is also asymptotic
to the horizontal axis. These two assumptions guarantee that the intersection of
the µ isocline and the K isocline occurs at strictly positive values of µ and K .
In other words, the steady-state solution is guaranteed to be an interior solution.
Figure 25.3 shows the µ isocline.

0 K

µ

µ = 0
.

K = 0
.

K0

a
b
c

d

d

Figure 25.3 Phase diagram for the investment problem with discounting
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Determine the sign of µ̇ in each of the two regions separated by the µ isocline.
This is done by analyzing the differential equation for µ. Calculate the partial
derivative of equation (25.20) with respect to µ. This gives

∂µ̇

∂µ
= δ + ρ > 0

which means that, holding K constant, an increase (decrease) in µ leads to an
increase (decrease) in µ̇. As a result µ̇ is positive above the µ̇ = 0 curve and
negative below it.

Second, determine the motion of K . The isocline for K is found by setting
K̇ = 0, which gives

µ = 2δK

The graph of this equation emanates from the origin with a positive slope equal to
2δ. Determine the motion of K in the two regions separated by this line by partially
differentiating equation (25.21) with respect to K . This gives

∂K̇

∂K
= −δ < 0

which means that K̇ is negative to the right and positive to the left of the K̇ = 0 line.
The arrows of motion in the phase diagram give a rough idea of the paths

that trajectories must follow. Indeed, they suggest that the steady state is a saddle-
point equilibrium. This can be confirmed by checking the signs of the eigenvalues
of the system of two differential equations after it has been linearized around the
steady-state point (theorem 24.7). The coefficient matrix of the linearized system is

[
δ + ρ −f ′′

1/2 −δ

]

which has determinant−δ(δ+ ρ)+ f ′′/2 < 0. The negative determinant ensures
that the eigenvalues are of opposite sign, which is all the information we need to
conclude that we do indeed have a saddle-point equilibrium.

Figure 25.3 depicts a number of representative trajectories in the phase plane.
To satisfy the boundary conditions, the optimal trajectory must begin at K(0) = K0

and end at µ(T ) = 0. Suppose that the initial capital stock owned by the firm,
K0, is small relative to the steady-state level of the capital stock, K̄ . With K0 as
shown, the actual optimal trajectory followed by the (µ, K) pair depends on the
size of T that is specified in the optimization problem. If T is small, there is not
much time available and the trajectory followed cannot cover much distance before
finishing its journey at µ(T ) = 0. The trajectory beginning at a depicts this case.
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If T is larger, a longer journey is possible; the trajectory beginning at b depicts
this case. If T is larger still, the trajectory beginning at c will be followed. As T

approaches infinity, the optimal trajectory will approach the saddle path which is
labeled dd. Even though the saddle path appears to be of finite length, it takes an
infinite amount of time to cover the distance because both µ and K move at a
speed approaching zero as they approach the steady state.

I(t)

0 T1

Ia(t) Ib(t) Ic(t)

T2 T3 t

Figure 25.4 Investment paths
corresponding to figure 25.3

Notice in figure 25.3 that no matter what finite value is T , µ(T ) = 0, as
required by the transversality condition. However, K(T ) is quite different for
different values of T . Only as the amount of time available to the firm approaches
infinity will its capital stock approach the steady-state value.

Figure 25.4 shows the paths of I (t) corresponding to the first three trajectories
in Figure 25.3, which have three different finite time horizons, say T1 < T2 < T3.
On each path, investment declines monotonically and finishes at 0. We know this
from the first-order condition for I (t), which implies that

I (t) = µ(t)

2

Thus the path of I (t) has the same shape as the path of µ(t) which, as we know
from the phase diagram, declines monotonically to zero.

E X E R C I S E S

1. Solve

max
∫ T

0
−e−ρty2 dt

subject to ẋ = x + y

x(0) = x0

2. Solve

max
∫ T

0
−e−ρt (ay + by2) dt

subject to ẋ = x + y

x(0) = x0

where a, b are positive constants.
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3. Solve

max
∫ T

0
e−ρt (yx − y2 − x2) dt

subject to ẋ = x + y

x(0) = x0

4. Solve

max
∫ T

0
e−ρt (ay − by2 + f x − gx2) dt

subject to ẋ = y

x(0) = x0

5. In this problem a firm’s production function depends only on labor, L: output
equals (L− aL2). The firm pays a fixed wage, w, per unit of employed labor
and incurs hiring costs equal to qH 2, where H is the amount of new hires,
and receives a constant price, p, per unit of output. The firm’s labor force has
a constant quit rate equal to δ. Solve for the path of hiring that solves

max
∫ T

0
e−ρt [p(L− aL2)− wL− qH 2] dt

subject to L̇ = H − δL

L(0) = L0

6. Conduct a qualitative analysis using a phase diagram [in (µ, K) space] of the
following investment problem:

max
∫ T

0
e−ρt [K − aK2 − c(I )] dt

subject to K̇ = I − δK

K(0) = K0

where c(I ) is the investment cost function with the following properties:
c′(I ) > 0, c′′(I ) > 0 and c(0) = 0.

7. Repeat exercise 6, but this time draw the phase diagram in (I, K) space.
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25.3 Alternative Boundary Conditions on
x(T )

Most dynamic optimization problems place some kind of constraint on the terminal
value of the state variable. It may just be a nonnegativity constraint, x(T ) ≥ 0, it
may be some other kind of inequality constraint, x(T ) ≥ b, or it may be an equality
constraint, x(T ) = b, where b is some exogenous parameter to the model.

In this section we show that constraints of this type are easily incorporated in
optimal control theory by making a minor adjustment to the transversality condi-
tion, µ(T ) = 0, that applies when x(T ) is unconstrained.

Fixed-Endpoint Problems: x(T ) = b

How do we solve the optimal control problem when the terminal value of the state
variable must satisfy a given equality constraint of the form

x(T ) = b (25.22)

where b > 0 is a given value? The answer is simple: the necessary conditions of
the maximum principle are unchanged, but replace the transversality condition
µ(T ) = 0 with the boundary condition x(T ) = b. All together, the necessary
conditions are described in the following theorem:

Theorem 25.3 The optimal solution path for the control variable, y(t), for the dynamic optimiza-
tion problem in definition 25.1, subject to the additional constraint in equation
(25.22), must satisfy the following conditions:

(i) The control variable is chosen to maximize H at each point in time: y(t)

maximizes H [x(t), y(t), λ(t), t]. That is,

∂H

∂y
= 0

(ii) The paths of x(t) and λ(t), the state and costate variables, are given by the
solution to the following system of differential equations:

λ̇ = −∂H

∂x

ẋ = g[x(t), y(t), t]
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(iii) The two boundary conditions used to solve the system of differential equa-
tions are given by

x(0) = x0, x(T ) = b

Proof

A rigorous proof is beyond our scope. Instead, we provide a heuristic explanation.
Also note that although we have written the necessary conditions in terms of
the regular (or present-valued) Hamiltonian, they could just as easily have been
presented in terms of the current-valued Hamiltonian.

How did we obtain this minor change to the necessary conditions?An intuitive
explanation is possible using the fact that

dJ ∗

dx(T )
= −λ(T )

as is shown at http://mitpress.mit.edu/math econ3 for the case of unconstrained
x(T ). This says that a marginal increase in x(T ) leads to a decrease in the value of
the objective (e.g., the integral of discounted profits) equal to λ(T ). If we are free
to choose x(T ), we obviously choose the amount that maximizes J, which occurs
when dJ/dx(T ) = 0. Setting λ(T ) = 0 then ensures that we choose the optimal
x(T ). However, if we are not free to choose x(T ), but instead must ensure that
x(T ) equals some exogenously specified number, then dJ/dx(T ) will not equal
zero at x(T ) = b. Thus λ(T ) �= 0 at x(T ) = b, except by chance.

Example 25.3 Solve the following problem:

max
∫ 1

0
x − y2 dt

subject to ẋ = y

x(0) = 2

x(1) = b

Solution

The Hamiltonian for this maximization problem is

H = x − y2 + λy
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Apart from the fact that x(1) is constrained to equal b, this problem is identical to
that solved in example 25.1. There we found that maximizing H with respect to
y gave

y(t) = λ(t)

2

After obtaining the differential equation for the costate variable, the system of
two differential equations that describe the solution paths for this maximization
problem became

λ̇ = −1

ẋ = λ

2

The boundary conditions for this problem are now different than in example 25.1.
When x(1) was unconstrained in example 25.1, we set λ(1) = 0 and used this as
a boundary condition in addition to the given initial condition x(0) = 2. Now that
x(1) is constrained to equal b, the boundary conditions are

x(0) = 2, x(1) = b

Solving the differential equation for λ(t) gives

λ(t) = C1 − t

as in example 25.1, where C1 is a constant of integration. Using this solution allows
us to write the differential equation for x as

ẋ = C1 − t

2

which we can solve directly

x(t) = C1

2
t − t2

4
+ C2

where C2 is another constant of integration. The constants of integration are
now determined by using the two boundary conditions. First, at t = 0, we have
x(0) = 2. This gives

2 = 0+ C2



25.3 ALTERNATIVE BOUNDARY CONDITIONS ON x (T ) 875

as the solution for C2. Next, at t = 1 we have x(1) = b. This gives

b = C1

2
− 1

4
+ C2

which, when rearranged and the solution for C2 is used, gives

C1 = 2b − 7

2

Therefore

λ(t) = 2b − 7

2
− t

and

y(t) = b − 7

4
− t

2

is the solution path over the interval t ∈ (0, 1).

Example 25.4 An Optimal Consumption Model

An individual has an amount of money x0 in a bank account at time 0. Thereafter
the money earns interest in the account at the rate r . Let c(t) denote the amount
of money withdrawn for consumption at time t and assume it is the only source of
income for consumption. The differential equation for the bank account is

ẋ = rx − c

and the initial condition is x(0) = x0. We now assume that the individual wishes
to choose a consumption path that maximizes lifetime utility that we take to be
given simply by

u =
∫ T

0
e−ρtU(c(t)) dt

where the interval of time, (0, T ), is the lifetime, U(c(t)) is the instantaneous
utility from consuming an amount c(t) at time t , and ρ ≥ 0 is the individual’s
personal rate of time preference. We assume that the utility function takes the
logarithmic functional form

U(c(t)) = ln c(t)
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Finally we assume that the individual is constrained to leave a bequest of money
in the bank account of a predetermined amount, b. The optimization problem may
now be summarized as follows. The individual wishes to

max
∫ T

0
e−ρt ln c dt

subject to ẋ = rx − c

x(0) = x0 > 0

x(T ) = b > 0

Solution

Step 1 The current-valued Hamiltonian is

H = ln c + µ(rx − c)

Step 2 Maximizing the Hamiltonian with respect to the control variable, c, gives

1

c
− µ = 0

which, when solved for c(t), gives

c(t) = µ(t)−1

Step 3 The differential equation for the costate variable is

µ̇− ρµ = −µr

The system of differential equations then is

µ̇ = µ(ρ − r)

ẋ = rx − µ−1

Because these are linear differential equations, we can solve them explicitly. The
differential equation for µ depends only on µ, so we solve it first using single-
equation techniques. Straightforward application of the techniques explained in
chapter 21 gives

µ(t) = C1e
(ρ−r)t
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where C1 is a constant of integration. Using this solution allows us to rewrite the
differential equation for x as

ẋ − rx = −C−1
1 e−(ρ−r)t

Multiplying both sides by the integrating factor, e−rt , gives

d

dt
[xe−rt ] = −C−1

1 e−(ρ−r)t e−rt

Simplifying the right-hand side and then integrating both sides gives

xe−rt = −C−1
1

∫ t

0
e−ρs ds + C2

where C2 is another constant of integration. Carrying out the integration and
simplifying leads to

x(t) = C−1
1

(e−ρt − 1)

ρ
ert + C2e

rt (25.23)

We complete the solution by using the two boundary conditions to solve for
the two constants of integration. First, we have x(0) = x0. This gives

x0 = 0+ C2

as the solution for C2. Next, we have x(T ) = b. This gives

b = C−1
1

(e−ρT − 1)

ρ
erT + C2e

rT

Simplifying, using C2 = x0, and solving for C1 gives

C1 = (e−ρT − 1)erT

ρ(b − x0erT )

Substituting this expression into the solution for µ(t) and then using it in the
solution for c(t) gives the optimal path of consumption chosen by the individual

c(t) = ρ
(be−rT − x0)

e−ρT − 1
e(r−ρ)t
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An interesting case arises when b = x0, which requires the bank account at
time T to equal its initial size. An obvious consumption path that satisfies this
constraint is to just consume the interest. That is, set c(t) = rx0. Then the bank
account never grows or diminishes. However, it is apparent from our solution that
this situation will not be the utility-maximizing solution in general. To see this is
so, set b = x0. This gives

c(t) = ρx0
(e−rT − 1)

e−ρT − 1
e(r−ρ)t

In the special case in which the private rate of time preference is equal to the
market rate of interest, ρ = r , this equation reduces to

c(t) = rx0

x0

x(t)

c(t)

T t

rx0

0

Figure 25.5 Optimal consumption
path, c(t), and bank account path,
x(t), when x(T ) = x0 and ρ < r

x0

x(t)

c(t)
rx0

0 T t

Figure 25.6 Optimal consumption
path, c(t), and bank account path,
x(t), when x(T ) = x0 and ρ > r

Thus consuming the interest maximizes utility only if ρ = r , which occurs if
the individual discounts future utility at a rate exactly equal to the market rate of
return. This is shown as the line rx0 in figures 25.5 and 25.6. On the other hand, if
the individual discounts future utility at a lower rate than the market rate, ρ < r ,
then the individual is better off foregoing consumption early in life (high savings)
to take advantage of the high return on saving and then consuming heavily later
in life. In this case, consumption is a rising function of time. This consumption
path and the associated path for the bank account, x(t), are shown in figure 25.5.
Alternatively, if ρ > r , then consumption is a monotonically decreasing function
of time. The individual consumes heavily early in life and saves later to bring the
bank account back up to its required bequest level. This consumption path and the
associated x(t) are shown in figure 25.6.

Inequality-Constrained Endpoint Problems: x(T ) ≥ b

When the terminal value of the state variable must satisfy an inequality constraint,
we are free to choose x(T ) optimally as long as our choice does not violate the con-
straint. The way we solve the optimal control problem then depends on whether the
constraint binds or not. If our optimal (unconstrained) choice of x(T ) satisfies the
constraint, then we effectively have a free-endpoint problem. The relevant bound-
ary condition for x(T ) then is λ(T )= 0. On the other hand, if our unconstrained
choice of x(T ) is smaller than b, we have to settle for setting x(T )= b, and we ef-
fectively have a fixed-endpoint problem. The relevant boundary condition for x(T )

then, isx(T )= b.As a result, the only thing that makes this a new kind of maximiza-
tion problem is that we have to decide whether the constraint on x(T ) is binding.

In practice, the easiest and most reliable way to decide if the constraint on
x(T ) is binding is to first try to find the unconstrained, optimal value, x∗(T ) and
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compare this value to b. It is then easy to see whether x∗(T ) automatically satisfies
the constraint.

Example 25.5 Solve the following problem:

max
∫ 1

0
(x − y2) dt

subject to ẋ = y

x(0) = 2

x(1) ≥ b

Solution

Except for the constraint on x(1), this is the same as the free-endpoint problem in
example 25.1. After forming the Hamiltonian and maximizing with respect to the
control variable y, we obtained the following system of differential equations:

λ̇ = −1 (25.24)

ẋ = λ

2
(25.25)

The first boundary condition is x(0) = 2. We have to decide now whether the
appropriate second boundary condition is λ(1) = 0 (if the constraint on x(1) is not
binding) or x(1) = b (if the constraint on x(1) is binding). To do this, we proceed
as if there were no constraint on x(1) (solve the free-endpoint problem). We will
find x∗(1), the optimal value, and then compare it to b to see if the constraint is
binding or not. In example 25.1 we already solved the free-endpoint problem and
found the optimal solution path for the state variable to be

x∗(t) = t

2
− t2

4
+ 2

Since T = 1, the optimal value for x(1) is

x∗(1) = 1

2
− 1

4
+ 2 = 9

4

Two cases can arise:

Case 1 b≤ 9/4. The constraint is not binding because x∗(1)≥ b. The problem
is solved.
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Case 2 b > 9/4. The constraint is binding because x∗(1) < b. Thus we cannot
have our first choice for x(1). The next best we can do is to set x(1) = b. The
differential equations now have to be re-solved using the correct boundary con-
ditions: x(0) = 2 and x(1) = b. This is the fixed-endpoint problem we solved in
example 25.5.

Example 25.6 Solve the optimal consumption model with an inequality constraint on x(T ):

max
∫ T

0
e−ρt ln c dt

subject to ẋ = rx − c

x(0) = x0

x(T ) ≥ b

Solution

We have already solved the model of optimal consumption with a fixed-endpoint
constraint. We are now asked to reconsider this problem with an inequality con-
straint on x(T ). The only thing that differs between this problem and its fixed-
endpoint version is the boundary condition on x(T ). As such, the solution up to
the point of finding the boundary conditions is identical. After using the initial
condition x(0) = x0, we found the solution for x(t) to be

x(t) = −C−1
1

(1− e−ρt )

ρ
ert + x0e

rt (25.26)

We found the solution for µ(t), the current-valued costate variable, to be

µ(t) = C1e
(ρ−r)t

To find the value of the constant of integration, C1, we need to use the boundary
condition e−ρT µ(T ) = 0 [if the constraint on x(T ) is not binding] or x(T ) = b

[if the constraint on x(T ) is binding]. To decide, try to solve for the unconstrained
x∗(T ). Set e−ρT µ(T ) = 0. Since T is finite, this amounts to setting µ(T ) = 0,
which gives C1 = 0. However, inspection of equation (25.26) reveals that as
C1 → 0, x(t) → −∞ for all values of t , including t = T . This clearly violates
the constraint that x(T ) ≥ b. Thus, we know that the relevant boundary condition
is x(T ) = b and that we should proceed to solve this as a fixed-endpoint problem.
The solution, therefore, is the same as the fixed-endpoint version already solved.

A related approach to deciding that the constraint is binding in this problem
is to note that if C1 = 0, then µ(t) = 0 for all t ∈ (0, T ). However, the first-order
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condition for c(t) indicates that as µ(t)→ 0, c(t)→∞. That is, the consumption
rate becomes infinitely large as µ(t) approaches zero. This is clearly impossible,
as it would not only drain the bank account but drive it to minus infinity, as we
determined above.

We conclude that in the absence of a bequest constraint in this model, the
optimal consumption path is one that drives the bank account down to the minimum
permitted level, b, by the end of the lifetime, T . The smallest value that b could
possibly take in reality is b = 0. In that case the optimal consumption path involves
consuming all of the capital in the bank account by time T .

Optimal Depletion of an Exhaustible Resource

Imagine an individual stranded on a desert island where the only source of food
is a fixed stock of an exhaustible resource. The resource is not perishable but also
does not accumulate or reproduce. The individual is assumed to live from time
0 (now) to T and is assumed to know this with certainty. The individual must
choose a consumption path knowing that the stock of food is exhaustible. We
assume the path chosen is the one that maximizes the discounted sum of utility.
The maximization problem is

max
∫ T

0
e−ρtU [c(t)] dt

subject to Ṙ = −c

R(0) = R0

R(T ) ≥ 0

where U [c(t)] is instantaneous utility at t and ρ is the personal rate of time pref-
erence.

The differential equation shows that the stock of the resource, R(t), declines
by the amount consumed, c(t). The resource stock starts out at size R0 and cannot
decline below a size of zero. We now have an inequality-constrained endpoint
problem.

The current-valued Hamiltonian function is

H = U(c)− µc

Assuming that U ′ > 0 and U ′′ < 0 (positive and diminishing marginal utility)
means the following condition holds on the optimal consumption path:

U ′(c)− µ = 0 (25.27)
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Implicitly this gives a solution for c as a function of µ, which we write as

c = φ(µ)

In addition the costate variable must satisfy

µ̇− ρµ = 0

since ∂H/∂R = 0 in this model. The system of differential equations then is

µ̇ = ρµ

Ṙ = −φ(µ)

The relevant boundary conditions are R(0) = R0 and either the transversality
condition µ(T ) = 0 or the endpoint condition R(T ) = 0. The solution to the first
differential equation is

µ(t) = C1e
ρt (25.28)

where C1 is a constant of integration. If we impose the condition µ(T ) = 0, we
obtain the solution C1 = 0, from which we conclude immediately that µ(t) = 0
for t ∈ (0, T ). Will this lead to the constraint R(T )≥ 0 being violated? The answer
depends on the form of the utility function. If marginal utility falls to zero at some
consumption level, say ĉ, the solution to equation (25.27) with µ(t) = 0 is c(t) = ĉ

for all t ∈ (0, T ). Lifetime consumption is ĉT . If ĉT is less than R0, then R(T ) is
clearly positive, so the resource constraint is nonbinding. In this case the resource
is not scarce: more than enough of it is available to sustain the consumer’s desired
lifetime consumption, so it has no economic value. As a result its shadow price is
zero.

On the other hand, if ĉT exceeds R0, the resource constraint becomes binding,
and µ(T ) = 0 is the wrong boundary condition. R(T ) = 0 becomes the correct
boundary condition.

If the utility function does not have a satiation point (we typically assume
that it doesn’t), then marginal utility never becomes zero, no matter how high the
consumption rate. This is the case for the utility functions we have examined so
far in this chapter. For example, if U(c) = ln c, then U ′(c) = 1/c, and this tends
to zero only as c→∞. In this case the solution to equation (25.27) with µ(t) = 0
is an infinitely high consumption rate. This would obviously drive the resource
stock to negative infinity, thereby violating the constraint. Thus µ(T ) = 0 is the
wrong boundary condition; R(T ) = 0 is the correct boundary condition.

To complete the solution, we will assume that the resource is economically
scarce, which means that we need to assume either that there is no finite satiation
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point or, if there is a satiation point, that it is at a high enough consumption rate that
the resource constraint becomes binding. The relevant second boundary condition
then is R(T ) = 0.

Because we have not specified a functional form for utility, we cannot obtain
an explicit solution for this problem. Instead, we provide the implicit solution as
far as it can be taken and draw the phase diagram.

Solving the second differential equation and using equation (25.28) gives

R(t) = −
∫ t

0
φ(C1e

ρs) ds + C2

Using the initial condition R(0) = R0 in this expression gives C2 = R0. Evaluating
the expression at t = T and imposing the second boundary condition, R(T ) = 0,
gives

R(T ) = R0 −
∫ T

0
φ(C1e

ρs) ds = 0

This is as far as we can go with an implicit solution. However, if a functional
form for utility were assumed, then the function φ would be known. In principle,
the above equation could be solved for C1. Using this in φ[µ(t)] then gives the
solution for the path of consumption.

