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Introduction
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Dans ce chapitre

Généralités
@ Programmation scientifique et physique numérique
o Apercu du langage Python

Python

@ Instructions
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Pourquoi physique numérique ?

L’ordinateur est un outil indispensable en physique :
@ Solution numérique des équations qui décrivent les systemes physiques
@ Simulation des systémes complexes
o Assistance aux calculs analytiques
o Pilotage et surveillance des manip
@ Analyse et traitement des données
@ Visualisation des résultats, rédaction des publications scientifiques
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Pourquoi apprendre a programmer ?

@ Développer des programmes.
o Modifier et adapter a ses besoins des programmes et bibliotheques existants.

@ Connaitre le mode de fonctionnement et les limitations des logiciels que I'on utilise.
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Programmation et intelligence articificelle générative
Q : ChatGPT, Copilot, Gemini, Claude. .. produisent du code vraisemblement
meilleur que le mien. Vaut-il toujours la peine d’apprendre a programmer ?

o L'lA est devenu un outil trés apprécié en programmation. Mais il ne faut pas y faire
confiance aveuglement.

@ L'lA produira un ébauche de programme qu'un programmeur humain peut ensuite
perfectionner, pourvu qu'il maitrise bien la programmation.

o |l faut avoir appris le calcul mental avant de se servir de la calculatrice

o |l faut avoir appris a écrire correctement avant de se servir de |'autocorrection

o |l faut avoir appris a programmer avant d'utiliser I'lA

I'd like to implement the game of Tic Tac Toe in Python, with a text-
based interface. Can you do this for me?

Tic Tac Toe "

1 def print_board(board):
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"""Prints the Tic Tac Toe board."""
for row in board:
print(" | ".join(row))
print("-" * 5)
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Qu'est-ce qu'un programme ?

Un programme est un ensemble de commandes qui aménent |'ordinateur a changer |'état
de sa mémoire interne et/ou de ses périphériques.

Typiquement nous commanderons I'ordinateur d’effectuer certaines opérations et
d’afficher ou d'enregistrer les résultats.

Un langage de programmation est un ensemble de régles syntactiques que les commandes
doivent suivre afin qu’'elles puissent étre traduites en instructions au systéme
d'exploitation (ou directement au matériel informatique).

Cette traduction aura lieu soit au fur et a mesure lors de |'exécution du programme
(interprétation) soit une seule fois avant |'exécution (compilation).

HAP608P, U Montpellier Programmation pour la physique 8 /231



Langages de programmation

# Afficher "Hello World!" avec Python

print ("Hello World!")

// Afficher "Hello World!" avec C++

#include<iostream>
using namespace std;

int main() {
cout << "Hello World!'!\nm";
return O;

! Afficher "Hello World!" avec Fortran 90

PROGRAM HelloWorld
WRITE (*,*) ’Hello World!’
END PROGRAM HelloWorld
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Python

@ python’

Pourqoui Python?

@ trés courant : le standard universel en programmation scientifique pour la plupart
des taches

facile a apprendre, syntaxe simple et intuitive = on peut se concentrer sur le
programme sans étre encombré par les pieges du langage

polyvalent, multiples domaines d'application

beaucoup des bibliotheques incluses = vaste fonctionnalité

@ haut niveau d’abstraction (pas de manipulation directe du matériel informatique)
@ moderne :

e programmation orientée objet

e programmation fonctionnelle

o typage dynamique

o gestion automatique de mémoire

o ...
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Quelques domaines de la programmation scientifique
Calcul symbolique / calcul formel

Manipulation automatisée des objets mathématiques au niveau symbolique,
c.a.d. sans forcement une application numérique : Algebre, analyse, arithmétique. . .

Les systemes de calcul formel incluent typiquement des langages de programmation
complets pour gérer le flot d'exécution. Pas seulement des “grandes calculatrices” !

o Interfaces typiquement interactives de type notebook (calepin / cahier de travail).
o Exemples : Mathematica, Maple, MATLAB, SageMath/SymPy

* propriétaire * basé sur Python
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Quelques domaines de la programmation scientifique

Calcul numérique a haute performance

Evaluation numérique des fonctions / des intégrales a haute précision, solution
numérique de systémes d’'équations algébriques ou différentielles, optimisation,
simulation de systémes complexes avec un grand nombre de dégrés de liberté. . .

Domaine classique de I'analyse numérique.

Peut étre tres demandeur c6té puissance de calcul : optimisation de code
(automatisée ou de la part du programmeur) pour exploiter au mieux le matériel
informatique.

On utilise les langages de programmation compilés pour optimisation

Interface : soit éditeur + console avec ses outils (compilateur, lieur, débogueur), soit
environnement de développement intégré

Exemples : FORTRAN, C, C++
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Quelques domaines de la programmation scientifique
Gestion, traitement, analyse et visualisation des données

o Traitement automatisé des données expérimentales, observationnelles, numériques. . .

o Stockage, tri, analyse statistique, ajustement, représentation graphique (figures et
animations). ..

@ Besoin surtout de fonctionnalités diverses (polyvalence)
o Typiquement domaine des langages de programmation interprétés.
o Interface :
o soit fichiers de script (créés dans un éditeur)
o soit interface interactif (notebook ou ligne de commande)
o Exemples de langages de script : script shell de Unix, Perl, R, Julia, Python
o Exemples de suites logicielles interactives : , Octave, IPython/Jupyter

* basé sur Python
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Quelques domaines de la programmation scientifique

Développement des logiciels et outils auxiliaires

@ Programmation des interfaces, de I'environnement graphique, du web, des bases de
données, du systeme d’exploitation. . .

©

Interférences avec d'autres secteurs du développement des logiciels

(]

Domaine des langages universels, interprétés ou compilés selon I'objectif

[

Interface : typiquement environnement de développement intégré

o Exemples : C++, Java, Python
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Deux fagons d'exécuter son programme : Compilation et interprétation

1. Programmes compilés :

Le code source est entierement traduit en forme exécutable par un logiciel auxiliaire, le
compilateur. Un autre logiciel auxiliaire, I'éditeur de liens, peut assister afin d'intégrer les
composantes du programme et les bibliothéques externes dans le fichier exécutable.

Forces :
o Optimisation automatique
o Rapidité, efficacité augmentée

@ Manque de transparence : plus facile de cacher les détails du fonctionnement
— logiciels commerciaux

Faiblesses :

o Apres toute modification du code source il faut recompiler.

Manque de portabilité du code compilé

Pas de possibilité d'exécuter seulement une partie d'un programme

Manque de transparence : moins facile de savoir les détails du fonctionnement
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Deux fagons d'exécuter son programme : Compilation et interprétation

2. Programmes interprétés :

Le code source est traduit ligne par ligne lors de |'exécution par un logiciel auxiliaire,
I'interpréteur.

Forces :

@ Apres une modification du code source on peut immédiatement réexécuter le
nouveau programme.

o Les erreurs de programmation sont souvent plus faciles a détecter (débogage)

@ Portabilité : les seuls fichiers de programme sont celles du code source, qui sont les
mémes sur tout systeme

Faiblesses :

o Efficacité généralement inférieure a un programme compilé et optimisé.

Mais un programme interprété peut utiliser des librairies compilés pour les parties les
plus lourdes en calcul.
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Deux fagons de rédiger son code : Fichier de code source et notebook
1. Fichier de code classique / script :

o Créé avec un éditeur de texte, éventuellement partie d'un environnement de
développement intégré.

o Format : fichier de texte, ne contient que le code de source (et des commentaires).

@ Le code est enregistré dans un ou plusieurs fichiers que |'on passe ensuite au
compilateur ou a l'interpréteur.

Spyder (Python 2.7)
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Deux fagons de rédiger son code : Fichier de code source et notebook
2. Notebook interactif :

@ Créé avec un éditeur dédié.

o Format spécial, peut contenir du texte formaté, des équations, des résultats
intermédiaires, des éléments graphiques. . .ainsi que le code de source

@ Interpréteur toujours intégré, on peut exécuter le notebook entier ou juste une partie
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Deux paradigmes de programmation : Procédurale et orientée objet

1. Programmation procédurale :
@ Date des années '50
o Séparation entre les données et les procédures qui les gérent

@ Structure des programmes plus linéaire

Mieux adaptée aux petits projets car moins d'overhead.

Exemples de langages bien appropriés a la programmation procédurale :
FORTRAN, C, Python
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Deux paradigmes de programmation : Procédurale et orientée objet

2. Programmation orientée objet :
o Date des années '80

o Notion centrale : L'objet qui réunit les données et les méthodes, représentant une
entité abstraite définie par son état et ses capacités

@ Tout objet est instance d'une classe. Il y a une hiérarchie des classes avec des
propriétés héritables.

@ Structures plus abstraites.
@ Programmes moins linéaires, favorisant la modularité
o Mieux adaptée aux grands projets de plusieurs contributaires.

o Exemples de langages bien adaptés a la programmation orientée objet :
C++, Java, Python
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Python

@ python’

Le langage Python

@ est un langage interprété

Plus précisement, son implémentation standard CPython traduira le code source en “bytecode” qui est ensuite interprété.
@ s'utilise soit en mode de script soit en mode interactif

@ permet tant la programmation procédurale que la programmation orientée objet.
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Apercu du cours

Ce cours porte sur des sujets en programmation scientifique et en analyse numérique :
@ Révision de la programmation procédurale avec Python
o Calcul matriciel avec NumPy, graphisme

Méthodes de recherche de zéros

Méthodes de I'algebre linéaire numérique

Ajustement

Résolution numérique d'équations différentielles ordinaires
@ Introduction a la programmation orientée objet
Prérequis pour le suivre avec profit :
o Connaissances en programmation (UEs d'informatique en L1-L2)...
@ ...en physique (mécanique, électrodynamique, physique quantique). . .
@ ...et en mathématiques (nombres complexes, analyse réelle, algebre linéaire).

Matieres a réviser indépendamment si besoin !
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Bibliographie

Python :

o B. Cordeau et L. Pointal, < Une introduction a Python 3 >,
http://perso.limsi.fr/pointal/python:courspython3

o G. Swinnen, < Apprendre a programmer avec Python 3 >,
http://www.inforef.be/swi/python.htm

@ D. Cassagne, < Introduction a Python pour la programmation scientifique >,
http://wwww.courspython.com

o < Python Tutorial >, https://docs.python.org/fr/3/tutorial/

@ beaucoup d'autres sources a trouver en ligne et hors ligne
Algorithmes pour la physique numérique :

@ M. Newman, < Computational Physics >, 2012 (en anglais)

o W. H. Press, S. Teukolsky, W. Vetterling et B. Flannery, < Numerical Recipes >, 3e
édition 2007, Cambridge University Press (en anglais et C++)
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Matériel du cours sur |'espace pédagogique

Vous trouverez sur Moodle :
@ Ces notes de cours
o Tous les exemples de code apparaissant ci-dedans : répertoire Exemples/

@ Toutes les fiches d’exercices
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Exécuter son code avec Python

o Rédiger votre code de source avec I'aide de votre éditeur de texte préféré
o L'enrégistrer dans un fichier, par exemple exemple.py

o Exécuter le script avec l'interpréteur Python :
Entrer python3 exemple.py par la console (dans le dossier ou se trouve le fichier)

Raccourci : Des environnements de développement intégrés (comme spyder) permettent
de rédiger le code et de I'exécuter directement par un clic dans l'interface graphique.

