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Quantum Field Theory, problem sheet 1

Problem 1: Fourier transform

We define the d-dimensional Fourier transformed function f̃ for a suitable function
f : Rd → C by

f̃(k) =

∫
ddx f(x) e−ik·x.

Show that

λ̃f + g = λf̃ + g̃ (λ ∈ C) ,

∂̃µf = ikµf̃ ,

f(x) =

∫
ddk

(2π)d
f̃(k) eik·x ,∫

ddx f(x)g∗(x) =

∫
ddk

(2π)d
f̃(k)g̃∗(k) .

Hint: Use the following, extremely useful representation of the Dirac delta function:∫
ddk eik·(x−y) = (2π)d δ(d)(x− y) .

Problem 2: The classical free complex scalar field

For a complex-valued scalar field ϕ(x), it is convenient to treat ϕ and its complex
conjugate ϕ∗ as the two independent degrees of freedom (rather than the real and
imaginary parts of ϕ). The action for a free field is

S[ϕ, ϕ∗] =

∫
d4x

(
∂µϕ

∗∂µϕ−m2 |ϕ|2
)
.

1. Show that this action describes two canonically normalised free real scalar
fields φ+ = 1√

2
(ϕ + ϕ∗) and φ− = i√

2
(ϕ − ϕ∗). (“Canonically normalised”

means that the factor in front of the kinetic terms is 1
2
).

2. Derive the equations of motion for ϕ and ϕ∗.

3. Show that the action is invariant under a phase rotation ϕ(x) → eiαϕ(x),
where α is a real constant. Calculate the associated conserved Noether current.

Problem 3: Lagrangian formalism for classical electrodynamics

The action of classical electrodynamics is (in Heaviside-Lorentz units)

S[A] =

∫
d4x

(
−1

4
F µνFµν − AµJ

µ

)
.

Here Aµ = (Φ, A⃗) is the four-potential, Fµν = ∂µAν − ∂νAµ, and Jµ = (ρ, ȷ⃗ ) is a
fixed external current density, with Jµ and all its derivatives vanishing at infinity.



1. Show that the homogeneous Maxwell equations ∂µFκλϵ
µνκλ = 0 are identically

satisfied, by definition of F µν . Show that the equations of motion for Aµ ob-
tained from this action are the inhomogenous Maxwell equations ∂µF

µν = Jν .

2. Consider a gauge transformation Aµ → Aµ+∂µΛ with Λ = Λ(x) some smooth
function. Show that S[A] is invariant under this transformation if Jµ obeys
the continuity equation ∂µJ

µ = 0. Choosing Λ such that ∂µA
µ = 0 (“Lorenz

gauge”), how do the equations of motion simplify?

3. Show that gauge symmetry is broken upon adding a “mass term” 1
2
m2AµA

µ

for the gauge field to the Lagrangian. What are the equations of motion now
for a gauge field Aµ satisfying the Lorenz gauge condition?

4. Calculate the electrostatic potential Φ of a point charge at rest, for m > 0.
To do so, start by writing down its Fourier transform, and then evaluate the
inverse transform using the identity∫ ∞

0

dk
k sin(kx)

k2 +m2
=

π

2
e−mx (x > 0)

which you will prove on Problem Sheet 3. What do you obtain in the physical
limit m → 0?


