
Programmation pour la physique

HAP608P, Faculté des Sciences de Montpellier, 2026
Felix Brümmer (felix.bruemmer@umontpellier.fr)

HAP608P, U Montpellier Programmation pour la physique 1 / 231

1 Introduction

2 Les types de données

3 Les structures de contrôle

4 Les fonctions

5 NumPy et graphisme

6 Recherche des zéros

7 Algèbre linéaire numérique

8 Ajustement

9 Equations différentielles ordinaires

HAP608P, U Montpellier Programmation pour la physique 2 / 231

Introduction

HAP608P, U Montpellier Programmation pour la physique 3 / 231

Dans ce chapitre

Généralités

Programmation scientifique et physique numérique

Aperçu du langage Python

Python

Instructions

HAP608P, U Montpellier Programmation pour la physique 4 / 231

Pourquoi physique numérique ?

L’ordinateur est un outil indispensable en physique :

Solution numérique des équations qui décrivent les systèmes physiques

Simulation des systèmes complexes

Assistance aux calculs analytiques

Pilotage et surveillance des manip

Analyse et traitement des données

Visualisation des résultats, rédaction des publications scientifiques

. . .
HAP608P, U Montpellier Programmation pour la physique 5 / 231

Pourquoi apprendre à programmer ?

Développer des programmes.

Modifier et adapter à ses besoins des programmes et bibliothèques existants.

Connaitre le mode de fonctionnement et les limitations des logiciels que l’on utilise.

HAP608P, U Montpellier Programmation pour la physique 6 / 231

Programmation et intelligence articificelle générative
Q : ChatGPT, Copilot, Gemini, Claude. . . produisent du code vraisemblement
meilleur que le mien. Vaut-il toujours la peine d’apprendre à programmer ?

L’IA est devenu un outil très apprécié en programmation. Mais il ne faut pas y faire
confiance aveuglement.

L’IA produira un ébauche de programme qu’un programmeur humain peut ensuite
perfectionner, pourvu qu’il maitrise bien la programmation.

Il faut avoir appris le calcul mental avant de se servir de la calculatrice

Il faut avoir appris à écrire correctement avant de se servir de l’autocorrection

Il faut avoir appris à programmer avant d’utiliser l’IA

HAP608P, U Montpellier Programmation pour la physique 7 / 231

Qu’est-ce qu’un programme ?

Un programme est un ensemble de commandes qui amènent l’ordinateur à changer l’état
de sa mémoire interne et/ou de ses périphériques.

Typiquement nous commanderons l’ordinateur d’effectuer certaines opérations et
d’afficher ou d’enregistrer les résultats.

Un langage de programmation est un ensemble de règles syntactiques que les commandes
doivent suivre afin qu’elles puissent être traduites en instructions au système
d’exploitation (ou directement au matériel informatique).

Cette traduction aura lieu soit au fur et à mesure lors de l’exécution du programme
(interprétation) soit une seule fois avant l’exécution (compilation).

HAP608P, U Montpellier Programmation pour la physique 8 / 231

Langages de programmation

Afficher "Hello World !" avec Python

print("Hello World!")

// Afficher "Hello World!" avec C++

#include <iostream >
using namespace std;

int main() {
cout << "Hello World!\n";
return 0;

}

! Afficher "Hello World !" avec Fortran 90

PROGRAM HelloWorld
WRITE (*,*) ’Hello World!’

END PROGRAM HelloWorld

HAP608P, U Montpellier Programmation pour la physique 9 / 231

Python

Pourqoui Python ?

très courant : le standard universel en programmation scientifique pour la plupart
des tâches

facile à apprendre, syntaxe simple et intuitive ⇒ on peut se concentrer sur le
programme sans être encombré par les pièges du langage

polyvalent, multiples domaines d’application

beaucoup des bibliothèques incluses ⇒ vaste fonctionnalité

haut niveau d’abstraction (pas de manipulation directe du matériel informatique)

moderne :

programmation orientée objet

programmation fonctionnelle

typage dynamique

gestion automatique de mémoire

. . .
HAP608P, U Montpellier Programmation pour la physique 10 / 231

Quelques domaines de la programmation scientifique
Calcul symbolique / calcul formel

Manipulation automatisée des objets mathématiques au niveau symbolique,
c.à.d. sans forcement une application numérique : Algèbre, analyse, arithmétique. . .

Les systèmes de calcul formel incluent typiquement des langages de programmation
complets pour gérer le flot d’exécution. Pas seulement des “grandes calculatrices” !

Interfaces typiquement interactives de type notebook (calepin / cahier de travail).

Exemples : Mathematica, Maple, MATLAB, SageMath/SymPy

∗ propriétaire ∗ basé sur Python

HAP608P, U Montpellier Programmation pour la physique 11 / 231

Quelques domaines de la programmation scientifique

Calcul numérique à haute performance

Evaluation numérique des fonctions / des intégrales à haute précision, solution
numérique de systèmes d’équations algébriques ou différentielles, optimisation,
simulation de systèmes complexes avec un grand nombre de dégrés de liberté. . .

Domaine classique de l’analyse numérique.

Peut être très demandeur côté puissance de calcul : optimisation de code
(automatisée ou de la part du programmeur) pour exploiter au mieux le matériel
informatique.

On utilise les langages de programmation compilés pour optimisation

Interface : soit éditeur + console avec ses outils (compilateur, lieur, débogueur), soit
environnement de développement intégré

Exemples : FORTRAN, C, C++

HAP608P, U Montpellier Programmation pour la physique 12 / 231

Quelques domaines de la programmation scientifique
Gestion, traitement, analyse et visualisation des données

Traitement automatisé des données expérimentales, observationnelles, numériques. . .

Stockage, tri, analyse statistique, ajustement, représentation graphique (figures et
animations). . .

Besoin surtout de fonctionnalités diverses (polyvalence)

Typiquement domaine des langages de programmation interprétés.

Interface :

soit fichiers de script (créés dans un éditeur)

soit interface interactif (notebook ou ligne de commande)

Exemples de langages de script : script shell de Unix, Perl, R, Julia, Python

Exemples de suites logicielles interactives : MATLAB, Octave, IPython/Jupyter

∗ propriétaire ∗ basé sur Python

HAP608P, U Montpellier Programmation pour la physique 13 / 231

Quelques domaines de la programmation scientifique

Développement des logiciels et outils auxiliaires

Programmation des interfaces, de l’environnement graphique, du web, des bases de
données, du système d’exploitation. . .

Interférences avec d’autres secteurs du développement des logiciels

Domaine des langages universels, interprétés ou compilés selon l’objectif

Interface : typiquement environnement de développement intégré

Exemples : C++, Java, Python

HAP608P, U Montpellier Programmation pour la physique 14 / 231

Deux façons d’exécuter son programme : Compilation et interprétation

1. Programmes compilés :

Le code source est entièrement traduit en forme exécutable par un logiciel auxiliaire, le
compilateur. Un autre logiciel auxiliaire, l’éditeur de liens, peut assister afin d’intégrer les
composantes du programme et les bibliothèques externes dans le fichier exécutable.

Forces :

Optimisation automatique

Rapidité, efficacité augmentée

Manque de transparence : plus facile de cacher les détails du fonctionnement
→ logiciels commerciaux

Faiblesses :

Après toute modification du code source il faut recompiler.

Manque de portabilité du code compilé

Pas de possibilité d’exécuter seulement une partie d’un programme

Manque de transparence : moins facile de savoir les détails du fonctionnement

HAP608P, U Montpellier Programmation pour la physique 15 / 231

Deux façons d’exécuter son programme : Compilation et interprétation

2. Programmes interprétés :

Le code source est traduit ligne par ligne lors de l’exécution par un logiciel auxiliaire,
l’interpréteur.

Forces :

Après une modification du code source on peut immédiatement réexécuter le
nouveau programme.

Les erreurs de programmation sont souvent plus faciles à détecter (débogage)

Portabilité : les seuls fichiers de programme sont celles du code source, qui sont les
mêmes sur tout système

Faiblesses :

Efficacité généralement inférieure à un programme compilé et optimisé.
Mais un programme interprété peut utiliser des librairies compilés pour les parties les
plus lourdes en calcul.

HAP608P, U Montpellier Programmation pour la physique 16 / 231

Deux façons de rédiger son code : Fichier de code source et notebook
1. Fichier de code classique / script :

Créé avec un éditeur de texte, éventuellement partie d’un environnement de
développement intégré.

Format : fichier de texte, ne contient que le code de source (et des commentaires).

Le code est enregistré dans un ou plusieurs fichiers que l’on passe ensuite au
compilateur ou à l’interpréteur.

HAP608P, U Montpellier Programmation pour la physique 17 / 231

Deux façons de rédiger son code : Fichier de code source et notebook
2. Notebook interactif :

Créé avec un éditeur dédié.

Format spécial, peut contenir du texte formaté, des équations, des résultats
intermédiaires, des éléments graphiques. . .ainsi que le code de source

Interpréteur toujours intégré, on peut exécuter le notebook entier ou juste une partie

HAP608P, U Montpellier Programmation pour la physique 18 / 231

Deux paradigmes de programmation : Procédurale et orientée objet

1. Programmation procédurale :

Date des années ’50

Séparation entre les données et les procédures qui les gèrent

Structure des programmes plus linéaire

Mieux adaptée aux petits projets car moins d’overhead.

Exemples de langages bien appropriés à la programmation procédurale :
FORTRAN, C, Python

HAP608P, U Montpellier Programmation pour la physique 19 / 231

Deux paradigmes de programmation : Procédurale et orientée objet

2. Programmation orientée objet :

Date des années ’80

Notion centrale : L’objet qui réunit les données et les méthodes, représentant une
entité abstraite définie par son état et ses capacités

Tout objet est instance d’une classe. Il y a une hiérarchie des classes avec des
propriétés héritables.

Structures plus abstraites.

Programmes moins linéaires, favorisant la modularité

Mieux adaptée aux grands projets de plusieurs contributaires.

Exemples de langages bien adaptés à la programmation orientée objet :
C++, Java, Python

HAP608P, U Montpellier Programmation pour la physique 20 / 231

Python

Le langage Python

est un langage interprété
Plus précisement, son implémentation standard CPython traduira le code source en “bytecode” qui est ensuite interprété.

s’utilise soit en mode de script soit en mode interactif

permet tant la programmation procédurale que la programmation orientée objet.

HAP608P, U Montpellier Programmation pour la physique 21 / 231

Aperçu du cours

Ce cours porte sur des sujets en programmation scientifique et en analyse numérique :

Révision de la programmation procédurale avec Python

Calcul matriciel avec NumPy, graphisme

Méthodes de recherche de zéros

Méthodes de l’algèbre linéaire numérique

Ajustement

Résolution numérique d’équations différentielles ordinaires

Introduction à la programmation orientée objet

Prérequis pour le suivre avec profit :

Connaissances en programmation (UEs d’informatique en L1-L2). . .

. . .en physique (mécanique, électrodynamique, physique quantique). . .

. . .et en mathématiques (nombres complexes, analyse réelle, algèbre linéaire).

Matières à réviser indépendamment si besoin !

HAP608P, U Montpellier Programmation pour la physique 22 / 231

Bibliographie

Python :

B. Cordeau et L. Pointal, ≪ Une introduction à Python 3 ≫,
http://perso.limsi.fr/pointal/python:courspython3

G. Swinnen, ≪ Apprendre à programmer avec Python 3 ≫,
http://www.inforef.be/swi/python.htm

D. Cassagne, ≪ Introduction à Python pour la programmation scientifique ≫,
http://wwww.courspython.com

≪ Python Tutorial ≫, https://docs.python.org/fr/3/tutorial/

beaucoup d’autres sources à trouver en ligne et hors ligne

Algorithmes pour la physique numérique :

M. Newman, ≪ Computational Physics ≫, 2012 (en anglais)

W. H. Press, S. Teukolsky, W. Vetterling et B. Flannery, ≪ Numerical Recipes ≫, 3e
édition 2007, Cambridge University Press (en anglais et C++)

HAP608P, U Montpellier Programmation pour la physique 23 / 231

Matériel du cours sur l’espace pédagogique

Vous trouverez sur Moodle :

Ces notes de cours

Tous les exemples de code apparaissant ci-dedans : répertoire Exemples/

Toutes les fiches d’exercices

HAP608P, U Montpellier Programmation pour la physique 24 / 231

Exécuter son code avec Python

Rédiger votre code de source avec l’aide de votre éditeur de texte préféré

L’enrégistrer dans un fichier, par exemple exemple.py

Exécuter le script avec l’interpréteur Python :
Entrer python3 exemple.py par la console (dans le dossier où se trouve le fichier)

Raccourci : Des environnements de développement intégrés (comme spyder) permettent
de rédiger le code et de l’exécuter directement par un clic dans l’interface graphique.

Il faudra pourtant que vos programmes soient autonomes (ne dépendent pas des
fonctionnalités de spyder pour générer ses résultats) !

HAP608P, U Montpellier Programmation pour la physique 25 / 231

Un premier programme en Python

#!/usr/bin/python3

Ecrit la phrase "Hello World!" sur l’écran

print("Hello World!")

Dans cet exemple il y a

des commentaires : précédés par un croisillon #. Tout ce qu’y fait suite dans la
même ligne du fichier est ignoré par l’interpréteur.
On utilise des commentaires surtout pour rendre son code mieux lisible par les
programmeurs (soi-même inclus). Il ne faut pas en économiser !

une ligne blanche, ignorée par l’interpréteur

une instruction : un appel de la fonction print() qui fait apparâıtre sur l’écran la
châıne de caractères entre les parenthèses

Exercice

Exécuter ce script (HelloWorld.py)

HAP608P, U Montpellier Programmation pour la physique 26 / 231

Format et interprétation du code source

Chaque ligne du script (à part les lignes blanches et celles ne contenant que des
commentaires) correspond à une instruction.

L’interpréteur exécutera toutes les instructions, une par une.

Si l’interpréteur tombe sur une instruction fautive, le programme s’arrête avec un
message d’erreur. Ce message peut être très utile pour identifier et réparer le
problème.

pint("Oups!") # erreur: la bonne fonction s’appelle print ()

#

Le programme va s’arr êter avec le message

"NameError: name ’pint’ is not defined"

qui indique que ’pint’ n’est pas défini

Sinon, le programme termine dès qu’il n’y a plus d’instructions à exécuter.

HAP608P, U Montpellier Programmation pour la physique 27 / 231

Exceptions de la règle d’une instruction par ligne

Une instruction incluant une parenthèse (ou un crochet [ou une accolade { non
fermé se poursuit sur les lignes suivantes jusqu’à la clôture.

print("Malheureusement ce texte est trop long pour une "

"seule ligne de code source , mais on veut cependant "

"l’afficher dans une seule ligne sur l’écran.")

Une ligne terminée par un anti-slash \ se poursuit sur la ligne suivante.

Une ligne peut contenir plusieurs instructions séparées par des point-virgules ;

print("Flying"); print("Circus")

Pour améliorer la lisibilité du code il est fortement conseillé de mettre une instruction par
ligne et une ligne par instruction si possible.

HAP608P, U Montpellier Programmation pour la physique 28 / 231

Le Zen de Python

import this

Préfère :
la beauté à la laideur,
l’explicite à l’implicite,
le simple au complexe
et le complexe au compliqué,
le déroulé à l’imbriqué,
l’aéré au compact.

Prends en compte la lisibilité.
Les cas particuliers ne le sont jamais assez pour violer les règles.
Mais, à la pureté, privilégie l’aspect pratique.
[. . .]

→ T. Peters, 1999

HAP608P, U Montpellier Programmation pour la physique 29 / 231

Les instructions : Erreurs fréquentes

À la différence de Python 2, print() est une fonction en Python 3 — il faut
impérativement mettre les parenthèses ()

print("ça marche") # ça marche

print "ça ne marche pas" # ça ne marche pas

Attention à l’orthographe. En particulier, Python est sensible à la casse (distingue
entre les minuscules et les majuscules).

Si un programme ne fonctionne pas : Examiner le message d’erreur. Il contient des
informations utiles sur l’endroit où le programme s’est interrompu (la ligne du code
source) et sur le genre d’erreur qui s’est produite.

Contrairement à beaucoup d’autres langages de programmation, des espaces blancs
au début d’une ligne (indentation) ont une signification syntactique. Il ne faut pas
commencer une ligne avec des espaces blancs
(sauf si l’objectif est de créer un bloc ; voir le chapitre “Structures de contrôle”).

HAP608P, U Montpellier Programmation pour la physique 30 / 231

Les types de données

HAP608P, U Montpellier Programmation pour la physique 31 / 231

Dans ce chapitre

Python

Variables et affectations

Types de données numériques

Opérations arithmétiques

Types de données séquentiels

Châınes de caractères

Saisie du clavier

HAP608P, U Montpellier Programmation pour la physique 32 / 231

Variables, types et affectations

Voici quelques exemples d’affectations qui attribuent des valeurs aux variables :

phrase = "Mais non!"

nombre = 25

somme = nombre + 5 # la valeur de ’somme’ devient 30

nombre3 = 50.0

ma_liste = ["lundi", "mardi", "mercredi"]

Ici phrase, nombre, somme, nombre3 et ma_liste désignent des variables.

Toute variable est d’un type qui est déterminé par le format utilisé dans l’affectation.
Ici ’phrase’ est du type str (châıne des caractéres), ’nombre’ et ’somme’ sont du type
int (nombres entiers), ’nombre3’ est du type float (nombre flottant) et ’ma_liste’
est du type list (liste d’objets).

Une fois initialisée, la variable peut être utilisée, cf. l’usage de ’nombre’ dans la
troisième ligne ci-dessus. En revanche, une commande comme

a = b

produit une erreur si la variable b n’a pas été donnée une valeur avant.

HAP608P, U Montpellier Programmation pour la physique 33 / 231

Les variables

Chaque variable est caractérisée par

son nom (identifiant)

son type

sa valeur

Exemple :

ma_variable = 25

Ici l’identifiant est ma_variable.
Un identifiant se compose des lettres A-Z et a - z, du tiret bas _ et des chiffres 0 - 9
(sauf comme premier caractère).

Le type est déterminé automatiquement à l’initialisation. Ici le type est int (nombre
entier). Si l’initialisation était ma_variable = 25.0 le type serait float (nombre
flottant). Si c’était ma_variable = "vingt-cinq" le type serait str (châıne des
caractères).

La valeur est 25, bien sûr.

HAP608P, U Montpellier Programmation pour la physique 34 / 231

Les identifiants
Presque toute combinaison de lettres minuscules et majuscules, chiffres (sauf comme
premier caractère) et tirets bas _ est valable comme identifiant.

Exception : les mots clé du langage Python qui ont une signification syntactique
spéciale, soient and, as, assert, break, class, continue, def, del, elif,

else, except, False, finally, for, from, global, if, import, in, is,

lambda, None, nonlocal, not, or, pass, raise, return, True, try,

while, with, yield.

Deuxième exception : Il y a certaines fonctions natives dont les noms ne doivent pas
être utilisés comme identifiants, par exemple abs, complex, float, input, int,

list, max, min, print, str (même si c’est techniquement possible, ça va
probablement créer des bogues).

Troisième exception : l’identifiant ’self’ ainsi que tout identifiant qui commence
avec un ou deux tirets bas (par exemple, ’__init__’) ont une signification spéciale
en programmation orientée objet. Il ne faut pas les utiliser hors leur propre contexte.