Il faudra pourtant que vos programmes soient autonomes (ne dépendent pas des
fonctionnalités de spyder pour générer ses résultats) !
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Un premier programme en Python

#!/usr/bin/python3
# Ecrit la phrase "Hello World!" sur 1’écran

print ("Hello World!")

Dans cet exemple il y a

@ des commentaires : précédés par un croisillon #. Tout ce qu'y fait suite dans la
méme ligne du fichier est ignoré par I'interpréteur.
On utilise des commentaires surtout pour rendre son code mieux lisible par les
programmeurs (soi-méme inclus). Il ne faut pas en économiser !

@ une ligne blanche, ignorée par I'interpréteur

@ une instruction : un appel de la fonction print ( ) qui fait apparaitre sur I'écran la
chane de caractéres entre les parenthéses

Exercice
Exécuter ce script (HelloWorld.py) J
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Format et interprétation du code source

o Chaque ligne du script (2 part les lignes blanches et celles ne contenant que des
commentaires) correspond a une instruction.

o L'interpréteur exécutera toutes les instructions, une par une.

@ Si l'interpréteur tombe sur une instruction fautive, le programme s'arréte avec un
message d'erreur. Ce message peut étre tres utile pour identifier et réparer le
probléme.

pint ("Oups!") # erreur: la bonne fonction s’appelle print ()
#
# Le programme va s’arréter avec le message
# "NameError: name ’pint’ is not defined"
# qui indique que ’pint’ n’est pas défini

@ Sinon, le programme termine dés qu'il n'y a plus d’instructions a exécuter.
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Exceptions de la regle d'une instruction par ligne

@ Une instruction incluant une parenthése (ou un crochet [ ou une accolade { non
fermé se poursuit sur les lignes suivantes jusqu'a la cléture.

print ("Malheureusement ce texte est trop long pour une "
"seule ligne de code source, mais on veut cependant "
"l’afficher dans une seule ligne sur l’écran.")

@ Une ligne terminée par un anti-slash \ se poursuit sur la ligne suivante.

@ Une ligne peut contenir plusieurs instructions séparées par des point-virgules;

print ("Flying"); print("Circus") J

Pour améliorer la lisibilité du code il est fortement conseillé de mettre une instruction par
ligne et une ligne par instruction si possible.
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Le Zen de Python

import this

Préfere :
la beauté a la laideur,
I'explicite a I'implicite,
le simple au complexe
et le complexe au compliqué,
le déroulé a I'imbriqué,
I'aéré au compact.
Prends en compte la lisibilité.
Les cas particuliers ne le sont jamais assez pour violer les regles.
Mais, a la pureté, privilégie I'aspect pratique.

[ ]

— T. Peters, 1999
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Les instructions : Erreurs fréquentes

o A la différence de Python 2, print () est une fonction en Python 3 — il faut
impérativement mettre les parenthéses ()

print ("¢a marche") # ca marche
print "ga ne marche pas" # c¢a ne marche pas

@ Attention a I'orthographe. En particulier, Python est sensible a la casse (distingue
entre les minuscules et les majuscules).

@ Si un programme ne fonctionne pas : Examiner le message d'erreur. Il contient des
informations utiles sur I'endroit ot le programme s'est interrompu (la ligne du code
source) et sur le genre d'erreur qui s'est produite.

o Contrairement a beaucoup d’autres langages de programmation, des espaces blancs
au début d'une ligne (indentation) ont une signification syntactique. Il ne faut pas
commencer une ligne avec des espaces blancs
(sauf si I'objectif est de créer un bloc; voir le chapitre “Structures de contréle”).
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Les types de données
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Dans ce chapitre

Python

@ Variables et affectations

Types de données numériques

@ Opérations arithmétiques

Types de données séquentiels

Chafnes de caractéres

Saisie du clavier
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Variables, types et affectations

Voici quelques exemples d'affectations qui attribuent des valeurs aux variables :

phrase = "Mais non!"

nombre = 25

somme = nombre + 5 # la valeur de ’somme’ devient 30
nombre3 = 50.0

ma_liste = ["lundi", "mardi", "mercredi"]

o Ici phrase, nombre, somme, nombre3 et ma_liste désignent des variables.

@ Toute variable est d'un type qui est déterminé par le format utilisé dans |'affectation.
Ici 'phrase’ est du type str (chaine des caractéres), 'nombre’ et 'somme’ sont du type
int (nombres entiers), 'nombre3’ est du type float (nombre flottant) et 'ma_liste’
est du type list (liste d’objets).

o Une fois initialisée, la variable peut étre utilisée, cf. I'usage de 'nombre’ dans la
troisieme ligne ci-dessus. En revanche, une commande comme

a=>b

produit une erreur si la variable b n'a pas été donnée une valeur avant.
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Les variables

Chaque variable est caractérisée par
@ son nom (identifiant)
@ son type
@ sa valeur

Exemple :

ma_variable = 25 J

@ lci l'identifiant est ma_variable.
Un identifiant se compose des lettres A-Z et a - z, du tiret bas _ et des chiffres 0 - 9
(sauf comme premier caractere).

o Le type est déterminé automatiquement a I'initialisation. Ici le type est int (nombre
entier). Si l'initialisation était ma_variable = 25.0 le type serait float (nombre
flottant). Si c’était ma_variable = "vingt-cing" le type serait str (chaine des
caractéres).

@ La valeur est 25, bien siir.
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Les identifiants
@ Presque toute combinaison de lettres minuscules et majuscules, chiffres (sauf comme
premier caractére) et tirets bas _ est valable comme identifiant.

@ Exception : les mots clé du langage Python qui ont une signification syntactique
spéciale, soient and, as, assert, break, class, continue, def, del, elif,
else, except, False, finally, for, from, global, if, import, in, is,
lambda, None, nonlocal, not, or, pass, raise, return, True, try,
while, with, yield

@ Deuxieme exception : Il y a certaines fonctions natives dont les noms ne doivent pas
étre utilisés comme identifiants, par exemple abs, complex, float, input, int,
list, max, min, print, str (méme si c'est techniquement possible, ¢a va
probablement créer des bogues).

@ Troisieme exception : I'identifiant 'self’ ainsi que tout identifiant qui commence
avec un ou deux tirets bas (par exemple, '__init__") ont une signification spéciale
en programmation orientée objet. Il ne faut pas les utiliser hors leur propre contexte.

o Conseil : Utiliser les identifiants parlants pour les variables importantes pour

améliorer la lisibilité du code.

x = "2 place Victor Hugo, 75000 Paris, France" # pas idéal
adresse = "34 rue Jean Moulin, 30000 Nimes, France" # mieux
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Les types de données numériques

type description
int nombre entier sans limite de taille théorique
float nombre flottant, précision 64 bit soit ~ 15 décimales
complex nombre flottant complexe correspondant a deux float
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Les types de données numériques : int

@ Une variable du type int (nombre entier) se crée par une affectation sans point
décimal comme

x = 25
-100

<
|

o Elle est également le résultat d’un appel a la fonction de conversion int() :

x = 3.8 # x est du type float avec valeur 3.8
y = int(x) # y est du type int avec valeur 3
z = int("42") # z est du type int avec valeur 42 et a été

# construit partant de la chaine de
# caractéres "42"
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Les types de données numériques : float

@ Une variable du type float (qui représente un nombre a virgule flottante avec valeur
absolue entre environ 1073%° et 103%° ou 0, précision numérique =~ 15 décimales) se
crée par une affectation soit avec point décimal soit en notation scientifique :

gamma = -5.77
c = 3E8
hbar = 1.05E-34

o Ici la notation '3E8’ signifie 3 x 10% et la notation '1.05E-34" signifie 1.05 x 10734,

o Le résultat d'un appel a la fonction de conversion float() est également un nombre

flottant :
x = 3 # x est entier avec valeur 3
y = float(x) # y est un float avec valeur 3.0
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Les types de données numériques : complex

@ Une variable du type complex représente un nombre flottant complexe, c.a.d. un
float pour la partie réelle et un pour la partie imaginaire. Notation en Python avec
'J" pour I'unité imaginaire i = /—1:

c =3 + 47J # le nombre complexe 3 + 4 i
=2.B * B.lE=8J # le nombre complexe -2.5 + 0.005 i
i=1J # le nombre complexe i

@ La conversion se fait avec la fonction de conversion complex() :

s = "3 + 2J" # une chaine de caractéres

z = complex(s) # un nombre complexe

re_z = 1.7 # un float

im_z = -2.8 # un deuxiéme float

z = complex(re_z, im_z) # le nombre complexe 1.7 - 2.8 i
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Les types de données numériques : complex

Pour obtenir la partie réelle ou imaginaire d'un nombre complexe :

z = -1 + 2.37J
re_z = z.real # donne -1.0
im_z = z.imag # donne 2.3
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Les opérations arithmétiques

Python connaft les opérations arithmétiques suivants :

+ addition

- soustraction

* multiplication

/ division réelle résultat est toujours float ou complex

// division entiere résultat est int si les deux arguments sont int,

float ou complex sinon
%  reste de la division entiere résultat est int si les deux arguments sont int,
float ou complex sinon

*k puissance
Exemples :
x =5+ 3 # x est du type int avec valeur 8
y =x /5 # y est du type float la valeur 1.6
z =x // 5 # z est du type int avec valeur 1
yy = 8 % 5.0 # yy = 3.0 est du type float
XX = 2 ** 3 # xx = 8

zz = 16 * 4 - 2 x (10 + 1) # zz = 42
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Les affectations

Une affectation procéde en deux pas :

o I'expression a droite du signe = est évaluée
(calculée en fonction de I'état de la mémoire a cet instant)

o le résultat est affecté a la variable a gauche du signe =

Cela permet des instructions comme

x =0 # x est du type int, sa valeur est O
x =x + 1 # augmenter x de 1

(la 2nde ligne ne doit pas étre confondue avec une équation algébrique!)
ou méme

x =y =17 # x et y sont du type int avec valeur 7 J
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Les affectations

Combinaison des opérations arithmétiques avec des affectations, pour changer la valeur
d'une variable :

x = 2 # x est initialement du type int avec valeur 2
x += 1 # ajouter 1 & x: x devient 3
# (équivalent: x = x + 1)
x *= 3 # multiplier x par 3: x devient 9
# (équivalent: x = x * 3)
x -= 1 # soustraire 1 de x: x devient 8
# (équivalent: x = x - 1)
x /= 4 # diviser x par 4: x devient 2.0
# (équivalent: x = x / 4)
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Les types séquentiels ( “sequence types”)

type description

str chalne de caracteres
list liste muable d'objets
tuple collection immuable d'objets
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Les chaines de caracteres

Le type de données str (“string” en anglais) représente des chaines de caractéres.