A phase diagram helps to clarify the qualitative properties of the solution.
Rather than draw it in (R, µ) space, we shall follow the alternative approach of
drawing it in (R, c) space (see figure 25.7).

0 R

c

c*(T )

R0

c*(0)

Figure 25.7 Phase diagram for the
exhaustible resource problem drawn
in R (the resource stock remaining)
and c (consumption) space

The differential equation for c is obtained by differentiating equation (25.27)
with respect to t . This gives

U ′′(c)ċ = µ̇

Substituting for µ̇ and using equation (25.27) again gives

ċ = U ′(c)
U ′′(c)

ρ

This, combined with

Ṙ = −c

makes up the system of differential equations for the phase diagram shown in
figure 25.7.
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The isocline for c is the locus of points where ċ = 0. This occurs where
U ′(c)= 0, for which the solution is ĉ; this solution was defined above as the
satiation point. We have assumed that ĉ is large enough (possibly infinitely large)
so that it is not possible to consume at that rate and also satisfy the exhaustible
resource constraint. For the purpose of our diagram, we simply assume that ĉ is
sufficiently large that we can safely ignore it and not bother drawing the isocline
for c. In other words, all relevant trajectories will be below the isocline. The motion
of c below the isocline is negative, since U ′ > 0 and U ′′ < 0.

The isocline for R occurs at c = 0. The motion of R is negative for c > 0.
The phase diagram shows a number of representative trajectories that are

consistent with the system of differential equations. To be also consistent with the
boundary conditions, the solution trajectory must start on the vertical line where
R(0) = R0 and must finish on the vertical line where R(T ) = 0. Finally the
solution trajectory must also take an amount of time equal to T to travel from
R(0) = R0 to R(T ) = 0. Only one trajectory satisfies all these conditions.

The phase diagram helps us to see the solution. Consumption is at its highest
at t = 0 and declines monotonically thereafter. Moreover, we note that the slope
of the trajectories is largely determined by the personal rate of time preference.
How do we know this? The slope of any trajectory is given by

dc

dR
= dc/dt

dR/dt
= ċ

Ṙ
= −ρ

U ′(c)
cU ′′(c)

Trajectories have a positive slope, since U ′′ < 0 and ρ, c, U ′ > 0; and the
smaller isρ, the smaller is the slope.Thus the optimal consumption path is declining
over time, but the steepness of the decline is smaller when ρ is smaller. Intuitively
the lower the individual’s discount rate, the more equal is the importance of future
utility relative to current utility; the higher the discount rate, the less important
is future utility relative to current utility. Thus a low discount rate results in a
consumption path that is flatter, or more equal, over time.

E X E R C I S E S

1. Solve the following:

max
∫ T

0
e−ρt (yx − y2 − x2) dt

subject to ẋ = x + y

x(0) = x0

x(T ) = xT
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2. Solve the following:

max
∫ T

0
e−ρt (ay − by2 + f x − gx2) dt

subject to ẋ = x + y

x(0) = x0

x(T ) = xT

3. Solve for the optimal consumption path, c∗(t), in the following model:

max
∫ T

0
e−ρt c1−α

1− α
dt

subject to ẋ = rx − c

x(0) = x0

x(T ) = xT

where 0 < α < 1.

4. In this problem, production of a good, y, yields economic benefits but also
contributes to the stock of pollution, x, which is an economic bad. Instan-
taneous net benefits are y − y2 − x2. If the stock of pollution depreciates
(is broken down naturally in the environment) at the rate δ, find the path of
consumption that solves the following:

max
∫ T

0
e−ρt [y − y2 − x2] dt

subject to ẋ = y − δx

x(0) = x0

x(T ) = xT

5. Draw the phase diagram for exercise 4. Suppose that x0 < xT < x̄, where x̄

is the steady-state value of x. Show that it is possible that if T is not large
enough, a solution does not exist. Also show that as T becomes very large,
the solution path approaches the saddle path.

6. In this problem you are to analyze a slightly more general version of exercise 4.
Let the instantaneous net benefits be given by B(y)− c(x) where B ′(y) > 0,
B ′′(y) < 0, c′(x) > 0, and c′′(x) > 0. Two additional assumptions that will
help you draw the phase diagram are: B ′(0)=p > 0 (net marginal benefits at
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y= 0 are a positive constant), and c′(0) = 0 (the marginal cost= 0 at x= 0).
Draw the phase diagram for the following problem:

max
∫ T

0
e−ρt [B(y)− c(x)] dt

subject to ẋ = y − δx

x(0) = x0

x(T ) = xT

7. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ T

0
e−ρt ln y dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

8. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ T

0
e−ρt y1−α

1− α
dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

where 0 < α < 1.

25.4 Infinite–Time Horizon Problems
In some economic models it is unrealistic to assume a finite time horizon. For
example, it is difficult to justify the assumption that a firm has a finite planning
horizon. That would mean it behaves as if it will exist only over the interval
(0, T ). Why would it ignore profits earned after T ? Similarly, why would we
consider a finite planning horizon when trying to solve for an economy’s optimal
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path of consumption and capital accumulation? Why would we ignore the benefits
enjoyed by generations alive beyond T ? It makes far more sense in cases like these
to assume an infinite time horizon, T = ∞, for the maximization problem.

D e f in i t i o n 25 . 5 The general form of the autonomous dynamic optimization problem, with an
infinite time horizon, is

max J =
∫ ∞

0
F(x, y)e−ρt dt

subject to ẋ = G(x, y)

x(0) = x0

The first problem that can arise in infinite–time horizon problems is noncon-
vergence of the integral to be maximized. Because we are integrating over an
infinite amount of time, there is a danger that the integral may go to infinity, in
which case no maximum exists. However, in autonomous problems with a positive
discount rate, the integral does not go to infinity provided F(x, y) is bounded from
above. The reason is that the integrand term F(x, y)e−ρtgoes to zero as t goes to
infinity. As a result the integral itself is bounded from above.

Fortunately most of the results of optimal control theory that we have already
developed for finite–time horizon problems carry over to the infinite time horizon
case. We still must maximize the Hamiltonian at each point in time with respect
to the control variable

∂H

∂y
= 0

or, in terms of the current-valued Hamiltonian,

∂H
∂y
= 0

and the costate variable must still satisfy the differential equation

λ̇ = −∂H

∂x
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or, in terms of the current-valued Hamiltonian,

µ̇− ρµ = −∂H
∂x

Thus we still obtain a system of two differential equations

µ̇ = ρµ− ∂H
∂x

(25.29)

ẋ = G(x, y) (25.30)

as we would in a finite–time horizon problem. The only difference occurs, as
one might expect, with the boundary conditions used to solve the differential
equations. For fixed-endpoint problems the boundary conditions are specified in
the maximization problem. These would appear as

x(0) = x0, lim
t→∞ x(t) = b

Note that the second boundary condition is the infinite-time horizon equivalent of
the requirement that x(T ) = b when T is finite.

In free-endpoint problems, where the value of x(t) as t → ∞ is free to be
chosen optimally, the transversality condition used when T is finite [e−ρT µ(T ) =
0] can usually be replaced by the condition e−ρtµ(t) → 0 as t → ∞, but this
condition turns out to be not terribly helpful and not always correct. Instead, the
convention is to assume that the steady-state value of the state variable provides
the optimal boundary condition for x as t → ∞. As long as the steady state is a
saddle-point equilibrium (which it almost always is), this assumption is correct.
The boundary conditions for free-endpoint problems therefore are

x(0) = x0, lim
t→∞ x(t) = x̄

where x̄ is the steady-state value of x.
It turns out that in infinite–time horizon problems that are autonomous, for

which F(x, y) and G(x, y) are both concave in x and y, and that have only one state
variable, the solutions have two interesting properties. First, the dynamic system
given by equations (25.29) and (25.30) is either a saddle point (in which case the
optimal trajectory is the saddle path), or it is completely unstable. In almost all
problems you are likely to encounter, it turns out to be a saddle point. Indeed, this
is guaranteed if the discount rate is small. Second, the path of the state variable
x(t) along the saddle path is monotonic. That is, the state variable never changes
direction in its approach to the steady state; it is either always increasing to a
limiting value of x̄, or always decreasing to a limiting value of x̄, or always constant.
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Although we will not attempt to prove the validity of the first property here,
we point out that to do so, you would have to determine the signs of the eigenvalues
of the system of differential equations in (25.29) and (25.30), after linearizing the
system around the steady-state equilibrium. You would find that the concavity of
F and G implies that at least one eigenvalue is always positive, so that stable nodes
are an impossibility. In addition you would find that the other root will very likely
be negative except when the discount rate is very large.As a result saddle points are
the most likely kind of equilibrium. The second property can be proven rigorously,
but its validity can also be seen by careful inspection of the phase diagrams that
have been constructed for saddle points in this chapter and in chapter 24.

Two economic applications of optimal control theory in infinite–time horizon
models are presented in this section. We have already analyzed the finite–time
horizon versions of these models in this chapter so only the boundary conditions
will change. The first is a fixed-endpoint problem; the second is a free-endpoint
problem.

Example 25.7 Solve the fixed-endpoint, infinite-time consumption model

max
∫ ∞

0
e−ρt ln c dt

subject to ẋ = rx − c

x(0) = x0

lim
t→∞ x(t) = 0

This is the optimal consumption model examined earlier, but now with an
infinite time horizon. A sensible endpoint condition has been imposed on the bank
account: in the limit as time becomes infinite, the bank account is reduced to zero.

Solution

The solution for an infinite–time horizon model is exactly the same as for a finite–
time horizon problem, up to the point of deriving the boundary conditions.Accord-
ingly, applying the maximum principle to this problem leads to the same system of
differential equations as found earlier.After maximizing the current-valued Hamil-
tonian with respect to the control variable, c, and finding the differential equation
for µ, we obtained the solution for x(t) written in equation (25.23),

x(t) = C−1
1

(e−ρt − 1)

ρ
ert + C2e

rt (25.31)

where C1 and C2 are the constants of integration to be determined using the bound-
ary conditions. Imposing the first boundary condition, x(0) = x0, gives C2 = x0.
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Using this value, rewrite the expression for x(t) as

x(t) = e(r−ρ)t

ρC1
− ert

ρC1
+ x0e

rt (25.32)

Now solve for the constant C1 that makes this solution satisfy the boundary
condition that x(t)→ 0 as t →∞ . It is apparent that if r − ρ < 0, the first term
on the right-hand side goes to zero as t →∞, which means that if we set

C1 = 1

ρx0

and assume that

r − ρ < 0

the solution for x(t) satisfies the boundary condition. As a result the solution for
x(t) becomes

x(t) = x0e
(r−ρ)t

Example 25.8 Solve the free-endpoint, infinite-time investment model

max
∫ ∞

0
e−ρt [K − aK2 − I 2] dt

subject to K̇ = I − δK

K(0) = K0

This is the investment model examined earlier but now with an infinite time
horizon. Notice that the limiting value of K(t) is not specified in this problem.

Solution

The current-valued Hamiltonian is

H = K − aK2 − I 2 + µ(I − δK)

Maximizing with respect to the control variable I and simplifying gives

I (t) = µ(t)

2
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The differential equation for µ is

µ̇− ρµ = −∂H
∂K
= −(1− 2aK − µδ)

The resulting system of differential equations is

µ̇ = µ(δ + ρ)+ 2aK − 1 (25.33)

K̇ = µ

2
− δK (25.34)

The solutions are

µ(t) = C1e
r1t + C2e

r2t + µ̄ (25.35)

K(t) = r1 − δ − ρ

2a
C1e

r1t + r2 − δ − ρ

2a
C2e

r2t + K̄ (25.36)

where µ̄ and K̄ are the steady-state values of µ(t) and K(t) respectively. They
are found by setting µ̇ = 0 = K̇ , which gives

µ̄ = δ

δ(δ + ρ)+ a

K̄ = 1

2[δ(δ + ρ)+ a]

To complete the solution, we require two boundary conditions. The first is

K(0) = K0

The second is

lim
t→∞K(t) = K̄

provided that the point (µ̄, K̄ ) is a saddlepoint equilibrium. To confirm that it is,
write the homogeneous form of equations (25.33) and (25.34) as

[
µ̇

K̇

]
=

[
δ + ρ 2a

1/2 −δ

][
µ

K

]
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The determinant of the coefficient matrix is −δ(δ + ρ) − a < 0. Therefore the
characteristic roots must be of opposite sign, indicating a saddle-point equilibrium
at (µ̄, K̄ ).

Assuming that r1 is the negative root and r2 is the positive root, then it is
apparent from inspecting equation (25.36) that the only way the boundary condition
for K(t) can be satisfied is if C2 = 0. The solution becomes

K(t) = r1 − δ − ρ

2a
C1e

r1t + K̄

Using the other boundary condition, K(0) = K0, we find that

C1 = 2a(K0 − K̄ )

r1 − δ − ρ

The final solution then is

K(t) = (K0 − K̄ )er1t + K̄

The solution for µ(t) then follows easily

µ(t) = 2a(K0 − K̄ )

r1 − δ − ρ
er1t + µ̄

Finally the solution for I (t) is then

I ∗(t) = a(K0 − K̄ )

r1 − δ − ρ
er1t + δK̄

where we have used the fact that µ̄/2 = δK̄ . The optimal investment path starts
out high if the initial capital stock is below the steady-state value, K0 < K̄ . It then
declines monotonically (because r1 < 0) and in the limit converges to δK̄ , which
is just enough to cover depreciation and keep the capital stock at its steady-state
level.

The Neoclassical Growth Model

In chapter 21 we studied the equilibrium characteristics of the Solow model of ag-
gregate economic growth in which the savings rate is assumed to be an exogenous
parameter, s. This exogenous savings rate led to a path of capital accumulation and
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eventually a steady-state equilibrium in which output per capita became constant
over time. In the neoclassical growth model we treat the savings rate as endoge-
nous. That is, we look for the path of saving that maximizes the discounted total
utility over time.

Recall that the differential equation describing the path of the capital-labor
ratio was shown to be

k̇ = f (k)− c − (δ + n)k

where f (k) is the production function and gives output per person, k is capital
per person, c is consumption per person, and δ and n are the depreciation rate of
capital and the growth rate of the population (labor force) respectively.

If k(0) is given, then the entire path for k(t) is determined once we choose
a path for consumption, c(t). In the Solow growth model, we assumed that c =
(1 − s)f (k), where 0 ≤ s ≤ 1 is the exogenous rate of savings. In that model,
we assumed that consumption was always equal to the same fraction of output
produced. Now we want to choose the consumption path that maximizes∫ ∞

0
e−ρtU [c(t)]N(t) dt

where U [c(t)] is the instantaneous utility function of an individual at time t ,
and N(t) is the total population at time t . Under the simplifying assumption that
individuals are identical, U [c(t)]N(t) is the total utility of the population at time t .
The population is assumed to grow at the rate n, which gives

N(t) = N0e
nt

where N0 is the initial population level which we set equal to 1, for simplicity. Thus
N(t) = ent . The social rate of time preference (the discount rate) is 0 ≤ ρ ≤ 1,
and we assume an infinite planning horizon.

The problem at hand then is

max
∫ ∞

0
e−(ρ−n)tU [c(t)] dt (25.37)

subject to k̇ = f (k)− c − (δ + n)k

k(0) = k0 > 0 (given)

k(t) ≥ 0

c(t) ≥ 0
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We assume that ρ − n > 0; otherwise, the integral is unbounded. In addition
we will not worry about the nonnegativity constraints on k(t) or c(t) at this point.
We will make assumptions about the structure of U(c) and f (k) that ensure that
the constraints are not binding. In the next section we will explain how to take
constraints on the control variable into account in optimal control theory.

The effective discount factor in (25.37) is (ρ − n). Keeping this in mind, the
current-valued Hamiltonian function for this problem is

H = U(c)+ µ[f (k)− c − (δ + n)k]

The maximum principle requires that we choose c to maximize H. Assuming
that U ′(c)→∞ as c → 0 ensures that the solution is bounded away from zero.
Maximizing H with respect to c gives

∂H
∂c
= U ′(c)− µ = 0 (25.38)

This implicitly makes the choice of c a function of µ. We write this as c = φ(µ).
The current-valued costate variable must satisfy

µ̇− (ρ − n)µ = −∂H
∂k
= −µ[f ′(k)− (δ + n)] (25.39)

The system of differential equations then is

µ̇ = µ[ρ + δ − f ′(k)] (25.40)

k̇ = f (k)− φ(µ)− (δ + n)k (25.41)

The two boundary conditions are k(0) = k0 (given) and, assuming a saddle-
point equilibrium (which we later verify), lim k(t) → k̄ as t → ∞. We proceed
to analyze the system of differential equations using a phase diagram.

Rather than constructing the phase diagram in (k, µ) space for the system in
equations (25.40) and (25.41), we instead construct it in (k, c) space. The reason
is that our interest is in understanding the properties of the optimal consumption
path and this approach allows us to look at it directly. The link between µ and c of
course is through equation (25.38), which gives c as a function of µ. Differentiate
equation (25.38) to get

U ′′(c)ċ = µ̇



25.4 INFINITE–TIME HORIZON PROBLEMS 895

Using equations (25.40) and (25.38), this becomes

ċ = U ′(c)
U ′′(c)

[ρ + δ − f ′(k)] (25.42)

c

0

δ + ρ
δ + n

k

f�(k)

k k
^

Figure 25.8 Solution values for k̄
and k̂

Combined with the differential equation for k

k̇ = f (k)− c − (δ + n)k (25.43)

equations (25.42) and (25.43) form the system of autonomous, nonlinear differen-
tial equations we wish to analyze using a phase diagram.

First, analyze the motion of c in the (k, c) phase plane. Begin by sketching
the isocline for c. Setting ċ = 0 gives the equation for this line

f ′(k) = δ + ρ

As figure 25.8 indicates, there is a unique solution to this equation. Let this solution
be denoted k̄. Whenever k = k̄, no matter what the value of c, the system has ċ = 0.
The graph of this in the phase diagram, drawn in figure 25.9, is a vertical line at k̄.

c

c0

k0 k k
^0 k

k � 0
.

c � 0
.

Figure 25.9 Phase diagram for the neoclassical growth model

The ċ = 0 isocline divides the positive (k, c) phase plane into two regions.
The motion of c in each of these regions is found by taking the partial derivative
of the equation for ċ with respect to k. This gives

∂ċ

∂k
= − U ′(c)

U ′′(c)
f ′′(k) < 0
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The sign of this partial derivative is negative because U ′> 0, U ′′< 0, and f ′′< 0
by assumption. This means that the change in ċ is opposite to the change in k.
Thus ċ is negative to the right of the isocline and ċ is positive to the right of the
isocline.

Second, analyze the motion of k in the (k, c) phase plane. Setting k̇ = 0 gives
the equation for the k isocline:

c = f (k)− (δ + n)k

To sketch the graph of the equation, it is useful to examine figure 25.10, which plots
f (k), a concave function (f ′> 0, f ′′< 0 by assumption), and plots the straight
line (δ + n)k, and then takes the difference between them. The difference is the
plot of the isocline that has been transferred onto figure 25.9.

0
k

f (k )

f (k )

(δ + n )k

f (k ) – (δ + n )k

Figure 25.10 Difference between
f (k) and (δ + n)k gives the isocline
for k in figure 25.9

In figure 25.9, we have placed the peak of the k̇ = 0 isocline to the right of k̄.
Why did we do this? The slope of the isocline is given by

dc

dk
= f ′(k)− (δ + n)

The peak of this isocline occurs where f ′(k) = δ+n. Call the value of k at which
this occurs k̂. Since we have assumed that n < ρ (i.e., the population growth rate
is smaller than the social discount rate), figure 25.8 shows that k̂ > k̄.

The k̇ = 0 isocline separates two isosectors of its own. This time, however,
we must be careful in using the partial derivative technique to determine the mo-
tion of k in each of the two isosectors because the isocline is not monotonic. A
move to the right, for example, from the upward-sloping part of the isocline will
actually place us to the left of the downward-sloping part. Thus calculating ∂k̇/∂k

could give an ambiguous answer, depending on whether we are considering points
on the upward- or downward-sloping part of the isocline. Instead, calculating
∂k̇/∂c gives the change in k̇ unambiguously above and below the k̇ = 0 isocline.
This gives

∂k̇

∂c
= −1

Thus above the k̇ isocline, k is decreasing; below the k̇ isocline, k is increasing.
Appropriate arrows of motion are placed in the phase plane.

The arrows of motion suggest that the steady-state equilibrium point is a
saddlepoint. Let us verify this by examining the signs of the roots of the linear
version of the coefficient matrix.
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The differential equation system in equations (25.42) and (25.43) is of the
form

ċ = �(c, k)

k̇ = �(c, k)

Following the method developed in chapter 24, the coefficient matrix of the lin-
earized version of this system in the neighborhood of the steady-state equilibrium,
is the matrix of partial derivatives evaluated at the steady-state equilibrium:

A =
[
∂�/∂c ∂�/∂k

∂�/∂c ∂�/∂k

]

Calculating this matrix from equations (25.42) and (25.43) gives

A =

⎡
⎢⎣

∂

∂c

[
U ′(c)
U ′′(c)

]
[ρ + δ − f ′(k̄)] −

[
U ′(c)
U ′′(c)

]
f ′′(k̄)

−1 f ′(k̄)− (δ + n)

⎤
⎥⎦

Since f ′(k) = ρ + δ at k = k̄, the upper-left element of this matrix is zero. As a
result the determinant is

|A| = − U ′(c)
U ′′(c)

f ′′(k̄)

The determinant is negative because U ′ > 0, U ′′ < 0, and f ′′ < 0 by assumption.
As a result we know immediately that the roots are of opposite sign, and the
steady-state point (k̄, c̄) is a saddle-point equilibrium.

The phase diagram is complete. It depicts the trajectories of the system of
differential equations for c and k. We now use the boundary conditions to complete
the qualitative analysis of the solution. The solution trajectory must satisfy k(0) =
k0, which means that it must start on the vertical line drawn from k0, and must
satisfy lim k(t) = k̄ as t →∞. Since this is a saddle-point equilibrium, only the
saddle path converges to the steady state. Therefore the boundary conditions imply
that the optimal trajectory must start on the saddle path with k(0) = k0.