Conseil : Utiliser les identifiants parlants pour les variables importantes pour
améliorer la lisibilité du code.

x = "2 place Victor Hugo , 75000 Paris , France" # pas id éal

adresse = "34 rue Jean Moulin , 30000 Nı̂mes , France" # mieux

HAP608P, U Montpellier Programmation pour la physique 35 / 231

Les types de données numériques

type description
int nombre entier sans limite de taille théorique

float nombre flottant, précision 64 bit soit ≈ 15 décimales
complex nombre flottant complexe correspondant à deux float

HAP608P, U Montpellier Programmation pour la physique 36 / 231

Les types de données numériques : int

Une variable du type int (nombre entier) se crée par une affectation sans point
décimal comme

x = 25

y = -100

Elle est également le résultat d’un appel à la fonction de conversion int() :

x = 3.8 # x est du type float avec valeur 3.8

y = int(x) # y est du type int avec valeur 3

z = int("42") # z est du type int avec valeur 42 et a été

construit partant de la cha ı̂ne de

caract ères "42"

HAP608P, U Montpellier Programmation pour la physique 37 / 231

Les types de données numériques : float

Une variable du type float (qui représente un nombre à virgule flottante avec valeur
absolue entre environ 10−300 et 10300 ou 0, précision numérique ≈ 15 décimales) se
crée par une affectation soit avec point décimal soit en notation scientifique :

gamma = -5.77

c = 3E8

hbar = 1.05E-34

Ici la notation ’3E8’ signifie 3× 108 et la notation ’1.05E-34’ signifie 1.05× 10−34.

Le résultat d’un appel à la fonction de conversion float() est également un nombre
flottant :

x = 3 # x est entier avec valeur 3

y = float(x) # y est un float avec valeur 3.0

HAP608P, U Montpellier Programmation pour la physique 38 / 231

Les types de données numériques : complex

Une variable du type complex représente un nombre flottant complexe, c.à.d. un
float pour la partie réelle et un pour la partie imaginaire. Notation en Python avec
’J’ pour l’unité imaginaire i =

√
−1 :

c = 3 + 4J # le nombre complexe 3 + 4 i

d = -2.5 + 5.E-3J # le nombre complexe -2.5 + 0.005 i

i = 1J # le nombre complexe i

La conversion se fait avec la fonction de conversion complex() :

s = "3 + 2J" # une cha ı̂ne de caract ères

z = complex(s) # un nombre complexe

re_z = 1.7 # un float

im_z = -2.8 # un deuxi ème float

z = complex(re_z , im_z) # le nombre complexe 1.7 - 2.8 i

HAP608P, U Montpellier Programmation pour la physique 39 / 231

Les types de données numériques : complex

Pour obtenir la partie réelle ou imaginaire d’un nombre complexe :

z = -1 + 2.3J

re_z = z.real # donne -1.0

im_z = z.imag # donne 2.3

HAP608P, U Montpellier Programmation pour la physique 40 / 231

Les opérations arithmétiques

Python connâıt les opérations arithmétiques suivants :

+ addition
- soustraction
* multiplication
/ division réelle résultat est toujours float ou complex

// division entière résultat est int si les deux arguments sont int,
float ou complex sinon

% reste de la division entière résultat est int si les deux arguments sont int,
float ou complex sinon

** puissance

Exemples :

x = 5 + 3 # x est du type int avec valeur 8

y = x / 5 # y est du type float la valeur 1.6

z = x // 5 # z est du type int avec valeur 1

yy = 8 % 5.0 # yy = 3.0 est du type float

xx = 2 ** 3 # xx = 8

zz = 16 * 4 - 2 * (10 + 1) # zz = 42

HAP608P, U Montpellier Programmation pour la physique 41 / 231

Les affectations

Une affectation procède en deux pas :

l’expression à droite du signe = est évaluée
(calculée en fonction de l’état de la mémoire à cet instant)

le résultat est affecté à la variable à gauche du signe =

Cela permet des instructions comme

x = 0 # x est du type int , sa valeur est 0

x = x + 1 # augmenter x de 1

(la 2nde ligne ne doit pas être confondue avec une équation algébrique !)
ou même

x = y = 7 # x et y sont du type int avec valeur 7

HAP608P, U Montpellier Programmation pour la physique 42 / 231

Les affectations

Combinaison des opérations arithmétiques avec des affectations, pour changer la valeur
d’une variable :

x = 2 # x est initialement du type int avec valeur 2

x += 1 # ajouter 1 à x: x devient 3

(é quivalent: x = x + 1)

x *= 3 # multiplier x par 3: x devient 9

(é quivalent: x = x * 3)

x -= 1 # soustraire 1 de x: x devient 8

(é quivalent: x = x - 1)

x /= 4 # diviser x par 4: x devient 2.0

(é quivalent: x = x / 4)

HAP608P, U Montpellier Programmation pour la physique 43 / 231

Les types séquentiels (“sequence types”)

type description
str châıne de caractères
list liste muable d’objets
tuple collection immuable d’objets

HAP608P, U Montpellier Programmation pour la physique 44 / 231

Les châınes de caractères

Le type de données str (“string” en anglais) représente des châınes de caractères.

Toute partie du code source entre apostrophes ’ ou guillemets " est interprétée
comme un str.

phrase = "Mon tailleur est riche."

titre_du_cours = ’Programmation pour la physique (HAP608P)’

On peut convertir toute variable numérique en str avec la fonction str(). On peut
convertir un str en int seulement s’il se compose des chiffres. Similairement, on
peut convertir un str en float seulement si les caractères représentent un nombre
flottant en notation Python.

nombre = "23"

print(nombre + nombre) # affiche "2323"

print(int(nombre) + int(nombre)) # affiche "46"

HAP608P, U Montpellier Programmation pour la physique 45 / 231

Les opérations sur des châınes de caractères
Avec l’opérateur + on peut composer les châınes de caractères :

age = 12

phrase = "J’ai " + str(age) + " ans."

print(phrase) # affiche "J’ai 12 ans."

Avec [] on accède aux caractères séparés. Attention : l’indice du premier caractère est
toujours 0 !

print(phrase [0]) # affiche "J"

print(phrase [3]) # affiche "i"

L’opérateur [a:b] retourne la sous-châıne de caractères à partir de l’indice a (inclu)
jusqu’à l’indice b (exclu). Si on ne spécifie pas a et/ou b, on obtient la sous-châıne à
partir du début et/ou jusqu’au bout.

print(phrase [1:3]) # affiche "’a"

print(phrase [5:]) # affiche "12 ans"

print(phrase [:6]) # affiche "J’ai 1"

HAP608P, U Montpellier Programmation pour la physique 46 / 231

Le caractère d’échappement dans une châıne de caractères

Dans une châıne des caractères, la barre oblique inversée ou anti-slash \ a une rôle
spéciale : c’est le caractère d’échappement.

Dans un string littéral entouré des apostrophes ’, les caractères " sont traités comme
des caractères réguliers et vice-versa. Si on veut inclure le caractère ’ (ou ") dans un
string littéral qui commence et finit avec ’ (ou "), il doit être précédé par un \ :

print("J’ai 12 ans")

print(’J\’ai 12 ans’) # même ré sultat

print("\"Inf âme !\" s’exclama Bastien.")

La séquence \n dans une châıne des caractères force la fin de la ligne.

Pour explicitement écrire un anti-slash il faut en inclure deux :

print("Voici un anti -slash: \\")

(On rappelle que, hors d’une châıne des caractères, le anti-slash indique par contre la continuation d’une

instruction sur la ligne suivante)

HAP608P, U Montpellier Programmation pour la physique 47 / 231

Faire entrer une châıne de caractères par le clavier

Pour récupérer des données du clavier on se sert de la fonction input() :

s = input("Entrez quelque chose:")

print("Vous avez entr é \"" + s + "\"")

input() retourne toujours un str. Si on veut lire des données numériques du clavier, il
faut les convertir :

s = input("Entrez un nombre entier:")

i = int(s)

print(s + " fois " + s + " font " + str(i**2))

HAP608P, U Montpellier Programmation pour la physique 48 / 231

Les types séquentiels : list

Le type list représente une liste d’objets. Les listes sont délimitées par des crochets [].
Leurs éléments sont séparés par des virgules ,.

premiers_nombres_premiers = [2, 3, 5, 7, 11]

hiver = ["dé cembre", "janvier", "fé vrier"]

Les éléments d’une liste ne sont pas forcement du même type. Il peut y avoir des
doublons.

liste_bizarre = [2, 2.0, 2 + 0J, "deux"]

liste_nulle = [0, 0, 0]

On peut même construire des listes dont les éléments sont des listes :

matrice3x2 = [[1, 2, 3], [6, 5, 4]]

HAP608P, U Montpellier Programmation pour la physique 49 / 231

Opérations sur les listes
Comme pour les str :
Avec l’opérateur + on peut fusionner des listes :

mois = ["Janvier", "Fé vrier", "Mars"]

mois2 = ["Avril", "Mai"]

print(mois + mois2)

affiche "[’Janvier ’, ’Fé vrier ’, ’Mars ’, ’Avril ’, ’Mai ’]"

Avec [] on accède aux éléments individuels. Attention : l’indice du premier est toujours 0 !

print(mois [1]) # affiche "Fé vrier"

print(mois [0][0]) # premi ère lettre du premier élé ment = "J"

L’opérateur [a:b] retourne la sous-liste entre l’indice a (inclu) et l’indice b (exclu). Si on
ne spécifie pas a (ou b), on obtient la sous-liste à partir du début (ou jusqu’au bout).

print(mois [:1]) # affiche "[’Janvier ’]"

print(mois2 [:]) # affiche une copie de toute la liste mois2

HAP608P, U Montpellier Programmation pour la physique 50 / 231

Les types séquentiels : tuple

Le type tuple représente une collection d’objets similaire à une liste, mais avec une
différence importante : Les tuple sont immuables, ils ne peuvent pas être modifiés après
initialisation. En pratique ils sont moins utilisés que les listes.

Un tuple est délimité par des parenthèses () avec les éléments séparés par des virgules
,. On peut supprimer les parenthèses si pas d’ambigüıté. Exemples :

t = (1, 2, 3) # cr ée un tuple

u = 1, 2, 3 # le même tuple

print(u[2]) # affiche "3"

a, b = 1, 2 # affecte les valeurs 1 à a et 2 à b

HAP608P, U Montpellier Programmation pour la physique 51 / 231

Les variables et les types de données : Erreurs fréquentes

Orthographe : ma_var, Ma_var et mavar sont trois identifiants différents.

Effectuer une opération, puis ne rien faire avec le résultat ne sert à rien :

nombre = 5

nombre * 3 # calculer 5 * 3 et oublier le ré sultat

Penser à convertir ses variables au bon type :

age = input("Quel est ton age ? ") # input() retourne un str

naissance = 2025 - age # erreur: faut convertir age en int

L’indice du premier objet dans une séquence est 0. Si la séquence contient n objets,
l’indice du dernier est alors n− 1.

ma_liste = ["un", "deux", "trois"]

print(ma_liste [1]) # affiche "deux"

print(ma_liste [3]) # erreur: pas de 4-ème élé ment

HAP608P, U Montpellier Programmation pour la physique 52 / 231

Les variables et les types de données : Erreurs fréquentes

Notation scientifique : le E signifie “×10 à la puissance de”. Alors pour convertir des
nanomètres en mètres :

nm = 10E-9 # faux

nm = 10**-9 # pas strictement faux mais à é viter

nm = 1E-9 # correct

Python utilise le point décimal, pas la virgule décimale. Alors

pi = 3.14 # pi est un float de valeur 3.14

pas_pi = 3,14 # pas_pi est un tuple de deux entiers 3 et 14

HAP608P, U Montpellier Programmation pour la physique 53 / 231

Les structures de contrôle

HAP608P, U Montpellier Programmation pour la physique 54 / 231

Dans ce chapitre

Python

Les blocs d’instructions

La structure conditionnelle

Les expressions logiques

La priorité des opérateurs

La boucle while

La boucle for

HAP608P, U Montpellier Programmation pour la physique 55 / 231

Les blocs d’instructions

Un bloc est une séquence de lignes d’instructions distinguées par leur indentation
(décalage par rapport aux lignes qui les entourent). Une ou plusieurs lignes consécutives
décalées au même niveau constituent un bloc. Un bloc est toujours précédé par une ligne
d’en-tête qui se termine avec un deux-points :

...

LIGNE EN -TETE: # introduit un bloc

INSTRUCTION 1

INSTRUCTION 2

...

DERNIERE INSTRUCTION # ici le bloc se termine

INSTRUCTION SUIVANTE # <- ne fait plus partie du bloc

...

Les structures de controle permettent d’exécuter toutes les instructions d’un bloc
plusieurs fois, ou de les exécuter seulement en fonction d’une condition.

HAP608P, U Montpellier Programmation pour la physique 56 / 231

Les blocs d’instructions

Un bloc peut en contenir d’autres :

...

LIGNE EN -TETE: # ici commence un bloc

INSTRUCTION

INSTRUCTION

...

LIGNE EN-TETE: # ici commence un sous -bloc

INSTRUCTION

INSTRUCTION

...

DERNIERE_INSTRUCTION # fin du sous -bloc

INSTRUCTION # le 1er bloc se poursuit

...

DERNIERE INSTRUCTION # fin du 1er bloc

INSTRUCTION HORS BLOC

...

De même pour les sous-sous-blocs etc.

HAP608P, U Montpellier Programmation pour la physique 57 / 231

La structure conditionnelle

La structure conditionnelle (ou structure if) prend la forme suivante :

if CONDITION: # ligne d’en-tête caract éris ée par mot cl é if

INSTRUCTION 1 # bloc à ex é cuter si CONDITION vérifi ée,

INSTRUCTION 2 # à sauter sinon

...

DERNIERE INSTRUCTION # ici le bloc se termine

CONTINUER_ICI # en tout cas le programme arrive ici

...

Ici CONDITION est une expression logique de valeur True (vrai) ou False (faux).

Le bloc d’instructions suivant est exécuté seulement si CONDITION est True.

Sinon le programme saute le bloc et continue directement à CONTINUER_ICI.

Les deux-points : dans la ligne d’en-tête font partie de la structure et ne doivent pas
être omis

HAP608P, U Montpellier Programmation pour la physique 58 / 231

La structure conditionnelle

Exemples :

i = int(input("Entrez un nombre entier: "))

if i < 0: # ligne d’en-tête

i = -i # un bloc qui ne contient qu’une seule ligne

print("La valeur absolue de ce nombre est", i)

print("Tu veux savoir un sécret?")

reponse1 = input("Entre ’o’ si oui: ")

if reponse1 == "o":

reponse2 = input("T’es sur? Entre ’o’ si oui:")

if reponse2 == "o":

print("Le voici:\nLa cuill ère n’existe pas.")

HAP608P, U Montpellier Programmation pour la physique 59 / 231

Parenthèse : Les expressions logiques

Le type de données bool

Ce type de données représente la valeur booléenne d’une expression logique. Les variables
du type bool ne peuvent prendre que deux valeurs différentes : True (vrai) ou False

(faux).

On peut définir des variables booléennes de la même manière que des variables
numériques, par exemple

flag = True

...

if flag:

FAIRE_QUELQUE_CHOSE

...

Par la fonction bool() on peut convertir un str en bool (s’il s’aĝıt de la châıne de
caractères "True" ou "False"). De même pour une variable numérique (dans ce cas le
résultat est False si le nombre est 0 et True sinon). (On peut même directement utiliser la valeur

numérique correspondante dans une structure conditionnelle au lieu de la condition – normalement déconseillé car peu lisible.)

HAP608P, U Montpellier Programmation pour la physique 60 / 231

Les expressions logiques

Les opérateurs de comparaison :

expression True si . . .
x == y x est égal à y

x != y x est différent de y

x > y x est strictement supérieur à y

x < y x est strictement inférieur à y

x >= y x est supérieur ou égal à y

x <= y x est inférieur ou égal à y

Les opérateurs logiques : soient a et b du type bool (True ou False)

not a True si a est False et vice-versa
a and b True si a est True et b est True, False autrement
a or b True si au moins un de a ou b est True, False autrement

HAP608P, U Montpellier Programmation pour la physique 61 / 231

Les opérateurs in et is

L’opérateur in
teste si un objet est contenu dans une séquence :

animaux = ["giraffe", "gazelle", "gu épard"]

"giraffe" in animaux # True

"gorille" in animaux # False

"elle" in "gazelle" # True

L’opérateur is
teste si deux identifiants désignent le même objet (il ne teste pas l’égalité des valeurs) :

x = [1, 2] # une liste avec deux élé ments

y = [1, 2] # une autre liste avec les mêmes élé ments

z = x # z est un autre nom pour x

x is y # False

x is z # True

Cet opérateur peut parfois donner des résultats inattendus sur des variables
immuables (types numériques, str. . .). On comprendra plus tard pourquoi.

HAP608P, U Montpellier Programmation pour la physique 62 / 231

Fin de parenthèse : La priorité des opérateurs

En ordre ascendant :

or

and

not

comparaisons : ==, !=, >, <, >=, <=, in, is

addition et soustraction : +, -

multiplication et division : *, /, //, %

signe : +x, -x

exponentiation : **

Ainsi l’expression “not x > y or - x ** y + 2 * y == 0” est interprétée

(¬(x > y)) ∨ (((−(xy)) + (2× y)) = 0)

On peut toujours insérer des parenthèses pour changer les priorités :
“(-x) ** (y + 2) * y == 0” devient

((−x)y+2 × y) = 0

HAP608P, U Montpellier Programmation pour la physique 63 / 231

La structure conditionnelle augmentée

Ajouter un bloc else (“sinon”), à exécuter si la condition CONDITION est False :

if CONDITION:

INSTRUCTION # si CONDITION est True

...

else:

AUTRE_INSTRUCTION # si CONDITION est False

...

CONTINUER_ICI # en tout cas on reprend ici

Exemple :

i = int(input("Entrez un nombre entier:"))

if i % 2 == 0:

print(i, "est pair")

else:

print(i, "est impair")

HAP608P, U Montpellier Programmation pour la physique 64 / 231

La structure conditionnelle augmentée

Ajouter des blocs elif (“sinon, si”) :

if CONDITION1:

INSTRUCTION # si CONDITION1 est True

...

elif CONDITION2:

AUTRE_INSTRUCTION # si CONDITION1 est False

... # mais CONDITION2 est True

elif CONDITION3: # etc.

ENCORE_AUTRE_INSTRUCTION

...

else:

DERNIERE_CHANCE # si toutes CONDITIONs sont False

...

...

HAP608P, U Montpellier Programmation pour la physique 65 / 231

La boucle while

La boucle while (“tant que”) sert à répéter les instructions d’un bloc en fonction d’une
condition :

while CONDITION:

FAIRE_QUELQUE_CHOSE # ce bloc est répété tant que

... # CONDITION est True

CONTINUER_ICI # Apr ès on arrive ici

...

Exemple :

i = 1

while i % 2 != 0: # condition remplie si i est impair

i = int(input("Entrez un nombre pair:"))

print("La moiti é de", i, "est", i // 2)

HAP608P, U Montpellier Programmation pour la physique 66 / 231

La boucle while
Deuxième exemple : Conjecture de Collatz.