@ Toute partie du code source entre apostrophes ' ou guillemets " est interprétée
comme un str.

phrase = "Mon tailleur est riche."
titre_du_cours = ’Programmation pour la physique (HAP608P)’

@ On peut convertir toute variable numérique en str avec la fonction str(). On peut
convertir un str en int seulement s'il se compose des chiffres. Similairement, on
peut convertir un str en float seulement si les caractéres représentent un nombre
flottant en notation Python.

nombre = "23"
print (nombre + nombre) # affiche "2323"
print (int (nombre) + int(nombre)) # affiche "46"
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Les opérations sur des chaines de caracteres
Avec I'opérateur + on peut composer les chaines de caractéres :

age = 12
phrase = "J’ai " + str(age) + " ans."
print (phrase) # affiche "J’ai 12 ans."

Avec [] on accéde aux caracteres séparés. Attention : I'indice du premier caractere est
toujours 0!

print (phrase [0]) # affiche "J"
print (phrase [3]) # affiche "i"

L'opérateur [a:b] retourne la sous-chaine de caractéres a partir de I'indice a (inclu)
jusqu’a I'indice b (exclu). Si on ne spécifie pas a et/ou b, on obtient la sous-chaine a
partir du début et/ou jusqu'au bout.

print (phrase [1:3]) # affiche "’a"
print (phrase [5:]) # affiche "12 ans"
print (phrase[:6]) # affiche "J’ai 1"
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Le caractere d'échappement dans une chaine de caractéres

Dans une chaine des caracteres, la barre oblique inversée ou anti-slash \ a une rdle
spéciale : c'est le caractere d'échappement.

@ Dans un string littéral entouré des apostrophes ', les caracteres " sont traités comme
des caracteres réguliers et vice-versa. Si on veut inclure le caractére ' (ou ") dans un
string littéral qui commence et finit avec ' (ou "), il doit &tre précédé par un \ :

print("J’ai 12 ans")
print(’J\’ai 12 ans’) # méme résultat
print ("\"Infame !\" s’exclama Bastien.")

o La séquence \n dans une chaine des caracteres force la fin de la ligne.

@ Pour explicitement écrire un anti-slash il faut en inclure deux :

print ("Voici un anti-slash: \\") J

(On rappelle que, hors d'une chaine des caractéres, le anti-slash indique par contre la continuation d'une

instruction sur la ligne suivante)
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Faire entrer une chaine de caracteres par le clavier

Pour récupérer des données du clavier on se sert de la fonction input () :

s = input ("Entrez quelque chose:")
print ("Vous avez entré \"" + s + "\"")

input () retourne toujours un str. Si on veut lire des données numériques du clavier, il
faut les convertir :

s = input("Entrez un nombre entier:")
i = int(s)
print(s + " fois " + s + " font " + str(ixx2))
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Les types séquentiels : 1ist

Le type list représente une liste d'objets. Les listes sont délimitées par des crochets [ ].
Leurs éléments sont séparés par des virgules ,.

premiers_nombres_premiers = [2, 3, 5, 7, 11]
hiver = ["décembre", "janvier", "février"]

@ Les éléments d'une liste ne sont pas forcement du méme type. Il peut y avoir des
doublons.

liste_bizarre = [2, 2.0, 2 + 0J, "deux"]
liste_nulle = [0, 0, O]

@ On peut méme construire des listes dont les éléments sont des listes :

matrice3x2 = [[1, 2, 3], [6, 5, 4]] J
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Opérations sur les listes

Comme pour les str :
Avec |'opérateur + on peut fusionner des listes :

mois = ["Janvier", "Février", "Mars"]

mois2 = ["Avril", "Mai"]

print (mois + mois2)

# affiche "[’Janvier’, ’Février’, ’Mars’, ’Avril’, ’Mai’]"

Avec [ ] on accéde aux éléments individuels. Attention : I'indice du premier est toujours 0

print (mois [1]) # affiche "Février"
print (mois [0] [0]) # premiére lettre du premier élément = "J"

L'opérateur [a:b] retourne la sous-liste entre I'indice a (inclu) et I'indice b (exclu). Si on
ne spécifie pas a (ou b), on obtient la sous-liste & partir du début (ou jusqu’au bout).

print (mois[:1]) # affiche "[’Janvier’]"
print (mois2[:]) # affiche une copie de toute la liste mois2
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Les types séquentiels : tuple

Le type tuple représente une collection d'objets similaire a une liste, mais avec une
différence importante : Les tuple sont immuables, ils ne peuvent pas étre modifiés apres
initialisation. En pratique ils sont moins utilisés que les listes.

Un tuple est délimité par des parenthéses ( ) avec les éléments séparés par des virgules
,. On peut supprimer les parenthéses si pas d'ambiguité. Exemples :

t = (1, 2, 3) # crée un

u=1, 2, 3 # le méme
print (ul2]) # affiche
a, b =1, 2 # affecte

tuple
tuple
|I3Il

les valeurs 1 a a et 2 a b
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Les variables et les types de données : Erreurs fréquentes
o Orthographe : ma_var, Ma_var et mavar sont trois identifiants différents.

o Effectuer une opération, puis ne rien faire avec le résultat ne sert a rien :

nombre = 5
nombre * 3 # calculer 5 * 3 et oublier le résultat

@ Penser a convertir ses variables au bon type :

age = input ("Quel est ton age ? ") # input() retourne un str
naissance = 2025 - age # erreur: faut convertir age en int

o L'indice du premier objet dans une séquence est 0. Si la séquence contient n objets,
I'indice du dernier est alors n — 1.

ma_liste = ["un", "deux", "trois"]
print (ma_liste[1]) # affiche "deux"
print (ma_liste [3]) # erreur: pas de 4-éme élément
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Les variables et les types de données : Erreurs fréquentes

@ Notation scientifique : le E signifie “x10 a la puissance de”. Alors pour convertir des
nanometres en metres :

nm = 10E-9 # faux
nm = 10**%x-9 # pas strictement faux mais & éviter
nm = 1E-9 # correct

@ Python utilise le point décimal, pas la virgule décimale. Alors

pi = 3.14 # pi est un float de valeur 3.14
pas_pi = 3,14 # pas_pi est un tuple de deux entiers 3 et 14
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Les structures de controle
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Dans ce chapitre

Python
@ Les blocs d’instructions
@ La structure conditionnelle
@ Les expressions logiques
@ La priorité des opérateurs

La boucle while

La boucle for
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Les blocs d'instructions

Un bloc est une séquence de lignes d'instructions distinguées par leur indentation
(décalage par rapport aux lignes qui les entourent). Une ou plusieurs lignes consécutives
décalées au méme niveau constituent un bloc. Un bloc est toujours précédé par une ligne
d'en-téte qui se termine avec un deux-points :

LIGNE EN-TETE: # introduit un bloc
INSTRUCTION 1
INSTRUCTION 2

DERNIERE INSTRUCTION # ici le bloc se termine
INSTRUCTION SUIVANTE # <- ne fait plus partie du bloc

Les structures de controle permettent d’exécuter toutes les instructions d'un bloc
plusieurs fois, ou de les exécuter seulement en fonction d'une condition.
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Les blocs d'instructions

Un bloc peut en contenir d'autres :

LIGNE EN-TETE: # ici commence un bloc
INSTRUCTION
INSTRUCTION

LIGNE EN-TETE: # ici commence un sous-bloc
INSTRUCTION
INSTRUCTION

DERNIERE_INSTRUCTION # fin du sous-bloc
INSTRUCTION # le ler bloc se poursuit

DERNIERE INSTRUCTION # fin du ler bloc
INSTRUCTION HORS BLOC

De méme pour les sous-sous-blocs etc.
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La structure conditionnelle
La structure conditionnelle (ou structure if) prend la forme suivante :

if CONDITION: # ligne d’en-téte caractérisée par mot clé if
INSTRUCTION 1 # bloc a exécuter si CONDITION vérifiée,
INSTRUCTION 2 # & sauter sinon

DERNIERE INSTRUCTION # ici le bloc se termine
CONTINUER_ICI # en tout cas le programme arrive ici

@ Ici CONDITION est une expression logique de valeur True (vrai) ou False (faux).
@ Le bloc d'instructions suivant est exécuté seulement si CONDITION est True.
@ Sinon le programme saute le bloc et continue directement a CONTINUER_ICI.

o Les deux-points : dans la ligne d'en-téte font partie de la structure et ne doivent pas
étre omis
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La structure conditionnelle

Exemples :
i = int(input ("Entrez un nombre entier: "))
if i < 0: # ligne d’en-téte
i = -i # un bloc qui ne contient qu’une seule ligne

print ("La valeur absolue de ce nombre est", i)

print ("Tu veux savoir un sécret?")

reponsel = input ("Entre ’o’ si oui: ")

if reponsel == "o":
reponse2 = input("T’es sur? Entre ’o’ si oui:")
if reponse2 == "o":

print ("Le voici:\nLa cuillére n’existe pas.")
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Parenthese : Les expressions logiques

Le type de données bool

Ce type de données représente la valeur booléenne d'une expression logique. Les variables
du type bool ne peuvent prendre que deux valeurs différentes : True (vrai) ou False
(faux).