Suppose that k0 is smaller than the steady-state capital stock, as shown in
figure 25.9. The solution to the optimal growth problem then is to start consump-
tion low, at c(0), to allow capital to accumulate. As the capital stock grows, the
consumption rate grows. Note that both capital and consumption grow monotoni-
cally along the saddle path and approach the steady state in the limit.
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E X E R C I S E S

1. Solve the following free-endpoint, infinite-time horizon consumption model
for the optimal consumption path. Assume that ρ − r < 0.

max
∫ ∞

0
e−ρt [c − ac2] dt

subject to ẋ = rx − c

x(0) = x0

x(t) ≥ 0

2. Analyze the solution to the following optimal growth model using a phase
diagram drawn in (k, µ) space:

max
∫ ∞

0
e−ρt ln c dt

subject to k̇ = k1−α

1− α
− c − δk

k(0) = k0

k(t) ≥ 0

3. Repeat exercise 2 but draw the phase diagram in (k, c) space.

4. Production of a good y yields economic benefits but also contributes to the
stock of pollution x, which is an economic bad. Instantaneous net benefits are
y − y2 − x2. If the stock of pollution depreciates (is broken down naturally
in the environment) at the rate δ, find the path of consumption that solves the
following:

max
∫ ∞

0
e−ρt [y − y2 − x2] dt

subject to ẋ = y − δx

x(0) = x0

x(t) ≥ 0

Show that the solution is consistent with most notions of sustainable devel-
opment. That is, show that in the limit, the level of production of y keeps the
stock of pollution constant.
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5. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ ∞

0
e−ρt ln y dt

subject to ẋ = −y

x(0) = x0

x(t) ≥ 0

6. A fishery resource has a natural growth function

F(x) = rx(1− x), r > 0

Let U(h) be the instantaneous social benefits from harvesting an amount h

of the fish. Assume that U ′(h) > 0 and U ′′(h) < 0. In addition, you may
assume U ′(h) → ∞ as h → 0, to eliminate the possibility of a corner
solution at h = 0. Using a phase diagram, analyze the solution to the problem
of maximizing the discounted sum of social benefits:

max
∫ ∞

0
e−ρtU(h) dt

subject to ẋ = F(x)− h

x(0) = x0

x(t) ≥ 0

25.5 Constraints on the Control Variable
We often encounter constraints on the control variable in economic problems. The
most common is a non-negativity constraint. For example, a firm’s output choice
is frequently constrained to be greater than or equal to zero. Constraints can take
other forms as well, such as upper bounds on the control variable. When the control
variable is bounded by a constraint, the maximum principle must be modified to
take the constraint into account. Suppose that the control variable y must satisfy
at each moment in time the following general form of an inequality constraint:

y ≤ h(x, y, t)
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D e f in i t i o n 25 . 6 The general optimal control problem (free-endpoint problem) with an inequality
constraint on the control variable is

max J =
∫ T

0
f [x(t), y(t), t] dt

subject to ẋ = g[x(t), y(t), t]

x(0) = x0

h[x(t), y(t), t)]− y(t) ≥ 0

The Hamiltonian for this problem is the usual

H = f (x, y, t)+ λg(x, y, t)

We wish to maximize H with respect to the control variable y, but now subject to
the inequality constraint on y. To do this, we form the ordinary Lagrangean function

L = H + θ [h(x, y, t)− y]

which incorporates the inequality constraint, where θ is the Lagrange multiplier.
The necessary conditions now are

∂L
∂y
= 0 (25.44)

θ ≥ 0; θ [h(x, y, t)− y] = 0

λ̇ = −∂L
∂x

(25.45)

λ(T ) = 0 (25.46)

The important differences that arise are in equations (25.44) and (25.45).
In equation (25.44) we have the necessary condition for determining the control
variable, y. As usual these conditions must hold with complementary slackness.
If θ = 0, the constraint is not binding, and we have y < h(x, y, t). If θ > 0, the
constraint is binding so we have y = h(x, y, t).

In equation (25.45) the differential equation for the costate variable is equal
to the negative derivative of the Lagrangean function, not just the Hamiltonian
function. The reason for this is that the time path of the costate variable must also
reflect whether or not the constraint on the control variable is binding.
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Bang-Bang Controls

Until now we have assumed that the Hamiltonian is strictly concave in the control
variable. In some problems studied in economics, however, the Hamiltonian is
linear in the control variable. This can lead to discontinuities in the solution path for
the control variable. While this might seem to be an insurmountable complication
since, until now, the control variable has been a continuous function of time,
optimal control theory is uniquely suited to solving problems like these. We will
demonstrate this with two economic applications.

A Linear Investment Problem

Suppose that a firm’s production function is Q = f (K) where K is the stock of
capital and Q is the rate of output. Let p(t) be the price of output and q(t) be the
price of a unit of capital. If I (t) is the rate of investment (capital purchases) at
time t , the firm wishes to

max
∫ T

0
e−ρt {p(t)f [K(t)]− q(t)I (t)} dt

subject to K̇ = I (t)− δK(t)

K(0) = K0

0 ≤ I (t) ≤ b

The differences between this investment model and the ones examined earlier
are, first, that the cost of investment is now linear, c(I ) = qI , and second, that
there are upper and lower bounds placed on the control variable, I . That is, the
investment rate is constrained to be greater than or equal to zero and less than or
equal to b, an exogenous upper bound.

The current-valued Hamiltonian is

H = pf (K)− qI + µ(I − δK)

where we have suppressed t as an argument. The necessary conditions for a max-
imum require that H be maximized with respect to I subject to the constraints

I ≥ 0, b − I ≥ 0

The Lagrangean function is

L = H+ θ1I + θ2(b − I )
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where θ1 and θ2 are the Lagrange multipliers associated with the two constraints.
The necessary conditions for a maximum of L are

∂L
∂I
= −q + µ+ θ1 − θ2 = 0 (25.47)

and the conditions of complementary slackness are

θ1 ≥ 0 θ1I = 0

θ2 ≥ 0 θ2(b − I ) = 0

These conditions imply that whenever I > 0, we have θ1 = 0 (and I = 0 implies
that θ1 ≥ 0) and whenever I < b, we have θ2 = 0 (and I = b implies that θ2 ≥ 0).
Although we cannot use these first-order conditions to explicitly solve for I as a
function of µ (which is what we normally do), it will become apparent as we work
through the solution to this problem that these conditions do, in fact, give us I as
a function of µ. We will write this as I (µ) for convenience.

The costate variable must satisfy

µ̇− ρµ = − ∂L
∂K
= −pf ′(K)+ µδ

The system of differential equations then is

µ̇ = µ(ρ + δ)− pf ′(K) (25.48)

K̇ = I (µ)− δK (25.49)

The first boundary condition is K(0) = K0. Because K(T ) is free to be
chosen, the second boundary condition is provided by the transversality condition

e−ρT µ(T ) = 0

We must now analyze the system of differential equations to get some insights into
the solution. First, note that if, over an interval of time, the optimal solution for I

is such that neither constraint is binding (0 < I < b), then θ1 = θ2 = 0 over that
interval. Hence, from equation (25.47), we know that µ = q over the interval. As
a result, µ̇ = q̇. Making these substitutions in equation (25.48), and rearranging
gives an expression that must then hold over this interval of time:

pf ′(K) = q

(
ρ + δ − q̇

q

)
(25.50)
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This expression is the standard rule that defines the optimal capital stock in
capital theory. It is interpreted as requiring the marginal value product of capital
(left-hand side) to equal the user cost of capital (right-hand side). The user cost of
capital is the forgone interest (ρq) plus depreciation (δq) less any capital gains
(q̇). Implicitly this condition defines a value of K that we shall soon see is the
steady-state value, K̄ .

Now assume that prices are constant (q̇ = 0 and ṗ = 0) so that we have
a system of autonomous differential equations. Then we can construct the phase
diagram. What makes this construction appear to be more difficult than usual is that
the first-order condition determining I (µ) depends on the Lagrange multipliers.
The way to circumvent this difficulty is to recognize that three cases can arise:
I = 0, I = b, or 0 < I < b. We draw the phase diagram for each case separately.

Case 1 With I = 0, we have θ1≥ 0 and θ2= 0. Therefore from equation (25.47)
we have

µ = q − θ1

In particular, we see that µ≤ q, where q is the exogenous price of capital goods.
Case 2 With I = b, we have θ1 = 0 and θ2 ≥ 0. Therefore

µ = q + θ2

and in particular, µ ≥ q.
Case 3 With 0 < I < b, we have θ1 = θ2 = 0. Therefore µ = q.

The three cases correspond to three regions in the phase plane: µ < q, µ > q,
and µ= q. In region 1, I = 0, and so K̇ = −δK < 0. The K̇ = 0 isocline occurs
along K = 0, and for K > 0, K is declining. In region 2, I = b, and so K̇ = b−δK .
The K̇ = 0 isocline occurs along K = b/δ. It is easy to see then that K̇ > 0 for
K < b/δ and that K̇ < 0 for K > b/δ. We assume that b/δ is quite a large number
so that K̇ > 0. In other words, the maximum investment rate is large enough to
overcome depreciation except perhaps at a very large level of the capital stock.

We have now mapped out the motion of K in the (K, µ) phase plane. We have
transferred this information onto the phase plane in figure 25.11. Now we must
determine the motion of µ. Because the µ̇ equation does not depend explicitly on
I (µ), there is no need to analyze its motion case by case. Instead, we can use the
standard procedures. Setting µ̇ = 0 gives the equation defining the isocline:

µ = pf ′(K)

ρ + δ

To graph this equation, we assume that f ′(0) = ∞ (i.e., the marginal product
of capital becomes infinitely large as the capital stock goes to zero), which means
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µ

µ � q

µ � 0

q

0 K0 K K

E

F

.

Figure 25.11 Phase diagram for the linear investment problem

that µ becomes infinitely large as K goes to zero. We also note that because f ′(K)

is a decreasing function of K (i.e., diminishing marginal productivity), the graph
has a negative slope. We could verify this by calculating the slope of the graph

dµ

dK
= pf ′′(K)

ρ + δ

Since f ′′(K) < 0, the slope is negative. Furthermore, assuming that the marginal
product of capital goes to zero only as the capital stock becomes infinitely large
means that µ approaches zero only as K approaches infinity. The µ isocline is
graphed in figure 25.11.

The motion of µ is most easily determined by calculating the partial derivative
of µ̇ with respect to µ in the neighborhood of µ̇ = 0. Taking the partial derivative
of equation (25.48) gives

∂µ̇

∂µ
= ρ + δ > 0

which indicates that µ is increasing above and decreasing below the µ isocline.
These arrows of motion have been transferred onto the phase diagram.

This analysis of the phase plane gives a rough idea of what the trajectories
must look like, but a bit more analysis is required to fill in some of the details. In
particular, what happens to trajectories as they cross the µ = q line? First, keep in
mind that this is not an isocline. Thus neither µ nor K comes to rest as trajectories
cross it. Instead, K̇ switches sign discontinuously at this point because I switches
discontinuously between 0 and b. As a result the trajectories do not bend as they
cross the µ = q line; rather, they have a kink as they change direction suddenly.
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The exceptions are the two trajectories that cross the µ = q line where it
intersects the µ̇ = 0 isocline. The system does come to rest at this point. Why? At
this point µ = q and µ̇ = 0 so that µ = q can be sustained for an interval of time.
At no other point is this possible. But we know that if µ = q is sustained over an
interval of time, then K is constant at the level K̄ defined above in equation (25.50).
These two trajectories are like the saddle path in a saddle-point equilibrium. The
difference though is that these trajectories reach the steady-state equilibrium in
finite time. The reason is that the system does not slow down as it approaches the
steady state. Instead, I remains constant at either I = b or I = 0 along these
trajectories until the instant they hit K = K̄ , at which point I switches instantly
to the singular solution, implicitly defined in equation (25.50).

Let us look at a possible solution. Suppose that K0 < K̄ as shown in fig-
ure 25.11. If not much time is available (T is very small), the solution requires
starting with µ < q, at a point such as E. From there, I = 0 and the capital stock
declines because of depreciation until µ(T ) = 0. If more time is available, the
starting point will be further up the vertical line drawn at K0. If enough time is avail-
able, the solution involves starting as high up as point F . From there, I = b, and
the system follows the trajectory into the steady state at K̄ , where it stays for a
while and leaves when there is just enough time left to reach µ(T ) = 0. If even
more time is available, the system still starts at F but spends more time at the
steady state.

The name bang-bang is given to linear control problems because of the dis-
continuous switching of the control variable that occurs along the solution path.
Along the path starting at point F , for example, the solution is to first set I at its
upper bound and keep it there until the steady state is reached. When it is time to
leave the steady state, the solution is to set I at its lower bound and keep it there
until µ(T ) = 0. In a sense, the solution is to approach the steady state with a bang
(as quickly as possible) and to leave it with a bang (as quickly as possible).

A Model of Optimal Fishing

Let the growth of a fish stock be given by the differential equation

ẋ = F(x)− h

where x is the stock of fish and h is the harvest rate (both measured in tons, say).
F(x) is the biological growth function for the fish. It is a hill-shaped function such
as the one depicted in figure 25.12.

F(x)

x0

Figure 25.12 Biological growth
function for the model of optimal
fishing The price of harvested fish is a constant p and the cost of harvesting fish is

assumed to be

total cost = c(x)h
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where c(x) is the cost per unit of fish harvested and c′(x) < 0 to reflect the
assumption that the cost of harvesting fish is lower when the stock of fish is larger
(because it takes less effort to find and catch the fish), and higher when the stock
of fish is small. We also assume that c′′(x) > 0.

Let us find the harvesting policy that maximizes the discounted sum of eco-
nomic returns from the fishery. Formally the problem is to

max
∫ T

0
e−ρt [p − c(x)]h dt

subject to ẋ = F(x)− h

x(0) = x0 > 0 (given)

x(T ) ≥ 0

0 ≤ h ≤ hmax

The current-valued Hamiltonian for this problem is

H = [p − c(x)]h+ µ[F(x)− h]

The two constraints on the control variable are h ≥ 0 and hmax−h ≥ 0. Introducing
the Lagrange multipliers, θ1 and θ2 gives the Lagrangean expression

L = H+ θ1h+ θ2(hmax − h)

Maximizing L with respect to the control variable h gives

∂L
∂h
= p − c(x)− µ+ θ1 − θ2 = 0

From this condition, h is determined as a function depending on the value of µ

according to the following three cases:

Case 1 h=hmax implies that θ1= 0, θ2 ≥ 0, and µ=p − c(x)− θ2. Therefore
µ ≤ p − c(x).
Case 2 h= 0 implies that θ1 ≥ 0, θ2= 0, and µ=p − c(x) + θ1. Therefore
µ ≥ p − c(x).
Case 3 0 < h < hmax implies that θ1 = θ2 = 0, and µ = p − c(x).

Next the costate variable must satisfy the differential equation

µ̇− ρµ = −[−c′(x)h+ µF ′(x)]
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The differential equation system then becomes

µ̇ = µ[ρ − F ′(x)]+ c′(x)h(µ)

ẋ = F(x)− h(µ)

The relevant boundary conditions are the given initial condition, x(0) = x0, and
the transversality condition e−ρtµ(T ) = 0 if x(T ) > 0.

To analyze the solution to the optimal harvesting problem, we first determine
the properties of the steady-state solution. To do this, we set µ̇ = 0 and ẋ = 0.
First,

ẋ = F(x)− h = 0

gives h = F(x). Next,

µ̇ = µ[ρ − F ′(x)]+ c′(x)h = 0

Simplifying, and rearranging, gives

F ′(x) = ρ + c′(x)F (x)

p − c(x)
(25.51)

as the expression that implicitly defines the steady-state value of x. The economic
interpretation of this condition is this: the optimal steady-state value of the fish
stock is where the change in the growth rate (which can be interpreted as an
internal rate of return to the fish stock as a capital asset) equals the discount rate
(the external rate of return) plus a term that reflects the cost of fishing. Call this
stock size x̄. The steady-state harvest rate is h̄ = F(x̄).

If the dynamic system remains in the steady state over an interval of time, it
must be the case that µ = p − c(x̄), for this is the only case (of cases 1 to 3) in
which the harvest rate can equal something other than zero or hmax. During this
interval, both µ and x are constant.

If sufficient time is available (T is large enough), the optimal solution then
involves setting h = 0 or h = hmax (depending on p− c(x)), reaching the steady-
state in finite time, spending some time there, and leaving with just enough time
to satisfy the transversality condition. The larger is T , the longer is the amount of
time spent in the steady state. As T approaches infinity, the amount of time spent
in the steady state approaches infinity.

The interesting economic meaning of this solution is that it is optimal to drive
the fish stock to its optimal steady-state size as quickly as possible. This is the
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so-called most-rapid-approach solution. This involves either setting a moratorium
on fishing (h = 0) if x(0) < x̄ or setting h = hmax if x(0) > x̄. Figure 25.13
shows the time path of the fish stock for each of these possibilities.

x(t)

t

xb(0)

xa(0)

0

x

h � 0

h � hmax

Figure 25.13 Optimal time path
of the stock of fish when x0 < x̄
(h = 0) and when x0 > x̄ (h = hmax)

E X E R C I S E S

1. Assume that ρ < r and solve the following linear optimal consumption model.
Use a phase diagram to assist.

max
∫ T

0
e−ρt c dt

subject to ẋ = rx − c

x(0) = x0

x(T ) = xT

0 ≤ c ≤ cmax

2. Solve the following linear exhaustible resource model for the optimal extrac-
tion path:

max
∫ T

0
e−ρt (p − c)y dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

0 ≤ y ≤ ymax

where p − c > 0 is the constant profit per unit extracted.

3. In this investment model we introduce a second choice variable, labor, into the
maximization problem. However, we assume that there is no state equation for
labor. In essence, we are assuming that there is no stock of labor; it is simply
hired as desired at each instant. To solve this problem, proceed by maximizing
the Hamiltonian with respect to I and L at each instant. Solve the first-order
condition for L in terms of K , and use this expression to eliminate L from any
further expressions you derive. Assuming that K0 < K̄ , use a phase diagram
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to solve this problem for the optimal path of investment, capital accumulation,
and labor demand,

max
∫ ∞

0
e−ρt [pKαLβ − wL− qI ] dt

subject to K̇ = I − δK

K(0) = K0

0 ≤ I ≤ b

where L is labor input, K is the stock of capital, I is investment, p, w, and
q are the constant prices of output, labor, and investment goods respectively,
and α and β are positive constants whose sum is less than one.

25.6 Free-Terminal-Time Problems (T Free)
Until now we have assumed that T is specified exogenously. In some problems
studied in economics, however, it is appropriate to allow T to be chosen endoge-
nously. For example, in nonrenewable resource economics problems, T could
represent the closure date of a mine, or the date at which an economy optimally
switches from an exhaustible source of energy such as oil to a renewable source
of energy such as solar.

With one additional endogenous variable to be determined in the optimal
control problem, there is one additional necessary condition. We state this condition
first and then provide a justification.

D e f in i t i o n 25 . 7 If T is free to be chosen endogenously, the additional necessary condition required
is

H [x(T ), y(T ), λ(T ), T ] = 0

or, equivalently, in terms of the current-valued Hamiltonian

e−ρT H[x(T ), y(T ), µ(T ), T ] = 0
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To see why this condition must hold at the optimal value of T , consider the
general form of the finite-time horizon problem specified in definition 25.1:

max J =
∫ T

0
f [x(t), y(t), t] dt

subject to ẋ = g[x(t), y(t), t]

x(0) = x0

The solution to this problem gives a particular value for the objective functional,
J that depends on the actual value of T that is specified. We could indicate this by
writing the value as J (T ). Different values specified for T give a different solution
path and, hence, a different value for J. When T is allowed to be chosen optimally,
our objective is to find the value of T that yields the largest possible value of J.
But since J is a function of T , this occurs when

J ′(T ) = 0

J ′(T ) is just the amount by which the value function J changes when the time
horizon is extended slightly. But, as we already argued, the Hamiltonian function
gives the total contribution (direct plus the change in the state variable value at its
marginal value) to J at any point in time, including time t = T . Therefore, if T is
extended marginally, the amount by which J changes is given by the value of H

at time T . In other words,

J ′(T ) = H(x(T ), y(T ), λ(T ), T )

and this leads to the condition given in definition 25.7
Further intuition for this additional condition is given by the following con-

crete example.

Example 25.9 A firm wishes to choose the investment path to maximize the present value of
profits:

max
∫ T

0
e−ρt [p(t)f (K)− c(I )] dt

subject to K̇ = I − δK

K(0) = K0

K(T ) ≥ 0
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where f (K) is the production function, c(I ) is the investment cost function, p(t)

is price, and δ is the depreciation rate.

Solution

At time T one necessary condition is that the present value of the shadow price of
capital be zero at T : e−ρT µ(T ) = 0. If T is finite, this implies that µ(T ) = 0.
The current-valued Hamiltonian at T then is

H(T ) = p(T )f [K(T )]− c(I (T ))

which is just revenue minus cost at time T . If H(T ) > 0, it would clearly be
desirable to continue production for a bit longer, since that would mean more
profits. If H(T ) < 0, it means the firm is losing money by continuing production
and should have stopped earlier. The optimal shutdown time is when H(T ) = 0,
that is, when the profitability of continuing just becomes equal to zero.

It is interesting that in this investment problem, if p(t) = p, constant, H(T )

is always positive. Profits never go to zero if they are ever positive, which they
will be as long as f (K) > 0 and c(0) = 0. As a result it is always desirable to
continue production so the optimal time horizon is actually T = ∞. In that case,
since T is not finite, the condition in definition 25.7 becomes

lim
t→∞ e−ρtH(t) = 0

An Optimal Mining Problem

A mining firm owns a mineral deposit with known reserves equal to R0. It receives
a constant price p for selling its mined ore and its cost function for extracting ore is

C(y) = y2

2

where y is the rate of extraction. There is no uncertainty of any kind. The firm
wishes to choose the path of ore extraction y(t) to maximize the present value
of profits:

max
∫ T

0
e−ρt

[
py(t)− y(t)2

2

]
dt

subject to Ṙ = −y(t)

R(0) = R0 > 0 (given)

R(T ) ≥ 0

T ≥ 0 (free)
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The constraints indicate, respectively, that the remaining stock of reserves
declines by the amount extracted, is equal to R0 initially, must be greater than or
equal to 0 at T , and that T is free to be chosen endogenously.