On définit la suite (nk) par un n0 ∈ N et la règle de récurrence

nk+1 =

{ nk
2
, nk pair

3nk + 1 , nk impair

Conjecture : Pour toute valeur de départ n0 on va ultérieurement tomber sur ni = 1
(et puis ni+1 = 4, ni+2 = 2, ni+3 = 1 etc.)

En supposant que la conjecture soit vraie (sinon : boucle infinie, le programme ne
terminera jamais !), on calcule le nombre minimal d’itérations i pour tomber sur ni = 1,
avec n0 fourni par l’utilisateur :

n = int(input("Entrez n0: "))

i = 0 # compteur d’it é rations

while n != 1: # ne termine que si la conjecture est vraie !

if n % 2 == 0: # n pair:

n /= 2 # remplacer n <- n/2

else: # n impair:

n *= 3 # remplacer n <- 3n + 1

n += 1

i += 1

print("Tomb é sur 1 apr ès", i, "it é rations.")

HAP608P, U Montpellier Programmation pour la physique 67 / 231

La boucle for
La boucle for sert à répéter les instructions d’un bloc une fois pour chaque élément
d’une séquence :

for VAR in SEQUENCE:

FAIRE_QUELQUE_CHOSE # bloc repet é pour tous VAR

... #

CONTINUER_ICI # apr ès on arrive ici

...

L’utilisation du mot clé in est différente dans ce contexte qu’avant.

Exemple :

somme = 0

for x in [2, 3, 5, 7, 11, 13, 17, 19]:

print("On ajoute", x)

somme = somme + x

print("La somme des nombres premiers < 20 est", somme)

HAP608P, U Montpellier Programmation pour la physique 68 / 231

La boucle for
La fonction range() retourne un n-uplet des nombres entiers :

range(y) retourne (0,1,2,..., y-1)

range(x, y) retourne (x,x+1,x+2,..., y-1)

range(x, y, s) retourne (x,x+s,x+2s,..., x+ns) avec x+ns<y maximal

Application typique de range() dans une boucle for :

for x in range(ITER):

FAIRE_QUELQUE_CHOSE # bloc repet é ITER fois

...

Exemple :

print("Les carr és et les cubes des nombres entre 0 et 9:")

for x in range (10):

print(x**2)

print(x**3)

print("\n")

HAP608P, U Montpellier Programmation pour la physique 69 / 231

La boucle for

Avec un str, une boucle for se répète pour tous les caractères :

for caractere in "jeu":

print(caractere + caractere) # "jj

ee

uu"

Boucles for imbriquées :

animaux = ["Poisson", "Tortue", "Cachalot"]

compteur = 0

for animal in animaux:

for caractere in animal:

if caractere == "o":

compteur += 1

print("Le nombre des ’o’ dans la liste est", compteur)

HAP608P, U Montpellier Programmation pour la physique 70 / 231

Commandes utiles pour les boucles
La commande break abandonne une boucle. Exemple :

while True: # toujours vrai

i = int(input("Entrer un nombre pair: "))

if i % 2 == 0: # vrai si i est pair

print(i, "/ 2 = ", i / 2)

break

Après une boucle, la commande else marque un bloc à exécuter seulement si la boucle
n’a pas été abandonnée avec break mais s’est terminée régulièrement. Exemple :

binaire = input("Entrez un nombre binaire (des 0 et 1): ")

somme = 0

for i in range(len(binaire)): # len(x) = longueur du str x

bit = int(binaire[i])

if bit == 0 or bit == 1:

somme += bit * 2**(len(binaire) - i - 1)

else:

print("Expression non valide")

break

else:

print("Ce nombre en notation dé cimale est", somme)

HAP608P, U Montpellier Programmation pour la physique 71 / 231

Commandes utiles pour les boucles

Dans une boucle, la commande continue saute les instructions restants et continue avec
la prochaine itération

s = input("Entrer une phrase: ")

for caractere in s:

if caractere == "e":

continue # sauter l’instruction suivante

print(caractere) # é crire toutes les lettres sauf les ’e’

HAP608P, U Montpellier Programmation pour la physique 72 / 231

Exemple : Boucles et structures conditionnelles
Un parachutiste est en chute libre pendant 20 s. Après il ouvre son parachute et il descend
à une vitesse constante de 2 m/s. On s’intéresse à sa position en fonction du temps.

g = 9.81 # acc élé ration gravitationnelle en m/s^2

v = 2.0 # vitesse apr ès ouverture du parachute en m/s

h0 = float(input("Hauteur initiale en m: "))

for t in range(0, 22, 2): # on affiche h tous les 2 s

h = h0 - 0.5 * g * t**2 # nouvelle hauteur

if h <= 0: # ça fait mal !

break

print("A t =", t, "s, la hauteur est de", h, "m.")

else:

print("Le parachute s’ouvre.")

while h > 0:

print("A t = ", t, "s, la hauteur est de", h, "m.")

t += 10 # on affiche la hauteur tous les 10 s

h -= 10 * v

print("Atterrissage!")

HAP608P, U Montpellier Programmation pour la physique 73 / 231

Les structures de contrôle : Erreurs fréquentes

Deux-points oubliés après if, while, for etc.

Pour l’indentation des blocs :
Ne jamais mélanger les éspaces et les tabulatrices.
Conseillé : eviter les tabulatrices, indentation 4 espaces par niveau

L’opérateur d’affectation est =, l’opérateur de comparaison est ==
Donc a == b est une expression logique (qui vaut True si les valeurs de a et b sont
égales, et False sinon) tant que a = b est une affectation qui attribue à a la valeur
de b.

cont = int(input("Combien y a-t-il de continents?"))

if cont = 6: # Erreur ! Ici il faut utiliser ==

print("C’est correct.")

Boucles infinies : assurez-vous que vos boucles se terminent !

x_n , r, i = 0.5, 3.6, 1

while i < 100:

print(x_n)

x_n = r * x_n * (1 - x_n)

print("Ca y est !") # Jamais atteint car i ne change pas

HAP608P, U Montpellier Programmation pour la physique 74 / 231

Les fonctions

HAP608P, U Montpellier Programmation pour la physique 75 / 231

Dans ce chapitre

Python

Les définitions de fonctions

La commande return

La portée des identifiants

Les fonctions anonymes et la commande lambda

Les modules et la bibliothèque standard

Le module math

Généralités

La récursivité

Les fonctions d’ordre supérieur

HAP608P, U Montpellier Programmation pour la physique 76 / 231

Exemples de fonctions

On a déjà employé quelques fonctions intégrées dans Python comme print(), input()
et range(). En général, une fonction est une partie du programme qui

peut être appelée avec un ou plusieurs paramètre(s) dit argument(s)

effectue une tâche en fonction de ces arguments

peut retourner une valeur

Par exemple, comme nous l’avons vu, la fonction range() prend entre 1 et 3 arguments
et retourne un n-uplet de nombres entiers.

Autres exemples :

fonction argument(s) tâche valeur de retour

print() plusieurs affichage sur l’écran aucune
input() un str affiche son argument, le str entré

attend saisie du clavier par le clavier
int() un nombre ou str qui convertit son le résultat de

peut être converti en int argument en int la conversion
len() une séquence compte le nombre le nombre d’élements

d’élements dans la séquence

HAP608P, U Montpellier Programmation pour la physique 77 / 231

Nouvelles fonctions

Voici un exemple d’une définition d’une fonction originale cube() :

def cube(x): # un argument , nomm é x

return x ** 3 # retourne x au cube

Les instructions dans les définitions de fonction sont exécutées lorsque l’interpreteur
tombe sur un appel de fonction :

a = cube (5) # appelle la fonction cube() avec l’argument

x=5, affecte la valeur de retour à a

print(a) # affiche "125"

HAP608P, U Montpellier Programmation pour la physique 78 / 231

Définir une fonction
La syntaxe pour une définition de fonction est

def NOM_DE_FONCTION(ARG1 , ARG2 , ...):

INSTRUCTION1

INSTRUCTION2

...

Pour les noms des fonctions, les mêmes règles que pour les autres identifiants
s’appliquent.

Une fonction peut prendre un nombre quelconque d’arguments ARG1, ARG2 etc.
(mais il est également possible de définir des fonctions sans arguments)

Une fois la fonction définie, on l’appelle avec la commande
NOM_DE_FONCTION(VAL1, VAL2, ...)

où VAL1, VAL2 etc. sont les valeurs à substituer pour les arguments ARG1, ARG2
etc. pendant cet appel.
La valeur de l’expression d’appel devient la valeur de retour de la fonction.

Le bloc suivant la ligne d’en-tête, caractérisé par le mot clé def, contient les
instructions à exécuter à chaque appel. Comme tous les blocs, il peut contenir des
sous-blocs gérés par des structures de contrôle, des appels de fonctions. . .

HAP608P, U Montpellier Programmation pour la physique 79 / 231

Valeurs par défaut des arguments
Il est possible de spécifier des valeurs par défaut pour tous les arguments ou une partie :

def NOM_DE_FONCTION(ARG1=DEF1 , ARG2=DEF2 ,...):

...

Si une valeur par défaut par un des arguments est spécifiée dans la définition, il n’est plus
nécessaire de fournir cet argument lors de l’appel.

Exemple : Calculer une approximation de la fonction zêta de Riemann,

ζ(z) = lim
N →∞

N∑
k=1

1

kz

def zeta(z, N=100):

somme = 0.

for k in range(1, N+1): # k entre 1 et N inclus

somme += 1/k**z # ajouter le k-ème terme à la somme

return somme

Possibles appels pour calculer ζ(2) : zeta(2) ou zeta(2, 1000) ou zeta(2, N=500)

HAP608P, U Montpellier Programmation pour la physique 80 / 231

Valeurs par défaut des arguments

Si plusieurs arguments ont des valeurs par défaut : Dans un appel, les arguments non
nommés doivent toujours précédér les arguments nommés, pour éviter toute ambigüıté.

Exemple :

x n’a pas de valeur par défaut. z=1 et y=1 par défaut.

def multiplier(x, y=1, z=1):

return x * y * z

Exemples d’appels de cette fonction :

multiplier(25, 5, 2)

multiplier(-2, 16) (en utilisant la valeur par défaut du dernier argument z)

multiplier(3) (dans ce cas les valeurs par défaut pour z et y sont utilisées)

multiplier(17, z=5) (ce qui pose x = 17, z = 5, et y = 1 sa valeur par défaut)

Par contre, multiplier(z=5, 17) est un appel invalide (un argument nommé ne peut
pas précéder un argument non nommé)

HAP608P, U Montpellier Programmation pour la physique 81 / 231

La commande return

La commande return peut figurer à un ou plusieurs endroits dans la définition d’une
fonction. Dès que l’interpréteur la rencontre, il abandonne la fonction et continue
l’exécution du programme à l’endroit de l’appel.
L’expression derrière le return est retourné et devient la valeur de l’expression d’appel de
fonction.

def heaviside(r): # la dé finition d’une fonction

if r >= 0:

return 1.0

else:

return 0.0

print("Theta (1) =", heaviside (1)) # un premier appel

print("Theta(-1) =", heaviside (-1)) # un deuxi ème appel

Si une fonction n’est pas terminée par un return, ou pour un return sans paramètre, la
fonction retourne l’objet abstrait None (“aucun”).

HAP608P, U Montpellier Programmation pour la physique 82 / 231

Parenthèse : Coding style

Récommandations pour créer du code plus lisible :

Adopter des conventions cohérentes et les suivre partout.

Ne pas économiser sur les commentaires.

Une instruction par ligne. Eviter les point-virgules.

4 espaces par niveau d’indentation. Pas de tabulatrice.

Pas d’espace juste après des parenthèses, crochets et accolades ([{
ni juste avant)]}
ni juste avant des virgules, point-virgules et deux-points

un seul espace après , ; :

un seul espace à chaque coté des opérateurs d’affectation et de comparaison

Désignations parlantes pour les identifiants importants.
Préférer des minuscules et éventuellement des chiffres et tirets bas _ pour les
variables et fonctions.

Préférer des majuscules pour les classes en programmation orientée objet.

HAP608P, U Montpellier Programmation pour la physique 83 / 231

Deuxième parenthèse : La portée des identifiants

La portée lexicale d’un nom de variable est la portion du code où la variable peut être
adressée par ce nom. Pour une affectation à l’intérieur d’une définition de fonction, la
portée de l’identifiant est limitée à cette même définition de fonction. Donc le code

def f():

x = 0 # dé finir la variable x dans la port ée de f()

f()

print(x) # erreur: x pas défini dans cette port ée

produira une erreur. Par contre, si une variable est définie hors d’une définition de
fonction, on peut tout de même l’utiliser à son intérieur :

x = 0

def f():

print(x) # variable x dé finie hors de f()

f() # mais pas de probl ème

HAP608P, U Montpellier Programmation pour la physique 84 / 231

La portée des identifiants

On peut définir une variable, dans la portée locale d’une fonction, avec le le même nom
qu’une variable déjà définie hors de la fonction. Cela crée une nouvelle variable, et dans la
portée locale, le nom se réfère toujours à cette nouvelle variable locale. Exemple :

x = 0 # dé finit variable globale x

def f():

x = 1 # dé finit variable locale x

print(x) # "1" (priorit é de la variable locale)

f()

print(x) # "0" (hors port ée de la variable locale)

Des affectations aux variables globales dans une définition de fonction sont toutefois
possibles (mais déconseillées si évitable), avec la commande global :

x = 0

def f():

global x # x correspondra à la variable globale x

x = 1 # <- ne cr ée pas une nouvelle variable locale

f()

print(x) # "1"

HAP608P, U Montpellier Programmation pour la physique 85 / 231

Récursivité

Une fonction peut s’appeler elle-même :

def factorielle(n): # calcule n! recursivement

if n < 0: # factorielle pas dé finie

print("Erreur: factorielle pas dé finie.")

return

elif n == 0: # 0! = 1

return 1

else:

return n * factorielle(n - 1) # n! = n (n-1)!

On parle de la récursivité.

La récursivité permet parfois des codes courts et élégants.

Mais un algorithme récursif est souvent moins rapide qu’un algorithme équivalent
itératif (qui se sert des boucles).

Le nombre d’appels récursives imbriqués est limité à 1000 par défaut.

Faire attention d’inclure une condition de terminaison appropriée !

HAP608P, U Montpellier Programmation pour la physique 86 / 231

Fonctions comme arguments

On peut passer des fonctions comme arguments aux autres fonctions :

def iterer(f, depart , n_fois): # f(f(...f(depart)))

resultat = depart

for n in range(n_fois):

resultat = f(resultat)

return resultat

def logistique(x, r = 3.6):

return r * x * (1 - x)

print(iterer(logistique , 0.5, 100)) # 0.43172

Dans l’appel de iterer() le nom de la fonction f (logistique en ce cas) est traité
comme un nom d’une variable.

HAP608P, U Montpellier Programmation pour la physique 87 / 231

Fonctions comme valeurs de retour

Une fonction peut renvoyer une autre :

def racine(n): # renvoie la fonction "racine n-ième"

def f(x):

return x**(1/n)

return f

g = racine (5) # dé finit la fonction "racine 5-ième"

print(g(32)) # affiche "2.0"

print(racine (3) (27)) # affiche "3.0"

Une fonction qui soit prend une autre fonction comme argument soit renvoye une
fonction est dite une fonction d’ordre supérieur. Les fonctions d’ordre supérieur sont
particulièrement importantes dans la programmation fonctionnelle.

HAP608P, U Montpellier Programmation pour la physique 88 / 231

Fonctions lambda, fonctions anonymes

La commande lambda permet des très courtes definitions de fonctions dans une seule
ligne. Au lieu de

def carre(x):

return x ** 2

on écrit

carre = lambda x: x ** 2

Plus généralement,

lambda ARGUMENTS: EXPRESSION

définit une fonction avec arguments ARGUMENTS qui retourne EXPRESSION.

HAP608P, U Montpellier Programmation pour la physique 89 / 231

Fonctions lambda : Exemples

Fonctions d’ordre supérieur :

def racine(n): # renvoie la fonction "racine n-ième"

return lambda x: x**(1/n)

print(racine (4) (81)) # affiche "3.0"

Listes de fonctions :

une fonction , sa dériv ée et sa dériv ée seconde

fonctions = [lambda x: 3*x**2 - 2*x,

lambda x: 6*x - 2,

lambda x: 6]

HAP608P, U Montpellier Programmation pour la physique 90 / 231

Les modules
La commande import sert à importer du code d’un autre fichier ou d’une bibliothèque.

Exemple : On enregistre dans un fichier puissances.py les définitions de fonctions

fichier puissances.py

def carre(x):

return x**2

def cube(x):

return x**3

On peut ensuite les utiliser dans un autre projet

fichier nouveauprojet.py (dans le même ré pertoire)

import puissances

print(puissances.carre (42))

sans recopier tout. Ou, si on veut seulement importer la fonction carre() :

from puissances import carre

print(carre (42)) # ici: pas ’puissances.carre (42)’

HAP608P, U Montpellier Programmation pour la physique 91 / 231

La bibliothèque standard
Python est fourni avec un grande bibliothèque standard de fonctions pré-definies pour
toutes sortes de tâches. Entre autres il y a des modules pour

la manipulation des châınes de caractères

la manipulation des tableaux de données (NumPy, voir plus tard)

les fonctions mathématiques (math et cmath, voir ci-dessous, ainsi que NumPy)

les nombres rationnelles

l’accès aux fichiers et leur manipulation

les interfaces aux bases de données

la programmation fonctionnelle

la compression et la sauvegarde des données

les services cryptographiques

les interactions avec le système d’exploitation

les services de réseau

les services internet et les pages web

multimédia

les interfaces graphiques

. . .

HAP608P, U Montpellier Programmation pour la physique 92 / 231

La bibliothèque standard : les modules math et cmath

Fonctions et constantes utiles du module math de la bibliothèque standard :

import math # pour importer toutes les fonctionnalit és

du module math

Les constantes e et pi

math.e # 2.71828...

math.pi # 3.14159...

Les fonctions trigonom é triques

math.sin (1.2)

math.cos(math.pi)

math.tan (0)

Les fonctions trigonom é triques inverses

math.asin (1/2)

math.acos (0.5)

math.atan(-1)

HAP608P, U Montpellier Programmation pour la physique 93 / 231

La bibliothèque standard : les modules math et cmath

Fonctions et constantes utiles du module math de la bibliothèque standard :

import math

Les fonctions exponentielle et logarithme

math.exp (-3.0)

math.log (1.0) # logarithme naturel

math.log(4, 2) # logarithme de 4 de base 2

La racine carr ée

math.sqrt (2.0) # é quivalent: 2**(1/2)

Toutes ces fonctions prennent des arguments du type float (ou des arguments int,
que Python convertit automatiquement en float).

Si on veut les appliquer aux nombres complexes, il faut importer le module cmath au
lieu de math.