On peut définir des variables booléennes de la méme maniére que des variables
numériques, par exemple

flag = True

if flag:
FAIRE_QUELQUE_CHOSE

Par la fonction bool() on peut convertir un str en bool (s'il s'agit de la chaine de
caractéres "True" ou "False"). De méme pour une variable numérique (dans ce cas le
résultat est False si le nombre est 0 et True sinon). (On peut méme directement utiliser la valeur

numérique correspondante dans une structure conditionnelle au lieu de la condition — normalement déconseillé car peu lisible.)
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Les expressions logiques

Les opérateurs de comparaison :

expression True si ...
X == x est égalay
x =y x est différent de y
x>y X est strictement supérieur 3 y
x <y x est strictement inférieur a y
X >=y x est supérieur ou égal a y
x <=y x est inférieur ou égal a y

Les opérateurs logiques : soient a et b du type bool (True ou False)

not a True si a est False et vice-versa
a and b True si a est True et b est True, False autrement
aorb True si au moins un de a ou b est True, False autrement
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Les opérateurs in et is
L’opérateur in
teste si un objet est contenu dans une séquence :

animaux = ["giraffe", "gazelle", "guépard"]
"giraffe" in animaux # True
"gorille" in animaux # False
"elle" in "gazelle" # True

L’opérateur is
teste si deux identifiants désignent le méme objet (il ne teste pas I'égalité des valeurs) :

x = [1, 2] # une liste avec deux éléments

y = [1, 2] # une autre liste avec les mémes éléments
z = X # z est un autre nom pour x

x is y # False

X is z # True

Cet opérateur peut parfois donner des résultats inattendus sur des variables
immuables (types numériques, str...). On comprendra plus tard pourquoi.
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Fin de parenthese : La priorité des opérateurs

En ordre ascendant :
@ or
@ and
@ not
@ comparaisons : ==, !=, > <, >= <=, in, is
@ addition et soustraction : +, -
o multiplication et division : *, /, //, %
@ signe : +x, -x
@ exponentiation : **

Ainsi I'expression “not x > y or - x **x y + 2 x y == 0" est interprétée

(=(z>w) vV (((=(=") + (2 xy)) =0)

On peut toujours insérer des parenthéses pour changer les priorités :
"(-x) ** (y + 2) *x y == 0" devient

(=2)"" xy)=0
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La structure conditionnelle augmentée

Ajouter un bloc else (“sinon™), a exécuter si la condition CONDITION est False :

if CONDITION:
INSTRUCTION # si CONDITION est True

else:
AUTRE_INSTRUCTION # si CONDITION est False

CONTINUER_ICI # en tout cas on reprend ici

v
Exemple :
i = int(input ("Entrez un nombre entier:"))
if i % 2 == 0:
print (i, "est pair")
else:
print (i, "est impair")
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La structure conditionnelle augmentée

Ajouter des blocs elif (“sinon, si") :

if CONDITIONI1:
INSTRUCTION # si CONDITION1 est True

elif CONDITIONZ2:
AUTRE_INSTRUCTION # si CONDITION1 est False
500 # mais CONDITION2 est True
elif CONDITIONS3: # etc.
ENCORE_AUTRE_INSTRUCTION

else:
DERNIERE_CHANCE # si toutes CONDITIONs sont False
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La boucle while

La boucle while (“tant que") sert a répéter les instructions d’un bloc en fonction d'une
condition :

while CONDITION:
FAIRE_QUELQUE_CHOSE # ce bloc est répété tant que
# CONDITION est True
CONTINUER_ICI # Aprés on arrive ici

Exemple :

i=1

while i % 2 != 0: # condition remplie si i est impair
i = int(input ("Entrez un nombre pair:"))

print ("La moitié de", i, "est", i // 2)
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La boucle while
Deuxieme exemple : Conjecture de Collatz.

On définit la suite (nx) par un ng € IN et la regle de récurrence

Bk, ng pair
Nk+1 = . .
3ng+1, ng impair
Conjecture : Pour toute valeur de départ no on va ultérieurement tomber sur n; = 1
(et puis Nit1 =4, niy2 =2, nig3 =1 etc.)

En supposant que la conjecture soit vraie (sinon : boucle infinie, le programme ne
terminera jamais!), on calcule le nombre minimal d'itérations ¢ pour tomber sur n; = 1,
avec ng fourni par |'utilisateur :

n = int(input ("Entrez nO: "))

i=20 # compteur d’itérations
while n != 1: # ne termine que si la conjecture est vraie !
if n % 2 == 0: # n pair:
n /= 2 # remplacer n <- n/2
else: # n impair:
n *= 3 # remplacer n <- 3n + 1
n += 1
i +=1
print ("Tombé sur 1 aprés", i, "itérations.")

v,
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La boucle for

La boucle for sert a répéter les instructions d'un bloc une fois pour chaque élément
d'une séquence :

for VAR in SEQUENCE:
FAIRE_QUELQUE_CHOSE # bloc repeté pour tous VAR
C. #

CONTINUER_ICI # aprés on arrive ici

A L'utilisation du mot clé in est différente dans ce contexte qu'avant.

Exemple :

somme = O

for x in [2, 3, 5, 7, 11, 13, 17, 19]:
print ("On ajoute", x)
somme = somme + X

print ("La somme des nombres premiers < 20 est", somme)

HAP608P, U Montpellier Programmation pour la physique 68 / 231



La boucle for

La fonction range () retourne un n-uplet des nombres entiers :

o range(y) retourne (0,1,2,..., y-1)
o range(x, y) retourne (x,x+1,x+2,..., y-1)
o range(x, y, s) retourne (x,x+s,x+2s,..., x+ns) avec x+ns<y maximal

Application typique de range() dans une boucle for :

for x in range (ITER):
FAIRE_QUELQUE_CHOSE # bloc repeté ITER fois

Exemple :

print ("Les carrés et les cubes des nombres entre 0 et 9:")
for x in range (10):

print (x**2)

print (x**3)

print ("\n")
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La boucle for

Avec un str, une boucle for se répete pour tous les caracteéres :

for caractere in "jeu":

print (caractere + caractere) # "33
# ee
# uu"

Boucles for imbriquées :

animaux = ["Poisson", "Tortue", "Cachalot"]
compteur = 0
for animal in animaux:

for caractere in animal:

if caractere == "o":
compteur += 1
print ("Le nombre des ’o’ dans la liste est", compteur)
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Commandes utiles pour les boucles
La commande break abandonne une boucle. Exemple :

while True: # toujours vrai
i = int(input ("Entrer un nombre pair: "))
if i % 2 == 0: # vrai si i est pair
print(i, "/ 2 = ", i / 2)
break

Aprés une boucle, la commande else marque un bloc a exécuter seulement si la boucle
n'a pas été abandonnée avec break mais s'est terminée régulierement. Exemple :

binaire = input("Entrez un nombre binaire (des 0 et 1): ")
somme = O
for i in range(len(binaire)): # len(x) = longueur du str x
bit = int(binaire[i])
if bit == 0 or bit == 1:
somme += bit * 2*x*(len(binaire) - i - 1)
else:
print ("Expression non valide")
break
else:

print ("Ce nombre en notation décimale est", somme)

v,
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Commandes utiles pour les boucles

Dans une boucle, la commande continue saute les instructions restants et continue avec
la prochaine itération

s = input ("Entrer une phrase: ")
for caractere in s:
if caractere == "e":

continue # sauter l’instruction suivante
print (caractere) # écrire toutes les lettres sauf les ’e’
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Exemple : Boucles et structures conditionnelles

Un parachutiste est en chute libre pendant 20 s. Apreés il ouvre son parachute et il descend
a une vitesse constante de 2 m/s. On s'intéresse a sa position en fonction du temps.

g = 9.81 # accélération gravitationnelle en m/s”2
v = 2.0 # vitesse aprés ouverture du parachute en m/s
hO = float (input ("Hauteur initiale en m: "))
for t in range (0, 22, 2): # on affiche h tous les 2 s

h = h0O - 0.5 * g * t**2 # nouvelle hauteur

if h <= 0: # ca fait mal !

break

print("A t =", t, "s, la hauteur est de", h, "m.")

else:

print ("Le parachute s’ouvre.")
while h > 0:

print("A t = ", t, "s, la hauteur est de", h, "m.")
t += 10 # on affiche la hauteur tous les 10 s
h -= 10 * v

print ("Atterrissage!")
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Les structures de contrdle : Erreurs fréquentes
@ Deux-points oubliés aprés if, while, for etc.

@ Pour I'indentation des blocs :
Ne jamais mélanger les éspaces et les tabulatrices.
Conseillé : eviter les tabulatrices, indentation 4 espaces par niveau

o L'opérateur d'affectation est =, I'opérateur de comparaison est ==
Donc a == b est une expression logique (qui vaut True si les valeurs de a et b sont
égales, et False sinon) tant que a = b est une affectation qui attribue a a la valeur
de b.

cont = int (input("Combien y a-t-il de continents?"))
if cont = 6: # Erreur ! Ici il faut utiliser ==
print ("C’est correct.")

@ Boucles infinies : assurez-vous que vos boucles se terminent !

xn, r, i = 0.5, 3.6, 1
while i < 100:
print (x_n)
xn =71 % xn *x (1 - x_n)
print("Ca y est !") # Jamais atteint car i ne change pas

v
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Les fonctions
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Dans ce chapitre

Python
@ Les définitions de fonctions
@ La commande return

o La portée des identifiants

Les fonctions anonymes et la commande lambda
@ Les modules et la bibliotheque standard
@ Le module math

Généralités
o La récursivité

@ Les fonctions d'ordre supérieur
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Exemples de fonctions
On a déja employé quelques fonctions intégrées dans Python comme print (), input ()
et range (). En général, une fonction est une partie du programme qui

@ peut &tre appelée avec un ou plusieurs paramétre(s) dit argument(s)

o effectue une tache en fonction de ces arguments

@ peut retourner une valeur

Par exemple, comme nous I'avons vu, la fonction range () prend entre 1 et 3 arguments
et retourne un n-uplet de nombres entiers.

Autres exemples :

fonction | argument(s) | tache valeur de retour
print () plusieurs affichage sur I'écran aucune
input () un str affiche son argument, le str entré
attend saisie du clavier par le clavier
int () un nombre ou str qui convertit son le résultat de
peut &tre converti en int argument en int la conversion
len() une séquence compte le nombre le nombre d’'élements
d'élements dans la séquence
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Nouvelles fonctions

Voici un exemple d'une définition d'une fonction originale cube() :

def cube (x): # un argument, nommé x
return x ** 3 # retourne x au cube

Les instructions dans les définitions de fonction sont exécutées lorsque |'interpreteur
tombe sur un appel de fonction :

a = cube(5) # appelle la fonction cube() avec 1l’argument
# x=5, affecte la valeur de retour a a
print (a) # affiche "125"
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Définir une fonction
La syntaxe pour une définition de fonction est

def NOM_DE_FONCTION (ARG1, ARG2, ...):
INSTRUCTION1
INSTRUCTION2

@ Pour les noms des fonctions, les mémes regles que pour les autres identifiants
s'appliquent.

@ Une fonction peut prendre un nombre quelconque d’arguments ARG1, ARG2 etc.
(mais il est également possible de définir des fonctions sans arguments)

@ Une fois la fonction définie, on I'appelle avec la commande
NOM_DE_FONCTION(VAL1, VAL2, ...)
ol VAL1, VAL2 etc. sont les valeurs a substituer pour les arguments ARG1, ARG2
etc. pendant cet appel.
La valeur de I'expression d'appel devient la valeur de retour de la fonction.

o Le bloc suivant la ligne d'en-téte, caractérisé par le mot clé def, contient les
instructions a exécuter a chaque appel. Comme tous les blocs, il peut contenir des
sous-blocs gérés par des structures de contrdle, des appels de fonctions. . .
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Valeurs par défaut des arguments
Il est possible de spécifier des valeurs par défaut pour tous les arguments ou une partie :

def NOM_DE_FONCTION (ARG1=DEF1, ARG2=DEF2,...):

Si une valeur par défaut par un des arguments est spécifiée dans la définition, il n'est plus
nécessaire de fournir cet argument lors de I'appel.