The current-valued Hamiltonian is

H = py − y2

2
− µy

Maximizing H with respect to y implies that

p − y − µ = 0 (25.52)

Thus

y(t) = p − µ(t) (25.53)

The costate variable must satisfy the differential equation

µ̇− ρµ = −∂H
∂R
= 0

The system of differential equations for this optimal control problem then is

µ̇ = ρµ (25.54)

Ṙ = −(p − µ) (25.55)

Given two boundary conditions and a value for T , we can solve these to get
the solution path for ore extraction. What are the boundary conditions? First, we
are given R(0) = R0. Second, since R(T ) is free to be chosen subject to the
nonnegativity constraint, we use either e−ρT µ(T ) = 0 if R(T ) > 0 or R(T ) = 0
and e−ρT µ(T ) free. To see which applies, try µ(T ) = 0. The solution to equa-
tion (25.54) is

µ(t) = C1e
ρt (25.56)

where C1 is an arbitrary constant of integration. If µ(T ) = 0, then C1 = 0 which
implies that µ(t) = 0 for all t . But this in turn implies that y(t) = p, a constant,
and so clearly leads to exhaustion of the ore deposit in finite time, which means
the constraint on R(T ) is binding. Hence it was incorrect to assume µ(T ) = 0.
Thus R(T ) = 0 is the second boundary condition for this problem.
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Using the expression for µ(t) and solving equation (25.55) gives

R(t) = −
∫ t

0
[p − C1e

ρs] ds + C2

where C2 is another arbitrary constant of integration, the value of which is deter-
mined from the first boundary condition, R(0) = R0. This gives C2 = R0. We
then have

R(t) = R0 −
∫ t

0
[p − C1e

ρs] ds

The second boundary condition is R(T ) = 0. We then have

R(T ) = R0 −
∫ T

0
[p − C1e

ρs] ds = 0 (25.57)

If T were known, this could be solved for C1 to give the complete solution. How-
ever, we have yet to determine the value for T . Using the new necessary condition
for determining T implies that

e−ρT H(T ) = py(T )− y(T )2

2
− µ(T )y(T ) = 0

We also know from equation (25.52) that µ(T ) = p − y(T ). Making this
substitution gives

py(T )− y(T )2

2
− [p − y(T )]y(T ) = 0

Simplifying this expression gives

y(T )2

2
= 0

to which the solution is y(T ) = 0. This tells us that the optimal rate of ore extraction
at t = T is 0. This extra piece of information is all we require to go ahead and
solve for the optimal value of T . First, use this information in (25.52) to find µ(T ).
This gives

µ(T ) = p
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Next, use this as a boundary condition in equation (25.56) to solve for C1.
This gives

µ(T ) = C1e
ρT = p

which gives

C1 = pe−ρT

With the value for C1 determined as a function of T , we can now use equation
(25.57) to solve for T . Substituting the solution for C1 into equation (25.57) gives

R(T ) = R0 −
∫ T

0
p

[
1− e−ρ(T−s)

]
ds = 0

Carrying out the integration gives

R0 − p

[
s − e−ρ(T−s)

ρ

]T

0

= 0

Evaluating the integral gives

R0 − p

[
T − 1

ρ
+ e−ρT

ρ

]
= 0

We now have a nonlinear function implicitly defining T . We cannot solve it
explicitly. We could solve it numerically given values for R0, p, and ρ; or we could
obtain some qualitative information about T by doing the following. Rewrite the
expression for T as

R0

p
+ 1

ρ
− T = e−ρT

ρ

Define the left-hand side as φL(T ) and the right-hand side as φR(T ). Graph
these two functions and find where they intersect. In figure 25.14, φL(T ) is a
negatively sloped function with slope=−1, vertical intercept R0/p + 1/ρ, and
horizontal intercept at T̂ = R0/p + 1/ρ. φR(T ) is a negatively sloped function
also. Its vertical intercept is 1/ρ, which is smaller than the vertical intercept of
φL(T ), and its horizontal intercept is ∞, which is larger than the horizontal in-
tercept of φL(T ). The two curves therefore necessarily intersect at a value of T

less than T̂ . We have called the solution T ∗. We leave it to the interested reader to
show that T ∗ is smaller the larger is p, the larger is ρ, or the smaller is R0.
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0 T

φR(T)

φL(T)

R0/p + 1/ρ

T*
T

^

1
ρ

Figure 25.14 Optimal time to stop mining the ore deposit as determined by the
intersection of the two curves

With T ∗ determined (implicitly), the first constant of integration is determined
also (implicitly), and the optimal path of ore extraction is given (implicitly) by
substituting the solution for C1 into equation (25.56) and this into equation (25.53):

y∗(t) = p
[
1− e−ρ(T ∗−t)

]
Figure 25.15 graphs the optimal path of extraction. It starts high and then declines
monotonically over time, finishing at the optimal mine closing date with a zero
rate of extraction.

y(t)

y*(t)

t

y*(0)

T*0

Figure 25.15 Optimal path of
extraction in the mining problem

E X E R C I S E S

1. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ T

0
e−ρt

(
y1−α

1− α
− c

)
dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

T ≥ 0 (free)

where c > 0 is a constant fixed cost of extraction. Assume that 0 < α < 1.
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2. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ T

0
e−ρt (y − a)1−α

1− α
dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

T ≥ 0 (free)

where a > 0 is a positive constant which can be interpreted as the minimum
consumption level required.

3. Solve the following exhaustible resource problem for the optimal path of
extraction:

max
∫ T

0
e−ρt y1−α

1− α
dt

subject to ẋ = −y

x(0) = x0

x(T ) ≥ 0

T ≥ 0 (free)

Show that the optimal T is infinity.

C H A P T E R R E V I E W
Key Concepts autonomous optimization problem

bang-bang controls
boundary condition
control variable
costate variable
current-valued Hamiltonian
discounting
dynamic optimization
fixed endpoint
free endpoint

free terminal time
functional
Hamiltonian function
infinite time horizon
maximum principle
perturbing path
shadow price
state variable
transversality condition
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Review Questions 1. What is the key difference between static and dynamic optimization problems?

2. Why is a new mathematical theory required to solve dynamic optimization
problems?

3. Explain the role of the maximum principle in optimal control theory.

4. Explain the role of boundary conditions in optimal control theory.

5. Under what conditions are the necessary conditions in optimal control theory
also sufficient for finding the optimal solution?

6. How does the current-valued Hamiltonian differ from the present-valued
Hamiltonian and what is the advantage of using it?

7. What is the difference between free-endpoint problems and fixed-endpoint
problems?

8. Explain why bang-bang controls arise when the Hamiltonian is a linear func-
tion of the control variable.

Review Exercises 1. Consider the following maximization problem:

max
∫ T

0
F(x, y) dt

subject to ẋ = G(x, y)

x(0) = x0

Prove that the present-valued Hamiltonian is constant over time along the
optimal path. That is, prove that Ḣ = 0 when the necessary conditions hold.

2. Consider the following maximization problem:

max
∫ T

0
e−ρtF (x, y) dt

subject to ẋ = G(x, y)

x(0) = x0

Prove that the current-valued Hamiltonian rises over time along the optimal
path at the rate ρµG(x, y).

3. A firm’s production function is Kα , with 0 < α < 1. The price of output is $1
and the cost of investment is I 2. Conduct a qualitative analysis using a phase
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diagram [in (K, µ) space] of the solution to

max
∫ T

0
e−ρt [Kα − I 2] dt

subject to K̇ = I − δK

K(0) = K0

4. Repeat review exercise 3 but this time draw the phase diagram in (K, I) space.

5. Solve the following consumption model for the optimal path of consumption:

max
∫ T

0
e−ρt y1−α

1− α
dt

subject to ẋ = rx − y

x(0) = x0

x(T ) ≥ 0

T ≥ 0 (given)

where 0 < α < 1.

6. Solve the following exhaustible resource problem as far as you can for the
optimal path of extraction. Draw a phase diagram, and show that the steady
state is a saddle point and that the optimal T is infinity.

max
∫ T

0
e−ρt

(
py − y2

2R
+ 2kR1/2

)
dt

subject to Ṙ = −y

R(0) = R0 > 0

R(T ) ≥ 0

T ≥ 0 (free)

where p and k are positive constants.

7. Solve the following exhaustible resource problem as far as you can for the
optimal path of extraction. Draw a phase diagram, and show that the optimal
T is finite and that the steady state is not reached.

max
∫ T

0
e−ρt

[
py − y2

2(R + α)

]
dt
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subject to Ṙ = −y

R(0) = R0 > 0

R(T ) ≥ 0

T ≥ 0 (free)

where p and α are positive constants.

8. Draw the phase diagram for the following optimal growth model, and show
that the saddle paths reach the steady state within a finite time:

max
∫ T

0
e−ρt c dt

subject to k̇ = f (k)− c − δk

k(0) = k0

k(T ) = kT

0 ≤ c ≤ f (k)

where f (0) = 0, f ′(k) > 0, f ′′(k) < 0. Note that consumption, c, is con-
strained to be nonnegative and cannot exceed the amount produced. Assume
that r > ρ.

9. Solve the following optimal fishery model:

max
∫ ∞

0
e−ρt

(
p − c

x

)
h dt

subject to ẋ = rx(1− x)− h

x(0) = x0

0 ≤ h ≤ hmax





ANSWERS

The following are brief answers to the odd-numbered
questions of all the exercises. Diagrams are excluded except
where they are essential to the answer. Fully worked
solutions, including diagrams, are contained in the Student’s
Solution Manual that accompanies this text.

Chapter 2

2.1 Exercises

1. From A ⊂ X it follows that x ∈ X. However, the reverse
is not true.

3. There are 32 possible subsets.

5. Yes, the order of the elements in a set is not important
(definition 2.3).

7. (a) B is the set of combinations of goods 1 and 2 that the
consumer can afford to buy. C is the set of quantities
of goods 1 and 2 that the consumer is physically
capable of consuming.

(b) B ∪ C is the set of quantities of goods 1 and 2 that
the consumer can afford to buy or is physically
capable of consuming.

(c) B ∩ C is the set of the quantities of goods 1 and 2
that the consumer is physically capable of consuming
and can afford to buy.

9. P contains all technologically feasible input-output
combinations. x̄ is the maximum amount of labor that can
be employed.

2.2 Exercises

1. (a) Z+ is bounded below by one. There is no
upper bound.

(b) Z is unbounded.

(c) R+ is bounded below by zero. There is no
upper bound.

(d) R+ is bounded above by zero. There is no
lower bound.

(e) S is bounded below by zero and bounded above
by
√

2.

3. (a) dollars
quantity of output

(b) pure number

(c) dollars
quantity of input

(d)
quantity of goods

dollars

(e) dollars
quantity of import good

5. Sets with a maximum are R− = {x ∈ R : x ≤ 0} and
T = {x ∈ R : x ≤ 5}. Sets without a maximum are
R+ = {x ∈ R : x ≥ 0} and S = {x ∈ R : x < 5}.

2.3 Exercises

1. (a) {1, 2, 3, 4, 5, 6} ⊗ {7, 8, 9} = {{1, 7}, {1, 8}, {1, 9},
{2, 7}, {2, 8}, {2, 9},
{3, 7}, {3, 8}, {3, 9},
{4, 7}, {4, 8}, {4, 9},
{5, 7}, {5, 8}, {5, 9},
{6, 7}, {6, 8}, {6, 9}}

(b) Z+ ⊗ Z+ = {(x, y) : x ∈ Z+, y ∈ Z+}
(c)

{
(x, y) : x ∈ Z+ and

x

2
∈ Z+, y ∈ Z+

and
y + 1

2
∈ Z+

}
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3. B is closed, bounded, and convex. Interpreting x ′ and y ′

as subsistence consumption, the case X = ∅ signifies that
the consumer cannot afford the consumption bundle
necessary for survival.

5. (a) d(4,−5) =
√

[4− (−5)]2 = 9

(b) d[(−6, 2), (8,−1)]

=
√

[(−6)− 8]2 + [2− (−1)]2 .= 14.32

(c) d[(5,−3, 0, 8), (12,−6, 3, 1)]

=
√

(5− 12)2 + [(−3)− (−6)]2 + (0− 3)2 + (8− 1)2

.= 10.77

7. (a) Nε(−1) = {x ∈ R :
√

(x + 1)2 < ε}
For ε = 0.1, Nε(−1) is the open interval
(−1.1,−0.9). For ε = 10, Nε(−1) is the open
interval (−11,−9).

(b) Nε(−1, 1) =
{(x, y) ∈ R

2 :
√

(x + 1)2 + (y − 1)2 < ε}
Nε(−1, 1) is the set of points of R

2 lying inside a
circle centered on (−1, 1) with radius ε.

(c) Nε(−1, 1,−1) = {(x, y, z) ∈ R
3 :√

(x + 1)2 + (y − 1)2 + (z+ 1)2 < ε}
Nε(−1, 1,−1) is the set of points of R

3 lying within
a sphere centered at (−1, 1,−1) with radius ε.

2.4 Exercises

1. (a) y = 1− 2x

(b) y = −8− 5x

(c) y = −1

2
− 3

2
x

3. (a) x̄ = 4− 6λ, λ ∈ [0, 1]

(b) (x̄, ȳ) = (3− 4λ, 4− 3λ), λ ∈ [0, 1]

(c) (x̄, ȳ, z̄) = (1− 3λ,−2+ 2λ, 2− λ)

5. x = 10±√10

7. (a) strictly quasiconvex, convex

(b) strictly quasiconvex, convex

(c) strictly quasiconcave, concave

9. The function y = x2
1x

2
2 is strictly quasiconcave but not

concave.

11. y = x1/2 = √x, x > 0 is strictly concave if, for any
λ ∈ (0, 1),√

λx ′ + (1− λ)x ′′ > λ
√

x ′ + (1− λ)
√

x ′′

which amounts to (x ′ − x ′′)2 > 0.

Review Exercises

1. (a) λ(−2)+ (1− λ)2 = 2− 4λ

(b) λ(−2, 2)+ (1− λ)(−3, 3) = (−3+ λ, 3− λ)

(c) λ(0, 0)+ (1− λ)(x1, x2) = (1− λ)(x1, x2)

(d) λ(−2, 2, 5)+ (1− λ)(−3, 3, 8) = (−3+ λ, 3− λ,

8− 3λ)

3. (a) y = 22+ 2x (b) y = 5

2
+ 3

4

5. (a) ab2

(b) a(1−q)bq

(c) y = 58x2

(d) 3x

7. To show concavity, we show that

10− [λx ′ + (1− λ)x ′′] > λ(10− x ′2)+ (1− λ)(10− x ′′2)

which amounts to (x ′ − x ′′)2 > 0.

9. To show concavity, we show that

[λx ′1 + (1− λ)x ′′1 + λx ′2 + (1− λ)x ′′2 ]1/2

> λ(x ′1 + x ′2)
1/2 + (1− λ)(x ′′1 + x ′′2 )1/2

which amounts to

[(x ′1 + x ′′2 )1/2 − (x ′′1 x ′′2 )1/2]2 > 0

Chapter 3

3.1 Exercises

1. (a) 6, 5.5, 5.33, 5.25, 5.20, 5.17, 5.14, 5.125, 5.11, 5.1.
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(b) The first 10 terms of the sequence f (n) = 5n/(2n)

are

2.5, 2.5, 1.875, 1.25, 0.78, 0.47, 0.27, 0.16, 0.088, 0.049.

(c) 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

3. The sequence f̂ (n) = 2(n− 1), n = 1, 2, 3, . . . is
identical to the sequence f (n) = 2n, n = 0, 1, 2, . . . .

(Check the first five or so terms of each.)

5. The sequence f̂ (n) = (1+ r)n+25, n = 1, 2, 3, . . . is
identical to the sequence f (n) = (1+ r)n,

n = 1, 2, 3, . . . , starting with the 26th term; so
f (n) = (1+ r)n, n = 26, 27, 28, . . .

3.2 Exercises

1. (a) We need to show that for any ε > 0 there must be
some value N such that

∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < ε

for every n > N . That is,

1

n+ 1
< ε ⇒ 1

ε
< n+ 1

which holds for any n > (1/ε)− 1. Thus we can
satisfy the condition |[n/(n+ 1)]− 1| < ε for any
n > N by choosing N to be the next integer greater
than the number (1/ε)− 1.

(b) We need to show that for any ε > 0 there must be
some value N such that∣∣∣∣5+ 1

n
− 5

∣∣∣∣ < ε

for every n > N . That is,

1

n
< ε ⇒ n >

1

ε

Thus, we can satisfy the condition
|5+ (1/n)− 5| < ε for any n > N by choosing N

to be the next integer greater than the number 1/ε.

(c) We need to show that for any ε > 0 there must be
some value N such that∣∣∣∣

(
−1

2

)n

− 0

∣∣∣∣ < ε

for every n > N . That is,

1

2n
< ε ⇒ 2n >

1

ε
⇒ n > log2

(
1

ε

)

Thus we can satisfy the condition |(−1/2)n − 0| < ε

for any n > N by choosing N to be the next integer
greater than the number log2(1/ε).

3. (a) lim
n→∞

n2 = ∞

Notice that for any value K it is always possible to
find an N large enough that

n2 > K

for every n > N . Choosing N to be the next integer
greater than the number

√
K will satisfy this

condition.

(b) lim
n→∞

(−n)3 = −∞

Notice that for any value K it is always possible to
find an N large enough that

(−n)3 < −K

for every n > N . Since (−n)3 = −n3, we can see
that, upon multiplying by −1, the inequality above
becomes

n3 > K

and so choosing N to be the next integer greater than
the number K1/3 will satisfy this condition.

(c) The sequence (−c)n is divergent and is not definitely
divergent if |c| > 1. If |c| < 1, then

lim
n→∞

(−c)n = 0

If c > 0, then (−c)n > 0 for n even and <0 for n

odd. If c < 0, then (−c)n > 0 for n even and <0 for
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n odd. Therefore, in the case where |c| > 1, for any
N the sequence (−c)n will contain both arbitrarily
large positive and negative values. (This follows
from the fact |(−c)n| = |c|n and limn→∞ |c|n = +∞
for |c| > 1.) Therefore the sequence would be
divergent and not definitely divergent. If |c| < 1,
then we can show the sequence converges to the limit
0 in the same way as we did for question 1 (c). That
is, we need to show that for any ε > 0 there must be
some value N such that

|(−c)n − 0| < ε

for every n > N . That is,

|(−c)n| < ε

or

|c|n < ε

If we take logs to the base b= |c| < 1 of each side
we get n logb b > logb ε, namely n > logb ε since
logb b = 1. Thus we can satisfy the condition
|(−c)n − 0| < ε for any n > N by choosing N to be
the next integer greater than logb ε.

3.3 Exercises

1. 71.18

3. (a) If interest is compounded annually and the present
value is the same in each case then

V2

(1+ r)t2
= V1

(1+ r)t1
⇒ V2

V1
= (1+ r)t2

(1+ r)t1

Now, since t2 > t1, we have (1+ r)t2 > (1+ r)t1 ,
and so

(1+ r)t2

(1+ r)t1
> 1 ⇒ V2

V1
> 1 ⇒ V2 > V1

(b) We need to show that

V2

(1+ r)t2+k
= V1

(1+ r)t1+k

Rewriting gives

V2

(1+ r)t2(1+ r)k
= V1

(1+ r)t1(1+ r)k

⇒ V2

(1+ r)t2
= V1

(1+ r)t1

5. (a) Z5 = 100e0.02(5) = 100e0.10 = 110.52 million

(b) Z10 = 100e0.02(10) = 100e0.20 = 122.14 million

(c) Z20 = 100e0.02(20) = 100e0.40 = 149.18 million

3.4 Exercises

1. From theorem 3.3 we know that a monotonic sequence is
convergent if and only if it is bounded. Letting
at =V/(1+ r)t represent a general term in the sequence
we first show it is a monotonic sequence.

at+1

at

= V/(1+ r)t+1

V/(1+ r)t
= (1+ r)t

(1+ r)t+1
= 1

1+ r

and so

at+1 = at

1+ r

Therefore the sequence is monotonically decreasing if
r > 0, while it is monotonically increasing if −1 < r < 0.
In the case with r > 0, at =V/(1+ r)t is bounded below
by 0 and above by V , and so the sequence is convergent.
In the case with −1 < r < 0, we have 0 < 1+ r < 1 and
limt→∞ V/(1+ r)t = +∞; that is, the sequence is not
bounded and so it is not convergent.

3. Steps of the proof are: (i) For any (large) K̄ , there exists
an N1, such that bn > K̄ for n > N1. (ii) For any ε > 0
there exists an N2 such that |an − La|< ε for n > N2.
(iii) Show that for any K > 0 there is an N large enough
that an− bn <−K for n > N . (Appropriate choice for N

is N = max{N1, N2}.)

3.5 Exercises

1.
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣c
c

∣∣∣ = 1
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and

Sn =
n∑

t=1

at = a1 + a2 + · · · + an

= c + c + · · · + c = nc

Since c > 0 it is clear that limn→∞ Sn=
limn→∞ nc= +∞. That is, the series diverges.

3. sn = aρ + aρ3 + aρ5 + · · · + aρ2n−3 + aρ2n−1

Multiplying this expression by ρ2 gives

ρ2sn = aρ3 + aρ5 + aρ7 + · · · + aρ2n−1 + aρ2n+1

and so

sn − ρ2sn = aρ − aρ2n+1

which implies that

(1− ρ2)sn = aρ − aρ2n+1

and so

sn = aρ − aρ2n+1

1− ρ2

which implies, for |ρ| < 1, that

lim
n→∞

sn = aρ

1− ρ2

5. (a) PV of net operating revenue = $5,787,037. PV of
building costs = $10 million. Therefore the present
value of building costs exceeds the present value of
operating revenues and so this project is not
profitable.

(b) r = 0.048

Review Exercises

1. (a) 1, 0.25, 0.111, 0.063, 0.04.

(b) 1, 2.5, 1.67, 2.25, 1.8.

(c) 0.2, 0.25, 0.273, 0.286, 0.294.

(d) −1,−4,−9,−16,−25.

(e) 2, 3, 4, 5, 6.

(f) 6, 5.5, 5.33, 5.25, 5.2.

(g) 4, 4.5, 4.67, 4.75, 4.8.

3. (a) (i) PV1 = 100

1.08
= $92.59

(ii) PV5 = 150

(1.08)5
= $102.09

(b) The individual should rank alternative (ii) as better.
Even if the individual wants the money well in
advance of 5 years, she should rank alternative (ii) as
the better one because at r = 0.08 (8%) she could
borrow more money now and pay it back after 5
years with the $150 received at that point in time than
she could from receiving the $100 in one year’s time.

5. (a) $1,000

(b) $907.70

(c) $92.30

7. (a) The NPV of additional income is 23,148, and since
this exceeds the costs she should accept the offer.

(b) The internal rate of return is r̂ = 0.092 or 9.2%. If
the interest rate is less than this she should accept the
offer.

(c) No.

(d) Forgone income is not an issue for anyone who
becomes unemployed.