HAP608P, U Montpellier Programmation pour la physique 94 / 231

Quelques autres modules de la bibliothèque standard

Le module time met à disposition des fonctions pour accéder à l’horloge interne de
l’ordinateur. Exemples :

import time

Retourner un str repr é sentant la date et l’horaire

pr é sente

time.asctime ()

Retourner un float qui repr é sente le nombre de secondes

depuis 1 janvier 1970 0:00:00 UTC

time.time()

Arr êter l’ex é cution du programme pendant 7.5 secondes

time.sleep (7.5)

HAP608P, U Montpellier Programmation pour la physique 95 / 231

Quelques autres modules de la bibliothèque standard

Le module random contient des fonctions pour générer des nombres (pseudo-)aléatoires.
Exemples :

import random

Retourner un nombre pseudoal é atoire entre 0 et 1

avec une distribution uniforme

random.random ()

Retourner un élé ment al é atoire d’une liste

L = [1, 19, 23, 47]

random.choice(L)

Retourner un entier al é atoire entre a (inclu)

et b (exclu) avec une distribution uniforme

a, b = 10, 20

random.randint(a, b) # un entier al é atoire entre 10 et 19

HAP608P, U Montpellier Programmation pour la physique 96 / 231

Les fonctions : Erreurs fréquentes
Deux-points oubliés après la commande def

Il faut qu’une fonction soit définie avant qu’on l’appelle.

x, y = ma_fonction () # erreur: ma_fonction

pas encore definie ici !

def ma_fonction (): # dé finition trop tardive

a = int(input("Entrez un nombre entier:"))

return a // 5, a % 5

Pour les fonctions importées :
attention à la différence entre import et from . . . import :

from math import sqrt

x = sqrt (10) # pas math.sqrt()

import cmath

y = cmath.exp (1.0J) # pas exp()

Une définition de fonction sans qu’elle soit appelée n’est pas un programme complet !

HAP608P, U Montpellier Programmation pour la physique 97 / 231

NumPy et graphisme

HAP608P, U Montpellier Programmation pour la physique 98 / 231

Dans ce chapitre

Python

La bibliothèque numpy

Manipulation des tableaux

Calcul matriciel

Importer et exporter des données

Graphisme avec matplotlib

HAP608P, U Montpellier Programmation pour la physique 99 / 231

Les tableaux

On rappelle les caractéristiques d’une liste Python :

contient plusieurs éléments qui ne sont pas forcement du même type

taille variable, peut changer (p.ex. avec l’opérateur +=)

1-dimensionnel = 1 seul indice (sauf si les éléments sont eux-mêmes des listes)

La bibliothèque NumPy se base sur un objet similaire, le tableau (anglais : “array”)

Caractéristiques d’un tableau NumPy :

contient plusieurs éléments qui sont forcement du même type, toujours un type
numérique (int, float, complex . . .)

taille fixe

n-dimensionnel : vecteurs, matrices, tenseurs. . .

optimisé pour le calcul numérique : plus rapide que les listes, beaucoup de
fonctionnalité pour la manipulation efficace.

HAP608P, U Montpellier Programmation pour la physique 100 / 231

Créer un tableau

Exemples :

import numpy as np # pour importer toute la biblioth èque

sigma3 = np.array ([[1, 0], [0, -1]]) # matrice [[1 0]

[0 -1]]

s = np.array([1, 0], dtype=complex) # vect. [1.+0.j 0.+0.j]

nul2x3 = np.zeros ((2, 3)) # [[0. 0. 0.]

[0. 0. 0.]]

id3x3 = np.identity(3, dtype=int) # [[1 0 0]

[0 1 0]

[0 0 1]]

rng = np.arange (0.8, 2, 0.4) # [0.8 1.2 1.6]

HAP608P, U Montpellier Programmation pour la physique 101 / 231

Créer un tableau
Un tableau peut se créer

en spécifiant les éléments dans une liste (ou liste de listes. . .) avec la fonction
numpy.array()

en spécifiant les dimensions par un tuple (x, y, z...) des int

numpy.zeros() crée un tableau de zéros

numpy.ones() crée un tableau de uns

numpy.empty() crée un tableau sans initialiser les éléments

cas spécial : la matrice d’identité n× n, numpy.identity(n) ou numpy.eye(n)

tableaux 1-dimensionnels de nombres uniformement espacés :

numpy.arange(debut, fin, pas) : comme range mais avec des float

numpy.linspace(debut, fin, N) : N nombres entre debut et fin (inclus)

import numpy as np

tab1 = np.arange(0, 1.2, 0.2) # [0. 0.2 0.4 0.6 0.8 1.0]

tab2 = np.linspace(0, 1, 6) # [0. 0.2 0.4 0.6 0.8 1.0]

Si besoin, spécifier le type de données des éléments avec l’argument dtype

HAP608P, U Montpellier Programmation pour la physique 102 / 231

Opérations arithmétiques sur les tableaux

Les opérations arithmétiques + = * / // % entre les tableaux numpy sont définies par
élément :

import numpy as np

sigma3 = np.array ([[1, 0], [0, -1]], dtype=float)

print(sigma3 * np.array ([[2. , 3.] [4., 5.]])) # [[2. 0.]

[0. -5.]]

Si les dimensions ne se correspondent pas, une opération arithmétique impliquant deux
tableaux produira une erreur.

En revanche, il est toujours possible de ajouter/soustraire/multiplier/diviser par un
scalaire :

print(sigma3 - 1) # [[0. -1.]

[-1. -2.]]

HAP608P, U Montpellier Programmation pour la physique 103 / 231

Indicer et couper un tableau

On peut indicer un tableau avec plusieurs indices selon ses dimensions :

sigma3 = np.array ([[1, 0], [0, -1]], dtype=float)

print(sigma3[1, 1]) # " -1.0"

(avec la généralisation évidente pour des tableaux d-dimensionnels).

On peut aussi le couper comme une liste Python :

tous les élé ments de la deuxi ème colonne:

print(sigma3[:, 1]) # "[0. -1.]"

tous les élé ments de la premi ère ligne

print(sigma3[0, :]) # "[1. 0.]"

HAP608P, U Montpellier Programmation pour la physique 104 / 231

Couper des tableaux (array slicing), méthodes avancées

Créer le vecteur (0, 1, 2, . . . , 11) et le réarranger dans une matrice 3× 4 :

a = np.reshape(np.array(range (12)), (3, 4))

print(a) # [[0 1 2 3]

[4 5 6 7]

[8 9 10 11]]

Avec l’opérateur [i:j:k] on accède aux éléments

à partir de l’indice i (par défaut : début)

jusqu’à l’indice j exclu (par défaut : fin)

en sélectionnant un élément sur k (par défaut : 1)

Exemples :

print(a[1, ::2]) # [4 6] (2 ème ligne , colonnes paires)

print(a[1, 1::2]) # [5 7] (2 ème ligne , colonnes impaires)

print(a[0, 1:3]) # [1 2] (1 ère ligne , colonnes 1 et 2)

print(a[1: ,:2]) # [[4 5] (derniers 2 élé ments

[8 9]] des premi ères 2 colonnes)

HAP608P, U Montpellier Programmation pour la physique 105 / 231

Multiplication matricielle avec les tableaux
Un tableau avec deux indices peut représenter une matrice. Un tableau avec un seul
indice est un vecteur.
Les produits entre les matrices et vecteurs (produit scalaire entre deux vecteurs, action
d’une matrice sur un vecteur, produit matriciel entre deux matrices) se calculent avec
l’opérateur @ (et non pas avec * qui est la multiplication élément par élément !)

Exemples :

M = np.array ([[1. , 2., 4.], [2., -1., 0.], [5., -2., 1.]])

v = np.array ([0., 1., 2.])

w = np.array ([1., -1., 1.])

print(v @ w) # produit scalaire v . w, ré sultat: 1.0

print(M @ v) # matrice ag ı̂t sur vecteur , M . v

ré sultat: [10. -1. 0.]

print(M @ M) # produit matriciel M . M

ré sultat: [[25. -8. 8.]

[0. 5. 8.]

[6. 10. 21.]]

HAP608P, U Montpellier Programmation pour la physique 106 / 231

Multiplication matricielle avec les tableaux

Exemple : Calcul des moyennes quantiques ⟨ψ|σ1,2,3|ψ⟩ pour un système à deux niveaux

Pour rappel : définition des matrices de Pauli

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
et de la moyenne quantique d’un opérateur Â pour un système dans l’état

|ψ⟩ =
(
ψ1

ψ2

)
(supposé normalisé, alors ||ψ||2 = ψ∗

1ψ1 + ψ∗
2ψ2 = 1)

⟨Â⟩ = ⟨ψ|Â|ψ⟩ = (ψ∗
1 ψ

∗
2) Â

(
ψ1

ψ2

)
On va calculer les moyennes de σ1, σ2 et σ3 dans un état fourni par l’utilisateur.

HAP608P, U Montpellier Programmation pour la physique 107 / 231

Multiplication matricielle avec les tableaux

import numpy as np

sigma = np.array ([[[0, 1], [1, 0]], # les matrices de Pauli

[[0, -1j], [1j, 0]],

[[1, 0], [0, -1]]], dtype = complex)

def norme(psi): # la norme d’un vecteur complexe

psic = np.conjugate(psi)

return np.sqrt(psic @ psi)

psi1 = complex(input("Entrer psi1: ")) # composantes de psi

psi2 = complex(input("Entrer psi2: "))

psi = np.array([psi1 , psi2], dtype=complex)

psi /= norme(psi) # normaliser le vecteur psi

psic = np.conjugate(psi) # le vecteur conjugu é complexe

vm = [psic @ sigma[i] @ psi for i in range (3)]

print("Valeurs moyennes :\n <sigma1 > = ", vm[0].real ,

"\n <sigma2 > = ", vm[1].real ,

"\n <sigma3 > = ", vm[2]. real)

HAP608P, U Montpellier Programmation pour la physique 108 / 231

Méthodes utiles pour le calcul matriciel

La classe numpy.ndarray contient quelques autres champs et méthodes utiles pour
manipuler des vecteurs et matrices : si A est un tableau, alors

numpy.transpose(A) représente la transposée de A

(raccourci : A.T)

numpy.trace(A) calcule la trace
∑

iAii

numpy.conjugate(A) calcule le tableau conjuguée complexe

numpy.amax(A) calcule l’élément maximal

numpy.sum(A) calcule la somme des éléments

. . .

Voir https://docs.scipy.org/doc/numpy/reference/routines.html pour
documentation complète.

HAP608P, U Montpellier Programmation pour la physique 109 / 231

Fonctions sur les tableaux
Les fonctions élémentaires sin, cos, exp, log, sqrt etc. des bibliothèques math et cmath
existent aussi dans la bibliothèque numpy. Si on donne un tableau comme argument, la
valeur de retour sera également un tableau avec les valeurs de fonction des éléments :
“array broadcasting”.

import numpy as np

x = np.array([-1, 0, 1]) # un tableau

print(np.arccos(x)) # "[3.14159265 1.57079633 0.]"

À préférer par rapport au code équivalent (mais moins vite et moins propre)

import math

x = [-1, 0, 1] # une liste

acosx = [math.acos(t) for t in x] # lent sur des grandes

listes !

print(acosx)

HAP608P, U Montpellier Programmation pour la physique 110 / 231

Fonctions sur les tableaux

Pour convertir une fonction ordinaire en fonction qui peut s’appliquer sur un tableau
numpy, on utilise la fonction numpy.vectorize.

Exemple :

import numpy as np

Une fonction ordinaire:

def f(x, y): # retourne x si x>y et y-x sinon

if x > y:

return x

return y - x

La fonction vectoris ée:

vf = np.vectorize(f)

x = np.array ([1., 3., 7.])

vf(x, 4) # array ([3., 1., 7.])

HAP608P, U Montpellier Programmation pour la physique 111 / 231

Copier un tableau

Une copie par référence se fait avec l’opérateur d’affectation =, une copie “superficielle”
avec numpy.copy() :

import numpy as np

a = sigma3 # permet d’acc éder à sigma3

avec la novelle réfé rence a

b = np.copy(a) # cr ée un nouveau tableau

qui est une copie de sigma3

HAP608P, U Montpellier Programmation pour la physique 112 / 231

Importer et exporter des données
La fonction numpy.loadtxt permet d’importer des données d’un fichier.

Fichier de donn ées "donnees.dat"

3.14159 2.71828 0.57721 # commentaires seront ignor és

1. -2. 3.e5

Fichier du programme

import numpy as np

a = np.loadtxt("donnees.dat")

print(a) # [[3.1415900e+00 2.7182800e+00 5.7721000e-01]

[1.0000000e+00 -2.0000000e+00 3.0000000e+05]]

Dans le fichier de données :

éléments doivent être séparés par un ou plusieurs espaces blancs

lignes blanches et commentaires # sont ignorés
HAP608P, U Montpellier Programmation pour la physique 113 / 231

Importer et exporter des données

La fonction numpy.savetxt permet d’enregistrer des données dans un fichier.

import numpy as np

a = np.arange (0.0, 4.0, 1.0) # le tableau [0., 1., 2., 3.]

np.savetxt("mydata.dat", a, header="Commentaire facultatif")

Fichier mydata.dat résultant :

Commentaire facultatif

0.000000000000000000e+00

1.000000000000000000e+00

2.000000000000000000e+00

3.000000000000000000e+00

HAP608P, U Montpellier Programmation pour la physique 114 / 231

Visualisation avec matplotlib

Python dispose d’une bibliothèque très puissante pour créer des graphiques : la
bibliothèque matplotlib.pyplot.

Usage typique pour tracer le graphe d’une fonction :

import numpy as np

import matplotlib.pyplot as plt

xpts = np.linspace (0., 10., 100) # 100 points entre 0 et 10

ypts = np.sin(xpts) # Les sinus de ces points

plt.plot(xpts , ypts) # tracer ypts sur xpts

plt.ylim ([-1.5, 1.5]) # pour y entre -1.5 et 1.5

plt.xlabel("x") # é tiquette de l’axe des x

plt.ylabel("sin(x)") # ... et de l’axe des y

plt.show() # afficher graphique

HAP608P, U Montpellier Programmation pour la physique 115 / 231

Visualisation avec matplotlib

Résultat :

HAP608P, U Montpellier Programmation pour la physique 116 / 231

La fonction matplotlib.pyplot.plot()
Tracer des courbes ou des points : matplotlib.pyplot.plot(x, y, m)

x = valeurs des x

y = valeurs de fonction y(x) à tracer

optionnel : m = châıne de caractères indiquant la couleur / le style, p.ex.

’r’, ’g’, ’b’ = rouge, vert, bleu (défaut)

’-’, ’--’, ’:’ = ligne solide (défaut), interrompue, pointillée

pour tracer des points individuels plutôt qu’une courbe :
’.’, ’,’, ’o’, ’*’, ’s’ = marqueur point, pixel, cercle, étoile, carré

d’autres arguments optionnels existent, p.ex. pour faire afficher une legende

Exemple :

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5, 5, 100)

cosx , sinx = np.cos(x), np.sin(x)

plt.plot(x, cosx , ’r’, label=’cos’)

plt.plot(x, sinx , ’go’, label=’sin’)

plt.legend ()

plt.show()

HAP608P, U Montpellier Programmation pour la physique 117 / 231

La fonction matplotlib.pyplot.hist()

Tracer des histogrammes : matplotlib.pyplot.hist(x, bins, range)

x = valeurs à tracer

optionnel : bins = nombre de barres

optionnel : range = tuple (x_minimal, x_maximal)

Exemple :

import numpy as np

import matplotlib.pyplot as plt

notes = [13.5 , 5.75, 10., 11.25 ,

18., 7.5, 13., 8.75,

10.5, 14., 9.25, 3.25]

plt.hist(notes , 10, (0, 20))

plt.show()

HAP608P, U Montpellier Programmation pour la physique 118 / 231

Tracer des fonctions de deux variables
Pour tracer une fonction z(x, y) il faut d’abord créer un maillage (anglais : “meshgrid”)
pour représenter les binômes de coordonnées (x, y). Il convient de se servir de la fonction
numpy.meshgrid(x, y). Exemple :

import numpy as np

101 valeurs de x entre 0 et 10: [0.0 0.1 0.2 ... 10]

x = np.linspace(0, 10, 101)

10 valeurs de y, 3 <= y < 4: [3.0 3.1 3.2 ... 3.9]

y = np.arange (3.0, 4.0, 0.1)

X, Y = np.meshgrid(x, y)

Résultat : deux tableaux 10× 101,

X =

 0 0.1 0.2 . . . 10
0 0.1 0.2 . . . 10

. . .

 10 lignes , Y =


3 3 . . . 3
3.1 3.1 . . . 3.1
...

...
3.9 3.9 . . . 3.9


︸ ︷︷ ︸

101 colonnes

HAP608P, U Montpellier Programmation pour la physique 119 / 231

La fonction matplotlib.pyplot.imshow()

Tracer des cartes thermiques (heat map) : matplotlib.pyplot.imshow(z, extent)

z = tableau 2D avec les valeurs de fonction

argument facultatif : extent = liste avec les x et y minimales et maximales

Exemple :

import numpy as np

import matplotlib.pyplot as plt

x = y = np.linspace(-5, 5, 100)

X, Y = np.meshgrid(x, y)

z = np.sin(X) * np.cos(Y)

plt.imshow(z, extent =[-5,5,-5,5])

plt.show()

HAP608P, U Montpellier Programmation pour la physique 120 / 231

La fonction matplotlib.pyplot.contour()

Tracer des courbes de niveau : matplotlib.pyplot.contour(x, y, z)

z = tableau 2D avec les valeurs de fonction

arguments facultatifs : x, y = tableaux avec les x et y correspondants

Exemple :

import numpy as np

import matplotlib.pyplot as plt

def f(x, y):

if x == 0 and y == 0:

return 0.0

return x**2 * y / (x**4 + y**2)

vf = np.vectorize(f)

x = y = np.linspace(-2, 2, 200)

X, Y = np.meshgrid(x, y)

Z = vf(X, Y)

plt.contour(X, Y, Z)

plt.show()

HAP608P, U Montpellier Programmation pour la physique 121 / 231

Recherche des zéros

HAP608P, U Montpellier Programmation pour la physique 122 / 231

Dans ce chapitre

Algorithmes

Méthode de la bissection

Méthode de relaxation

Méthode de Newton

Généralisations de la méthode de Newton

HAP608P, U Montpellier Programmation pour la physique 123 / 231

Zéros des fonctions

Problème : Etant donné une fonction réelle dont on sait qu’elle a un zéro sur l’intervalle
I = [a, b], on cherche une valeur approximative de ce zéro.

Plus formellement :

Soit I = [a, b] un intervalle et f : I → R continue (ou même dérivable si necessaire) sur
I, avec f(a)f(b) ≤ 0. Alors d’après le théorème des valeurs intermédiaires il existe
x0 ∈ I tel que f(x0) = 0. Si de plus f est monotone alors x0 est unique.
Problème : déterminer (un des) x0 numériquement avec une précision minimale donnée.

Théorème des valeurs intermédiares :
Soit f : [a, b] → R continue et soit y compris entre f(a) et f(b). Alors il existe x ∈ [a, b]
tel que f(x) = y.

HAP608P, U Montpellier Programmation pour la physique 124 / 231

Méthode de la bissection

Soit ϵ > 0 la précision souhaitée.