Exemple : Calculer une approximation de la fonction zéta de Riemann,

C = Nh_{nooz kz

def zeta(z, N=100):
somme = 0.
for k in range(1, N+1): # k entre 1 et N inclus

somme += 1/k*xz # ajouter le k-&me terme a la somme
return somme

Possibles appels pour calculer {(2) : zeta(2) ou zeta(2, 1000) ou zeta(2, N=500)
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Valeurs par défaut des arguments

Si plusieurs arguments ont des valeurs par défaut : Dans un appel, les arguments non
nommés doivent toujours précédér les arguments nommés, pour éviter toute ambiguité.

Exemple :

# x n’a pas de valeur par défaut. z=1 et y=1 par défaut.
def multiplier(x, y=1, z=1):
return x * y *x z

Exemples d'appels de cette fonction :
o multiplier(25, 5, 2)
) multiplier(—Q, 16) (en utilisant la valeur par défaut du dernier argument z)
@ multiplier(3) (dans ce cas les valeurs par défaut pour z et y sont utilisées)
o multiplier (17, z=5) (ce qui pose x = 17, z = 5, et y = 1 sa valeur par défaut)

Par contre, multiplier(z=5, 17) est un appel invalide (un argument nommé ne peut
pas précéder un argument non nommé)
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La commande return

La commande return peut figurer a un ou plusieurs endroits dans la définition d'une
fonction. Dés que I'interpréteur la rencontre, il abandonne la fonction et continue
I'exécution du programme a |'endroit de I'appel.

L'expression derriere le return est retourné et devient la valeur de |I'expression d'appel de
fonction.

def heaviside(r): # la définition d’une fonction
if r >= 0:
return 1.0
else:
return 0.0

print ("Theta (1) =", heaviside (1)) # un premier appel
print ("Theta(-1) =", heaviside(-1)) # un deuxiéme appel

Si une fonction n’est pas terminée par un return, ou pour un return sans paramétre, la
fonction retourne I'objet abstrait None (“aucun”).
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Parenthese : Coding style

Récommandations pour créer du code plus lisible :

Adopter des conventions cohérentes et les suivre partout.
Ne pas économiser sur les commentaires.

Une instruction par ligne. Eviter les point-virgules.

4 espaces par niveau d'indentation. Pas de tabulatrice.

Pas d’espace juste aprés des parenthéses, crochets et accolades ([{
ni juste avant )]}
ni juste avant des virgules, point-virgules et deux-points

un seul espace apres , ; :
un seul espace a chaque coté des opérateurs d’affectation et de comparaison

Désignations parlantes pour les identifiants importants.
Préférer des minuscules et éventuellement des chiffres et tirets bas _ pour les
variables et fonctions.

Préférer des majuscules pour les classes en programmation orientée objet.
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Deuxieme parenthese : La portée des identifiants

La portée lexicale d'un nom de variable est la portion du code ou la variable peut étre
adressée par ce nom. Pour une affectation a I'intérieur d'une définition de fonction, la
portée de I'identifiant est limitée a cette méme définition de fonction. Donc le code

def £():

x =0 # définir la variable x dans la portée de f()
£fO
print (x) # erreur: x pas défini dans cette portée

produira une erreur. Par contre, si une variable est définie hors d'une définition de
fonction, on peut tout de méme I'utiliser a son intérieur :

x =0
def £():

print (x) # variable x définie hors de f()
£0 # mais pas de probléme
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La portée des identifiants

On peut définir une variable, dans la portée locale d'une fonction, avec le le méme nom
qu'une variable déja définie hors de la fonction. Cela crée une nouvelle variable, et dans la
portée locale, le nom se réfere toujours a cette nouvelle variable locale. Exemple :

x =0 # définit variable globale x
def £(Q):
x =1 # définit variable locale x
print (x) # "1" (priorité de la variable locale)
£0O
print (x) # "0" (hors portée de la variable locale)

Des affectations aux variables globales dans une définition de fonction sont toutefois
possibles (mais déconseillées si évitable), avec la commande global :

x =0
def £():
global x # x correspondra a la variable globale x
x =1 # <- ne crée pas une nouvelle variable locale
£0O
print (x) # "1
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Récursivité

Une fonction peut s'appeler elle-méme :

def factorielle(n): # calcule n! recursivement

if n < O: # factorielle pas définie
print ("Erreur: factorielle pas définie.")
return
elif n == 0: # 0! =1
return 1
else:
return n * factorielle(n - 1) # n! = n (n-1)!

On parle de la récursivité.
@ La récursivité permet parfois des codes courts et élégants.

@ Mais un algorithme récursif est souvent moins rapide qu'un algorithme équivalent
itératif (qui se sert des boucles).

Le nombre d'appels récursives imbriqués est limité a 1000 par défaut.

Faire attention d'inclure une condition de terminaison appropriée !

HAP608P, U Montpellier 86 / 231



Fonctions comme arguments

On peut passer des fonctions comme arguments aux autres fonctions :

def iterer (f, depart, n_fois): # f(£f(...f(depart)))
resultat = depart
for n in range(n_fois):
resultat = f(resultat)
return resultat

def logistique(x, r = 3.6):
return r * x * (1 - x)

print (iterer (logistique, 0.5, 100)) # 0.43172

Dans I'appel de iterer() le nom de la fonction £ (logistique en ce cas) est traité
comme un nom d'une variable.
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Fonctions comme valeurs de retour

Une fonction peut renvoyer une autre :

def racine(n): # renvoie la fonction "racine n-iéme"
def f(x):
return x**x(1/n)
return f

g = racine (5) # définit la fonction "racine 5-iéme"
print (g(32)) # affiche "2.0"
print (racine (3) (27)) # affiche "3.0"

Une fonction qui soit prend une autre fonction comme argument soit renvoye une
fonction est dite une fonction d'ordre supérieur. Les fonctions d'ordre supérieur sont
particulierement importantes dans la programmation fonctionnelle.
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Fonctions lambda, fonctions anonymes

La commande lambda permet des trés courtes definitions de fonctions dans une seule
ligne. Au lieu de

def carre(x):
return x ** 2

on écrit

carre = lambda x: x ** 2 J

Plus généralement,

lambda ARGUMENTS: EXPRESSION J

définit une fonction avec arguments ARGUMENTS qui retourne EXPRESSION.
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Fonctions lambda : Exemples

Fonctions d'ordre supérieur :

def racine(n): # renvoie la fonction "racine n-iéme"
return lambda x: x**x(1/n)

print (racine (4) (81)) # affiche "3.0"

Listes de fonctions :

# une fonction, sa dérivée et sa dérivée seconde
fonctions = [lambda x: 3*x**2 - 2%x,

lambda x: 6*x - 2,

lambda x: 6]
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Les modules
La commande import sert a importer du code d'un autre fichier ou d'une bibliotheque.

Exemple : On enregistre dans un fichier puissances.py les définitions de fonctions

# fichier puissances.py
def carre(x):

return x**2
def cube(x):

return x**3

On peut ensuite les utiliser dans un autre projet

# fichier nouveauprojet.py (dans le méme répertoire)
import puissances
print (puissances.carre (42))

sans recopier tout. Ou, si on veut seulement importer la fonction carre() :

from puissances import carre
print (carre (42)) # ici: pas ’puissances.carre (42)°

o
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La bibliotheque standard
Python est fourni avec un grande bibliotheque standard de fonctions pré-definies pour
toutes sortes de taches. Entre autres il y a des modules pour

@ la manipulation des chaines de caractéres

@ la manipulation des tableaux de données (NumPy, voir plus tard)
o les fonctions mathématiques (math et cmath, voir ci-dessous, ainsi que NumPy)
@ les nombres rationnelles

@ l'acceés aux fichiers et leur manipulation

o les interfaces aux bases de données

o la programmation fonctionnelle

@ la compression et la sauvegarde des données

@ les services cryptographiques

@ les interactions avec le systeme d’exploitation

@ les services de réseau

@ les services internet et les pages web

@ multimédia
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La bibliothéque standard : les modules math et cmath
Fonctions et constantes utiles du module math de la bibliotheque standard :

import math # pour importer toutes les fonctionnalités
# du module math

# Les constantes e et pi
math.e # 2.71828...
math.pi # 3.14159...

# Les fonctions trigonométriques
math.sin (1.2)

math.cos (math.pi)

math.tan (0)

# Les fonctions trigonométriques inverses
math.asin(1/2)
math.acos (0.5)
math.atan (-1)
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La bibliothéque standard : les modules math et cmath

Fonctions et constantes utiles du module math de la bibliotheque standard :

import math

# Les fonctions exponentielle et logarithme

math.
math .

math

# La

math.

exp (-3.0)

log(1.0) # logarithme naturel

.log (4, 2) # logarithme de 4 de base 2
racine carrée

sqrt (2.0) # équivalent: 2%x*(1/2)

o Toutes ces fonctions prennent des arguments du type float (ou des arguments int,
que Python convertit automatiquement en float).

o Si on veut les appliquer aux nombres complexes, il faut importer le module cmath au
lieu de math.
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Quelques autres modules de la bibliotheque standard

Le module time met a disposition des fonctions pour accéder a I'horloge interne de
I'ordinateur. Exemples :

import time

# Retourner un str représentant la date et 1l’horaire
# présente
time.asctime ()

# Retourner un float qui représente le nombre de secondes
# depuis 1 janvier 1970 0:00:00 UTC
time.time ()

# Arréter l’exécution du programme pendant 7.5 secondes
time.sleep(7.5)
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Quelques autres modules de la bibliotheque standard

Le module random contient des fonctions pour générer des nombres (pseudo-)aléatoires.
Exemples :

import random

# Retourner un nombre pseudoaléatoire entre 0 et 1
# avec une distribution uniforme
random.random ()

# Retourner un élément aléatoire d’une liste
L = [1, 19, 23, 47]
random.choice (L)

# Retourner un entier aléatoire entre a (inclu)

# et b (exclu) avec une distribution uniforme

a, b = 10, 20

random.randint(a, b) # un entier aléatoire entre 10 et 19
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Les fonctions : Erreurs fréquentes
@ Deux-points oubliés aprés la commande def

o Il faut qu'une fonction soit définie avant qu'on I'appelle.

x, y = ma_fonction() # erreur: ma_fonction
# pas encore definie ici !

def ma_fonction(): # définition trop tardive
a = int(input ("Entrez un nombre entier:"))
return a // 5, a % 5

@ Pour les fonctions importées :
attention a la différence entre import et from ... import :

from math import sqrt

x = sqrt(10) # pas math.sqrt ()
import cmath

y = cmath.exp(1.0J) # pas exp()

o Une définition de fonction sans qu’elle soit appelée n'est pas un programme complet !
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NumPy et graphisme
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Dans ce chapitre

Python
o La bibliotheque numpy
@ Manipulation des tableaux

o Calcul matriciel

Importer et exporter des données

Graphisme avec matplotlib
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Les tableaux

On rappelle les caractéristiques d'une liste Python :

@ contient plusieurs éléments qui ne sont pas forcement du méme type

o taille variable, peut changer (p.ex. avec I'opérateur +=)

@ 1-dimensionnel = 1 seul indice (sauf si les éléments sont eux-mémes des listes)
La bibliotheque NumPy se base sur un objet similaire, le tableau (anglais : “array”)
Caractéristiques d’un tableau NumPy :

@ contient plusieurs éléments qui sont forcement du méme type, toujours un type
numérique (int, float, complex ...)

o taille fixe
@ n-dimensionnel : vecteurs, matrices, tenseurs. ..