Chapter 4

4.1 Exercises

1. (a) f (xn) = 10− 5/n, n = 1, 2, 3, . . . . This suggests
that

lim
x→2−

f (x) = 10

(b) f (xn) = −2+ 3/n, n = 1, 2, 3, . . . . This suggests
that

lim
x→2−

f (x) = −2
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(c) f (xn) = 2m+ b −m/n, n = 1, 2, 3, . . . . This
suggests that

lim
x→2−

f (x) = 2m+ b

(d) f (xn) = 4− 4

n
+ 1

n2
, n = 1, 2, 3, . . . . This suggests

that

lim
x→2−

f (x) = 4

3. (a) This function is not continuous at the point x = 1
because the left-hand limit is not equal to the
right-hand limit:

lim
x→1−

f (x) = 5, lim
x→1+

f (x) = 6

Therefore the second part of condition (i) of
definition 4.3 is not satisfied at x = 1.

(b) This function is not continuous at the point x = 0
because it is not defined there. Moreover the
left-hand limit is not equal to the right-hand limit:

lim
x→0−

f (x) = −∞, lim
x→0+

f (x) = +∞

Therefore, neither part of condition (i) of
definition 4.3 is satisfied at x = 0.

(c) This function is not continuous at the point x = 3
because it is not defined there. However, the
left-hand limit is equal to the right-hand limit:

lim
x→3−

f (x) = +∞, lim
x→3+

f (x) = +∞

Therefore, the first part of condition (i) of
definition 4.3 is not satisfied at x = 3.

(d) This function is not continuous at the point x= 2
because it is not defined there. However, the
left-hand limit is equal to the right-hand limit:

lim
x→2−

f (x) = 1

3
, lim

x→2+
f (x) = 1

3

Therefore the first part of condition (i) of
definition 4.3 is not satisfied at x= 2. At x=−1, we

have

lim
x→1−

= −∞, lim
x→1+

= +∞

so neither part of (i) of definition 4.3 is satisfied at
x = −1.

5. (a) f (x) = 4x + 3 is continuous at every point x ∈ R.
(Choose δ = ε/4 in applying definition 4.4.)

(b) f (x) = mx + b is continuous at every point x ∈ R.
(Choose δ = ε/m in applying definition 4.4.)

7. This function is defined at every point x ∈ [0, 10] but is
not continuous at the points x = 1, 2, . . . , 9, since at these
points the left-hand and right-hand limits are not equal.
However, within each subinterval, the function
is continuous.

x

f (x)

10987654321

1
2
3
4
5
6
7
8
9

10

4.2 Exercises

1. C(Q) = c0 + (w/b)Q so π(Q) = p̄Q− c0 − (w/b)Q.
The production function is continuous, and so from
(i), (ii), and (vi) of theorem 4.1 the cost function is
continuous. The revenue function is also continuous, and
so from (ii) of theorem 4.1 the difference between two
continuous functions (the profit function) is also
continuous.

3.

P(S) =
⎧⎨
⎩

$800+ 0.15S if S ≤ $10,000
$1,800+ 0.15S if $10,000 < S ≤ $15,000
$4,300+ 0.15S if S > $15,000
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At S = $10,000 the left-hand and right-hand limits are:

lim
S→10,000−

P(S) = 2,300, lim
S→10,000+

P(S) = 3,300

so the function is not continuous at the point
S = $10,000. Similarly at S = $15,000.

5. Let x be income before tax and y = f (x) be income after
tax.

f (x) =
⎧⎨
⎩

x x ≤ $20,000
5,000+ 0.75x $20,000 < x < $60,000
4,000+ 0.75x x ≥ $60,000

At x = 60,000, the left-hand limit is 50,000 and the
right-hand limit is 49,000, so the function is not
continuous at this point.

7. (a) The marginal product of labor is:

MP(h) =
{

1/20 0 ≤ h ≤ 336,000
0 h > 336,000

The left-hand limit at 336,000 is 1/20 and the
right-hand limit is 0, so the function is discontinuous
at this point.

(b)

π(y) =
{

1,000− 600 = 400 0 ≤ y ≤ 12,000
1,000− 1,200 = −200 12,000 < y ≤ 16,800

There is a discontinuity at y = 12,000.

9. If firm 2 sets a price p2 = 5, then firm 1 captures the
entire market, y1 = 20− p1, provided that it charges a
price less than 5 (i.e., p1 < $5). This being the case, its
revenue would be

R1(p1) = p1y1 = p1(20− p1). p1 < 5

If firm 1 charges the same price as firm 2 (i.e., p1 = $5),
then it will share the market equally with firm 2. Joint
sales will be y = 20− p = 20− 5 = 15, and so each sells
7.5 units at a price of $5 and so

R1(p1) = 5× 7.5 = 37.5 p1 = 5

If firm 1 charges a price greater than 5 its sales, and hence
revenue, become zero:

R1(p1) = 0, p1 > 5

Putting these expressions together gives the firm’s
revenue function

R1(p1) =
⎧⎨
⎩

p1(20− p1), p1 < 5
37.5, p1 = 5
0, p1 > 5

p15

75

37.5

R1(p1)

Figure 4.2.10 (a)i

To determine the profit function, we simply subtract
costs from revenues, which in the case of p1 < 5 is
C(y1) = 2y1, and so since y1 = 20− p1 for p1 < 5, we
get

C1(p1) = 2(20− p1), p1 < 5

At p1 = 5, firm 1 produces 7.5 units and so incurs costs of

C1(p1) = 2× 7.5 = 15, p1 = 5

At p1 > 5, firm 1 produces no output and so incurs no
cost. Then

C1(p1) = 0, p1 > 5

Putting these cost functions together with the revenue
function gives us the following profit function
(π1(p1) = R1(p1)− C1(p1)):

π1(p1) =
⎧⎨
⎩

p1(20− p1)− 2(20− p1), p1 < 5
37.5− 15 = 22.5, p1 = 5
0, p1 > 5
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p12 5

45

Π1(p1)

22.5

–40

Figure 4.2.10 (a)ii

The function R1(p1) and π(p1) are discontinuous at
the point p1 = 5. For p1 < 5, firm 1 is essentially a
monopolist since firm 2 sells zero output when
p1 < p2 = 5. Marginal increases in p1, when p1 < 5,
have marginal effects on revenue and profit since these
functions are continuous. However, as soon as p1 reaches
the value 5, firm 2 captures half of the market and so firm
1 loses half of the market. The result is that revenue and
profit for firm 1 drop discontinuously at this price. If firm
1 charges a price even marginally exceeding $5, it loses
completely its market share to firm 2, and so revenue and
profit drop to zero.

(b) For any price, p̄2, charged by firm 2, where p̄2 > 2, the
same pattern applies with respect to R1(p1) and π1(p1) as
was the case in part (a). If p1 < p̄2, 1 captures the entire
market, and so its revenue and profit functions are based
on its demand being the market demand. However, as
soon as firm 1 raises its price to the level p1 = p̄2, it
shares equally the market with firm 2, and so firm 1’s
revenue and profit drop discontinuously to half their
values relative to a price marginally less than p̄2. If firm 1
charges a price p1 > p̄2, then its revenue and profit drop
to zero. Therefore the revenue and profit functions in this
case are as follows:

R1(p1) =

⎧⎪⎨
⎪⎩

p1(20− p1), p1 < p̄2
1
2 p1(20− p1), p1 = p̄2

0, p1 > p̄2

p1

R1(p1)

p2

Figure 4.2.10 (b)i

π1(p1) =

⎧⎪⎨
⎪⎩

p1(20− p1)− 2(20− p1), p1 < p̄2
1
2 [p1(20− p1)− 2(20− p1)], p1 = p̄2

0, p1 > p̄2

p12

Π1(p1)

–40

p2

Figure 4.2.10 (b)ii

(c) Firm 2 can infer that if it charges a price in excess of $2,
then firm 1 will undercut in order to capture the entire
market. (From part (b) we can see that this is indeed the
optimal response for firm 1 if p2 > 2.) Of course, the
reverse argument also holds. Firm 1 can infer that if it
charges a price in excess of $2, then firm 2’s optimal
response would be to undercut and capture the entire
market. Thus either firm will be shut out of the market if it
charges in excess of $2. The only equilibrium outcome is
for each firm to charge $2 and share the market.
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Review Exercises

1. (a) At x = 5

lim
x→5−

f (x) = 10, lim
x→5+

f (x) = 11

so this function is not continuous at x = 5

(b) At x = 1

lim
x→1−

f (x) = −∞, lim
x→1+

f (x) = +∞

Moreover, the function is not defined at x = 1.

3.

y =
⎧⎨
⎩

x x ≤ 25,000
35,000− 0.4x 25,000 < x < 100,000
33,000− 0.4x x ≥ 100,000

There is a discontinuity at x = 100,000 due to the surtax.

5. (a) $1,500

(b) zero

(c) $800

(d) (i) Total cost of taking y passengers is

C(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y = 0
1,500 0 < y ≤ 50
2,300 50 < y ≤ 100
2,900 100 < y ≤ 150
3,100 150 < y ≤ 200
3,900 200 < y ≤ 250
5,100 250 < y ≤ 300
8,500 300 < y ≤ 350

(ii) Average cost is

AC(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined y = 0
1,500/y 0 < y ≤ 50
2,300/y 50 < y ≤ 100
2,900/y 100 < y ≤ 150
3,100/y 150 < y ≤ 200
3,900/y 200 < y ≤ 250
5,100/y 250 < y ≤ 300
8,500/y 300 < y ≤ 350

The function has a discontinuity at every integer
multiple of 50 passengers.

Chapter 5

5.1 Exercises

1. Qi (25, 625) (24, 576) (23, 529)

�x 5 4 3
�y 225 176 129

�y/�x 45 44 43

Qi (22, 484) (21, 441)

�x 2 1
�y 84 41

�y/�x 42 41

Yes, the sequence of values looks like it will converge.
(Use a graph like figure 5.3 to illustrate.)

3. y = 6x − 9. Use a graph such as figure 5.5 to illustrate.

5.2 Exercises

1. (a) f ′(x) = lim�x→0
[3(x +�x)− 5]− [3x − 5]

�x
=

lim�x→0
3�x

�x
= 3

(b) f ′(x) = lim�x→0
8(x +�x)− 8x

�x
=

lim�x→0
8�x

�x
= 8

(c) f ′(x) = lim�x→0
3(x +�x)2 − 3x2

�x
=

lim�x→0
6x�x + 3�x2

�x
= 6x

3. Qi (25, 625) (24, 576) (23, 529)

�x 5 4 3
�y 225 176 129

dy = f ′(x) dx 250 192 138
ε −11.1% −9.1% −7.0%
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Qi (22, 484) (21, 441)

�x 2 1
�y 84 41

dy = f ′(x) dx 88 42
ε −4.8% −2.4%

This suggests that as �x or dx gets smaller the value of
the total differential dy becomes a better approximation to
the actual change �y.

5.3 Exercises

1. (a) lim�x→0−
f (x +�x)− f (x)

�x
=

lim�x→0−
[3(x +�x)+ 2]− [3x + 2]

�x
= 3

lim�x→0+
f (x +�x)− f (x)

�x
=

lim�x→0+
[(x +�x)+ 12]− [x + 12]

�x
= 1

Since the left-hand and right-hand limits are not
equal at x = 5, the function is not differentiable at
this point.

(b) lim�x→0−
f (x +�x)− f (x)

�x
=

lim�x→0−
−(x +�x)− x

�x
= −1

lim�x→0+
f (x +�x)− f (x)

�x
=

lim�x→0+
(x +�x)− x

�x
= 1

Since the left-hand and right-hand limits are not
equal at x = 0, the function is not differentiable at
this point.

(c) lim�x→0−
f (x +�x)− f (x)

�x
=

lim�x→0−
[4(x +�x)+ 1]− [4x + 1]

�x
= 4

lim�x→0+
f (x +�x)− f (x)

�x
=

lim�x→0+
[11− (x +�x)]− [11− x]

�x
= −1

Since the left-hand and right-hand limits are not
equal at x = 2, the function is not differentiable at
this point.

3. (a)

T (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ y ≤ 6,000
0.20y − 1,200 6,000 < y ≤ 16,000
0.30y − 2,800 16,000 < y ≤ 46,000
0.40y − 7,400 y > 46,000

(b) The points of nondifferentiability are at y = 6,000,
y = 16,000, y = 46,000

(c)

AT (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ y ≤ 6,000
0.20− 1,200/y 6,000 < y ≤ 16,000
0.30− 2,800/y 16,000 < y ≤ 46,000
0.40− 7,400/y y > 46,000

5. (a)

P(S) =
⎧⎨
⎩

600 S = 0
600+ 0.1S 0 < S ≤ 10,000
−400+ 0.2S S ≥ 10,000

(b) There is a single point of nondifferentiability at
S = 10,000.

5.4 Exercises

1. (a) f (L) = 10L, f ′(L) = 10, f ′′(L) = 0, so the rate at
which output rises with respect to more input being
used does not change.

(b) f (L) = 8L1/3, f ′(L) = (8/3)L−2/3, f ′′(L) =
(−16/9)L−5/3 < 0, so the rate at which output rises
with respect to more input being used is falling.

(c) f (L) = 3L4, f ′(L) = 12L3, f ′′(L) = 36L2 > 0, so
the rate at which output rises with respect to more
input being used is increasing.

3. (a) qA
S = 0.25p − 2.5 is firm A’s supply curve with

qA
S ≥ 0⇔ p ≥ 10. qB

S = 0.5p − 7.5 is firm B’s
supply curve with qB

S ≥ 0⇔ p ≥ 15. These
functions are differentiable on every point in their
domains.

(b)

q =
⎧⎨
⎩

0 p < 10
0.25p − 2.5 10 ≤ p < 15
0.75p − 10 p ≥ 15



ANSWERS 931

The total supply function is differentiable on the
range of prices 0 ≤ p < 15. However, it is
nondifferentiable at p = 15.

5. L(q) = (1/4)q1/2 and so the cost function is
C(q) = c0+wL(q) = c0+ (1/4)wq1/2. Now
dq/dL = 32L which is increasing in L and
dC/dq = (1/8)/q1/2 which is decreasing in q.

7. (a) ε = (100− y)/y

(b) ε = (1200− 12y)/12y = (100− y)/y

5.5 Exercises

1. f ′(x) = 4x3 and f ′′(x) = 12x2 for every x ∈ R and
f ′′(x) = 0 only at x = 0, so f is strictly convex.

3. C(y) = c0 + ry3, so C ′′(y) = 6ry > 0 and so C(y) is
strictly convex, and y = x1/3 is strictly concave since
d2y/dx2 = (−2/9)x−5/3 < 0.

5. π ′(y) = −15− 3y2 + 18y and π ′′(y) = −6y + 18, so
π ′′(y) > 0 (π(y) strictly convex) for y < 3 and
π ′′(y) < 0 (π(y) strictly concave) for y > 3.

y π(y) π ′(y) π ′′(y)

0 −10 −15 18
1 −17 0 12
2 −12 9 6
3 −1 12 0
4 10 9 −6
5 15 0 −12
6 8 −15 −18
7 −17 −36 −24
8 −66 −63 −30
9 −145 −96 −36

10 −260 −135 −42

5.6 Exercises

1. e−x = −1− x + x2

2!
− x3

3!
+ x4

4!
− x5

5!
+ · · ·

+ (−1)n−1 xn−1

(n− 1)!
+ Rn

where |Rn| = ξn/n! and ξ between 0 and x. To be correct
within 0.001 we need n to be large enough that
|Rn| ≤ 0.001, or n! ≥ 1,000, or n = 7.

3.
ε = − (x − x0)

2

8ξ 3/2
≤ 0

and so dy ≥ �y and using the differential leads to an
overestimate.

Review Exercises

1. f ′(x) =

lim
�x→0

[(x +�x)2 + 3(x +�x)− 4]− [x2 + 3x − 4]

�x

= lim
�x→0

2x�x + x2 + 3�x

�x
= 2x + 3

3. (a) f (L) = 64L1/4 ⇒ f ′(L) = 16L−3/4 ⇒ f ′′(L) =
−12L−7/4 < 0

(b) f (L) = 10L+ 2L1/2 ⇒ f ′(L) = 10+ L−1/2 ⇒
f ′′(L) = −(1/2)L−3/2 < 0

(c) f (L) = 5L3 ⇒ f ′(L) = 15L2 ⇒ f ′′(L) =
30L > 0

(d) f (L) = −L3 + 12L2 + 3L⇒ f ′(L) =
−3L2 + 24L+ 3⇒ f ′′(L) = −6L+ 24, so

f ′′(L) = 24− 6L

⎧⎨
⎩

> 0 L < 4
= 0 L = 4
< 0 L > 4

5. ε = (−)(−5)p/y = 5p/y = 5p/(200− 5p) so ε < 1 for
p < 20, ε = 1 for p = 20, and ε > 1 for p > 20.

7. L(q) = (q/a)1/b and so C(q) = c0 + w(q/a)1/b.

dq

dL
= ab

L1−b
and

dC

dq
= (w/a1/b)(1/b)

q1−(1/b)

If b < 1, then dq/dL is decreasing in L and dC/dq is
increasing in q. If b > 1, then dq/dL is increasing in L

and dC/dq is decreasing in q. If b = 1 then dq/dL and
dC/dq are neither increasing nor decreasing.

9. C ′(y) = 3y2 − 24y + 50 and C ′′(y) = 6y − 24, so
C ′′(y) > 0 (C(y) is strictly convex) for y > 4 and
C ′′(y) < 0 (C(y) is strictly concave) for y < 4.
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y C(y) C ′(y) C ′′(y)

0 20 50 −24
1 59 29 −18
2 80 14 −12
3 89 5 −6
4 92 2 0
5 95 5 6
6 104 14 12
7 125 29 18
8 164 50 24
9 227 77 30

10 320 110 36

Chapter 6

6.1 Exercises

1. (a) x1 = 0 (local maximum), x2 = 2 (local minimum)

(b) x1 = 0 (local minimum), x2 = 1.5 (point of
inflection)

(c) x1 =
√

1/3 (local minimum), x2 = −
√

1/3 (local
maximum)

(d) x1 = 0 (local minimum), x2 = 0.5 (local maximum),
x3 = 2 (local minimum)

(e) x1 = 1 (local maximum), x2 = −1 (local minimum)

3. x(p) = 12.5p − 37.5 for p ≥ $3, x(p) = 0 for p < $3.

5. If the (inverse) linear demand function is p(x) = a− bx,
the sales-maximizing output is xsm = a/2b, while the
output for zero price is xzp = a/b.

6.2 Exercises

1. (a) f ′′(x) = 6x − 6, f ′′(0) = −6, f ′′(2) = 6.

(b) f ′′(x) = 12x2 − 24x + 9, f ′′(0) = 9, f ′′(1.5) = 0.

(c) f ′′(x) = 18x, f ′′(
√

1/3) = 10.44,
f ′′(−√1/3) = −10.44.

(d) f ′′(x) = 36x2 − 60x + 12, f ′′(0) = 12,
f ′′(0.5) = −9, f ′′(2) = 36.

(e) f ′′(x) = 4x3 − 12x

(x2 + 1)2
, f ′′(1) = −8, f ′′(−1) = 8

3. b ≤ a2/80 and the second derivative of the profit function
cannot be positive at the profit maximizing output.

5. (a) The inverse of the production function is L(x) and
the cost function is C(x) = wL(x), where w is the
(constant) wage rate, so setting price equal to
marginal cost implies p = wdL/dx or
p(dx/dL) = w where the left-hand side is the
marginal value product (price multiplied by marginal
product).

(b) Similar to (a) except price is replaced by marginal
revenue so p(x)+ p′(x)x = wdL/dx.

(c) The production function must be strictly concave.

6.3 Exercises

1. (a) x = 10 with y = 23

(b) x = 20 with y = 4001

(c) x = 10 with y = −95
In all cases the first derivatives are not equal to zero
at the optimum.

3. (a) 0.8

(b) 80

Review Exercises

1.
stationary

values

extreme

maxima

minima

values

3. (a) x = 2 (local minimum)

(b) x1 = 0 (local maximum), x2 = 2 (local minimum)

(c) x1 = −1 (local minimum), x2 = 2 (point of
inflection)

(d) x1 = −1 (local maximum), x2 = 1 (local minimum)

(e) x1 = −1 (local maximum), x2 = 1 (local minimum)
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(f) x1 = 0 (local minimum), x2 = 1/2 (local maximum),
x3 = 2 (local minimum)

(g) x = 0 (local maximum)

(h) x = 0 (local maximum)

(i) x1 = 0 (local maximum), x2 = 4 (local minimum)

(j) x1 = 5 (local minimum)

5. For p = $1 and p = $2, the firm should produce zero
output.

7. The largest bid of the firm is now $9.5625.

9. t1 = 100/9, t2 = 440/9.

Chapter 7

7.1 Exercises

1. (a) x = 2, y = 4

(b) Infinitely many solutions. Both equations are
equivalent.

(c) No solution. Lines are parallel.

(d) x = 10/3, y = 20/3.

3. (a) These are parallel if c = 4.

(b) They have a solution for any other value of c.

5. β21 > 0 implies that an increase in the price of good 1
increases the supply of good 2.

7. (a) M = 25, R = 10.

(b) Equations are inconsistent.

7.2 Exercises

1. (a) x = 5, y = −3/5, z = 13/5.

(b) Linearly dependent: equation 1 =
(equation 2 + equation 3) × 2.

(c) x1 = 11/2, x2 = −3/2, x3 = −7/2.

(d) x1 = 2, x2 = 1, x3 = 0, x4 = −2.

(e) Linearly dependent: equation 1 =
equation 3 + equation 4.

3. (a) x1 = 4/3, x2 = 8/3, x3 = 80/3, x4 = 106/3.

(b) x1 = −50/3, x2 = 20, x3 = −10/3.

5. p1 = 8, p2 = 5, p3 = 2, p4 = 1.

Review Exercises

1. (d) and (e).

3. (a) Inconsistent. (b) x = y = z = 0 is the only solution.

5. M = 15.

Chapter 8

8.1 Exercises

1. x = 2, y = 2

3. Any x and y for which x = y

5. There are no values of y and z that will make these
matrices equal.

8.2 Exercises

1.
3A =

⎡
⎣ 3 0 0

0 3 0
0 0 3

⎤
⎦

3. ab = −1,

ba =
⎡
⎣−1 −2 0

0 0 0
1 2 0

⎤
⎦

5. Profit is 94,000

8.3 Exercises

1. (a) The transpose of I3 is I3 itself.

(b) The transpose of A is A itself.

3. (a) (AB)T = BT AT =
[

4 0
3 2

]

(b) (AB)T = BT AT =
⎡
⎣ 1 3

2 0
3 1

⎤
⎦

5. B is 5× 7.

7. B has 2 rows.
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8.4 Exercises

1. I3I3 = I3

3. AA = A

5. (a) tr(A) = tr(AA) = tr(AAA) = 1.

(b) tr(A) = tr(AA) = tr(AAA) = 2.