Algorithme :

1 Poser c = (a+ b)/2, le milieu de l’intervalle I.

2 Si b− a < 2 ϵ : terminer et retourner x0 = c.

3 Partager I en deux : I1 = [a, c] et I2 = [c, b].

4 Si f(a)f(c) ≤ 0 : il y a un zéro dans I1, alors répéter avec I = I1.

5 Sinon, répéter avec I = I2.

HAP608P, U Montpellier Programmation pour la physique 125 / 231

Méthode de la bissection

f(x)

x

bca

HAP608P, U Montpellier Programmation pour la physique 126 / 231

Méthode de la bissection

f(x)

x

a bc

HAP608P, U Montpellier Programmation pour la physique 126 / 231

Méthode de la bissection

f(x)

x

bca

HAP608P, U Montpellier Programmation pour la physique 126 / 231

Implémentation en Python

Voici le code Python pour f(x) = x5 − x− 1, I = [1, 2], ϵ = 10−5 :

def f(x): # la fonction dont on cherche un zéro

return x**5 - x - 1

a, b = 1.0, 2.0 # f(a) = -1 et f(b) = 29

=> il y a un zéro dans [a, b]

c = (a + b) / 2 # point du milieu

epsilon = 1.0E-5 # tol é rance

while b - a >= 2 * epsilon: # on est assez proche ? sinon:

if f(a) * f(c) <= 0: # si zéro dans la moiti é gauche:

b = c # pt de droite <- pt du milieu

else: # sinon:

a = c # pt de gauche <- pt du milieu

c = (a + b) / 2 # ré calculer point du milieu

print("Le zéro est à x =", c)

HAP608P, U Montpellier Programmation pour la physique 127 / 231

Méthode de relaxation

Idée :
Pour résoudre l’équation f(x) = 0, trouver une fonction ϕ(x) appropriée telle que

f(x) = 0 ⇔ ϕ(x) = x

(il y a une infinité de choix pour ϕ — le succès de la méthode dépendra du choix).

On cherche alors un point fixe x∗ de la fonction ϕ.

Essayer de trouver un point fixe par l’application repétée de la fonction ϕ sur un
point de départ x1 (qui est aussi au choix et dôıt être bien choisi pour que la méthode fonctionne)

x2 = ϕ(x1)

x3 = ϕ(x2) = ϕ(ϕ(x1))

x4 = ϕ(x3) = ϕ(ϕ(ϕ(x1)))

. . .

lim
n→∞

xn
?
= x∗

HAP608P, U Montpellier Programmation pour la physique 128 / 231

Méthode de relaxation
Exemple :

On cherche un zéro x∗ de la fonction f(x) = 2ex − xex − 1.

Équivalent : on cherche un point fixe x∗ de la fonction ϕ(x) = 2− e−x.

Avec x1 = 1 on trouve

x2 = ϕ(x1) = 1.63212

x3 = ϕ(x2) = 1.80448

. . .

x9 = ϕ(x8) = 1.84141

x10 = ϕ(x9) = 1.84141

x11 = ϕ(x10) = 1.84141

. . .

Conclusion : Pour x∗ ≈ 1.84141 on a

ϕ(x∗) = x∗

⇔ 2− e−x∗
= x∗

⇔ 2ex
∗
− x∗ex

∗
− 1 = 0

⇔ f(x∗) = 0 .

HAP608P, U Montpellier Programmation pour la physique 129 / 231

Méthode de relaxation : Illustration

Condition suffisante pour la convergence : |ϕ′(x)| ≤ k < 1 partout
ou bien : ϕ est une contraction.

HAP608P, U Montpellier Programmation pour la physique 130 / 231

Détails mathématiques

Théorème du point fixe :

Soit I = [a, b] un intervalle, 0 ≤ k < 1, et ϕ : I → I continue tel que
|ϕ(x)− ϕ(y)| ≤ k|x− y| ∀x, y ∈ I (on dit que ϕ est une contraction).

Alors il existe un point fixe unique x∗ ∈ I.
De plus, une suite (xn) dans I définie par un x1 et par xn+1 = ϕ(xn) convergera vers x∗.

Démonstration :

Soit x1 ∈ I quelconque et xn>1 défini par récurrence : xn+1 = ϕ(xn). On a
|xn+1 − xn| ≤ kn−1|x2 − x1|, donc

|xn+m − xn| ≤|xn+1 − xn|+ |xn+2 − xn+1|+ . . .+ |xn+m − xn+m−1|

≤
(
kn−1 + kn + . . .+ kn+m−1) |x2 − x1|

= kn−1 1− km

1− k |x2 − x1|

Comme k < 1, l’expression dans la dernière ligne tend vers zero quand n → ∞, alors les
(xn) forment une suite de Cauchy qui converge vers un x∗. On a ϕ(x∗) = x∗ car ϕ est
continue.

HAP608P, U Montpellier Programmation pour la physique 131 / 231

Méthode de Newton

Cas spécial : méthode de Newton
L’idée de la méthode de Newton est de linéariser f autour d’un point x1, de trouver le
zéro de la fonction tangente t1 ainsi définie, et d’itérer :

Poser
t1(x) = f(x1) + f ′(x1)(x− x1)

(= développement limité de f en x1, alors t1(x) = f(x) +O(|x− x1|2))

Le zéro de t1(x) est à x2 = x1 − f(x1)
f ′(x1)

.

Itérer cette procédure tant que la distance entre les deux valeurs consécutives xn et
xn+1 est > ϵ. Quand |xn+1 − xn| < ϵ, terminer et renvoyer xn+1.

D’après le théorème du point fixe, la suite des xn convergera vers un point fixe x∗ de la
fonction auxiliare ϕ : x 7→ x− f(x)

f ′(x) (si cette dernière est une contraction).

Or ϕ(x∗) = x∗, alors f(x∗)
f ′(x∗) = 0, alors f(x∗) = 0.

HAP608P, U Montpellier Programmation pour la physique 132 / 231

Méthode de Newton

Zéro de la fonction f = point fixe de la fonction auxiliaire

ϕ : x 7→ x− f(x)

f ′(x)

Remarques :

Si f est deux fois dérivable et f ′(x) ̸= 0 ∀x ∈ I, alors ϕ′(x) = f(x)f ′′(x)
f ′(x)2 .

Dans ce cas : ϕ est une contraction ⇔ ∃ k < 1 avec |ϕ′(x)| ≤ k, soit
∣∣∣ f(x)f ′′(x)

f ′(x)2

∣∣∣ ≤ k
(“⇐” vient du théorème des accroissements finis, “⇒” de la définition de la dérivée)

Pour que l’algorithme converge : Il est suffisant mais pas nécessaire que ϕ soit une
contraction.

Etablir un critère suffisant et nécessaire peut être très difficile voire impossible en pratique, voir exercices

sur le cas complexe.

Evidemment il faut bien choisir le point de départ (un extremum de f , par exemple,
serait un très mauvais choix — pourquoi ?)

HAP608P, U Montpellier Programmation pour la physique 133 / 231

Méthode de Newton

f(x)

x

x
1

tn(x) = f(xn) + f ′(xn)(x− xn)

HAP608P, U Montpellier Programmation pour la physique 134 / 231

Méthode de Newton

f(x)

x

xx
12

t (x)
1

tn(x) = f(xn) + f ′(xn)(x− xn)

HAP608P, U Montpellier Programmation pour la physique 134 / 231

Méthode de Newton

f(x)

x

xxx
12 3

t (x)
1

t (x)
2

tn(x) = f(xn) + f ′(xn)(x− xn)

HAP608P, U Montpellier Programmation pour la physique 134 / 231

Méthode de Newton

f(x)

x

xxxx
12 34

t (x)
1

t (x)
2

t (x)
3

tn(x) = f(xn) + f ′(xn)(x− xn)

HAP608P, U Montpellier Programmation pour la physique 134 / 231

Méthode de Newton

Algorithme :

1 Partir avec x au choix (mais choisi de manière réfléchie : aussi proche du zéro que
possible, pas un point critique. . .)

2 Remplacer xancien ← x, x ← x− f(x)
f ′(x) .

3 Si |x− xancien| < ϵ, on est suffisamment proche du zéro : terminer et renvoyer x.
Sinon, répéter.

Pour tester la convergence, d’autres critères sont envisageables (par exemple, est-ce que
|f(x)| < ϵ ?) en fonction du problème sous étude.

HAP608P, U Montpellier Programmation pour la physique 135 / 231

Méthode de Newton
Exemple :

On cherche un zéro de la fonction f : x 7→ x5 − x− 1 dont la dérivée est
f ′ : x 7→ 5x4 − 1. La précision souhaitée est ϵ = 10−5 et le point de départ sera x0 = 1.

def f(x):

return x**5 - x - 1

def df(x):

return 5 * x**4 - 1

epsilon = 1.E-5

x = 1.

x_ancien = x + 2 * epsilon # valeur initiale pas importante

while abs(x - x_ancien) > epsilon:

x_ancien = x

x = x - f(x) / df(x)

print("Le zéro est à x =", x)

Il est souvent une bonne idée de limiter le nombre d’itérations pour éviter des boucles
infinies (au cas où la méthode ne converge pas avec le point de départ choisi).
HAP608P, U Montpellier Programmation pour la physique 136 / 231

Méthode de la sécante
Pour appliquer la méthode de Newton, il faut connâıtre la dérivée de la fonction f , de
préférence analytiquement.

Sinon : approximer la dérivée par le taux d’accroissement

f ′(x) = lim
h→ 0

f(x+ h)− f(x)
h

Au point x = xn avec h = xn − xn−1 :

f ′(xn) =
f(xn)− f(xn−1)

xn − xn−1
+ O (|xn − xn−1|)

Insérer f ′(xn) dans la formule de récurrence de la méthode de Newton
xn+1 = xn − f(xn)/f ′(xn), en supprimant le terme O (|xn − xn−1|) :

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)

Méthode de la sécante.

Algorithme :

Commencer par deux points au choix x0 et x1 ; poser n = 1.

Calculer xn+1 avec la formule de récurrence ci-dessus.

Itérer avec n ← n+ 1 ; quand |xn+1 − xn| est suffisamment petit, terminer et
renvoyer xn+1.

HAP608P, U Montpellier Programmation pour la physique 137 / 231

Comparaison des méthodes

La table suivante montre l’erreur absolu après n itérations pour le zéro de x5 − x− 1
(avec le choix ϕ(x) = (x+ 1)1/5 pour la méthode de relaxation) :

It é rations | Bissection | Relaxation | Newton

1 | -8.27e-02 | -7.84e-02 | -4.66e-01

2 | 4.23e-02 | -8.33e-03 | -2.06e-01

3 | -2.02e-02 | -8.96e-04 | -5.63e-02

4 | 1.11e-02 | -9.65e-05 | -5.43e-03

5 | -4.57e-03 | -1.04e-05 | -5.59e-05

6 | 3.24e-03 | -1.12e-06 | -6.01e-09

On voit que la méthode de Newton a besoin de beaucoup moins d’itérations que les deux
autres. Le gain du temps n’est pas signifiant pour cet exemple (implémentation pas
optimisée, fonction f pas très compliquée). Voici le temps en secondes requis sur un
ordinateur portable générique pour atteindre une précision fixe :

Precision | Bissection | Relaxation | Newton

1.00e+00 | 5.51e-07 | 3.17e-07 | 4.48e-07

1.00e-02 | 2.47e-06 | 5.24e-07 | 1.40e-06

1.00e-04 | 4.71e-06 | 7.45e-07 | 1.64e-06

1.00e-06 | 6.57e-06 | 9.51e-07 | 1.87e-06

HAP608P, U Montpellier Programmation pour la physique 138 / 231

Généralisations de la méthode de Newton

La méthode peut être appliquée sans modifications pour des fonctions complexes.
Les domaines de convergence vers les zéros forment des structures géométriques
intéressantes : les “fractales de Newton” → exercices.

Méthode de Halley : basée sur l’itération

xn+1 = xn −
2 f(xn) f

′(xn)

2 f ′(xn)2 − f(xn) f ′′(xn)

pour des fonctions au moins deux fois dérivables. Converge plus rapidement que la
méthode de Newton, mais nécéssite l’évaluation de la dérivée seconde.

Méthodes de Householder : Soit f k-fois dérivable avec des dérivées continues. On
itère

xn+1 = xn + k

dk−1

dxk−1

(
1

f(x)

)
dk

dxk

(
1

f(x)

)
∣∣∣∣∣∣
x=xn

Pour k = 1 on retrouve la méthode de Newton, pour k = 2 celle de Halley.

HAP608P, U Montpellier Programmation pour la physique 139 / 231

La méthode de Newton n-dimensionnelle

Étant donnée une fonction f⃗ : Rn → Rn, un zéro de f⃗ peut être trouvé par la
généralisation de la méthode de Newton : on itére

x⃗n+1 = x⃗n − J−1(x⃗n) f⃗(x⃗n)

où J est la matrice jacobienne des dérivées de f⃗ ,

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


et J−1 est son inverse. Voir le chapitre sur l’ajustement plus tard pour une application.

HAP608P, U Montpellier Programmation pour la physique 140 / 231

Algèbre linéaire numérique

HAP608P, U Montpellier Programmation pour la physique 141 / 231

Dans ce chapitre

Généralités

Systèmes d’équations linéaires

Diagonalisation des matrices

Algorithmes

La méthode de Gauss

La décomposition LU

La décomposition QR et l’algorithme QR

HAP608P, U Montpellier Programmation pour la physique 142 / 231

Résoudre un système d’équations linéaires

On cherche une solution des n équations linéaires à n inconnues xn

a11 x1 + a12 x2 + . . .+ a1n xn = b1

a21 x1 + a22 x2 + . . .+ a2n xn = b2

. . .

an1 x1 + an2 x2 + . . .+ ann xn = bn

HAP608P, U Montpellier Programmation pour la physique 143 / 231

L’algorithme de Gauss

L’algorithme de Gauss est une méthode pour résoudre ces systèmes d’équations linéaires.
En notation matricielle : a11 · · · a1n

...
...

an1 · · · ann


 x1

...
xn

 =

 b1
...
bn


Regardons la matrice n× (n+ 1) suivante :

M =

 a11 · · · a1n b1
...

...
...

an1 · · · ann bn


Observation : La solution (x1, . . . , xn) du système est inchangée par les transformations
élémentaires :

échange de deux lignes de M

multiplication d’une ligne de M par un nombre ̸= 0

ajout d’une ligne de M à une autre

HAP608P, U Montpellier Programmation pour la physique 144 / 231

L’algorithme de Gauss

Par une suite de transformations élémentaires, on transforme M en forme triangulaire
supérieure :

M ′ =



a′11 a′12 · · · · · · a′1,n−1 a′1n b′1
0 a′22 · · · · · · a′2,n−1 a′2n b′2

0 0
. . . · · · a′3,n−1 a′3n b′3

...
...

. . .
. . .

...
...

...
0 0 · · · 0 a′n−1,n−1 a′n−1,n b′n−1

0 0 · · · 0 0 a′nn b′n


Ici a′ij = 0 si i > j.

HAP608P, U Montpellier Programmation pour la physique 145 / 231

L’algorithme de Gauss

Pour transformer M en matrice triangulaire supérieure :

1 Si la matrice ne contient qu’une seule ligne, rien à faire : terminer.

2 S’il y a au moins un coefficient non nul dans la première colonne :

Si a11 = 0, échanger la première ligne avec une autre dont le premier coefficient est
̸= 0. On appellera a11 le coefficient pivot, il est désormais ̸= 0.

Éliminer tous les coefficients ak1 de la première colonne au-dessous du pivot :
Ajouter (−ak1/a11) fois la première ligne à la k-ème ligne.

3 Répéter à partir de 1. avec la sous-matrice de M que l’on obtient en supprimant la
première ligne et la première colonne.

En pratique, on choisit souvent comme pivot le plus grand coefficient de chaque colonne,
pour minimiser les erreurs d’arrondi. Pour nous il suffira de choisir un élément quelconque
(non nul).

HAP608P, U Montpellier Programmation pour la physique 146 / 231

L’algorithme de Gauss

On a maintenant transformé M en forme triangulaire supérieure,

M ′ =


a′11 a′12 · · · a′1,n−1 a′1n b′1
0 a′22 · · · a′2,n−1 a′2n b′2
...

...
. . .

...
...

...
0 0 · · · a′n−1,n−1 a′n−1,n b′n−1

0 0 · · · 0 a′nn b′n


sans avoir changé la solution (x1, . . . , xn). Ensuite on calcule successivement les xi :

xn = b′n/a
′
nn

xn−1 = (b′n−1 − a′n−1,nxn)/a
′
n−1,n−1, avec xn déjà connu

. . .

xi =
(
b′i −

∑
k>i a

′
ikxk

)
/a′ii, avec les xk pour k > i déjà connus

. . .

x1 =
(
b′1 −

∑
k>1 a

′
1kxk

)
/a′11, avec les xk pour k > 1 déjà connus

Si un des a′ii est zéro, il n’y a pas de solution, sauf si le numérateur b′i −
∑

k>i a
′
ikxk est

aussi zéro (dans ce cas la solution pour xi n’est pas unique).

HAP608P, U Montpellier Programmation pour la physique 147 / 231

L’algorithme de Gauss

Exemple : On cherche la solution x⃗ du système d’équations Ax⃗ = b⃗ avec

A =


2 4 −2 1
1 2 3 4
−1 1 2 2
0 3 −2 0

 , b⃗ =


0
−3
2
0


Au début :

M =


2 4 −2 1 0
1 2 3 4 −3
−1 1 2 2 2
0 3 −2 0 0


Première colonne : le pivot est 2. On ajoute donc (−1/2)-fois la première ligne à la
deuxième et (1/2)-fois la première ligne à la troisième. Pour la quatrième ligne il n’y
a rien à faire.

HAP608P, U Montpellier Programmation pour la physique 148 / 231

L’algorithme de Gauss

M ′ =


2 4 −2 1 0
0 0 4 7

2
−3

0 3 1 5
2

2
0 3 −2 0 0


Deuxième colonne : on ne peut pas prendre 0 comme pivot. Alors on échange
d’abord la deuxième ligne avec la troisième :

M ′ =


2 4 −2 1 0
0 3 1 5

2
2

0 0 4 7
2
−3

0 3 −2 0 0


Puis, rien à faire pour la troisième ligne. Ajouter (−1)-fois la deuxième à la
quatrième pour éliminer M ′

42.

HAP608P, U Montpellier Programmation pour la physique 149 / 231

L’algorithme de Gauss

M ′ =


2 4 −2 1 0
0 3 1 5

2
2

0 0 4 7
2
−3

0 0 −3 − 5
2
−2


Troisième colonne : le pivot est 4. Ajouter (3/4) de la troisième ligne à la quatrième :

M ′ =


2 4 −2 1 0
0 3 1 5

2
2

0 0 4 7
2
−3

0 0 0 1
8
− 17

4


Maintenant M ′ est triangulaire supérieure et on peut calculer la solution x⃗ :

1
8
x4 = − 17

4
⇒ x4 = −34

4x3 +
7
2
x4 = 4x3 − 119 = −3 ⇒ x3 = 29

3x2 + x3 +
5
2
x4 = 3x2 + 29− 85 = 2 ⇒ x2 = 58

3

2x1 + 4x2 − 2x3 + x4 = 2x1 +
232
3
− 58− 34 = 0 ⇒ x1 = 22

3

HAP608P, U Montpellier Programmation pour la physique 150 / 231

L’algorithme de Gauss

Une procédure auxiliaire :

import numpy as np

Transforme une matrice n*(n+1) en forme triang. sup é rieure

def triangulariser(M):

n = M.shape [0] # le nombre de lignes

for i in range(n): # boucle sur les premi ères n colonnes

for k in range(i, n): # chercher pivot sous la diagonale

if M[k, i] != 0: # pivot trouv é dans ligne k ?