@ optimisé pour le calcul numérique : plus rapide que les listes, beaucoup de
fonctionnalité pour la manipulation efficace.
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Créer un tableau

Exemples :

import numpy as np # pour importer toute la bibliothéque

sigma3 = np.array([[1, 0], [0, -111) # matrice [[ 1 0]
# [ 0 -1]]

s = np.array([1, 0], dtype=complex) # vect. [ 1.+0.j 0.+0.j]

nul2x3 = np.zeros((2, 3)) # [[ 0. 0. 0.]
0.]

# [ 0. 0. ]
id3x3 = np.identity (3, dtype=int) # [[ 1 0 0]
# [ 01 0]
# [ 00 1]]
rng = np.arange (0.8, 2, 0.4) # [ 0.8 1.2 1.6]
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Créer un tableau
Un tableau peut se créer
@ en spécifiant les éléments dans une liste (ou liste de listes. ..) avec la fonction
numpy . array ()
@ en spécifiant les dimensions par un tuple (x, y, z...) des int
o numpy.zeros() crée un tableau de zéros
e numpy.ones() crée un tableau de uns

e numpy.empty() crée un tableau sans initialiser les éléments

@ cas spécial : la matrice d'identité n X n, numpy.identity(n) ou numpy.eye(n)
@ tableaux 1-dimensionnels de nombres uniformement espacés :
o numpy.arange(debut, fin, pas) : comme range mais avec des float

o numpy.linspace(debut, fin, N) : N nombres entre debut et fin (inclus)

import numpy as np
tabl = np.arange(0, 1.2, 0.2) # [0. 0.2 0.4 0.6 0.8 1.0]
tab2 np.linspace (0, 1, 6) # [0. 0.2 0.4 0.6 0.8 1.0]

A Si besoin, spécifier le type de données des éléments avec I'argument dtype
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Opérations arithmétiques sur les tableaux

Les opérations arithmétiques + = * / // % entre les tableaux numpy sont définies par
élément :

import numpy as np

sigma3 = np.array([[1, 0], [0, -1]], dtype=float)

print (sigma3 * np.array([[2., 3.] [4., 5.11)) # [[ 2. 0.]
# [ 0. -5.1]

Si les dimensions ne se correspondent pas, une opération arithmétique impliquant deux
tableaux produira une erreur.

En revanche, il est toujours possible de ajouter/soustraire/multiplier/diviser par un
scalaire :

print (sigma3 - 1) # [[ 0. -1.]
# [ -1. -2.1]
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Indicer et couper un tableau

On peut indicer un tableau avec plusieurs indices selon ses dimensions :

sigma3 = np.array([[1, 0], [0, -1]], dtype=float)
print (sigma3[1, 11) # "-1.0"

(avec la généralisation évidente pour des tableaux d-dimensionnels).

On peut aussi le couper comme une liste Python :

# tous les éléments de la deuxiéme colonne:
print (sigma3[:, 11) # "[ 0. -1.1"

# tous les éléments de la premiére ligne
print (sigma3 [0, :]) # "[ 1. 0.1"
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Couper des tableaux (array slicing), méthodes avancées

Créer le vecteur (0,1,2,...,11) et le réarranger dans une matrice 3 x 4 :

a = np.reshape(np.array(range (12)), (3, 4))
print (a) # [[ o 1 2 3]

# [ 4 5 6 7]

# [ 8 9 10 1111

Avec |'opérateur [i:j:k] on accéde aux éléments

@ a partir de I'indice i (par défaut : début)

@ jusqu'a I'indice j exclu (par défaut : fin)

@ en sélectionnant un élément sur k (par défaut : 1)
Exemples :
print(al1l, ::2])
print(all, 1::2])

print (a0, 1:3])
print(all:,:2])

[4 6] (2&me ligne, colonnes paires)
[5 7] (2éme ligne, colonnes impaires)
[1 2] (1ére ligne, colonnes 1 et 2)
[[4 5] (derniers 2 éléments

[8 911 des premiéres 2 colonnes)

H B H H R
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Multiplication matricielle avec les tableaux

Un tableau avec deux indices peut représenter une matrice. Un tableau avec un seul
indice est un vecteur.

Les produits entre les matrices et vecteurs (produit scalaire entre deux vecteurs, action
d'une matrice sur un vecteur, produit matriciel entre deux matrices) se calculent avec
I'opérateur @ (et non pas avec * qui est la multiplication élément par élément!)

Exemples :

M = np.array([[1., 2., 4.1, [2., -1., 0.1, [5., -2., 1.11)
np.array ([0., 1., 2.]1)
w = np.array([1., -1., 1.]1)

<
]

print(v @ w) # produit scalaire v . w, résultat: 1.0

print(M @ v) # matrice agit sur vecteur, M . v
# résultat: [ 10. -1. 0.]

print(M @ M) # produit matriciel M . M

# résultat: [[ 25. -8. 8.]
# [ o. 5. 8.1
# [ 6. 10. 21.11]

v,
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Multiplication matricielle avec les tableaux

Exemple : Calcul des moyennes quantiques (¢|c"%3[4) pour un systeme 3 deux niveaux

Pour rappel : définition des matrices de Pauli

(01 > (0 —i s (1 0
= =\10) 2= \Vi o) 727 Lo <1

et de la moyenne quantique d'un opérateur A pour un systéeme dans I'état

) = ( :i; > (supposé normalisé, alors |[¢||? = ¥ + Y3e = 1)

(A) = (| Aly) = (1 v3) A ( :ﬁl )

On va calculer les moyennes de o, 02 et o dans un état fourni par I'utilisateur.
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Multiplication matricielle avec les tableaux
import numpy as np

sigma = np.array ([[[ 0, 11, [1, 0]], # les matrices de Pauli
(c o, -131, [1j, o011,
(C 1, o1, [0, -1111, dtype = complex)

def norme(psi): # la norme d’un vecteur complexe
psic = np.conjugate (psi)
return np.sqrt(psic @ psi)

psil = complex(input("Entrer psil: ")) # composantes de psi
psi2 = complex (input ("Entrer psi2: "))
psi = np.array([psil, psi2], dtype=complex)
psi /= norme (psi) # normaliser le vecteur psi
psic = np.conjugate(psi) # le vecteur conjugué complexe
vm = [psic @ sigmal[i] @ psi for i in range (3)]
print ("Valeurs moyennes:\n <sigmal> = ", vm[0].real,
"\n <sigma2> = ", vm[1].real,
"\n <sigma3> = ", vm[2].real)

v
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Méthodes utiles pour le calcul matriciel

La classe numpy.ndarray contient quelques autres champs et méthodes utiles pour
manipuler des vecteurs et matrices : si A est un tableau, alors

@ numpy.transpose(A) représente la transposée de A
(raccourci : A.T)

o numpy.trace(A) calcule la trace ), Ay

@ numpy.conjugate(A) calcule le tableau conjuguée complexe
@ numpy.amax(A) calcule I'élément maximal

o numpy.sum(A) calcule la somme des éléments

° ...

Voir https://docs.scipy.org/doc/numpy/reference/routines.html pour
documentation compléte.
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Fonctions sur les tableaux

Les fonctions élémentaires sin, cos, exp, log, sqrt etc. des bibliotheques math et cmath
existent aussi dans la bibliothéque numpy. Si on donne un tableau comme argument, la
valeur de retour sera également un tableau avec les valeurs de fonction des éléments :
“array broadcasting”.

import numpy as np

x = np.array([-1, 0, 1]) # un tableau
print (np.arccos(x)) # "[ 3.14159265 1.57079633 0.]"

A préférer par rapport au code équivalent (mais moins vite et moins propre)

import math

x = [-1, 0, 1] # une liste

acosx = [math.acos(t) for t in x] # lent sur des grandes
# listes !

print (acosx)

v,
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Fonctions sur les tableaux

Pour convertir une fonction ordinaire en fonction qui peut s'appliquer sur un tableau
numpy, on utilise la fonction numpy.vectorize

Exemple :

import numpy as np

# Une fonction ordinaire:

def f(x, y): # retourne x si x>y et y-x sinon
if x > y:
return x
return y - x

# La fonction vectorisée:
vi = np.vectorize (f)

x = np.array([1., 3., 7.1)
vi(x, 4) # array([ 3., 1., 7.]1)
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Copier un tableau

Une copie par référence se fait avec I'opérateur d'affectation =, une copie “superficielle”
avec numpy . copy () :

import numpy as np

a = sigmad # permet d’accéder a sigmad

# avec la novelle référence a
b = np.copy(a) # crée un nouveau tableau

# qui est une copie de sigma3
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Importer et exporter des données
La fonction numpy.loadtxt permet d'importer des données d'un fichier.

# Fichier de données "donnees.dat"

3.14159 2.71828 0.57721 # commentaires seront ignorés
il =2 3.eb

# Fichier du programme
import numpy as np
a = np.loadtxt("donnees.dat")

print(a) # [[ 3.1415900e+00 2.7182800e+00 5.7721000e-01]
# [ 1.0000000e+00 -2.0000000e+00 3.0000000e+05]]

Dans le fichier de données :
@ éléments doivent étre séparés par un ou plusieurs espaces blancs

@ lignes blanches et commentaires # sont ignorés
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Importer et exporter des données

La fonction numpy.savetxt permet d'enregistrer des données dans un fichier.

import numpy as np

a = np.arange (0.0, 4.0, 1.0) # le tableau [ 0., 1., 2., 3.]
np.savetxt ("mydata.dat", a, header="Commentaire facultatif")

Fichier mydata.dat résultant :

Commentaire facultatif
.000000000000000000e+00
.000000000000000000e+00
.000000000000000000e+00
.000000000000000000e+00

W N~ O H
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Visualisation avec matplotlib

Python dispose d'une bibliothéque trés puissante pour créer des graphiques : la
bibliotheque matplotlib.pyplot.