Review Exercises

1. (a) AB is 2× 2.

(b) AT B is a scalar.

(c) AT BA is a scalar.

(d) AAT B is 5× 5.

3. (Ax)T = [−4 2], xT AT = [−4 2],

xxT =
[

25 15
15 9

]

and xT x = 34. AT xT is not defined.

5. k = 9

7. x4 =
⎡
⎣ 6.3336

4.9423
9.6943

⎤
⎦

Chapter 9

9.1 Exercises

1. (a)
[

1/5 0
0 1/3

]

(b)
[

1/5 −2/5
1/5 3/5

]
(c) The inverse does not exist.

3. (a) z1 = 20, z2 = 55.

(b) wT Ay = 650—a scalar, representing total cost.

5. R = 14, Y = 440. Budget deficit is G− T = 9. Trade
deficit is −X = 4.4.

9.2 Exercises

1. (a) |A| = 1

(b) |B| = −5

(c) |C| = −23

(d) |D| = 4

3. |B| = 3|A| = 21

5. |D| = 3|A| = 9

7. |A3| = −8

9.3 Exercises

1. The inverses are

(a)

⎡
⎣ 1 −2 1

0 1 −2
0 0 1

⎤
⎦

(b)

⎡
⎣−3/2 4 −1/2

0 1 0
−5/2 6 −1/2

⎤
⎦

(c)

⎡
⎣−1/3 0 0

0 −1 0
0 0 1/3

⎤
⎦

3. z1 = 55, z2 = 10, z3 = 85.

5. (a) |A| = 3

(b) |B| = 0

(c) |C| = 60

9.4 Exercises

1. x1 = 6/4, x2 = 4, x3 = −14/4.

3. x1 = 1, x2 = 0, x3 = 5.

5.
Y = (a + e +G)h+ M̄

h[1− b(1− t)]+ lk

C = alk + h[a + (e +G)b(1− t)]+ M̄ lb(1− t)

h[1− b(1− t)]+ lk
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Review Exercises

1. A has a zero determinant and therefore no inverse.

3. |A| = −2.

5. x1 = 11/4, x2 = −10/4, x3 = 1/4.

7. |A|2 = 1, so |A| = √1 = ±1.

9. |A3| = 0 if and only if |A| = 0.

Chapter 10

10.1 Exercises

1. ‖y‖ = √6, ‖w‖ = √6, ‖z‖ = 1, ‖v‖ = 1/
√

3.

3. (a) λ1e1 + λ2e2 + λ3e3 + λ4e4 = 0 implies
λ1 = λ2 = λ3 = λ4.

(b) λ1v1 + λ2v2 + λ3v3 + λ4v4 = 0 implies
λ1 = λ2 = λ3 = λ4.

5. In each case ytw = 0.

7. V describes the positive quadrant, so (a) u+ v will be
nonnegative and therefore in V; (b) if λ < 0, then λu will
not be in V . V is not a vector space.

9. rank(A) = 3, rank(B) = 3.

10.2 Exercises

1. (a) (2− λ)2 − 1 = 0, λ1 = 3, λ2 = 1.

(b) q1 =
[

1/
√

2
1/
√

2

]
, q2 = −q1

(c) QT AQ =
[

3 0
0 1

]
3. (a) PP = X(XT )−1XT X(XT X)−1XT =

X(XT X)−1XT = P

(b) trace(P ) = rank(P ) = 2. There are two unit
eigenvalues and two zero eigenvalues.

5. Let A and B be two orthogonal matrices, then

(AB)T AB = BT AT AB = BT B = I

10.3 Exercises

1. A is positive definite, B is positive definite, C is positive
semidefinite.

3. g(x) = xT Ax =

[ x1 x2 x3 ]

⎡
⎣ 5 −1/2 0
−1/2 3 4

0 4 2

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦

5. Leading principal minors are 3, 2, and −10; therefore it is
indefinite.

Review Exercises

1. (a) Linearly independent, (b) linearly dependent,
(c) linearly independent.

3. (a) Largest possible rank is 7.

(b) Largest possible rank is 7.

5. Any 3 linearly independent vectors in R
3 constitute a

basis, for example:

(a) v1 =
⎡
⎣ 2

0
0

⎤
⎦ , v2 =

⎡
⎣ 1

1
0

⎤
⎦ , v3 =

⎡
⎣ 1

1
1

⎤
⎦

(b) w1 =
⎡
⎣ 3

0
0

⎤
⎦ , w2 =

⎡
⎣ 2

2
0

⎤
⎦ , w3 =

⎡
⎣ 2

2
2

⎤
⎦

7. (a) λ1 = 3, λ2 = −7.

(b) λ1 = 9, λ2 = −5.

9.
Q =

[
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]

and QT AQ = �.

Chapter 11

11.1 Exercises

1. ∂f (x1, x2)

∂x1
= lim

�x1→0

f (x1 +�x1, x2)− f (x1, x2)

�x1

= lim
�x1→0

[3(x1 +�x1)+ 5x2]− [3x1 + 5x2]

�x1

= lim
�x1→0

3�x1

�x1
= 3
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∂f (x1, x2)

∂x2
= lim

�x2→0

f (x1, x2 +�x2)− f (x1, x2)

�x2

= lim
�x2→0

[3x1 + 5(x2 +�x2)]− [3x1 + 5x2]

�x2

= lim
�x2→0

5�x2

�x2
= 5

3. ∂R(x1, x2)

∂x2
=

lim
�x2→0

R(x1, x2 +�x2)− R(x1, x2)

�x2

= lim
�x2→0

[p1x1 + p2(x2 +�x2)]− [p1x1 + p2x2]

�x2

= lim
�x2→0

p2�x2

�x2
= p2

∂R/∂x2 is the rate at which revenue increases per unit
increase in x2. This is equal to the price of good 2 for a
competitive firm.

5. ∂f (x1, x2)

∂x2
= lim

�x2→0

[
x2

1 (x2 +�x2)
]
−

[
x2

1x2

]
�x2

= lim
�x2→0

x2
1�x2

�x2
= x2

1

7. ∂y

∂x1
= 5x

1/3
2 x

1/4
3

x
1/2
1

∂y

∂x2
= 10x

1/2
1 x

1/4
3

x
2/3
2

∂y

∂x3
= 2.5x

1/2
1 x

1/3
2

x
3/4
3

9. ∂y

∂x1
= (4.8)x

−3/2
1

[
0.4x

−1/2
1 + 0.6x

−1/2
2

]−3

∂y

∂x2
= (7.2)x

−3/2
1

[
0.4x

−1/2
1 + 0.6x

−1/2
2

]−3

11.
dY

dt
= 0.1(1+ t)−1/2K0e

0.05t + 0.001(1+ t)1/2K0e
0.05t

11.2 Exercises

1. ∇f =
[

a1

a2

]
∇2F =

[
0 0
0 0

]

3. ∇f =
[

3x2
1x

4
2

4x3
1x

3
2

]
∇2F =

[
6x1x

4
2 12x2

1x
3
2

12x2
1x

3
2 12x3

1x
2
2

]

5. ∇f =
[

2x1

2x2

]
∇2F =

[
2 0
0 2

]
7. ∂y

∂x1
= 25x

−1/2
1 x

2/3
2 > 0

∂y

∂x2
= 100

3
x

1/2
1 x

−1/3
2 > 0

∂2y

∂x2
1

= −25

2
x
−3/2
1 x

2/3
2 < 0

∂2y

∂x2
2

= −100

9
x

1/2
1 x

−4/3
2 < 0

∂2y

∂x1∂x2
= ∂2y

∂x2∂x1
= 50

3
x
−1/2
1 x

−1/3
2 > 0

so the marginal products of both inputs are positive, the
marginal product of each input falls as more is used and
the marginal product of either input is increased by more
use of the other input.

9.
f12 = f21 =

(
6x1 + 3x2

1x3

)
e3x2+x1x3 − 6x2

2/x
2
1

f13 = f31 =
(

3x2
1 + x3

1x3

)
e3x2+x1x3

11.3 Exercises

1. (a) du = 5 dx1 + 3 dx2

(b)
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(c) Since u = 5x1 + 3x2 is a linear function, MRS = 5/3
(we do not need to take the limit as �x1 → 0).

3. dy = 0⇒ x2 dx1 + x1 dx2 = 0, or MRTS=−dx2/dx1 =
x2/x1. The equation of an isoquant is x2 = ȳ/x1 and so
dx2/dx1 = −ȳ/x2

1 < 0 and d2x2/dx2
1 = 2ȳ/x3

1 > 0. So
the isoquants are negatively sloped and strictly convex.

5. (a) dx2/dx1 = −x2/x1

(b) dx2/dx1 = −x2/x1

(c) dx2/dx1 = −x2/x1

7. The MRTS= 3x4
2/7x4

1 gets smaller as one moves along an
isoquant from left to right—as x1 rises and x2 falls. Thus
the isoquants are strictly convex to the origin. To see this
more formally, write the equation for an isoquant in the
form x2 = g(x1) and find dx2/dx1 and d2x2/dx2

1 .

9. u(8, 1) = 82 × 1 = 64, u(4, 4) = 42 × 4 = 64 and
u(2, 16) = 22 × 16 = 64. Thus the points A, B, C lie on
the same indifference curve.

Between B and C, |�x2|/|�x1| = 12/2 = 6, and between
A and B, |�x2|/|�x1| = 4/2 = 2.

11.4 Exercises

1. d2y = 2 dx2
1 + 4 dx1 dx2 + 2 dx2

2 = 2 (dx1 + dx2)
2 ≥ 0

and so f is convex.

3. Find and show that |H1|< 0 and |H2|> 0. Thus H is
negative definite (see theorem 11.9), and so f is strictly
concave.

5. d2y = −1

4
(x1 + x2)

−3/2(dx1 + dx2)
2 ≤ 0 and so f is

concave.

7. If fij = 0 for all i �= j then d2y =∑n

i=1 fii dx2
i . Thus, if

fii ≤ 0, then d2y ≤ 0 (since dx2
i ≥ 0). This proves the

necessity part of the claim. Moreover d2y ≤ 0 for all dxi

only if fii ≤ 0 for all i.

11.5 Exercises

1. (a) f is quasiconcave, since

|H̄ 2| = |H̄ | = −f 2
1 f22 + 2f1f2f12 − f 2

2 f11

= 3

32
x
−1/2
1 x

−5/4
2 > 0

f is also strictly concave because

f11 = −1

4
x
−3/2
1 x

1/4
2 < 0

and

f11f22 > f 2
12 ⇔

3

64
x−1

1 x
−3/2
2 >

1

64
x−1

1 x
−3/2
2

which is the case.

(b) f is quasiconcave, since

|H̄ | = −f 2
1 f22 + 2f1f2f12 − f 2

2 f11 = 18

81
x−1

1 > 0

f is not strictly concave because f11f22 = f 2
12.

However, |H ∗1 | = f11, f22 are both ≤ 0 and
|H ∗2 | = |H | = f11f22 − f 2

12 ≤ 0 and so f is (weakly)
concave.

(c) f is quasiconcave, since

|H̄ | = −f 2
1 f22 + 2f1f2f12 − f 2

2 f11 = 30x4
1x

7
2 > 0

f is neither strictly concave nor (weakly) concave,
since f11f22 < f 2

12.

3. (a) For quasiconcavity

|H̄ 2| = 7

144
x
−5/4
1 x−1

2 x
3/4
3 > 0
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and |H̄ 3| = |H̄ | < 0. We have

|H̄ | = −f1

∣∣∣∣∣∣
f1 f12 f13

f2 f22 f23

f3 f32 f33

∣∣∣∣∣∣+ f2

∣∣∣∣∣∣
f1 f11 f13

f2 f21 f23

f3 f31 f33

∣∣∣∣∣∣
−f3

∣∣∣∣∣∣
f1 f11 f12

f2 f21 f22

f3 f31 f32

∣∣∣∣∣∣
The first of these terms is

−f1
12

576
x
−1/4
1 x

−1/2
2 x

−5/4
3 < 0

and expanding the other two terms shows that
|H̄ | < 0 as required for quasiconcavity.

(b) This function is also quasiconcave, following the
same steps as in part (a).

5. Computing the partial derivatives f1 and f2 gives us

f1 = αAxα−1
1 x

β

2 and f2 = βAxα
1 x

β−1
2

and so

f1x1 + f2x2 =
(
αAxα−1

1 x
β

2

)
x1 +

(
βAxα

1 x
β−1
2

)
x2

= αAxα
1 x

β

2 + βAxα
1 x

β

2

= (α + β)Axα
1 x

β

2

Thus f1x1 + f2x2 = kf (x1, x2), where k = α + β,
which is Euler’s theorem, and if α + β = 1, then
f1x1 + f2x2 = f (x1, x2).

11.6 Exercises

1. �y = f (3, 4)− f (1, 1) = −15− 8 = −23,

dy = 2f1(1, 1)+ 3f2(1, 1) = −10, thus dy > �y.

Review Exercises

1. f1 = αAxα−1
1 x

β

2 , f2 = βAxα
1 x

β−1
2

3. f1= a, f11= 0, f12= 0, f13= 0, f2=βx
β−1
2 x

γ

3 , f21= 0,

f22=β(β − 1)x
β−2
2 x

γ

3 , f23= γβx
β−1
2 x

γ−1
3 , f3= γ x

β

2 x
γ−1
3 ,

f31= 0, f32= γβx
β−1
2 x

γ−1
3 , f33= γ (γ − 1)x

β

2 x
γ−2
3 .

Notice that Young’s theorem applies: f12= f21, f13= f31,
f23= f32.

5. |H1| = f11=−(3/16)x
−7/4
1 x

1/2
2 < 0,

|H2| = (1/32)x
−6/4
1 x−1

2 > 0.

7.

9. (a) MRTS = 0.3x3
2/0.7x3

1 falls as one moves along an
isoquant left to right (i.e., as x1 increases and x2

decreases). Thus isoquants are strictly convex to the
origin.

(b) We need to show that
|H̄ 2| = −f 2

1 f22 + 2f1f2f12 − f 2
2 f11 > 0.

We have

f1 = 0.3x−3
1

[
0.3x−2

1 + 0.7x−2
2

]−3/2
> 0

f2 = 0.7x−3
2

[
0.3x−2

1 + 0.7x−2
2

]−3/2
> 0

Also f11 < 0, f22 < 0, f12 > 0, and so |H̄ 2| > 0. See
Student Solutions Manual for details.

(c) To show that f is concave, we refer to theorem 11.9.
In part (b) it is established that |H ∗1 | = f11, f22 < 0.

We also need to show |H ∗2 | =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ ≥ 0. That is,

f11f22 > f 2
12. Using expressions for f11, f22, f12

from part (b) above and making the substitution
z = �0.3x−2

1 + 0.7x−2
2 � one can determine this

inequality.

(d)

f (sx1, sx2) =
[
0.3(sx1)

−2 + 0.7(sx2)
−2

]−1/2

= [
s−2

(
0.3x−2

1 + 0.7x−2
2

)]−1/2

= s
[
0.3x−2

1 + 0.7x−2
2

]−1/2

= sf (x1, x2)
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(e) f1x1 + f2x2 =
(

0.3x−3
1

[
0.3x−2

1 + 0.7x−2
2

]−3/2
)

x1 +(
0.7x−3

2

[
0.3x−2

1 + 0.7x−2
2

]−3/2
)

x2 simplifying gives

f1x1 + f2x2 =
[
0.3x−2

1 + 0.7x−2
2

]−1/2 = f (x1, x2)

(f) f1

f2
= 0.3

0.7

(
x2

x1

)3

⇒
(

x2

x1

)3

=
(

0.7

0.3

)(
f1

f2

)

⇒
(

x2

x1

)
=

(
0.7

0.3

)1/3 (
f1

f2

)1/3

Taking ln, we get

ln

(
x2

x1

)
= 1

3
ln

(
0.7

0.3

)
+ 1

3
ln

(
f1

f2

)

and so

σ = d ln(x2/x1)

d ln(f1/f2)
= 1

3

Chapter 12

12.1 Exercises

1. (a) (0, 0)

(b) (0, 0)

(c) (17/47, 8/47)

(d) (11/20, 17/20)

(e) (−17/24, 17/32)

(f) (6, 16/9)

(g) (0, 0, 0)

(h) (1/8, 0,−5/2)

(i) (0, 0) and (1, 1)

(j) (0, 0), (
√

2,−√2) and (−√2,
√

2)

3. p1 = 60 : q∗1 = 10, q∗2 = 20, p∗2 = 80
p1 = 10 : q∗1 = 0, q∗2 = 25, p∗2 = 75

5. Cournot: q∗1 = 33.33, q∗2 = 30.83, p∗ = 3.58. Joint-profit
maximization: q∗1 = 48.75, q∗2 = 0, p∗ = 5.13. Profits
increase.

7. q∗1 = 13.64, q∗2 = 9.09, p∗ = 77.27.

12.2 Exercises

1. (a) minimum

(b) saddle point

(c) maximum

(d) maximum

(e) saddle point

(f) maximum

(g) maximum

(h) maximum

(i) (0, 0) : neither an extremum nor saddle point
(1, 1) : minimum

(j) (0, 0) : neither extremum nor saddle point
(
√

2,−√2) : maximum
(−√2,

√
2) : maximum

3. The Hessian matrices

H ∗i =
[−2 −1
−1 −2

]
i = 1, 2

are negative definite.

5. K∗ = L∗ = 4096. The Hessian matrix

H ∗ = 1

8192

[−3 2
2 −4

]

is negative definite.

7. (0, 0) maximizes y. The problem is that |H ∗| = 0.

12.3 Exercises

1. (a) (0, 2)

(b) (17/47, 8/47)

(c) (1, 1)

(d) (0.5, 1)

(e) (0, 1)

(f) (0, 1) and (1, 1)

3. Hint: ∂π/∂qi is independent of qj , i �= j . The explanation
is that any change in output induced by the introduction of
a quota in country 2 leaves the shape of the marginal cost
curve for q1 unaffected. Hence no adjustment in price and
quantity in country 1 is necessary.
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Review Exercises

1. (a) (0, 0) (minimum)

(b) (1, 1) (minimum)

(c) (−50/21,−52/21) (neither an extremum nor a
saddle point)

(d) (0, 0) (neither an extremum nor a saddle point);
(2/3, 2/3) (maximum)

(e) (0, 0) (neither an extremum nor a saddle point);
(4/3, 4/3) (minimum)

(f) (1, 2) (minimum)

(g) (0, 0) (saddle point)

3. (a) $24.8

(b) Coke and hot dogs are complements.

5. (a) q1 = 2
6

7
, q2 = 1

3

7
, p1 = p2 = 7

1

7
.

(b) The solution depends on b as shown in the table
below:

b ≤ 2 2 ≤ b ≤ 5 5
9 5 5

9 ≤ b ≤ 7 1
7

Home market:
quantity 0 (5b − 10)/4 10− b

price — b b

Foreign market:
quantity 2 (10− b)/4 b/5
price 6 5+ 0.5b 10− 0.4b

Chapter 13

13.1 Exercises

1. (a)

(
5

3

√
18

19
,

√
18

19

)
(b) (7.38, 11.07)

(c) (3, 4)

(d) (5, 0), (−5, 0)

3. The first-order conditions of the Lagrangean yield

r1

r2
= a2

a1

y
(1−α1)/α1
1

y
(1−α2)/α2
2

Combined with y
1/α1
1 + y

1/α2
2 = l̄ this gives implicitly the

optimal outputs.

5. x1 = α
m− p2c2

p1
+ (1− α)c1

x2 = (1− α)
m− p1c1

p2
+ αc2

7. Hint: Use the first-order conditions to solve for λ(r, w, ȳ),
K(r, w, ȳ) and L(r, w, ȳ). Insert these into the
Lagrangean and differentiate with respect to ȳ. Consider
that the optimized Lagrangean has the same value as the
cost function for all ȳ.

13.2 Exercises

1. (a)

H ∗ =
⎡
⎣−1.23 0 −4

0 −3.1 −10
−4 −10 0

⎤
⎦ , |H ∗| > 0 (check!)

(b)

H ∗ =
⎡
⎣ 0.203 0.135 −0.339

0.135 0.090 −0.678
−0.339 −0.678 0

⎤
⎦ , |H ∗| < 0 (check!)

(c)

H ∗ =
⎡
⎣−2 −2 −2
−2 −1 −1
−2 −1 0

⎤
⎦ , |H ∗| < 0 (check!)

3. |H ∗| = −r2a2(a2 − 1)l
a2−2
2 − r1a1(a1 − 1)l

a1−2
1 > 0

since (a2 − 1) < 0 and (a1 − 1) < 0.

13.3 Exercises

1. We do this for (a): f (x1, x2) = 2x1 + 3x2 and
g(x1, x2) = 10− 2x2

1 − 5x2
2 . f is quasiconcave because it

has linear level curves, g is quasiconvex because, by
theorem 11.2, |H̄ 2| = −160x1 − 400x2 < 0, for
x1, x2 > 0. Applying theorem 13.4 shows that∣∣∣∣∣∣

L11 L12 g1

L21 L22 g2

g1 g2 0

∣∣∣∣∣∣ = λ
(

120x2
1 + 400x2

2

)
> 0

for λ > 0.
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3. See Student’s Solution Manual for discussion.

5. When there are two variables and one constraint, we have
an application such as the utility-maximization problem
with two goods and a single budget constraint.

Review Exercises

1. The production functions are y1 = f (l1) and y2 = g(l2)

and so at the optimum p1f
′(l1) = p2g

′(l2). The value of
the increase in profit from an increase in the input
available is the value of the Lagrange multiplier at the
optimum.

3. If A is the amount invested, M is the amount of money
available, r is the annual rate of interest, and Y is profit,
then the optimal amount invested is the solution to
Y ′(A∗) = 1+ r and the individual saves if A∗ < M and
borrows if A∗ > M .

Chapter 14

14.1 Exercises

1. The initial equilibrium level of income is Y0 = 5,000. The
final level of income is Y1 = 6,000. The multiplier is 5.

3. At t = $1, profit-maximizing output is q1 = 33. At t = $2

output is q2 = 32
2

3
.

5. (a) dY ∗/dc = 1/(1− c)2 > 0

(b) dp∗

db
= dp∗

dβ
= −a − α + cy

(b + β)2
< 0

dp∗

dc
= y

b + β
> 0

dq∗

db
= − βp∗

b + β
< 0

dq∗

dβ
= bp∗

b + β
> 0

dq∗

dc
= βy

b + β
> 0

(c) dq∗

da
= 1

2(b + c)
> 0

dp∗

da
= b + 2c

2(b + c)
> 0

dq∗

dc
= − q

b + c
< 0

dp∗

dc
= bq

b + c
> 0

7.
r = a − α + cYR − γ YD

b + β

So

dr

dYR

= c

b + β
> 0,

dr

dYD

= − γ

b + β
< 0

YD = a − α − (b + β)r + cYR

γ

and so

dYD

dr
= −β + b

γ
< 0,

dYD

dYR

= c

γ
> 0

If both r and YD are treated as endogenous, then there is a
continuum of (YD, r)—pairs which can produce
equilibrium of the trade balance.