M[[i, k], :] = M[[k, i], :] # é changer lignes i et k

pivot = M[i, i] # mé moriser pivot

break # quitter boucle sur k

else: # tous les élé ments sous la diagonale é taient 0 ?

continue # alors rien à faire pour cette colonne

for k in range(i+1, n): # é liminer tout sous la diag.:

facteur = -M[k, i]/ pivot # ajouter (facteur)

M[k, :] += facteur * M[i, :] # *(ligne du pivot)

à la ligne k.

HAP608P, U Montpellier Programmation pour la physique 151 / 231

L’algorithme de Gauss
def gauss(A, b): # trouver la solution x de Ax = b

n = A.shape [0] # le nombre de lignes

M = np.empty((n, n+1)) # la matrice M

M[:, :n] = np.copy(A) # copier A dans les 1ères n colonnes

M[:, n] = np.copy(b) # copier b dans la derni ère colonne

triangulariser(M) # apr ès, M est triangulaire sup é rieure

x = np.empty(n) # on mettra la solution ici

for i in range(n-1, -1, -1): # parcourir lignes en arri ère

sigma = 0. # sigma = la somme des (x_k déjà connus)*

for k in range(i+1, n): # *(M_ik correspondants)

sigma += M[i, k] * x[k]

if M[i, i] == 0: # Matrice singuli ère?

if M[i, n] - sigma == 0: # faut ré soudre 0*x[i] = 0 ?

print("Attention , solution pas unique!")

x[i] = 42

else: # faut ré soudre 0*x[i] = (non nul) ?

print("Erreur , pas de solution")

return

else: # sinon on peut diviser par M[i, i]

x[i] = (M[i, n] - sigma) / M[i, i]

return x

HAP608P, U Montpellier Programmation pour la physique 152 / 231

La décomposition LU

La décomposition LU d’une matrice n× n A est la décomposition

PA = LU

U est une matrice n× n triangulaire supérieure
(zéro au-dessous de la diagonale principale)

L est une matrice n× n triangulaire inférieure
(zéro au-dessus de la diagonale principale)

P est une matrice de permutation n× n
(PM = M à une permutation de lignes près)

La matrice U resulte de l’application de l’algorithme de Gauss à la matrice A. En prenant
note des transformations effectuées pendant le déroulement de l’algorithme, on peut
aussi déterminer L et P .

HAP608P, U Montpellier Programmation pour la physique 153 / 231

La décomposition LU
Les opérations élémentaires sur une matrice carrée A peuvent être réprésentées par des
multiplications matricielles.

Échange de l’i-ème et la j-ème ligne :

A → P(i,j)A

P(i,j) = la matrice identité avec les lignes i et j échangées :

P(i,j) =



1
. . .

1
0 1

1
. . .

1
1 0

1


Un produit de matrices du type P(i,j)

= une matrice de permutation générale P
= 0 partout, sauf pour un seul élément = 1 dans chaque ligne et dans chaque colonne
HAP608P, U Montpellier Programmation pour la physique 154 / 231

La décomposition LU

Les opérations élémentaires sur une matrice carrée A peuvent être réprésentées par des
multiplications matricielles.

Élimination de la j-ème colonne au-dessous du pivot : pour i = j + 1, j + 2, . . . , n,
ajouter ri-fois la ligne j du pivot à la ligne i (où ri = −aij/ajj)

A → F(j;rj+1,rj+2,...,rn)A

avec

F(j;rj+1,rj+2,...,rn) =



1
. . .

1
1

rj+1 1

rj+2

. . .
...
rn 1


On note que l’inverse de la matrice F(j;rj+1,...,rn) est F−1

(j;rj+1,...,rn) = F(j;−rj+1,...,−rn).

HAP608P, U Montpellier Programmation pour la physique 155 / 231

Calcul de la décomposition LU
On peut alors représenter les transformations de l’algorithme de Gauss schématiquement
comme suit :

F(n−1;∗) P(∗,n−1) F(n−2;∗) · · ·P(∗,2) F(1;∗) P(∗,1)A = U

A est la matrice à transformer

U est le résultat de l’algorithme de Gauss, une matrice triangulaire supérieure

Les P(i,j) correspondent aux changements de pivot (P(i,j) = 1 si pas de changement
nécessaire)

Les F(j;rj+1,...,rn) correspondent à l’élimination de la j-ème colonne

On insère 1 dans l’équation ci-dessus, en utilisant P(i,j)P(i,j) = 1 :

F(n−1;∗) P(∗,n−1) F(n−2;∗) · · ·P(∗,2) F(1;∗) P(∗,2) P(∗,3) · · ·P(∗,n−1)

× P(∗,n−1) · · · P(∗,3) P(∗,2) P(∗,1)A = U

On peut montrer : La première ligne de cette expression,

L̂ = F(n−1;∗) P(∗,n−1) F(n−2;∗) · · ·P(∗,2) F(1;∗) P(∗,2) P(∗,3) · · ·P(∗,n−1) ,

est triangulaire inférieure.
HAP608P, U Montpellier Programmation pour la physique 156 / 231

Calcul de la décomposition LU

On est arrivé à la représentation suivante de la triangularisation de la matrice A :

L̂P(∗,n−1) · · · P(∗,3) P(∗,2) P(∗,1)A = U

où
L̂ = F(n−1;∗) P(∗,n−1) F(n−2;∗) · · ·P(∗,2) F(1;∗) P(∗,2) P(∗,3) · · ·P(∗,n−1)

est une matrice triangulaire inférieure.

L’inverse d’une matrice triangulaire inférieure est également triangulaire inférieure. On
définit

L ≡ L̂−1

P ≡ P(∗,n−1) · · ·P(∗,2) P(∗,1)

et on multiplie par L à la gauche aux deux cotés :

LL̂PA = LU

alors
PA = LU

.

HAP608P, U Montpellier Programmation pour la physique 157 / 231

Calcul de la décomposition LU

Pour calculer la décomposition LU, PA = LU :

U = le résultat de l’algorithme de Gauss appliqué à A

P = le produit de tous les P(i,j) (échanges de lignes effectués dans la procédure).

Démarrer l’algorithme de Gauss avec P = 1.

Quand on échange les lignes i et j, multiplier P à gauche par P(i,j).

L = L̂−1 = P P(∗,1) F
−1
(1;∗) P(∗,2) F

−1
(2;∗) · · ·P(∗,n−1) F

−1
(n−1;∗)

avec les F(i;∗) correspondant aux éliminations de colonnes.

Démarrer avec L = 1.

Quand on échange les lignes i et j, multiplier L à droite par P(i,j).

Lors de l’élimination de la colonne j, multiplier L à droite par le F−1
(j;∗) correspondant.

Facile à calculer car F−1
(j;rj+1,rj+2,...rn−1,rn)

= F(j;−rj+1,−rj+2,...,−rn−1,−rn).

Enfin multiplier L à gauche par P .

HAP608P, U Montpellier Programmation pour la physique 158 / 231

La décomposition LU : exemple

On cherche la décomposition LU de la matrice

A =


2 4 −2 1
1 2 3 4
−1 1 2 2
0 3 −2 0


Au début : U = A, L = 1, P = 1

HAP608P, U Montpellier Programmation pour la physique 159 / 231

La décomposition LU : exemple
Première colonne :
pas de changement de pivot, P(i,j) = P(1,1) = 1, P ← P , L← L
ajouter (−1/2)(première ligne) à (deuxième ligne) :

L← L


1
1
2

1
1

1


ajouter (1/2)(première ligne) à (troisième ligne) :

L← L


1

1
− 1

2
1

1


rien à faire pour quatrième ligne : L← L.
Maintenant

L =


1
1
2

1
− 1

2
1

1

 , P =


1

1
1

1

 .

HAP608P, U Montpellier Programmation pour la physique 160 / 231

La décomposition LU : exemple

Deuxième colonne : Maintenant

U =


2 4 −2 1
0 0 4 7

2

0 3 1 5
2

0 3 −2 0


U22 = 0 : il faut changer le pivot. On échange donc la deuxième et la troisième
ligne :

U =


2 4 −2 1
0 3 1 5

2

0 0 4 7
2

0 3 −2 0



P(i,j) = P(2,3) =


1

0 1
1 0

1

, P ← P(2,3)P , L← LP(2,3).

HAP608P, U Montpellier Programmation pour la physique 161 / 231

La décomposition LU : exemple

Maintenant

L =


1
1
2

0 1
− 1

2
1 0

1

 , P =


1

0 1
1 0

1

 .

U =


2 4 −2 1
0 3 1 5

2

0 0 4 7
2

0 3 −2 0


Rien à faire pour la troisième ligne : L← L.
Ajouter (−1) fois (deuxième ligne) à (quatrième ligne) :

L← L


1

1
1

1 1

 donc L =


1 0 0 0
1
2

0 1 0
− 1

2
1 0 0

0 1 0 1



HAP608P, U Montpellier Programmation pour la physique 162 / 231

La décomposition LU : exemple

Troisième colonne : Maintenant

U =


2 4 −2 1
0 3 1 5

2

0 0 4 7
2

0 0 −3 − 5
2


pas de changement de pivot : P(i,j) = P(3,3) = 1, P ← P , L← L
ajouter (3/4)(troisième ligne) à (quatrième ligne) :

L← L


1

1
1
− 3

4
1

 donc L =


1 0 0 0
1
2

0 1 0
− 1

2
1 0 0

0 1 − 3
4

1


Finalement : L← PL.

HAP608P, U Montpellier Programmation pour la physique 163 / 231

La décomposition LU : exemple

Enfin :

U =


2 4 −2 1
0 3 1 5

2

0 0 4 7
2

0 0 0 1
8



L =


1 0 0 0
− 1

2
1 0 0

1
2

0 1 0
0 1 − 3

4
1



P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



HAP608P, U Montpellier Programmation pour la physique 164 / 231

La décomposition LU

Deux fonctions auxiliaires :

import numpy as np

P_ij = l’identit é mais avec les lignes i et j é chang ées

def matriceP(n, i, j):

P = np.identity(n)

P[i, i] = P[j, j] = 0

P[i, j] = P[j, i] = 1

return P

F = l’identit é avec les élé ments r_i au -dessous de F_jj

def matriceF(n, j, r):

F = np.identity(n)

F[j+1:, j] = r

return F

HAP608P, U Montpellier Programmation pour la physique 165 / 231

La décomposition LU

def decomp_LU(A):

n = A.shape [0] # le nombre de lignes (et colonnes)

U = np.copy(A) # au début , U est A et P et L sont 1

P, L = np.identity(n), np.identity(n)

for i in range(n-1): # boucle sur les colonnes

for k in range(i, n): # trouver un pivot ...

if U[k, i] != 0: # ... cet élé ment peut l’être ?

U[[i, k], :] = U[[k, i], :] # é changer lignes ...

P = matriceP(n, k, i) @ P # ... mettre à jour P

L = L @ matriceP(n, k, i) # ...et L...

pivot = U[i, i] # ... garder valeur du pivot ...

break # ...fin de la boucle sur k

else: # toute la colonne est zéro ?

continue # alors rien à faire pour celle -ci

r = np.empty(n-i-1) # vecteur pour construire F^-1

for k in range(i+1, n): # é liminer sous la diagonale:

facteur = -U[k, i]/ pivot # ajouter f * (ligne i)

U[k, :] += facteur * U[i, :] # ... à la ligne k...

r[k-i-1] = -facteur # ...et mé moriser f

L = L @ matriceF(n, i, r) # mettre à jour L

return P, P @ L, U

HAP608P, U Montpellier Programmation pour la physique 166 / 231

La décomposition LU : applications

Une fois calculée la décomposition LU d’une matrice carrée A, on peut facilement
resoudre tous systèmes d’équations de la forme Ax⃗ = b⃗ pour un b⃗ quelconque :

Ax⃗ = b⃗ ⇔ LUx⃗ = P b⃗ ⇔ Ly⃗ = b⃗′ avec y⃗ = Ux⃗, b⃗′ = P b⃗

Déterminer y⃗ à partir de Ly⃗ = b⃗′ :

y1 = b′1/L11

y2 = (b′2 − L21y1)/L22

...

yn = (b′n −
∑
k<n

Lnkyk)/Lnn

Calculer x⃗ à partir de Ux⃗ = y⃗ (voir dernière étape de la méthode de Gauss) :

xn = yn/Unn

xn−1 = (yn−1 − Un−1,nxn)/Un−1,n−1

...

x1 = (y1 −
∑
k>1

U1kxk)/U11

HAP608P, U Montpellier Programmation pour la physique 167 / 231

La décomposition LU : applications

def resoudre(P, L, U, b): # trouve x dans LUx = Pb

n = U.shape [0] # les matrices sont n fois n

bprime = P @ b # le vecteur b’ = Pb

y = np.empty(n) # le vecteur y

for i in range(n): # initialiser y

sigma = 0

for k in range(i): # k entre 0 et i-1

sigma += L[i, k] * y[k]

y[i] = (bprime[i] - sigma) / L[i, i]

x = np.empty(n) # le vecteur x

for i in range(n-1, -1, -1): # i entre 0 and n-1,

sigma = 0 # en arri ère

for k in range(i+1, n): # k entre i+1 et n-1

sigma += U[i, k] * x[k]

x[i] = (y[i] - sigma)/U[i, i]

return x

HAP608P, U Montpellier Programmation pour la physique 168 / 231

La décomposition LU : applications

Calcul de l’inverse : La décomposition LU permet de calculer le vecteur x⃗ dans le
système d’équations Ax⃗ = b⃗. En appliquant cette méthode n fois avec b⃗ = les n vecteurs
de colonne d’une matrice B, on obtient n vecteurs de solution : les vecteurs de colonne
d’une matrice X qui vérifient l’équation matricielle

AX = B .

Si B = 1, alors X = A−1 l’inverse de la matrice A.

def inverse(A): # trouve l’inverse de A

P, L, U = decomp_LU(A)

n = A.shape [0]

Ainv = np.empty ((n, n)) # l’inverse de A, vide au début

iden = np.identity(n) # l’identit é (i-ème ligne = e_i)

for i in range(n):

Ainv[:, i] = resoudre(P, L, U, iden[i])

return Ainv

HAP608P, U Montpellier Programmation pour la physique 169 / 231

L’efficacité de la méthode de Gauss et la décomposition LU

Le temps de calcul pour faire tourner la méthode de Gauss ou sa variante la
décomposition LU est proportionnel à n3 pour une matrice n× n.

Si la taille de la matrice augmente par un facteur 10 ⇒ le programme prend 1000×
plus de temps ! Pour n = 100 cela prend une fraction d’une seconde, pour
n = 10 000 c’est déjà infaisable en pratique.

Pareil pour calculer l’inverse et le déterminant avec la décomposition LU.

D’autres algorithmes, souvent plus efficaces, existent pour les matrices de forme
spéciale (matrices creuses. . .).

Remarques concernant notre implémentation :

Pour minimiser le besoin de mémoire et du temps de calcul, il convient de ne pas
paramétrer les permutations par une matrice P mais avec un vecteur p⃗ qui contient
les mêmes informations.

Pour minimiser le temps du calcul, on ne construira pas L par une séquence de
multiplications de matrices (qui coûtent chères, ∼ n3 opérations) mais plus
directement.

D’autres optimisations sont possibles pour les applications en pratique.

HAP608P, U Montpellier Programmation pour la physique 170 / 231

Les valeurs propres et les vecteurs propres d’une matrice

Soit A une matrice réelle n× n qui est symétrique : AT = A.

Theorème : Il existe une matrice orthogonale S telle que STAS ≡ D est une matrice
diagonale.

(Rappel : S orthogonale
déf.⇔ STS = 1 ; D diagonale

déf.⇔ D zéro hors la diagonale principale .)

Dans ce cas les coefficients de la diagonale principale de D sont les valeurs propres de A,
et les colonnes de S sont les vecteurs propres de A.

(Rappel : λ ∈ R valeur propre de A
déf.⇔ ∃ v⃗ ∈ Rn non nul, le vecteur propre, tel que Av⃗ = λv⃗.)

Problème :

Soit A une matrice symétrique donnée. On cherche ses valeurs propres et ses vecteurs
propres correspondants. Équivalent : on cherche S et D.

HAP608P, U Montpellier Programmation pour la physique 171 / 231

L’algorithme QR

Un algorithme classique pour trouver les valeurs propres et les vecteurs propres d’une
matrice est l’algorithme QR. Ici on va discuter une version simple. Des algorithmes plus
modernes sont généralement plus efficaces et plus stables, mais aussi plus compliqués.

L’algorithme QR repose sur la décomposition QR d’une matrice carrée A,

A = QR

où Q est une matrice orthogonale et R est une matrice triangulaire supérieure. On définit
la suite Ak par

A0 = A , An+1 = RnQn

avec An = QnRn la décomposition QR de An. On peut montrer que cette suite
converge, sous certains conditions, vers une matrice triangulaire dont les coefficients
diagonaux sont les valeurs propres de A. La matrice S est le produit de toutes les
matrices Qn.

HAP608P, U Montpellier Programmation pour la physique 172 / 231

L’algorithme QR

Algorithme :

1 Démarrer avec S = 1.

2 Si A est triangulaire supérieure, terminer. Valeurs propres = coefficients sur la
diagonale principale de A, vecteurs propres = colonnes de S.

3 Trouver la décomposition QR de A, A = QR.

4 Répéter à partir de (2) avec A← RQ et S ← SQ.

À vous de l’implémenter (→ exercices) !

HAP608P, U Montpellier Programmation pour la physique 173 / 231

La décomposition QR

Pour implémenter l’algorithme QR, il faut savoir calculer la décomposition QR d’une
matrice A. Il y a plusieurs méthodes ; un simple algorithme est la méthode modifiée de
Gram-Schmidt :

On construit Q par orthonormalisation des colonnes de A avec des transformations
representées par des matrices triangulaires supérieures. Si alors v⃗i et v⃗j sont deux
colonnes différentes, on souhaite que v⃗i · v⃗j = 0 et v⃗i · v⃗i = 1.

On définit la projection de w⃗ sur v⃗ :

prv⃗w⃗ ≡
v⃗ · w⃗
||v⃗||2 v⃗

Pour tout vecteur de colonne v⃗i :

Normaliser, v⃗i ← v⃗i/||v⃗i|| (si v⃗i n’est pas nul)

Soustraire de chaque colonne derrière v⃗i sa projection sur v⃗i ,
v⃗j ← v⃗j − prv⃗i v⃗j ∀ j > i

Maintenant v⃗i est orthogonal à tous les v⃗j avec j > i (et à toutes leurs combinaisons
linéaires)

Ainsi on obtient les vecteurs de colonne de Q. Poser R = Q−1A = QTA.

HAP608P, U Montpellier Programmation pour la physique 174 / 231

La décomposition QR
Exemple (Méthode modifiée de Gram-Schmidt) :

A = Q =

 2 0 1
2 4 −1
−1 2 3


Normaliser la première colonne :

√
22 + 22 + (−1)2 = 3, alors

Q ←


2
3

0 1
2
3

4 −1
− 1

3
2 3


Le produit scalaire entre la 1ère et la 2ème colonne est 2

3
× 0 + 2

3
× 4 + (− 1

3
)× 2 = 2. Il

faut donc soustraire 2×(1ère colonne) de la 2ème colonne.