Usage typique pour tracer le graphe d'une fonction :

impo
impo

xpts
ypts

plt
plt
plt
plt
plt.

rt numpy as np
rt matplotlib.pyplot as plt

= np.linspace (0., 10., 100) # 100 points entre
= np.sin(xpts) # Les sinus de ces

.plot (xpts, ypts) # tracer ypts sur xpts
.ylim([-1.5, 1.5]) # pour y entre -1.5 et 1.
.xlabel ("x") # étiquette de 1’axe des
.ylabel("sin(x)") # et de 1’axe des
show () # afficher graphique

0 et 10
points

Moo
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Visualisation avec matplotlib

Résultat :

sin(x)
o
>

-0.5
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La fonction matplotlib.pyplot.plot()
Tracer des courbes ou des points : matplotlib.pyplot.plot(x, y, m)

@ x = valeurs des =

o y = valeurs de fonction y(z) a tracer

@ optionnel : m = chafne de caracteres indiquant la couleur / le style, p.ex.
e ’r’, ’g’, ’b’ = rouge, vert, bleu (défaut)
e =2, 7—=2 7 = |igne solide (défaut), interrompue, pointillée

o pour tracer des points individuels plutét qu'une courbe :
’.2,%,2, %0, ’%?, ’s? = marqueur point, pixel, cercle, étoile, carré

o d'autres arguments optionnels existent, p.ex. pour faire afficher une legende

Exemple :

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-5, 5, 100) .
cosx, sinx = np.cos(x), np.sin(x) 000
plt.plot(x, cosx, ’r’, label=’cos’)

plt.plot(x, sinx, ’go’, label=’sin’)
plt.legend () e
plt.show ()

HAP608P, U Montpellier

117 / 231



La fonction matplotlib.pyplot.hist ()

Tracer des histogrammes : matplotlib.pyplot.hist(x, bins, range)
o x = valeurs a tracer
@ optionnel : bins = nombre de barres
o optionnel : range = tuple (x_minimal, x_maximal)

Exemple :

import numpy as np
import matplotlib.pyplot as plt
notes = [13.5, 5.75, 10., 11.25,
18., 7.5, 13., 8.75,
10.5, 14., 9.25, 3.25]
plt.hist (notes, 10, (0, 20))
plt.show ()
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Tracer des fonctions de deux variables

Pour tracer une fonction z(z,y) il faut d’abord créer un maillage (anglais : "meshgrid”)
pour représenter les binémes de coordonnées (x,y). Il convient de se servir de la fonction
numpy .meshgrid(x, y). Exemple :

import numpy as np

# 101 valeurs de x entre 0 et 10: [0.0 0.1 0.2 ... 10]
x = np.linspace(0, 10, 101)

# 10 valeurs de y, 3 <=y < 4: [3.0 3.1 3.2 ... 3.9]
y = np.arange (3.0, 4.0, 0.1)

X, Y = np.meshgrid(x, y)

Résultat : deux tableaux 10 x 101,

3 3 ... 3
0 01 02 ... 10 31 31 ... 31

X= 0 01 02 ... 10 10 lignes, Y=
39 39 ... 39

101 colonnes
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La fonction matplotlib.pyplot.imshow()

Tracer des cartes thermiques (heat map) : matplotlib.pyplot.imshow(z, extent)

@ z = tableau 2D avec les valeurs de fonction

@ argument facultatif : extent = liste avec les x et y minimales et maximales
Exemple :
import numpy as np ‘
import matplotlib.pyplot as plt .

= y = np.linspace(-5, 5, 100) 0 ' .

X
X, Y = np.meshgrid(x, y)
z = np.sin(X) * np.cos(Y) h .
plt.imshow(z, extent=[-5,5,-5,5]) L

plt.show ()
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La fonction matplotlib.pyplot.contour ()

Tracer des courbes de niveau : matplotlib.pyplot.contour(x, y, z)

@ z = tableau 2D avec les valeurs de fonction

@ arguments facultatifs : x, y = tableaux avec les x et y correspondants

Exemple :

import numpy as np
import matplotlib.pyplot as plt

def f(x, y):

if x == 0 and y == O0:

return 0.0

return x**2 *x y / (x*x*4 + y*%x2)
vi = np.vectorize (f)
X =y = np.linspace (-2, 2, 200)
X, Y = np.meshgrid(x, y)
Z = vE(X, Y)
plt.contour (X, Y, Z)
plt.show ()
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Recherche des zéros
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Dans ce chapitre

Algorithmes
o Méthode de la bissection
o Méthode de relaxation
@ Méthode de Newton

o Généralisations de la méthode de Newton
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Zéros des fonctions

Probleme : Etant donné une fonction réelle dont on sait qu’elle a un zéro sur l'intervalle
I = [a, b], on cherche une valeur approximative de ce zéro.

Plus formellement :

Soit I = [a, b] un intervalle et f: I — R continue (ou mé&me dérivable si necessaire) sur
I, avec f(a)f(b) < 0. Alors d'aprés le théoreme des valeurs intermédiaires il existe

zo € I tel que f(xo) = 0. Si de plus f est monotone alors z( est unique.

Probléme : déterminer (un des) zo numériquement avec une précision minimale donnée.

Théoreme des valeurs intermédiares :
Soit f : [a,b] — R continue et soit y compris entre f(a) et f(b). Alors il existe z € [a, b]

tel que f(z) =y.
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Méthode de la bissection

Soit € > 0 la précision souhaitée.
Algorithme :
© Poser ¢ = (a + b)/2, le milieu de I'intervalle I.
@ Sib—a < 2e: terminer et retourner xo = c.
@ Partager I en deux : I1 = [a, c] et 2 = [c, b).
Q Si f(a)f(c) <0 :ily aun zéro dans I, alors répéter avec I = I;.

@ Sinon, répéter avec I = I>.
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Méthode de la bissection

v
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Méthode de la bissection

f(x)

v
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Méthode de la bissection

f(x)

v
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Implémentation en Python

Voici le code Python pour f(z) =2 —2 —1, I =[1,2], e =107" :

def f(x): # la fonction dont on cherche un zéro
return x**5 - x - 1
a, b =1.0, 2.0 # f(a) = -1 et f(b) = 29
# => il y a un zéro damns [a, b]
c = (a+Db) / 2 #
epsilon = 1.0E-5 #

point du milieu
tolérance

while b - a >= 2 * epsilon: # on est assez proche 7 sinon:
if f(a) * £(c) <= 0: # si zéro dans la moitié gauche:
b = c # pt de droite <- pt du milieu
aILEE 8 # sinon:
a =c¢ # pt de gauche <- pt du milieu
c=(a+Db) / 2 # récalculer point du milieu

print ("Le zéro est a x =", c)
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Méthode de relaxation

Idée :
@ Pour résoudre I'équation f(x) = 0, trouver une fonction ¢(z) appropriée telle que

fl@)=0 & ¢(z) =2z
(il y a une infinité de choix pour ¢ — le succes de la méthode dépendra du choix).
@ On cherche alors un point fixe z* de la fonction ¢.

@ Essayer de trouver un point fixe par |'application repétée de la fonction ¢ sur un
point de départ x1 (qui est aussi au choix et doit &tre bien choisi pour que la méthode fonctionne)

x2 = ¢(w1)
r3 = d(z2) = d(P(71))
x4 = ¢(x3) = P(P(P(x1)))

. ?
lim z, ==
n — oo
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Méthode de relaxation

Exemple :
@ On cherche un zéro z* de la fonction f(z) = 2¢” — ze” — 1.

o Equivalent : on cherche un point fixe z* de la fonction ¢(z) =2 — 7.

@ Avec z1 = 1 on trouve
2 = ¢(x1) = 1.63212
xr3 = ¢($2) = 1.80448

zo = pas) = 1.84141

z10 = ¢(z9) = 1.84141
z11 = ¢(z10) = 1.84141

Conclusion : Pour z* ~ 1.84141 on a

p(a”) ="
& 22— =g"

& 27—z —1=
& f(z)=0
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Méthode de relaxation : Illustration

o(x)

(9(1),9(p(1)))
(1,9(1))

(o(1),0(1

(1,1)

=

20

Condition suffisante pour la convergence : |¢'(z)| < k < 1 partout

ou bien : ¢ est une contraction.
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Détails mathématiques

Théoréme du point fixe :

Soit I = [a,b] un intervalle, 0 < k < 1, et ¢ : I — I continue tel que
lp(z) — d(y)| < klz —y| Vaz,y €1 (on dit que ¢ est une contraction).
Alors il existe un point fixe unique z* € 1.

De plus, une suite (x,) dans I définie par un x1 et par Tn4+1 = ¢(x,) convergera vers z™.

Démonstration :

Soit 21 € I quelconque et z,>1 défini par récurrence : Tny1 = ¢(x,). On a
|Tnt1 — n| < k" Y — 21|, donc

‘m'rﬂ»m - xn‘ Slxn+l - xn| + ‘mn+2 - -Tn+l| +...+ “T'rﬂ»m — Tn4+m—1
(K" ET R -
1 1—k™
:kn 1
1—-k

|z2 — 1]

Comme k < 1, I'expression dans la derniére ligne tend vers zero quand n — oo, alors les
(zn) forment une suite de Cauchy qui converge vers un z*. On a ¢(z*) = z™ car ¢ est
continue.
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Méthode de Newton

Cas spécial : méthode de Newton
L'idée de la méthode de Newton est de linéariser f autour d’'un point x1, de trouver le
zéro de la fonction tangente ¢ ainsi définie, et d'itérer :

o Poser
ti(z) = f(z1) + f'(21)(x — 21)
(= développement limité de f en 1, alors t1(x) = f(2) + O(|z — z1]?))

4 3 _ _ f(z1)
o Le zéro de t1(x) est a x2 = a1 T
o Itérer cette procédure tant que la distance entre les deux valeurs consécutives x,, et
ZTnt1 est > €. Quand |zn41 — Tn| < €, terminer et renvoyer Tn41.

D'aprés le théoreme du point fixe Ia suite des z, convergera vers un point fixe * de la

7 )
Or ¢(z*) = z*, alors £ m =0, alors f(z*) =0.
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Méthode de Newton

Zéro de la fonction f = point fixe de la fonction auxiliaire

f(=)
P T T —
¢ F(@)
Remarques :
o Si f est deux fois dérivable et f'(z) £ 0V z € I, alors ¢'(z) = J@)f" (@)

f(x)?

o Dans ce cas : ¢ est une contraction < 3k < 1 avec |¢'(z)| < k, soit ‘%;;y) <k

(“«<" vient du théoréme des accroissements finis, “=" de la définition de la dérivée)

@ Pour que I'algorithme converge : |l est suffisant mais pas nécessaire que ¢ soit une
contraction.

Etablir un critére suffisant et nécessaire peut étre trés difficile voire impossible en pratique, voir exercices

sur le cas complexe.

o Evidemment il faut bien choisir le point de départ (un extremum de f, par exemple,
serait un trés mauvais choix — pourquoi ?)
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Méthode de Newton

f(x)

yx
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Méthode de Newton

v

tn(x) = f(@n) + f'(2n)(@ — 2n)
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Méthode de Newton

v

tn(x) = f(@n) + f'(2n)(@ — 2n)
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Méthode de Newton

v

tn(x) = f(@n) + f'(2n)(@ — 2n)
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Méthode de Newton

Algorithme :
@ Partir avec x au choix (mais choisi de maniére réfléchie : aussi proche du zéro que
possible, pas un point critique. . .)

f(z)

()

@ Si |z — Zancien| < €, on est suffisamment proche du zéro : terminer et renvoyer .
Sinon, répéter.