14.2 Exercises

1. ∂Y ∗

∂M
= ER

(1− EY )LR + LY ER

> 0

∂R∗

∂M
= 1− EY

(1− EY )LR + LY ER

< 0

3. (a) ∂x∗1
∂p1
= −λ∗P 2

2

|D| − x∗1
p2

|D|

where |D| = 2p1p2. The income effect is negative,
therefore ∂x∗1 /∂p1 < 0. The utility function is
symmetric.

(b) ∂x∗1
∂p1
= −λ∗p2

2

|D|
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where |D| = 0.25p2
2x
−1.5
1 and the income effect is

zero:

∂x∗2
∂p2
= −λ∗p2

1

|D| − x∗2
0.25x−1.5

1 p2

|D|

The income effect is negative.

5. The Slutsky equation is

∂x∗1
∂p1
= λ∗|D|−1

∣∣∣∣∣∣
u22 u23 −p2

u32 u33 −p3

−p2 −p3 0

∣∣∣∣∣∣
− x∗1 |D|−1

∣∣∣∣∣∣
u12 u13 −p1

u22 u23 −p2

u32 u33 −p3

∣∣∣∣∣∣
where

|D| =

∣∣∣∣∣∣∣∣
u11 u12 u13 −p1

u21 u22 u23 −p2

u31 u32 u33 −p3

−p1 −p2 −p3 0

∣∣∣∣∣∣∣∣
7. ∂Y ∗1 /∂I 0

1 = 3.2, ∂Y ∗2 /∂I 0
1 = 1.2, ∂Y ∗1 /∂I 0

2 = 2,

∂Y ∗2 /∂I 0
2 = 2

14.3 Exercises

1. L1 = L2 = 500, x1 = 2,236, x2 = 1,118, λ = 2.236

3. V (p, w, r) = Ap5w−2.5r−1.5, where

A = 0.2(0.8)4

[(
3

5

)5/8

+
(

5

3

)3/8
]−4

.= 0.0058

5. V (p, m) = αα(1− α)1−αp−α
1 pα−1

2 (m− p1c1 − p2c2)

E(p, u) = α−α(1− α)α−1pα
1 p1−α

2 u+ p1c1 + p2c2

7. Hint: Start from C(ya) = c[ya, k(ya)] and differentiate
this equation at ya with respect to y. Consider the value of
∂c/∂k at ya .

Review Exercises

1. The value functions are as follows. The
comparative-statics effects of a change in the α-variables

can be found by partially differentiating the value function
with respect to the α-variables.

(a) V = 0.88α

(b) V =
(

20

3α1
+ 2

)√
9α1α2

100+ 45α1

(c) V = 0.38
√

α

(d) V = 22.75α

(e) V =
(

α + 3

2

)2

(f) V = 2(
√

α1α2 − α1)− 1

3. (a) The condition for the Lagrange multipliers to be
equal is ∣∣∣∣dx2i

dx1i

∣∣∣∣
du=0,β∈(0,1)

= 1

β

∣∣∣∣dx2i

dx1i

∣∣∣∣
du=0,β=0

5. Defining Hi(r, u) = mi(r, m
∗
2(r, u)), i = 1, 2 where m∗2 is

the minimum income in period 2 necessary to reach utility
level u given income m̄1 and r , the Slutsky equations are

∂mi

∂r
= ∂Hi

∂r
− ∂mi

∂m̄2

(
H1 − m̄1

)
, i = 1, 2

Chapter 15

15.1 Exercises

1. The feasible set contains only the origin and so does not
satisfy the K-T conditions. Slater’s condition is not
satisfied.

5. (a) L1 = 7.83, L2 = 4.17, λ = 8.7

(b) L1 = 10, L2 = 5
1

3
, λ = 0

15.2 Exercises

1. x1 = 32, x2 = 12, λ = 2.3, µ = 7.4

3. y1 = 293.6, y2 = 58.7

l1 = 862.1, l2 = 137.9

x1 = 68.1, x2 = 340.6

The shadow wage rate is λ = 0.29.
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Review Exercises

1. Hint: Solve the Lagrangean

L(x1, x2, λ, µ1, µ2) = x1x2 + λ(m− x1 + wT − wx2)

+µ1(x2 +H − T )+ µ2(T − x2)

Then consider the cases: (i) µ1 = µ2 = 0, (ii) µ1 = 0 and
µ2 ≥ 0, and (iii) µ ≥ 0 and µ2 = 0.

3. The investor will borrow approximately $39.

5. For p1 = 10 and p2 = 1: x∗1 = 4, x∗2 = 40. For p1 = 10
and p2 = 1.60: x∗1 = 0, x∗2 = 50.

Chapter 16

16.1 Exercises

1. (a) x5/5+ x4/2+ 2x2 + 10x + C

(b) 3/5x5/3 + C

(c) 10ex + C

(d) 3ex2 + C

(e) ln(x3 + 2x)+ C

3. (a) F(x) = 2x

(b) F(x) = 3x2 + 5

(c) F(x) = (5/4)x4 + x2 + 6x

(d) F(x) = x2 + 1

5. Q(L) = (20/3)L3/2

7. We have that

d[F(x)]

dx
= f (x),

d[G(x)]

dx
= g(x)

and so

d[F(x)±G(x)]

dx
= f (x)± g(x)

which is the integrand of the expression, and so this
proves the result.

16.2 Exercises

1. (a) area = 2.5

(b) Smin = 2, Smax = 3

(c) Smin = 2.2, Smax = 2.8

(d) Smin = 2.5− 1.5/n, Smax = 2.5+ 1.5/n. It follows
that

lim
n→∞

Smin = lim
n→∞

Smax = 2.5

3. (a) 12.7

(b) 19.2

(c) 6.321

(d) 155.645

(e) 1.386

5. K(5)
.= K0 + 74.53

7. From the definition of the derivative we have

F ′(x) = lim
�x→0

F(x +�x)− F(x)

�x

where

F(x) =
∫ x

a

f (t) dt

F (x +�x) =
∫ x+�x

a

f (t) dt

Using property 1 from section 16.3 gives us

F ′(x) = lim
�x→0

∫ x+�x

x
f (t) dt

�x
= lim

�x→0

f (x)�x

�x
= f (x)

which proves the result.

16.3 Exercises

1. (a) PS(p0) = 5
1

3
(b) PS(p̂) = 18

(c) �PS= 18− 5
1

3
= 12

2

3
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3. (a) CS(p0 = 1) = 74
2

3
(b) CS(p̂ = 4) = 54

(c) �CS=−20
2

3

16.4 Exercises

1. 15

3. (a) 15

(b) +∞
For the demand function in part (b), the �CS cannot be
computed (i.e., it is not a finite value).

5. $25,000

16.5 Exercises

1. (a) (1/11)(x3 + 5x)11 + C

(b) (1/2)
(
ex2 + 4x

)2
+ C

(c) (ex + 3x2)2 + C

(d) −(1/9)(x2 + 2)−9 + C

(e) −2(x3 + 4x)−1 + C

3. (a) x2ex − 2(xex − ex)+ C

(b) x2(1+ x2)1/2 − (2/3)(1+ x2)3/2 + C

(c) (x2/2) ln x − (x2/4)+ C

Review Exercises

1. (a) x3/3+ C

(b) x4/2+ (5/3)x3 + x2/2+ 5x + C

(c)
∑n

i=0 ai[xi+1/(i + 1)]

3. TP(L) = (15/4)L4/3

5. (a) PS(p0) = 3/5

(b) PS(p̂) = 614.4

(c) �CS= 613.8

7. CS= 6

9. (1/5)(x3 + 4x2 + 3)5 + C

Chapter 17
1. (a) first order, (b) linear, (c) autonomous, (d) difference

equation

3. (a) first order, (b) linear, (c) nonautonomous,
(d) difference equation

5. (a) first order, (b) nonlinear, (c) nonautonomous,
(d) difference equation

7. (a) second order, (b) linear, (c) nonautonomous,
(d) difference equation

9. (a) second order, (b) linear, (c) nonautonomous,
(d) difference equation

11. (a) first order, (b) nonlinear, (c) nonautonomous,
(d) differential equation

13. (a) second order, (b) linear, (c) nonautonomous,
(d) differential equation

15. (a) first order, (b) linear, (c) nonautonomous,
(d) differential equation

17. (a) third order, (b) linear, (c) autonomous, (d) differential
equation

19. (a) second order, (b) linear, (c) nonautonomous,
(d) differential equation

Chapter 18

18.1 Exercises

1. (i) a. yt = C2t + 10(1− 2t )

b. yt = (y0 − 10)2t + 10

c. ȳ = 10. Does not converge.

(ii) a. yt = C

b. yt = y0

c. ȳ does not exist.

(iii) a. yt = C(0.5)t + (1− 0.5t )/0.5

b. yt = (y0 − 2)(0.5)t + 2

c. ȳ = 2. Does converge
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3. $1,819.40

5. Kt+1 = Kt(1− δ)+ I ;

Kt = [K0 − (I/δ)](1− δ)t + (I/δ).

7. Yt+1 = BYt + A+ I ;

Yt =
(

Y0 − A+ I

1− B

)
Bt + A+ I

1− B

Since B > 0 is given in the model set up, we add the
restriction B < 1 to ensure convergence.
The immediate impact is ∂Yt/∂I = 1; the long-run impact
is ∂Ȳ /∂I = 1/(1− B).

18.2 Exercises

1. yt = αt/t!

3. yt = y0t!+
∑t−1

k=0 b[t!/(k + 1)!]

5. yt = y0α
t(t−1)/2 + b

∑t−1
k=0

(∏t−1
i=k αi/αk

)
7. yt+1 = (1+ rt )yt + 100

yt =
∏t−1

i=0(1+ ri)100

+ 100
∑t−1

k=0

∏t−1
i=k[(1+ ri)/(1+ rk)]

Review Exercises

1. (i) a. yt = C(0.8)t + 5(1− 0.8t )

b. yt = (y0 − 5)(0.8)t + 5

c. ȳ = 5. Does converge.

(ii) a. yt = C + 10t

b. yt = y0 + 10t

c. ȳ does not exist.

(iii) a. yt = C(−0.1)t + 9(1− (−0.1)t )

b. yt = (y0 − 9)(−0.1)t + 9

c. ȳ = 9. Does converge.

3. (i) a. yt = 2(−1)t + (1− (−1)t )

b. {yt } = {0, 2, 0, 2, 0}
c. y5 = 0

(ii) a. yt = 3t + 0.5(1− 3t )

b. {yt } = {2, 5, 14, 41, 122}, ȳ = 100.

c. y5 = 122

(iii) a. yt = 50(0.5)t + 100(1− 0.5t )

b. {yt } = {75, 87.5, 93.75, 96.88, 98.44}, ȳ = 100.

c. y5 = 98.44

(iv) a. yt = 2(−2/3)t + 0.2[1− (−2/3)t ]

b. {yt } = {−1, 1,−0.33, 0.56,−0.04}, ȳ = 0.2.

c. y5 = −0.04

(v) a. yt = 2+∑t−1
k=0(−1)k

b. {yt } = {3, 2, 3, 2, 3}
c. y5 = 3

(vi) a. yt = 2(−1)t +∑t−1
k=0(−1)t−1

b. {yt } = {−1, 0, 1,−2, 3}
c. y5 = 3

(vii) a. yt = 2(−1)t(t−1)/2 +∑t−1
k=0

[∏t−1
i=k(−1)i/(−1)k

]
b. {yt } = {3,−2,−1, 2, 3}
c. y5 = 3

5.
Qt+1 = θG

G− B
Qt + AG− BF

G− B

Qt = Q0

(
θG

G− B

)t

+ AG− BF

G(1− θ)− B

[
1−

(
θG

G− B

)t]

Q̄ = AG− BF

G(1− θ)− B

The solution converges monotonically to Q̄.

7.
Ut =

(
U0 − α

1− β

)
βt + α

1− β

and Ū =α/(1−β). We add the restriction β < 1

(a) Ut = U0β
t +∑t−1

k=0(α + ek)β
t−k−1

(b) Ut = U0β
t + α(βt−1 + βt−2 + · · · + β + 1)+

e0β
t−1 + e1β

t−2 + · · · + et−1

(c) Ū = 6, U0 = 6, U1 = 9, U2 = 7.5, U3 = 6.75,
U4 = 6.38, U5 = 5.19, U6 = 5.59.

(d) Ū = 6, U0 = 6, U1 = 9, U2 = 8.4, U3 = 7.92,
U4 = 7.54, U5 = 6.23, U6 = 6.18.
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Chapter 19

19.1 Exercises

1. ȳ = 3/4 is unstable; ȳ = 1/4 is locally stable. The phase
diagram shows that if 0 < y0 < 3/4, yt converges to 1/4.
But if y0 > 3/4, yt diverges to infinity.

3. The positive steady state is stable: ȳ = 9/2. The phase
diagram shows that yt converges in oscillations to 9/2
from any positive starting value.

19.2 Exercises

1. ȳ = 1/3 is locally stable. ȳ = 0 is not stable. Starting at
y0 = 2/3, y1 overshoots by going below 1/3. However,
the approach thereafter is monotonic.

3. Et+1 = baEt(1− Et); Ē = 0 and Ē = 1− 1/(ba).
Require 1 < ba < 3 for stability at Ē > 0.

5. ȳ = 0.1 is unstable. ȳ = 0.4 is locally stable. Starting
from y0 = 0.75, y1 = 0.295, y2 = 0.3360, y3 = 0.3662,
y4 = 0.3842.

Review Exercises

1. ȳ= 1/10 is locally stable. ȳ= 0 is unstable. The approach
to 1/10 is monotonic if starting from y0 < 1/10. If
y0 > 1/10, y1 overshoots by going below 1/10 but the
approach is monotonic thereafter.

3. ȳ= 0 and ȳ= (a − 1)/b. dyt+1/dyt = 0 and 2− a,
respectively, so stability is unaffected by b.

5. Pt+1= 2−P 0.5
t ; P̄ = 1 is locally stable. The phase

diagram confirms that Pt converges to 1 from any starting
value.

7. ȳ = 7/12 is locally stable. ȳ = 1/12 is not stable.

Chapter 20

20.1 Exercises

1. (a) yt = C1 + C2(−1)t

(b) yt = C12t + C2(.5)t − 4

(c) yt = (C1 + C2t)(−1)t + 4

(d) yt =
√

18
t
[
C1 cos

(π

4
t
)
+ C2 sin

(π

4
t
)]
+ 2

3. xt+2 − 1

4
xt = A

4B

xt = C1(0.5)t + C2(−0.5)t + A

3B

5.
Yt+2 − α

1−m
Yt+1 + α

1−m
Yt = Ḡ

1−m

The roots are

r1, r2 = −α

2(1−m)
± 1

2

√
α2

(1−m)2
− 4α

(1−m)

For convergence, we require
α

1−m
< 1. The solution is

Yt =
√

α/(1−m)t(C1 cos θt + C2 sin θt)+ Ḡ/(1−m)

where cos θ = √α/(1−m)/2.

20.2 Exercises

1. (a) yt = C12t + C2 − 12t

(b) yt = C12t + C2(0.5)t + 2

5
3t

(c) yt = (C1 + C2t)(−1)t − 1

4
+ t

4

Review Exercises

1. yt = (C1 + C2t)

(
1

3

)t

+ 4

3. yt = C1(2)t + C2

(
1

2

)t

− 10

5. yt = C1 + C2t + t2

7. yt =
√

4/3
t
[
C1 cos

(π

6
t
)
+ C2 sin

(π

6
t
)]
+ 14

9. (1) C1 = −3 C2 = −12

(3) C1 = 7/3 C2 = 26/3

(5) C1 = 1 C2 = −3

(7) C1 = −13 C2 = −2
√

3

11. xt+2 − βαxt = b(1− β); xt = C1
√

βα
t + C2(−

√
βα)t

+ b(1− β)/(1− βα)
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13. yt+2 − (ρ + β)yt+1 + ρβyt = ut+2

15. yt = C1r
t
1 + C2r

t
2, where

r1, r2 = ρ + β

2
± 1

2

√
(ρ + β)2 − 4αβ

Convergence is ensured if both ρ and β are between −1
and 1.

Chapter 21

21.1 Exercises
1. (a) y(t) = et

(b) y(t) = 6e−3t + 4

(c) y(t) = −14e−t/4 + 24

(d) y(t) = 5t + 1

(e) y(t) = 2e6t + 1

3. p(t) = 100e0.05t

5. y(t) = 500e−αt × 106

7. qe = a − g

h− b
; q(t) = [q0 − q̄]eα(b−h)t + q̄, q̄ = qe,

b − h < 0 required for stability.

21.2 Exercises

1. y(t) = e2t

3. y(t) = −1

3
+ Ce−3t−1

5. m(4) = 18 m(6) = 28.

7.
k(t) = β

α
+

(
k0 − β

α

)
eαt2/2

k̄ = β/α is a steady state but k(t) does not converge to it.

Review Exercises

1. E(t) = 2e0.02(t−t0)

3. K(t) = −1500e−0.05t + 2000. K̄ = 2000. K(t) converges
to K̄ because e−0.05t goes to 0 in the limit.

5. K̇(t) = α(K(t)−K∗)

K(t) = (K0 −K∗)eαt +K∗

As t →∞, K(t) converges to the steady state, K∗,

7. k̇(t)

k(t)
= sαt1/2

∴ k(t) = k0e
2/3sαt3/2

Chapter 22

22.1 Exercises

1. The point ȳ= 1/4 is a stable steady state; ȳ= 3/4 is an
unstable steady state.

3. The point ȳ= 0 is a stable steady state and ȳ= 1 is
unstable.

5. The equilibrium price, p̄= 1/2, is a stable steady state.

22.2 Exercises

1. y(t) = (Ce−4t + 3/2)1/2

3. y(t) = (2t3/3+ 2C)1/2

5. y(t) = (−3t2/2+ 3C)1/3

Review Exercises

1. y(t) = 1/(Ce−2t + 3)

3. y(t) = (t2 + 2C)1/2

5. The point q̄ = (p/a)1/2 is a stable steady state.

q̇

q0

(p/a)1/2
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Chapter 23

23.1 Exercises

1. (a) y(t) = 8et + 2

(b) y(t) = 2e−t/2 + 9te−t/2 + 8

(c) y(t) = 25.6et/2 + 14.4e−t/3 − 30

(d) y(t) = 7e−t + 15te−t + 3

3. B < 10

23.2 Exercises

1. y(t) = C1e
t + C2e

−3t − 18e2t /15

3. y(t) = C1e
3t + C2e

2t + 4e−t/2/35

5. y(t) = C1 + C2e
−t/2 + 8t

Review Exercises

1. (a) y(t) = C1e
2t + C2e

−t − 5

(b) y(t) = C1e
−3t + C2te

−3t + 3

(c) y(t) = e−2t sin t + 2

3. ÿ− a11ẏ− a12a21y= 0. The solution is y(t)=C1e
r1t +

C2e
r2t . We require that a11 < 0 and a12a21 < 0 to ensure

convergence.

5. (a) y(t) = C1e
−3t + C2e

−6t + (A− F)/45

(b) y(t) = e−3t [A1 cos(3t)+ A2 sin(3t)]+ (A− F)/45

Chapter 24

24.1 Exercises

1. (a) y(t) = C1e
r1t + C2e

r2t + 20

x(t) = r1C1e
r1t + r2C2e

r2t + 0
where r1, r2 = 1.25± 0.25

√
21.

(b) y(t) = C1e
r1t + C2e

r2t − 1/2

x(t) = r1C1e
r1t + r2C2e

r2t + 0
where r1, r2 = ±

√
2.

(c) y(t) = C1e
r1t + C2e

r2t + 1

x(t) = r1C1e
r1t + r2C2e

r2t + 0
where r1, r2 = −5± 2

√
6.

3. (a) y1(t) = 2e−t − 7e−4t + 3

y2(t) = e−t + 7e−4t − 3

(b) y1(t) = 4.5e7t/2 + 15.3e−5t/2 + 0.2

y2(t) = −9e7t/2 + 10.2e−5t/2 + 0.8

(c) y1(t) = 4 cos(2t)e2t + 2 sin(2t)e2t − 1.5

y2(t) = 4 sin(2t)e2t − 2 cos(2t)e2t + 1

24.2 Exercises

1. (a) unstable node

(b) unstable focus

(c) saddle point

(d) stable node.

3. y1(t) = C1e
5t + C2e

−7t + 14

y2(t) = −C1

3
e5t + C2e

−7t + 7

The saddlepath equation is y2= y1 − 7.

y2

y10

ẏ1 � 0

ẏ2 � 0

24.3 Exercises

1. yt = 20(1.5)t + 10(−1.5)t − 24

xt = 2(1.5)t − 5(−1.5)t + 2

3. yt = (5− 3t)(0.5)t

xt = (8− 6t)(0.5)t
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5. yt = C1(0.25)t + C2(−0.25)t + 48

xt = −C1(0.25)t + C2(−0.25)t + 48
The steady state is stable.

7. yt = y0(0.9)t

xt = y0(0.9)t

Review Exercises

1. (a) y1(t) = C1e
r1t + C2e

r2t + 2

y2(t) = 2
√

3C1e
r1t − 2

√
3C2e

r2t − 16
where r1, r2 = 1/2±√3/2
The steady state is a saddle point.

(b) y1(t) = (C1 + C2t)e
t/2 + 29

y2(t) = 2(C1 + C2t)e
t/2 + 4

3
C2e

t/2 + 44

The steady state is an unstable improper node.

3. If the roots are real-valued, the solutions are

y(t) = C1e
r1t + C2e

r2t + a

β

x(t) = (r1 + α)C1e
r1t + (r2 + α)C2e

r2t + αa

β

where r1, r2 = −α/2±
√

α2 − 4β/2. The stock of
pollution converges to the steady-state size of a/β.

5. The steady-state values are

K̄ =
(

2δ2

α

)1/(α−2)

, Ī = δK̄

The determinant of the coefficient matrix of the linearized
system is

−δ2 + (α − 1)αK̄
α−2

2
< 0

It is negative because δ > 0, 0 < α < 1, and K̄ > 0.
Therefore, the steady state is a saddle point.