Le produit scalaire entre la 1ère et la 3ème colonne est
2
3
× 1 + 2

3
× (−1) + (− 1

3
)× 3 = −1, on soustrait alors (−1)×(1ère colonne) de la 3ème.

Q ←


2
3
− 4

3
5
3

2
3

8
3
− 1

3

− 1
3

8
3

8
3

 .

Maintenant la première colonne est normalisée et orthogonale aux deux autres.
HAP608P, U Montpellier Programmation pour la physique 175 / 231

La décomposition QR
Exemple (Méthode modifiée de Gram-Schmidt) :

Normaliser la deuxième colonne :
√

(−4/3)2 + (8/3)2 + (8/3)2 = 4, alors

Q ←


2
3
− 1

3
5
3

2
3

2
3
− 1

3

− 1
3

2
3

8
3


La produit scalaire entre la 2ème et la 3ème colonne est 1. Il faut donc soustraire la 2ème
de la 3ème colonne.

Q ←


2
3
− 1

3
2

2
3

2
3
−1

− 1
3

2
3

2


Maintenant les premières deux colonnes sont normalisées, orthogonales l’une à l’autre et
orthogonales à la troisième.

Il ne reste qu’à normaliser cette dernière :

Q ←


2
3
− 1

3
2
3

2
3

2
3
− 1

3

− 1
3

2
3

2
3


HAP608P, U Montpellier Programmation pour la physique 176 / 231

La décomposition QR

Exemple (calcul de R) :

On a

Q−1 = QT =


2
3

2
3
− 1

3

− 1
3

2
3

2
3

2
3
− 1

3
2
3


et alors

R = Q−1A =


2
3

2
3
− 1

3

− 1
3

2
3

2
3

2
3
− 1

3
2
3


 2 0 1

2 4 −1
−1 2 3

 =

 3 2 −1
0 4 1
0 0 3



HAP608P, U Montpellier Programmation pour la physique 177 / 231

La décomposition QR

Deux fonctions auxiliaires :

import numpy as np

pour calculer la norme de v:

def norme(v):

return np.sqrt(np.sum(v**2))

pour calculer la projection de w sur v:

def projeter(v, w, epsilon =1.0E-10):

vnorme = norme(v)

if vnorme < epsilon: # proj. sur vect. nul = vect. nul

return np.zeros(v.shape [0])

resultat = np.copy(v)

resultat *= v @ w

resultat /= vnorme **2

return resultat

HAP608P, U Montpellier Programmation pour la physique 178 / 231

La décomposition QR
Orthogonalisation de Gram-Schmidt :

def gram_schmidt(A, epsilon =1.0E-10):

n = A.shape [0]

resultat = np.copy(A) # tableau ou sera mis le ré sultat

for i in range(n): # Gram -Schmidt modifi ée:

v = resultat[:, i] # pour tout vecteur de colonne v:

vnorme = norme(v)

if vnorme >= epsilon: # normaliser (sauf si nul)

v /= vnorme

for j in range(i+1, n): # de toute colonne derri ère v:

soustraire sa projection sur v

resultat[:, j] -= projeter(v, resultat[:, j], epsilon)

return resultat

Décomposition QR :

def decomp_QR(A, epsilon =1.0E-10):

Q = gram_schmidt(A, epsilon)

R = Q.T @ A

return Q, R

HAP608P, U Montpellier Programmation pour la physique 179 / 231

Algèbre linéaire avec SciPy

La bibliothèque SciPy contient des méthodes pour l’algorithme de Gauss, la
décomposition LU, la décomposition QR et de nombreuses autres : décomposition en
valeurs singulières, décomposition de Cholesky, fonctions matricielles, méthodes
optimisées pour des matrices spéciales. . .

Pour des vraies applications en physique numérique, il est préférable de se servir de ces
méthodes optimisées au lieu de nos implémentations du cours ≪ faites maison ≫.

On les trouve dans la sous-bibliothèque scipy.linalg :

import numpy as np

import scipy.linalg as la

A = np.array ([[5, 3, -1], [3, 2, -4], [-1, -4, 0]])

Ainv = la.inv(A) # inverse

d = la.det(A) # dé terminant

vals , vecs = la.eig(A) # valeurs/vecteurs propres

Pinv , L, U = la.lu(A) # déc. LU: Pinv ^(-1) A = L U

Q, R = la.qr(A) # dé composition QR

Le travail de calcul dans cette bibliothèque reste sur des routines en C, C++ et
FORTRAN optimisées qui sont beaucoup plus vite que des routines en Python.

HAP608P, U Montpellier Programmation pour la physique 180 / 231

Ajustement

HAP608P, U Montpellier Programmation pour la physique 181 / 231

Dans ce chapitre

Généralités

La méthode des moindres carrés

Algorithmes

Régression linéaire

Régression nonlinéaire : Méthodes de Gauss-Newton et de Levenberg-Marquardt

HAP608P, U Montpellier Programmation pour la physique 182 / 231

Ajustement

Description du problème :

Soient
(t1, y1) . . . (tn, yn) des données, p. ex. des données expérimentales,
f(t; β1, . . . , βp) une fonction (un “modèle”) qui dépend de certains paramètres
β1, . . . , βp.

On cherche les valeurs des paramètres telles que la fonction f correspondante décrit le
mieux les données :

f(ti; β⃗) ≈ yi ∀ i .

HAP608P, U Montpellier Programmation pour la physique 183 / 231

Ajustement

Exemple : La trajectoire d’un objet en chute libre est donnée par une fonction
quadratique f du temps t,

f(t;β1, β2, β3) = β1 + β2 t+ β3 t
2 !
= y(t)

Ici

β1 = y0 est la hauteur initiale à t = 0,

β2 = v0 est la vitesse initiale,

β3 = −g/2 avec g l’accélération gravitationnelle.

Lors d’une expérience, on mesure

t[s] y [m]
0 1

0.31 3
0.59 4
1.02 4
1.32 3
1.74 0

Comment en obtient-on les valeurs numériques de y0, v0 et g ?

HAP608P, U Montpellier Programmation pour la physique 184 / 231

Méthode des moindres carrés

Méthode standard : Méthode des moindres carrés.

On définit le résidu ri du point de données (ti, yi) par

ri(β⃗) = f(ti; β⃗)− yi

et on cherche les valeurs des paramètres β1 . . . βp telles que χ2, défini par

χ2(β⃗) ≡
n∑

i=1

r2i (β⃗)

est minimisé. Ces valeurs donnent le meilleur ajustement des paramètres aux données.

HAP608P, U Montpellier Programmation pour la physique 185 / 231

Méthode des moindres carrés

Généralisation pour incertitudes variables

Si les données sont de la forme (ti, yi ± σi) avec des σi tous différents, alors il faut
minimiser

χ2(β⃗) =
n∑

i=1

(
ri(β⃗)

σi

)2

, ri(β⃗) = f(ti; β⃗)− yi .

Méthode des moindres carrés pondérés.

Ainsi, les points de données avec grandes incertitudes σi contribuent à l’ajustement avec
un poids moins important.

Généralisation pour des erreurs de mesure sur t

On a supposé que l’incertitude sur les ti est négligeable ; sinon, il faut encore adapter la
méthode.

HAP608P, U Montpellier Programmation pour la physique 186 / 231

Régression linéaire

Problème numérique : Comment minimiser χ2 ?

Dans l’exemple de la chute libre, la fonction f dépend des paramètres β1, β2, β3
linéairement,

f(t; β⃗) = β1 + β2 t+ β3 t
2 .

Problème de régression linéaire : on cherche β1, β2, β3 tels que

yi ≈ f(ti; β⃗) ⇔ Aβ⃗ ≈ y⃗

où

A =


1 x1(t1) x2(t1)
1 x1(t2) x2(t2)
1 x1(t3) x2(t3)
...

...
...

1 x1(t6) x2(t6)

 avec x1(t) = t, x2(t) = t2 .

Le système linéaire Aβ⃗ = y⃗ est surdéterminé (6 équations pour seulement 3 inconnues ;
χ2 > 0 génériquement). Le meilleur ajustement est donné par la solution d’un système
linéaire de seulement 3 équations :

ATAβ⃗ = AT y⃗ .

HAP608P, U Montpellier Programmation pour la physique 187 / 231

Régression linéaire

Preuve :

On souhaite minimiser r⃗ 2 = (Aβ⃗ − y⃗)2 par rapport à β⃗, alors on cherche le β⃗ où le
gradient s’annulle :

∂

∂βi

(
Aβ⃗ − y⃗

)2
= 0 .

Explicitement :

∂

∂βi

(
Aβ⃗ − y⃗

)2
=

∂

∂βi

∑
ajk

(Aajβj − ya) (Aakβk − ya)

=
∑
ak

AaiAakβk +
∑
aj

AajβjAai −
∑
a

yaAai −
∑
a

Aaiya

= 2(ATAβ⃗)i − 2(AT y⃗)i

ce qui s’annulle si β⃗ vérifie
ATAβ⃗ = AT y⃗ .

HAP608P, U Montpellier Programmation pour la physique 188 / 231

Régression linéaire

import numpy as np

import numpy.linalg as la

Les donn ées:

t = np.array ([0., .31, .59, 1.02, 1.32, 1.74])

y = np.array ([1., 3., 4., 4., 3., 0.])

def x1(t): # les variables pr é dicteur

return t

def x2(t):

return t**2

A = np.ones((6, 3)) # la matrice de coefficients

A[:, 1] = x1(t) # (2 ème colonne)

A[:, 2] = x2(t) # (3 ème colonne)

Ré soudre le syst ème lin éaire pour trouver les param ètres:

beta = la.solve(A.T @ A, A.T @ y)

y0, v0, g = beta[0], beta[1], -2 * beta [2]

HAP608P, U Montpellier Programmation pour la physique 189 / 231

Régression linéaire

Calculer χ2 et tracer le résultat :

def f(t):

return y0 + v0 * t - g/2 * t**2

r = f(t) - y # les ré sidus

chi2 = np.sum(r**2)

print("chi^2 =", chi2)

import matplotlib.pyplot as plt

tpoints = np.linspace(0, 1.74, 100)

plt.plot(t, y, ’ro’) # tracer les donn ées

plt.plot(tpoints , f(tpoints)) # tracer la courbe th é orique

plt.xlabel("t [s]")

plt.ylabel("y [m]")

plt.show()

HAP608P, U Montpellier Programmation pour la physique 190 / 231

Régression linéaire : plusieurs variables indépendantes

Similaire pour plusieurs variables indépendantes

Exemple : on propose le modèle empirique

(Note d’examen) = β0 + β1x1 + β2x2 + β3x3

x1 = pourcentage de TD manqués
x2 = pourcentage de CM manqués
x3 = heures de révision

Note x1 x2 x3
8 10 25 2

19.5 0 0 6
6 30 100 3

12.5 10 37.5 4
14.5 10 25 4
10 80 62.5 5
0 100 100 2
2.5 20 50 4
6.5 60 50 0

HAP608P, U Montpellier Programmation pour la physique 191 / 231

Régression linéaire : plusieurs variables indépendantes

y = β0 + β1x1 + β2x2 + β3x3

A =



1
1
...
...
1


x⃗1




x⃗2




x⃗3




Matrice 9× 4 (9 points de données, 4 paramètres à ajuster).

La solution de ATAβ⃗ = AT y⃗ donne β0 = 10.4 , β1 = −0.05 , β2 = −0.11 , β3 = 1.24.

HAP608P, U Montpellier Programmation pour la physique 192 / 231

Régression linéaire

import numpy as np

import matplotlib.pyplot as plt

data = np.loadtxt("Regression_Notes")

datapoints = data.shape [0]

A = np.empty((datapoints , 4)) # matrice de coefficients

A[:, 0] = np.ones(datapoints) # premi ère colonne = 1

A[:, 1:] = data[:, 1:] # autres=variables pr é dicteur

y = data[:, 0] # variables ré ponse

beta = np.linalg.solve(A.T @ A, A.T @ y) # ajustement

print("beta =", beta) # afficher ré sultat

def pred_y(x): # pr é diction pour un pr é dicteur donn é

return beta [0] + beta [1:] @ x

predictions = [pred_y(A[i, 1:]) for i in range(datapoints)]

plt.plot(y, predictions , ’ro’)

plt.show()

HAP608P, U Montpellier Programmation pour la physique 193 / 231

Régression linéaire

Méthodes plus avancés :

Au lieu de directement résoudre les équations normales

ATAβ⃗ = AT y⃗

il peut être préférable de calculer la décomposition en valeurs singulières de la matrice A,

A = U DV T , U = orthogonale , D = diagonale , V = orthogonale

et de calculer β⃗ avec U , V , D et y⃗.

Raison : stabilité numérique, problématique si ATA est (proche d’être) singulière.

Ici on n’a pas traité des algorithmes pour la décomposition en valeurs singulières, alors on
ne détaillera pas la procédure.

HAP608P, U Montpellier Programmation pour la physique 194 / 231

Régression non linéaire
Dans les exemples avant, la fonction d’ajustement f(t; β⃗) dépendait des paramètres
β1 . . . βp linéairement.

Si la dépendence est plus compliquée, la minimisation de χ2 devient plus difficile.

Exemple : Ajuster une fonction sinusöıdale,

f(t; β1, β2, β3) = β1 sin (β2t+ β3)

où β1 est l’amplitude, β2 la fréquence, β3 la phase à t = 0.

Les données :

HAP608P, U Montpellier Programmation pour la physique 195 / 231

Régression non linéaire : L’algorithme de Gauss-Newton
On cherche un minimum de χ2(β⃗).

Méthode de Newton (rappel) : pour trouver un zéro de g(x), on itère

x ← x− g(x)

g′(x)

Pour trouver un point critique (potentiellement un minimum) de g(x), on cherche
un zéro de g′(x) : on itère

x ← x− g′(x)

g′′(x)

Généralisation à plusieurs variables : soit g(β⃗) une fonction de p variables β⃗. Pour
trouver un point critique, itérer

β⃗ ← β⃗ −H−1(β⃗)∇⃗g(β⃗)

où la matrice hesséenne H(β⃗) est

H =



∂2g

∂β2
1

∂2g
∂β1∂β2

∂2g
∂β1∂β3

· · · ∂2g
∂β1∂βp

∂2g
∂β2∂β1

∂2g

∂β2
2

∂2g
∂β2∂β3

· · · ∂2g
∂β2∂βp

...
...

∂2g
∂βp∂β1

∂2g
∂βp∂β2

∂2g
∂βp∂β3

· · · ∂2g
∂β2

p


HAP608P, U Montpellier Programmation pour la physique 196 / 231

Régression non linéaire : L’algorithme de Gauss-Newton
L’algorithme de Gauss-Newton évite le calcul de H en exploitant le fait que la fonction à
minimiser est une somme de carrés :

χ2(β1 . . . βp) = r1(β⃗)
2 + r2(β⃗)

2 + . . .+ rn(β⃗)
2 = r⃗ · r⃗

avec les n résidus
ri(β⃗) = f(ti; β⃗)− yi

Alors

∇⃗χ2 =


2 r1

∂r1
∂β1

+ 2 r2
∂r2
∂β1

+ . . .+ 2 rn
∂rn
∂β1

2 r1
∂r1
∂β2

+ 2 r2
∂r2
∂β2

+ . . .+ 2 rn
∂rn
∂β2

...

2 r1
∂r1
∂βp

+ 2 r2
∂r2
∂βp

+ . . .+ 2 rn
∂rn
∂βp

 = 2 r⃗ J

Ici J est la matrice jacobienne n× p

Jij =
∂ri
∂βj

.

De plus,

Hij =
∂

∂βi

(
∇χ2)

j
=

∂

∂βi
(2 r⃗ J)j = 2

(
JT J

)
ij
+ 2r⃗ · ∂2r⃗

∂βi∂βj
≈ 2

(
JT J

)
ij

(en supposant que les termes r⃗ · ∂2r⃗
∂βi∂βj

sont négligeables).

HAP608P, U Montpellier Programmation pour la physique 197 / 231

Régression non linéaire : L’algorithme de Gauss-Newton

Résumé : On a trouvé
∇⃗χ2 = 2 r⃗ J

et
H ≈ 2

(
JT J

)
où r⃗ est le vecteur à n composantes des résidus (fonctions des paramètres βi)

ri(β⃗) = f(ti; β⃗)− yi

et J est la matrice jacobienne n× p de r⃗ par rapport à β⃗,

J =
∂r⃗

∂β⃗
=
∂f⃗

∂β⃗
.

L’itération de la méthode de Newton pour trouver un point critique de χ2 = r⃗ · r⃗ devient

β⃗ ← β⃗ − (JTJ)−1r⃗ J

Méthode de Gauss-Newton.

HAP608P, U Montpellier Programmation pour la physique 198 / 231

Regression non linéaire : L’algorithme de Gauss-Newton

En pratique :

Calculer analytiquement les dérivées ∂f
∂βj

.

Commencer avec un ensemble de paramètres β⃗ au choix
(mais aussi proche que possible de l’optimum pour améliorer la convergence)

Mettre à jour les ri = f(ti; β⃗)− yi et les Jij = ∂f
∂βj

(ti; β⃗).

Remplacer β⃗ ← β⃗ − (JTJ)−1r⃗ J .

Équivalent, à préférer en pratique (car plus stable) : calculer le nouveau β⃗ avec la
solution d’un système linéaire, trouvée p.ex. par la méthode de Gauss :

β⃗nouveau = β⃗ancien + δ⃗ , δ⃗ = (solution de JTJ δ⃗ = −r⃗ J) .

Itérer ces dernières deux étapes jusqu’à la convergence.
S’arrêter lorsque ||δ⃗|| < ϵ.

HAP608P, U Montpellier Programmation pour la physique 199 / 231

Régression non linéaire : L’algorithme de Gauss-Newton

Avec les fonctions ∂f
∂βj

données dans une liste gradf :

import numpy as np

import gauss # pour la fonction gauss () du cours

def gauss_newton(t, y, f, gradf , beta0 , epsilon =1.E-4):

beta = np.copy(beta0) # les param ètres à ajuster

delta = np.ones(len(beta)) # diff. entre deux it é rations

while np.sqrt(np.sum(delta **2)) > epsilon:

r = f(t, beta) - y # les ré sidus

J = np.array ([df(t, beta) for df in gradf]).T # matr. J

delta = gauss.gauss(J.T @ J, - r @ J) # sol. du syst ème

beta += delta

chi2 = np.sum(r**2) # chi^2 apr ès minimisation

return beta , chi2

HAP608P, U Montpellier Programmation pour la physique 200 / 231

Algorithme de Gauss-Newton : Exemple d’application
Par exemple, pour la fonction sinusöıdale ci-dessus :

f(t; β⃗) = β1 sin (β2t+ β3)

et donc
∂f

∂β1
(t; β⃗) = sin (β2t+ β3) ,

∂f

∂β2
(t; β⃗) = β1 cos (β2t+ β3) t,

∂f

∂β3
(t; β⃗) = β1 cos (β2t+ β3) .

la fonction mod èle

def f(t, beta):

return beta [0] * np.sin(beta [1] * t + beta [2])

ses dériv ées partielles par rapport aux param ètres

df = [lambda t, beta: np.sin(beta [1]*t + beta [2]),

lambda t, beta: beta [0]*np.cos(beta [1]*t + beta [2])*t,

lambda t, beta: beta [0]*np.cos(beta [1]*t + beta [2])]

data = np.loadtxt(’noisysin.txt’) # les donn ées

beta , chi2 = gauss_newton(data[:, 0], data[:, 1], f, df,

np.array ([2., 1., 0.]))

HAP608P, U Montpellier Programmation pour la physique 201 / 231

Algorithme de Gauss-Newton : Exemple d’application

HAP608P, U Montpellier Programmation pour la physique 202 / 231

Algorithme de Gauss-Newton : Exemple d’application

f(t; A,ω, ϕ) = A sin (ωt+ ϕ)

HAP608P, U Montpellier Programmation pour la physique 203 / 231

Régression non linéaire : Algorithme de Levenberg-Marquardt

Faiblesse de la méthode de Gauss-Newton : si on commence avec des valeurs de départ
pour β⃗ trop loin du minimum, alors l’itération ne le trouvera pas.

Ce problème est amélioré avec une modification de l’algorithme menant à la méthode de
Levenberg-Marquardt.

Gauss-Newton :
β⃗nouveau = β⃗ancien + δ⃗ , JTJδ⃗ = −r⃗J

Levenberg-Marquardt :

β⃗nouveau = β⃗ancien + δ⃗ ,
(
JTJ+λ1

)
δ⃗ = −r⃗J

où λ ≥ 0 est un paramètre dit d’amortissement, à adapter à chaque itération.

Si λ → 0, la méthode s’approche à celle de Gauss-Newton.

Pour des grands λ, on s’approche à la méthode du gradient : la variation δ⃗ suit la
direction de la plus forte pente −r⃗J ∝ −∇⃗χ2.

HAP608P, U Montpellier Programmation pour la physique 204 / 231

Régression non linéaire : Algorithme de Levenberg-Marquardt

Algorithme :

Choisir une assez petite valeur initiale de λ (disons 10−4).

Faire tourner l’algorithme modifié de Gauss-Newton en remplaçant
JTJ → JTJ + λ1.

A chaque itération, calculer χ2.

Si χ2 a grandi par rapport à l’itération précédente, retourner à l’ancien β⃗ et refaire
avec λ ← 10λ.

Si χ2 a diminué, garder le nouveau β⃗ et continuer avec λ ← λ/10.

S’arrêter dès que χ2 ne diminue quasiment plus entre deux itérations (p.ex. diminue
par moins que ≈ 10−2).

HAP608P, U Montpellier Programmation pour la physique 205 / 231

Régression non linéaire : Algorithme de Levenberg-Marquardt

Propriétés de la méthode de Levenberg-Marquardt :

Par rapport à Gauss-Newton, convergence légèrement moins rapide mais plus stable.

Beaucoup de variations et d’optimisations existent, par exemple :

d’autres préscriptions pour adapter le paramètre d’amortissement λ

utiliser la combinaison JT J + λ diag (JT J) au lieu de JT J + λ1, où diag (JT J) a les
mêmes valeurs que JT J sur la diagonale et est 0 ailleurs

HAP608P, U Montpellier Programmation pour la physique 206 / 231

Equations différentielles ordinaires

HAP608P, U Montpellier Programmation pour la physique 207 / 231

Dans ce chapitre

Algorithmes

Méthode d’Euler

Méthode de Runge-Kutta classique

Généralités

Application aux équations de mouvement des systèmes en mécanique classique

HAP608P, U Montpellier Programmation pour la physique 208 / 231

Equations différentielles ordinaires

Une équation différentielle ordinaire du premier ordre est une équation

dont l’inconnue est une fonction x(t) d’un seul paramètre t (“ordinaire”)

qui implique la dérivée de cette fonction inconnue, ẋ(t) ≡ dx
dt

(“différentielle”)

mais qui n’implique pas les dérivées d’ordre supérieur (“premier ordre”).

On s’intéressera ici aux problemes de Cauchy (ou “problèmes aux valeurs initiales”) où
on donne une EDO et une condition initiale x(0) = x0.

Théorème de Cauchy-Lipschitz : On donne l’EDO

ẋ(t) = f(x(t), t)

avec f une fonction suffisamment régulière (par exemple, dérivable par rapport à son
premier argument). Alors, pour tout x0 ∈ R, il existe un voisinage U de t = 0 et une
fonction unique x sur U qui vérifie l’EDO ainsi que la condition initiale x(0) = x0.

HAP608P, U Montpellier Programmation pour la physique 209 / 231

Equations différentielles ordinaires

Notre objectif sera de trouver une approximation numérique de la fonction inconnue x(t)
= un tableau de valeurs de fonction approximatives x(t1), x(t2), . . ., x(tn).

Ces valeur seront successivement calculées à partir de la première valeur x0 à t = 0, qui
est donnée par la condition initiale.

t=0 t t t t t t t t1 2 3 4 5 6 7 8

donné

par

condition

initiale

valeurs calculés numériquement

courbe de la

solution exacte

x(t)

HAP608P, U Montpellier Programmation pour la physique 210 / 231

Equations différentielles ordinaires

Motivation physique importante : Les équations de mouvement

F⃗ = ma⃗

en mécanique peuvent s’écrire comme un système d’EDO du premier ordre. Les fonctions
inconnues sont les positions et les vitesses (ou plus généralement les coordonnées
généralisées et leurs moments conjugués).

Avec les positions et vitesses donnés à t = 0, on pourra les trouver pour tout t
numériquement.

HAP608P, U Montpellier Programmation pour la physique 211 / 231

Méthode d’Euler
Pour l’EDO ẋ(t) = f(x(t), t) avec la condition initiale x(0) = x0, on cherche la solution
sur l’intervalle [0, T]. Notre objectif sera alors de créer un tableau de N valeurs de
fonction x1 = x(h), x2 = x(2h), x3 = x(3h), . . . , xN = x(Nh) avec Nh = T .

x(t)

t

t = h t = 2h
h

t = 0 t = Nh = T

x

x

x

x

x

x
0

1

2

3

4

N

Méthode d’Euler : Développement limité pour h suffisamment petit,

x(h) = x(0) + ẋ(0)h+
1

2
ẍ(0)h2 +

1

3!

...
x (0)h3 + . . .

On néglige les termes O(h2) et supérieurs ; on substitue l’EDO ẋ(0) = f(x(0), 0) et la
condition initiale x(0) = x0 :

x1 = x0 + h f(x0, 0) .

De même : Une fois xn connu, on obtient xn+1 par développement limité et substitution,

xn+1 = xn + ẋn h = xn + h f(xn, nh) .

HAP608P, U Montpellier Programmation pour la physique 212 / 231

Méthode d’Euler
On obtient ainsi successivement les x1, x2, x3,. . .xN = x(T) :

xn+1 = xn + h f(xn, nh)

Ré soudre l’EDO dx/dt = f(x(t), t) avec la mé thode d’Euler

#

Arguments:

f = fonction à deux arguments = membre de droite de l’EDO

x0 = x(0) condition initiale

h = pas d’incr ément en t

N = nombre de points à calculer

#

Renvoie une liste de N+1 valeurs [x(0) ,...,x(Nh)]

def euler(f, x0 , h, N):

x = [x0] # une liste qui au début contient seulement x0

xn = x0

for n in range(N):

xn += h * f(xn , h*n)

x += [xn] # ajouter xn à la liste des x

return x

HAP608P, U Montpellier Programmation pour la physique 213 / 231

Méthode d’Euler : Un simple exemple
Pour p.ex. f(x(t), t) = x(t) + t et x0 = 0 :

ẋ(t) = x(t) + t , x(0) = 0 .

Solution analytique :
x(t) = et − t− 1 .

Solution numérique sur [0, 1] avec incrément h = 10−2 :

from euler import euler # la fct. euler du fichier euler.py

def f(x, t):

return x + t

solution = euler(f, 0.0, 1.E-2, 100)

Affichage :

import matplotlib.pyplot as plt

plt.plot(np.linspace(0, 1, 101), solution)

plt.show()

HAP608P, U Montpellier Programmation pour la physique 214 / 231

Méthode d’Euler : Un simple exemple

Solution numérique x(t) ∆x(t) = |xnumérique(t)− xanalytique(t)|

L’erreur numérique ∆x à t = T = 1 est ≈ 0.014 et alors du même ordre que
h = 0.01. Explication : à chaque pas on néglige des termes O(h2) dans le
développement limité ; il y a N = 1/h pas pour arriver à t = 1.

La méthode d’Euler est une méthode du premier ordre : l’erreur numérique globale
est de l’ordre h.

Pour améliorer la précision numérique par un facteur 2, il faudrait calculer ∼ 2× plus
de points.

HAP608P, U Montpellier Programmation pour la physique 215 / 231

Exemple physique

On regarde un objet qui se déplace dans un milieu fluide et qui est ralenti par une force
de trâınée dépendant de la vitesse, F (v),

F (v) = f1 v + f2 v
2 , fi = ctes.

L’équation de mouvement est alors F = ma = mv̇ = f1 v + f2 v
2, ou

v̇ = −αv − β v2

α = −f1
m
, β = −f2

m
positives (trâınée opposée au mouvement).

Fv

HAP608P, U Montpellier Programmation pour la physique 216 / 231

Exemple physique

v̇ = −αv − β v2

Petites vitesses, écoulement laminaire : v̇ = −αv (loi de Stokes) avec solution
v(t) = v0 e

−α t.

Grandes vitesses, écoulement turbulent : trâınée ∝ v2, v̇ = −βv2 donc
v(t) = v0

1+β v0 t
.

Cas général : exemple d’une équation différentielle de Bernoulli,

v(t) =
αv0

eαt(α+ βv0)− βv0
.

Calculons une solution numérique pour comparer avec la solution exacte.

HAP608P, U Montpellier Programmation pour la physique 217 / 231

Exemple physique

Constantes physiques:

alpha = 1.

beta = .5

v0 = 2.

Constantes num é riques:

T = 5. # intervalle de temps

N = 1000 # nombre de pas à calculer

h = T / N # pas d’incr ément

def f(v, t):

return -alpha * v - beta * v**2

from euler import euler

solution = euler(f, v0, h, N)

import numpy as np

import matplotlib.pyplot as plt

plt.plot(np.linspace(0, T, N+1), solution)

plt.show()

HAP608P, U Montpellier Programmation pour la physique 218 / 231

Exemple physique

Solution numérique pour α = 1, β = 2, v0 = 3 calculée avec N = 1000 points :

HAP608P, U Montpellier Programmation pour la physique 219 / 231

Exemple physique

Différence entre la solution numérique pour α = 1, β = 2, v0 = 3 avec N = 1000 points
et la solution exacte v(t) = αv0

eαt(α+βv0)−βv0

Erreur absolue Erreur relative

HAP608P, U Montpellier Programmation pour la physique 220 / 231

Systèmes d’EDO

Un système de n équations différentielles du premier ordre avec n fonctions inconnues :

ẋ(t) = fx(x(t), y(t), z(t), . . . , t)

ẏ(t) = fy(x(t), y(t), z(t), . . . , t)

ż(t) = fz(x(t), y(t), z(t), . . . , t)

...

Il faut n conditions initiales x(0) = x0, y(0) = y0, z(0) = z0, . . . pour un problème de
Cauchy bien posé.

Pour le résoudre, on se sert de la même méthode qu’avant, en regroupant les n fonctions
inconnues x, y, z, . . . et les n fonctions des membres de droite fx, fy, fz, . . . dans des

fonctions vectorielles u⃗ et f⃗ :
˙⃗u(t) = f⃗(u⃗(t), t)

Après développement limité et substitution :

u⃗(t+ h) = u⃗(t) + h f⃗(u⃗(t), t) +O(h2)

Méthode d’Euler n-dimensionnelle.

HAP608P, U Montpellier Programmation pour la physique 221 / 231

EDO du second ordre
Application importante : équations du second ordre qui peuvent toujours se transformer
en deux équations du premier ordre. Par exemple :

ẍ =
1

m
F (x, ẋ, t)

Introduire une fonction inconnue auxiliaire v(t) par

v = ẋ

On obtient un système de deux EDO du premier ordre :

ẋ = v

v̇ =
1

m
F (x, v, t)

Plus généralement : en d dimensions,

¨⃗x =
1

m
F⃗ (x⃗, ˙⃗x, t)

équivalent aux 2d équations du premier ordre

˙⃗x = v⃗

˙⃗v =
1

m
F⃗ (x⃗, v⃗, t)

HAP608P, U Montpellier Programmation pour la physique 222 / 231

Exemple

Une bille de masse m se déplace sans friction sur l’intérieur d’un étonnoir conique, dont
la surface est décrite, en coordonnées cartésiennes, par

x2 + y2 = tan2(α) z2

avec 2α = l’angle d’ouverture du cône. La gravité aĝıt en direction négative des z. On
souhaite résoudre les équations de mouvement.

x

y

z

On utilise des coordonnées cylindriques (r, ϕ, z). Avec la vitesse radiale vr = ṙ et le
moment cinétique ℓ = mr2ϕ̇ (conservé ici) on obtient

ṙ = vr

v̇r =
ℓ2 sin2 α

m2

1

r3
− g sinα cosα

ϕ̇ =
ℓ

mr2

HAP608P, U Montpellier Programmation pour la physique 223 / 231

Exemple

Importer la bibliothèque numpy, initialiser les constantes :

import numpy as np

Constantes physiques:

g = 9.81 # acc élé ration gravitationnelle en m/s^2

alpha = np.pi/4 # 1/2 * angle d’ouverture

m = 1.E-3 # masse de la bille en kg

Constantes num é riques:

h = 1.E-4 # pas d’incr ément

N = 50000 # nombre de pas à calculer

Conditions initiales:

r0 = .1 # rayon

v0 = .2 # vitesse radiale

phi0 = 0.0 # angle

omega0 = 4. # vitesse angulaire

Constantes dé pendantes:

L = m * r0**2 * omega0 # moment cin é tique

sa, ca = np.sin(alpha), np.cos(alpha)

HAP608P, U Montpellier Programmation pour la physique 224 / 231

Exemple
Résoudre les équations de mouvement par la méthode d’Euler :

def euler(f, u0 , h, N):

u = np.empty ([N+1, 3]) # variables dynamiques

u[0] = u0 # u[i] = ligne i du tableau u

for n in range(N):

u[n+1] = u[n] + h * f(u[n])

return u

La fonction vectorielle des membres de droite des e.d.m.

u = un vecteur à 3 composantes (r, v et phi au temps t)

def f(u):

r, v, phi = u

fr = v

fv = L**2 * sa**2 / (m**2 * r**3) - g * sa * ca

fphi = L / (m * r**2)

return np.array ([fr, fv, fphi])

u0 = np.array ([r0, v0, phi0])

solution = euler(f, u0, h, N)

HAP608P, U Montpellier Programmation pour la physique 225 / 231

Exemple

Trajectoire pendant 5 s r(t)

Visiblement l’amplitude de la solution numérique pour r est croissante (voir flêche)
malgré la conservation d’énergie : artéfact numérique. Pour l’éviter on peut soit réduire h
et augmenter N soit utiliser une méthode numérique plus puissante.

HAP608P, U Montpellier Programmation pour la physique 226 / 231

Méthode de Runge-Kutta classique
Problème : Résoudre le problème de Cauchy ẋ = f(x(t), t) , x(0) = x0 .

Euler : Étant donné x(t), pour obtenir x(t+ h) : développement limité autour de x(t),
ne retenir que le premier terme,

x(t+ h) = x(t) + h ẋ(t) +O(h2) = x(t) + h f(x(t), t) +O(h2) .

Runge-Kutta : Étant donné x(t), pour obtenir x(t+ h) : combinaisons linéaires de
plusieurs développements limités autour des valeurs intermédiaires x(t+ τi) avec
0 ≤ τi ≤ h. Pour pi, ξi, τi bien choisis, l’erreur local devient O(hN) avec N > 1 :

x(t+ h) = x(t) + h
r∑

i=1

pi ki +O(hN) , ki = f(x+ ξi, t+ τi) , 0 < pi < 1 .

Variante la plus importante : Méthode de R-K du 4ème ordre, “RK4”, “RK classique”

x(t+ h) = x(t) + h

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
+O(h5)

k1 = f(x(t), t) , k2 = f

(
x(t) +

h

2
k1, t+

h

2

)
,

k3 = f

(
x(t) +

h

2
k2, t+

h

2

)
, k4 = f (x(t) + h k3, t+ h) .

HAP608P, U Montpellier Programmation pour la physique 227 / 231

Méthode de Runge-Kutta classique
La méthode RK4 est beaucoup plus précise que celle d’Euler.

Elle nécessite plus d’évaluations de la fonction f (4 par pas — une seule par pas
pour Euler), mais en pratique cela est plus que compensée par le fait qu’il faut
beaucoup moins de pas pour atteindre la même précision.

Elle est presque aussi facile à implémenter que la méthode d’Euler (4 lignes de plus).

Elle aussi peut être appliquée aux systèmes de plusieurs EDO.

Exemple : Pour l’exemple de la bille dans l’étonnoir, remplacer la fonction euler par une
fonction rk4 :

def rk4(f, u0 , h, N):

u = np.empty ([N+1, 3]) # variables dynamiques

u[0] = u0 # u[i] = ligne i du tableau u

for n in range(N):

k1 = f(u[n])

k2 = f(u[n] + h/2 * k1)

k3 = f(u[n] + h/2 * k2)

k4 = f(u[n] + h * k3)

u[n+1] = u[n] + h * (k1/6 + k2/3 + k3/3 + k4/6)

return u

HAP608P, U Montpellier Programmation pour la physique 228 / 231

Méthode de Runge-Kutta classique

Plus de croissance artificielle visible de l’amplitude grace à une meilleure précision de
l’algorithme.

HAP608P, U Montpellier Programmation pour la physique 229 / 231

Précision numérique, Euler vs. RK4

Avec la méthode d’Euler on néglige des termes O(h2) à chaque pas. Après
N = O(1/h) pas, l’erreur accumulée est alors O(h).

Redoubler le nombre de pas ⇒ l’erreur est réduite par la moitié

Avec la méthode RK4 les termes négligés sont O(h5), l’erreur accumulée est O(h4)
(“methode du 4ème ordre”)

Redoubler le nombre de pas ⇒ l’erreur est réduite par un facteur 24 = 16.

Erreur en fonction de N : Euler RK4

HAP608P, U Montpellier Programmation pour la physique 230 / 231

Résumé : EDO, problèmes de Cauchy

Pour numériquement résoudre un problème un problème aux valeurs initiales en
mécanique :

Choisir un système de coordonnées (en prenant en compte la symétrie du système,
les contraintes éventuelles. . .)

Trouver les équations de mouvement, par exemple avec F⃗ = ma⃗.

Les transformer en système d’équations du premier ordre.

Résoudre les e.d.m. avec la(((((((
méthode d’Euler méthode RK4 (plus puissante).

Résultat : un tableau de coordonnées et vitesses/quantités de mouvement à
différents t.

HAP608P, U Montpellier Programmation pour la physique 231 / 231

	Introduction
	Les types de données
	Les structures de contrôle
	Les fonctions
	NumPy et graphisme
	Recherche des zéros
	Algèbre linéaire numérique
	Ajustement
	Equations différentielles ordinaires