7. (a) yt = C2(2)t − 2
xt = C2(2)t − 1

(b) yt = C1(−4)t + C2(−1)t + 0.8

xt = −C1(−4)t + C2

2
(−1)t + 0.7

Chapter 25

25.1 Exercises

1. x(t) = (x0 + a/2b)et − a/2b

3. x(t) = x0e
αt + β2ce−αt

4bα2
+ αβ + β2c

4bα2
(ααT − 2)(1− eαt )

5. λ(t) = C1e
2t + C2e

−2t + 1/4

x(t) = C1

2
e2t − C2

6
e−2t − 5/8

where

C1 = 6x0e
−4T + 3.5e−2T

1+ 3e−4T

C2 = −(0.75e−2T + 6x0 + 15/4)

1+ 3e−4T

7. λ(t) = C1e
r1t + C2e

r2t + bδp

bδ2 + pa

K(t) = r1 − δ

2pa
C1e

r1t + r2 − δ

2pa
C2e

r2t + p

2(bδ2 + pa)

where r1, r2 = ±
√

δ2 + pa/b and

C1 = −2pa(K0 − K̄ )e(r2−r1)T − (r2 − δ)λ̄e−r1T

r2 − δ − (r1 − δ)e(r2−r1)T

C2 = 2pa(K0 − K̄ )+ (r1 − δ)λ̄e−r1T

r2 − δ − (r1 − δ)e(r2−r1)T

25.2 Exercises

1. x(t) = x0e
t , µ(t) = 0

3.
µ(t) = C1e

r1t + C2e
r2t

x(t) = r1 − ρ + 3/2

3/2
C1e

r1t + r2 − ρ + 3/2

3/2
C2e

r2t

where

C1 = −x0e
(r2−r1)T

k2 − k1e(r2−r1)T
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C2 = x0

k2 − k1e(r2−r1)T

ki = ri − ρ + 3/2

3/2
, i = 1, 2

r1, r2 = ρ

2
±

√
ρ2 − 6ρ + 12

2

5.
H(t) = C1

2
er1t + C2

2
er2t + qδ(p − w)

2qδ(p + δ)+ 2pa

where

C1 = −(L0 − L̄)e(r2−r1)T − 2k2H̄ e−r1T

k2 − k1e(r2−r1)T

ki = ri − ρ − δ

2pa
, i = 1, 2

r1, r2 = ρ

2
± 1

2

√
ρ2 + 4δ(ρ + δ)+ 4pa

q

7. The steady state is a saddle point. The optimal trajectory
begins with K(0) = K0 and ends with µ(T )= 0 which
means I (T ) = 0 if c′(0) = 0, and takes an amount of time
exactly equal to T .

25.3 Exercises

1. µ(t) = C1e
r1t + C2e

r2t

x(t) = k1C1e
r1t + k2C2e

r2t

where

ki = ri − ρ + 3/2

3/2
, i = 1, 2

r1, r2 = ρ/2±
√

ρ2 − 6ρ + 12/2

C1 = −x0e
(r2−r1)T + xT e−r1T

k2[1− e(r2−r1)T ]

C2 = x0 − xT e−r1T

k2[1− e(r2−r1)T ]

3.
c∗(t) =

(r − ρ − rα)
(
x0e

rT − xT

)
α[e(r−ρ)T /α − erT ]

5.
m

0
x0 xT x̄

ẋ � 0

ṁ � 0

x

Not all trajectories beginning with x(0) = x0 reach xT . If
T is very small, there may not be any trajectory that goes
as far as xT in that amount of time. As T gets large enough,
we can choose a trajectory that reaches xT and µ(t) = 0.
The larger T gets, the closer we get to the saddle path.

7.
y∗(t) = ρx0e

−ρt

1− e−ρT

25.4 Exercises

1. c∗(t) = rx̄ − (x0 − x̄)(ρ − 2r)e(ρ−r)t

3.
c

ċ � 0

k̇ � 0

k0 k0 k̄

c*(0)
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If k0 < k̄, the solution requires choosing a low value for
consumption, c∗(0), initially, which implies a high level of
saving. As a result the capital stock grows as we follow
the saddle path, with c(t) and k(t) rising as they approach
the steady state.

5. y∗(t) = ρx0e
−ρt

25.5 Exercises

1. Suppose that x0 < xT . Then the solution is to choose a
µ(0) that puts us on a trajectory that moves to the right
(c= 0 and ẋ > 0) until it reaches µ= 1, then switches to
the left (c= cmax and ẋ < 0) until it reaches xT . Many
trajectories do this, but we choose the one that takes an
amount of time equal to T .

3. The phase diagram has the same properties as figure 25.13.
The solution is to follow the saddle path to reach the
steady state in finite time and then stay there forever.

25.6 Exercises

1.
y∗(t) = ρx0/α

1− e−ρT/α
e−ρt/α

where

T = α

ρ
ln

[
1+ ρx0

α

(
c(1− α)

α

)−1/(1−α)
]

3.
y∗(t) = ρx0

α
e−ρt/α

Review Exercises

1. Differentiate H with respect to t to get

Ḣ = Fxẋ + Fyẏ + λ̇G(x, y)+ λ(Gxẋ +Gyẏ)

Collect terms in ẋ and ẏ. Substitute the first-order
condition for y and the equation for µ̇ that must hold
along an optimal path. Finally, substitute ẋ for G(x, y).

3. This is a free-endpoint problem. If T is fixed, the
boundary conditions are µ(T )= 0 and K(0)=K0. The

optimal trajectory starts with K(0)=K0 and ends with
µ(T )= 0 and takes an amount of time exactly equal to T .

5.
y∗(t) = (ρ − r + rα)x0

α
[
1− e−(ρ−r)T /αe−rT

]e−(ρ−r)t/α

7.
µ̇ = ρµ− (P − µ)2

2

Ṙ = −(P − µ)(R + α)

These differential equations yield the phase diagram
shown here:

Ṙ � 0 Ṙ � 0

m 

2a

m-1 ṁ � 0

0 R0 R

P

The phase diagram shows that the saddle path is the
horizontal line which reaches the steady-state point at
R̄ = −α and µ = µ̄1. It is clearly not possible to reach a
negative resource stock.

The optimal trajectory begins at R(0)=R0, finishes at
R(T )= 0 and also satisfies µ(T )=P . This occurs in finite
time, since the point (R= 0, µ=P ) is not a steady state.

9. The steady-state value of x is the positive solution to

x2 + x
[P(ρ − r)− cr]

2rP
− ρc

2rP
= 0

If x0 < x̄, we set h = 0. Then µ(t) falls and x(t) rises until
x̄ is reached. At that point we switch to h = rx̄(1− x̄) and
remain there forever.

If x0 > x̄, we set h = hmax. Then µ(t) rises and x(t)

falls until x̄ is reached. Then we switch to h = rx̄(1− x̄)

and remain there forever.
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Added-worker effect, 286
Additively separable function, 399
Adjoint matrix, 320, 326
Antidifferentiation, 585
Arc elasticity, 168

of demand, 168
Arrows of motion, 741
Associative laws, 26
Asymptote, 108
Autonomous dynamic optimization problem,

887
Autonomous optimization problem, 861
Average-cost curve, 159, 186
Average propensity to consume, 183
Average value function, 158

Bang-bang control, 901–905
Base of a function, 49
Basic variables, 248
Basis, 356
Bernoulli’s equation, 748
Bertrand model, 118
“Best reply” function, 482
“Best response” function, 482
Better set, 54
Bordered Hessian, 454
Boundary conditions of maximum principle,

851
Boundary point, 33, 36
Bounded intervals, 33
Bounded sequence, 65, 82
Bounded set, 37
Budget set, 14
Butterfly effect, 676

Cardinality, 23
Cartesian product, 32
Center, 815
Chain rule, 148, 160, 165, 404
Chaos, 676

Closed economy model, 314–15
Closed interval, 37
Closed set, 37
Closure, 26
Cobb-Douglas production function, 53, 413–14
Cobweb model, 643, 652–54, 696–701
Codomain, 41
Cofactor, 319
Cofactor expansion, 319, 325
Cofactor matrix, 325
Column matrix, 270
Column vector, 270, 347
Commutative laws, 26
Compact interval, 33
Comparative statics, general method, 551
Compensated-demand functions, 513
Compensated-price effect, 514
Complement of a set, 17
Completeness, 28
Completeness property, 11
Composite mapping, 43
Concave function, 51, 175, 178
Concave programming, 567
Concavity, 51
Conformable matrices, 273, 277, 280
Constant elasticity, 195

demand function, 168
of substitution production function, 403, 461

Constant function, derivative of, 147
Constant multiple of a function, derivative of,

147
Constant of integration, 585–96
Constrained problem, 196
Constraint qualification, 571
Consumer behavior, 430
Consumer’s surplus, 612
Consumption function, 244, 464
Consumption set of a good, 14
Continuity, 103
Continuity of a function, 103



954 INDEX

Continuous compounding, 72–76
Continuous function, 105–11
Control variable, 849
Convergent sequence, 65
Convex combination, 34, 37, 46
Convex function, 52, 175–76
Convex set, 38–39
Convexity, 34, 51
Coordinate system, 31
Cost function, 103, 181–82
Cost minimization, 503, 567

short-run, 558
Costate variable, 850
Cournot duopoly, 481–83
Cournot model, 473
Cournot, Augustin, 481
Cramer’s rule, 329
Cross-partial derivative, 411, 437
Cubic cost function, 195
Current-valued Hamiltonian, 862–64

Definite integral, 586, 593
Definitely divergent sequence, 65
Demand, theory, 473
Demand function, 549
Dependent variable, 45
Derivative of a function, 134
Determinant, geometric interpretation of,

315–16
Determinant of a 2× 2 matrix, 305
Determinant of a 3× 3 matrix, 318–20
Diagonal matrix, 271
Difference equation, 634–35

autonomous, 636–37
linear, 637
linear, autonomous, first-order, 643–44

convergence of, 649
general solution to, 647–48
linear, first-order, form of general, 656–57
stationary value, 649–51
steady state of, 649
steady-state equilibrium of, 654
steady-state value of, 649–51

linear, autonomous, second-order, 681–84
characteristic equation of, 684
characteristic roots of, 684
eigenvalues of, 684
homogeneous form of, 682–83

linear, second-order with a variable term,
708–11

nonlinear, 637

nonlinear, autonomous, first-order, 665
global stability of, 670
locally stable equilibrium of, 668

order of, 639
phase diagram of, 666
solution to, 637–38
stable limit cycle, 675–76
steady-state equilibrium of, 666
unstable equilibrium of, 668

Differential, 135
Differential equation, 635

autonomous, 639
linear, 639–40
nonlinear, 639–40
ordinary, 638
order of, 639
partial, 641
solution, 640
linear, autonomous, first-order 715–16

general solution, 720
general solution of homogeneous form, 717
homogeneous form, 715–16
particular solution, 719–20
stable equilibrium of, 727
steady-state value of, 719–20
unstable equilibrium of, 727

linear, autonomous, second-order, 753
characteristic equation of, 755
characteristic roots of, 755
complete solution, 763
convergence of, 768
homogeneous form of, 754
eigenvalues of, 755
particular solution, 762

linear, nonautonomous, first-order, 731
general solution, 731

linear, second-order with a variable term,
772–77

nonlinear, autonomous, first-order, 739
initial-value problem, 740
qualitative analysis of, 740
stability analysis of, 742
steady-state equilibrium point of, 742

nonlinear, nonautonomous, first-order, 748
separable equations, 749–50

nonlinear system of two autonomous
differential equations, 820

global behavior of, 823
phase diagram of, 823–24

Differentiation rules, 147–48
Dimension of a space, 359
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Dimensions of variables, 29
Diminishing marginal productivity, 151

of an input, law of, 400
Discontinuous function, 106
Discount factor, 70
Discount rate, 70
Discounting, 860
Discrete compounding, 76
Discriminating monopoly, 473, 496–98
Disjoint set, 16
Disposable income, 245
Distance between points, 34
Distributive law, 26
Divergent sequence, 65–66
Domain, 41
Dornbusch overshooting model, 816–19
Dual consumer problem, 513
Dynamic optimization problem, general form,

849

ε-neighborhood, 35
Economic dynamics, 633
Eigenvalue problem, 363
Eigenvalue of a matrix, 363
Eigenvector, 364
Elasticity, 127, 167–68
Elasticity of substitution, 460–61
Elements of a set, 11
Empty set, 15
Endogenous variables, 529
Envelope theorem, 554–57
Equality, 28
Equilibrium

in n-markets, 342–43
in three markets, 258
in two markets, 241–43

Equilibrium price, 214–15
Euclidean distance, 34–35, 394
Euclidean distance condition, 367
Euclidean norm, 349
Euler’s theorem, 459
Excess demand, 541
Exogenous variables, 529
Expenditure function, 514, 529
Exponent, 49
Exponential function, 49, 165

derivative of, 148
Exponential rule, 587
Extreme values, 196

Feasible set, 520
Finite-dimensional space, 359

First derivative function, 175
First-order condition, 197
First-order total differential, 417, 434
Fixed-endpoint problem, 872–78, 899
Flow variable, 591
Free endpoint, 849
Free-endpoint problem, 851
Free-terminal-time problems, 909–15
Free variable, 248
Function, 41
Functional, 846
Fundamental theorem of integral calculus,

599
Fundamental equation, 537

Gauss-Jordan elimination, 235, 301
General optimal control problem, 900
Geometric series, 86–87
Giffen good, 551
Global maximum, 197, 486
Gradient vector, 408

Half-open interval, 33
Hamiltonian function, 850

current-valued, 862–64
Harmonic series, 86
Hessian matrix, 410
Homogeneous function, 456–57
Homogeneous system of equations, 260
Hotelling’s location model, 103

Idempotent matrices, 294
Identity matrix, 272
Image, 41
Image set, 42
Implicit function theorem, 420, 422, 552
Implicit differentiation, 418–23
Implicit function, 45
Improper integrals, 613–22
Improper node, 811
Income effect, 550
Inconsistent system of equations, 254
Indefinite integral, 585–86
Independent variable, 45
Indifference curves, 54, 430
Indirect utility function, 529
Industry of a good, 14
Inequality-constrained endpoint problem,

878–81
Infinite time horizon, 886
Inner product, 348
Input-output matrix, 269
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Input-output model, 269–70
Input-requirements matrix, 269, 311
Instantaneous rate of change, 139
Integers, 24
Integrable function, 598
Integral of a constant multiple, 587
Integral of a sum, 586
Integrand, 586
Integrating factor, 731–34
Integration, 585

by parts, 624–26
Intercept term, 45
Interior point, 33, 39
Interior solution, 225
Intermediate-value theorem, 103
Internal rate of return, 93
Intersection of sets, 15
Intervals, 33
Inverse function rule, 162
Inverse matrix, 302
Inverse of a 2× 2 matrix, 303–305
Inverse of a 3× 3 matrix, 320–22, 324–28
Inverse of a function, derivative of, 148
Inverse of an n× n matrix, 326
Investment, theory of, 845
Investment function, 244
Irrational numbers, 25
IS curve, 237, 246, 247, 544–46
IS-LM model, 237, 243, 314–15, 332–35, 529,

543–46
linear, 237–40

IS-LM-BP model, 235
Isocline, 808
Isoquant, 54, 426
Isosectors, 808

Keynesian consumption function, 183
Keynesian model of income determination,

530
Keynesian multiplier, 61
Kronecker delta, 370
Kuhn-Tucker (K-T) conditions, 568
Kuhn-Tucker theorem, 569, 575

Lagrange function, 505–508
Lagrange method, 507–508
Lagrange multiplier, 506–507, 515
Lagrangean, 506–507
Latent root, 364
Latent vector, 364
Leading principal minors, 380

Leading principal submatrix, 380
Left-hand derivative, 141
Left-hand limit of a function, 104
Leontief model, “closed,” 339–41
Leontief model, “open,” 335–38
Level curve, 423–24
Level set, 423
Level set of a function, 53
Limit of a sequence, 62, 65–68
Linear dependence, 253
Linear differential equation system, 781

homogeneous form of, 782
steady-state solution to, 789

Linear function, 44
derivative of, 147

Linear independence, 352
Linear indifference curves, 239
Linear production technology, 311–12
Linear programming, 567
Linear system of equations, 236–37
Linear system of n autonomous differential

equations, 796
Linear system of n-variables, 250–63
Linearly dependent equations, 253
Linearly dependent vectors, 352
Linearly independent equations, 253
Linearly independent vectors, 353
LM curve, 237, 246, 247, 544–45
Local maximum, 197, 485
Logarithmic function, 50, 166

derivative of, 148
Logarithmic rule, 587
Long-run cost curves, 557
Lower sum, 596

Malthusian growth model, 665
Mapping, 42
Marginal analysis, 127
Marginal-cost curve, 159
Marginal cost of production, 137
Marginal product, 116–17

curve, 151–52
function, 117, 393, 399–406, 590

Marginal propensity to consume, 183, 244, 530
Marginal rate of substitution, 432
Marginal rate of technical substitution, 393, 426
Marginal revenue

function, 149, 155
product of labor, 127

Market equilibrium, 214
Markov model, 781
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Matrix, 270
addition, 273
arrays, 254
characteristic equation of, 364, 797
characteristic polynomial, 364
characteristic root of, 364
characteristic vector of, 364
eigenvalues, 797
eigenvector, 797
equality, 271
equation, 275
multiplication, 276
of minors, 325
operations, 273–77
reduced row-echelon form, 255–57
subtraction, 273

Maximum of a function, 197
Maximum principle, 848–58
Mean-value theorem, 190
Method of undetermined coefficients, 708
Minor, 318, 325, 380
Monotonic sequence, 82
Monotonically decreasing sequence, 82
Monotonically increasing sequence, 82
Multimarket equilibrium, 241
Multiproduct monopoly, 473, 479

National debt accumulation, 715
Natural logarithm, 50
Natural numbers, 23
Neoclassical model of economic growth,

745–47
Nonnegative real numbers, 28
Nonbinding constraint, 226
“Nonsatiation” assumption, 572–73
Nonsingular matrix, 302, 360
Normalization, 367
nth derivative test, 217
Null matrix, 272
Null set, 15

Oligopoly, 118
One-to-one correspondence, 42
Open interval, 33
Open set, 36
Optimization, 473
Ordered pair, 31
Orthogonal matrix, 368
Orthogonal vectors, 358
Orthonormal basis, 358
Overdetermined system of equations, 246, 254

Partial derivative, 394–96
Partial differentiation, 393–406
Partition of a closed interval, 593–94
Partition of the universal set, 19
Partitioned matrices, 295
Phase plane, 808
Point elasticity of demand, 168
Point sets, 32
Points of inflection, 199, 401
Points rationing, 503
Pointwise continuity, 103
Positive monotonic transformation, 431
Power function, 49,150

derivative of, 150
Power rule, 586
Power set, 11, 21
Present value, 69
Present-value calculations, 87–93
Price-adjustment model, 764–66
Price competition, 118
Price-regulated monopoly, 227–28
Principal submatrix, 314–15
Producer surplus, 609
Product matrix, 280
Production function, 113, 426–30
Production possibility set, 14
Production set, 14
Profit function, 103, 119
Profit maximization, 209, 481
Profit-maximizing input choice, 490
Proper subset, 13
Proportional consumption function, 183
Pure number, 30

Quadratic form, 378
indefinite, 380
negative definite, 380
negative semidefinite, 380
positive definite, 380
positive semidefinite, 380
statistical distribution of, 347

Quadratic function, 48
Quasiconcave function, 54, 55
Quasiconcavity, 51, 53–54, 451–56
Quasiconvex function, 56
Quasiconvexity, 51, 55, 451–56

Range, 41
Rank of a matrix, 360
Rational numbers, 25
Reaction function, 482



958 INDEX

Real line, 26
Real numbers, 26
Real-valued functions, 42
Rectangular hyperbola, 48
Reduced form, 243
Reduced-form equation, 334
Reflexivity, 28
Relative difference, 18
Remainder formula, 464–67
Remainder term, 186
Returns to scale, 139, 459
Revenue function, 103, 119
Riemann integral, 593
Riemann sum, 594
Right-hand derivative, 141
Right-hand limit of a function, 105
Row matrix, 270
Row operations, 250
Row vector, 270, 347

Saddle path, 805
Saddle point, 474, 568

conditions, 571
equilibrium, 805

Savings, theory of, 845
Scalar, 275
Scalar multiplication, 275, 350–51
Secant, 129
Secant line, 129
Second derivative function, 175
Second-order conditions, 211

for constrained optimization, 516–19
Second-order total differential, 437–38
Sequence, 61–62
Series, 84–85
Set, 11
Shadow price, 227, 498, 858
Shadow wage rate, 559–61
Short-run cost curves, 557
Short-run production function, 179
Singular matrix, 302
Slater’s condition, 569–71
Slope, 45, 150
Slope coefficient, 45
Slutsky equation, 529, 549–51
Solow model, 745–47
Solow, Robert, 745
Spectral decomposition, 366
Square matrix, 271
St. Petersburg Paradox, 61
Stable focus, 814

Stable node, 810
State variable, 849
Stationary value, 200, 474
Step function, 112
Stock variable, 591
Strictly concave function, 51, 178
Strictly convex function, 52, 177
Strictly convex set, 39
Strictly quasiconcave function, 55
Strictly quasiconvex function, 56
Structural equations, 242, 244
Subset, 13
Substitution effect, 550
Substitution rule of integration, 623
Supply, theory of, 473
Supply function, 195
Symmetric matrix, 289
System of two linear difference equations,

general form of, 825

Tangent, 127
Tangent hyperplane, 469
Tangent line, 130
Taylor series (expansion) formula, 185–93, 217,

464–65
Theory of demand, 473
Theory of investment, 845
Theory of savings, 845
Theory of supply, 473
Third derivative function, 175
Time constraint, 576–78
Time-derivative of a variable, 635
Total differential, 135
Total-product function, 151, 192
Total revenue, 155
Total revenue function, 155–57
Trace of a matrix, 295–96
Trajectory, 809
Transitivity, 28
Transpose matrix, 288
Transpose of a matrix, 288
Transversality condition, 851
Triangular matrix, 310
Twice differentiable function, 175

Unbounded intervals, 33
Unbounded sequence, 65
Uncompensated-demand functions, 513
Uncompensated-price effect, 514
Unconstrained problem, 196
Underdetermined system of equations, 247, 254
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Union of sets, 16
Universal set, 14
Unstable focus, 815
Unstable node, 810
Upper sum, 596–97
Utility function, 430

Value function, 555
Vector, 271

addition, 349
diagonalization, 371–72
length, 348–49
space, 355
subtraction, 350

Venn diagram, 15
Vertical asymptote, 108

Walrusian price adjustment model, 727–29, 753
Walrusian price adjustment model with entry,

781
Weierstrass’s theorem, 520
Worse set, 55

Young’s theorem, 411–12, 429
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