@ Remplacer Tancien < 7, T 4=z

Pour tester la convergence, d'autres critéres sont envisageables (par exemple, est-ce que
|f(z)] < €?) en fonction du probléme sous étude.
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Méthode de Newton

Exemple :

On cherche un zéro de la fonction f: & — z% —x — 1 dont la dérivée est

f': & — 5x* — 1. La précision souhaitée est e = 107> et le point de départ sera z¢ = 1.

def f(x):

return x**5 - x - 1
def df(x):

return 5 * x*x*x4 - 1

epsilon = 1.E-5

x = 1.
x_ancien = x + 2 * epsilon # valeur initiale pas importante
while abs(x - x_ancien) > epsilon:

X_ancien = x

x = x - f£(x) / df(x)

print ("Le zéro est a x =", x)

Il est souvent une bonne idée de limiter le nombre d'itérations pour éviter des boucles
infinies (au cas ol la méthode ne converge pas avec le point de départ choisi).
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Méthode de |la sécante

Pour appliquer la méthode de Newton, il faut connaftre la dérivée de la fonction f, de
préférence analytiquement.

Sinon : approximer la dérivée par le taux d’'accroissement
/ . flz+h) - f(=z)
= 1 _
F(=) o h
Au point z = x,, avec h = &, — Tp—1 :

f/(wn) _ f(@n) = f(@n-1)

Tn — Tn—1
Insérer f’(x,) dans la formule de récurrence de la méthode de Newton
Tnt1 = Tn — f(xn)/f'(zr), en supprimant le terme O (|zn — Tn—_1]) :

+ O(Jzn = n-1])

Tn — Tn-—1

f(@a) = f(@n-1)

Int+l1 = Tn — f(xn)

Méthode de la sécante.

Algorithme :
@ Commencer par deux points au choix xo et z1; poser n = 1.
o Calculer x,4+1 avec la formule de récurrence ci-dessus.

o Itérer avec n <— n+ 1; quand |zn11 — xn| est suffisamment petit, terminer et
renvoyer Tp,+1.

HAP608P, U Montpellier 137 / 231



Comparaison des méthodes

La table suivante montre I'erreur absolu aprés n itérations pour le zéro de 2° —z — 1
(avec le choix ¢(z) = (z 4+ 1)*/® pour la méthode de relaxation) :

Itérations | Bissection | Relaxation | Newton
1| -8.27e-02 | -7.84e-02 | -4.66e-01
2 | 4.23e-02 | -8.33e-03 | -2.06e-01
3 | -2.02e-02 | -8.96e-04 | -5.63e-02
4 | 1.11e-02 | -9.65e-05 | -5.43e-03
5 | -4.57e-03 | -1.04e-05 | -5.59e-05
6 | 3.24e-03 | -1.12e-06 | -6.01e-09

On voit que la méthode de Newton a besoin de beaucoup moins d'itérations que les deux
autres. Le gain du temps n’est pas signifiant pour cet exemple (implémentation pas
optimisée, fonction f pas trés compliquée). Voici le temps en secondes requis sur un
ordinateur portable générique pour atteindre une précision fixe :

Precision | Bissection | Relaxation | Newton
1.00e+00 | 5.51e-07 | 3.17e-07 | 4.48e-07
1.00e-02 | 2.47e-06 | 5.24e-07 | 1.40e-06
1.00e-04 | 4.71e-06 | 7.45e-07 | 1.64e-06
1.00e-06 | 6.57e-06 | 9.51e-07 | 1.87e-06
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Généralisations de la méthode de Newton

o La méthode peut étre appliquée sans modifications pour des fonctions complexes.
Les domaines de convergence vers les zéros forment des structures géométriques
intéressantes : les “fractales de Newton” — exercices.

o Méthode de Halley : basée sur I'itération
2 f(xn) f'(xn)
2 f(xn)? = flan) [ (2zn)

pour des fonctions au moins deux fois dérivables. Converge plus rapidement que la
méthode de Newton, mais nécéssite I'évaluation de la dérivée seconde.

Tn+1 = Tn —

@ Méthodes de Householder : Soit f k-fois dérivable avec des dérivées continues. On

itere
qk—1 ( 1 )
T \ @
Tpt1 = Tn + k W
dzk \ f(z) w=w,

Pour k£ =1 on retrouve la méthode de Newton, pour k = 2 celle de Halley.
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La méthode de Newton n-dimensionnelle

Etant donnée une fonction f: R™ — R™, un zéro de fpeut étre trouvé par la
généralisation de la méthode de Newton : on itére

Tpi1 = B — T (&) f(@0)

ou J est la matrice jacobienne des dérivées de f,

gﬁ gﬂ .. g@

Tq To T

J= oz Oxo Oxp
Ofn  Ofn ... Ofn
oz Oxo Oxp

et J~! est son inverse. Voir le chapitre sur I'ajustement plus tard pour une application.

HAP608P, U Montpellier Programmation pour la physique 140 / 231



Algebre linéaire numérique
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Dans ce chapitre

Généralités
@ Systemes d'équations linéaires
@ Diagonalisation des matrices
Algorithmes
o La méthode de Gauss
o La décomposition LU

o La décomposition QR et I'algorithme QR
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Résoudre un systeme d'équations linéaires

On cherche une solution des n équations linéaires a n inconnues .,

a1 1 +a222+ ...+ ainTn = b1

G211 + a2 T2 + ...+ a2n Ty = b2

Gn1T1+ Gn222 4+ ... + Qnn Tn = bn
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L’algorithme de Gauss

L'algorithme de Gauss est une méthode pour résoudre ces systemes d'équations linéaires.
En notation matricielle :

ail e Qln T1 bl

ani ot QAnn Tn bn

Regardons la matrice n x (n + 1) suivante :

a1 -0 a1 b
M =
an1 e Ann bn
Observation : La solution (z1,...,z,) du systéme est inchangée par les transformations

élémentaires :
@ échange de deux lignes de M
@ multiplication d'une ligne de M par un nombre # 0

@ ajout d'une ligne de M a une autre
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L’algorithme de Gauss

Par une suite de transformations élémentaires, on transforme M en forme triangulaire
supérieure :

/ / / ! /
ap; Q2 vt ai n—1 A1n b1
’ / / /
0 a22 az n—1 A2n by
/ / /
M 0 0 a3n—1 a3n b3
/ / /
0 0 : 0 Gp—1,n—1 Gp—1,n n—1
/ /
0 0 - 0 0 Apn by,
.o .. .
Ici a;; =05sii>j.
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L'algorithme de Gauss

Pour transformer M en matrice triangulaire supérieure :
© Si la matrice ne contient qu'une seule ligne, rien a faire : terminer.

@ S'il y a au moins un coefficient non nul dans la premiére colonne :

o Si aj1 = 0, échanger la premiere ligne avec une autre dont le premier coefficient est
# 0. On appellera a1 le coefficient pivot, il est désormais # 0.

o Eliminer tous les coefficients aj1 de la premiére colonne au-dessous du pivot :
Ajouter (—ay1/a11) fois la premiere ligne a la k-éme ligne.

© Répéter a partir de 1. avec la sous-matrice de M que |'on obtient en supprimant la

premiére ligne et la premiere colonne.

En pratique, on choisit souvent comme pivot le plus grand coefficient de chaque colonne,
pour minimiser les erreurs d'arrondi. Pour nous il suffira de choisir un élément quelconque

(non nul).
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L'algorithme de Gauss

On a maintenant transformé M en forme triangulaire supérieure,

! ’ ! ! /
ay;  ayz a1n—1 A1n b1
! ! ! /
0 axp - agn—1 QA2n by
M = :
! 1 /

0 0 Ap—1,n—1 Ap—1,n n—1
! /
0 o - 0 A, by,

sans avoir changé la solution (z1,...,25). Ensuite on calcule successivement les x; :

oz, =by/an,
 Tn_1= (b1 — an_1nTn)/An_1.n_1, avec T, déja connu
o ...
o x;i = (b — > ., aixTk) /ai;, avec les zx pour k > i déja connus
o ...
o 21 = (b — Y 4o, a1x®k) /ai1, avec les x;, pour k > 1 déja connus
Si un des aj; est zéro, il n'y a pas de solution, sauf si le numérateur b; — 3, _ . ajjx est

aussi zéro (dans ce cas la solution pour z; n'est pas unique).
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L’algorithme de Gauss

Exemple : On cherche la solution Z du systéme d’'équations AZ = b avec

2 4 -2 1 0
1 2 3 4 - -3
A= -1 1 2 2 ’ b= 2
0 3 -2 0 0
@ Au début :
2 4 -2 1

1 2 3 4 -3

M -1 1 2 2 2

0 3 -2 0 0

@ Premiere colonne : le pivot est 2. On ajoute donc (—1/2)-fois la premiere ligne a la
deuxieme et (1/2)-fois la premiére ligne a la troisieme. Pour la quatrieme ligne il n'y
a rien a faire.
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L’algorithme de Gauss

2 4 -2 1 0
oo 4 I -3
M_031gz

03 -2 0 0

@ Deuxieme colonne : on ne peut pas prendre 0 comme pivot. Alors on échange
d’abord la deuxiéme ligne avec la troisieme :

2 4 -2 1 0
;103 1 2 2
M‘004§—3

03 -2 0 0

Puis, rien a faire pour la troisieme ligne. Ajouter (—1)-fois la deuxieme a la
quatrieéme pour éliminer Mjs.
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L’algorithme de Gauss

2 4 =2 1 0
, o3 1 3 2
M=l0oo 4 =3
00 -3 -3 -2

@ Troisiéme colonne : le pivot est 4. Ajouter (3/4) de la troisieme ligne a la quatrieme :

2 4 -2 1 0
;o3 1 2 2
M‘004§—3

00 0 £ -4

Maintenant M’ est triangulaire supérieure et on peut calculer la solution Z :

o tay=-1 = x4 =-34
o dwz+ layg=4x3-119= -3 = z3=29

e 3wy +as+ Sas=322+29-85=2 = 2= 58

22

° 2z +4wy —2x3+ w4 =271 4+ 22 —58—-34=0 = =%
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L'algorithme de Gauss

Une procédure auxiliaire :

import numpy as np

# Transforme une matrice n*(n+l1) en forme triang. supérieure
def triangulariser (M):
n = M.shape [0] # le nombre de lignes
for i in range(mn): # boucle sur les premiéres n colonnes
for k in range(i, n): # chercher pivot sous la diagonale
if M[k, i] != O: # pivot trouvé dans ligne k 7
M[[i, k], :1 = M[[k, i], :] # échanger lignes i et k
pivot = M[i, i] # mémoriser pivot
break # quitter boucle sur k
else: # tous les éléments sous la diagonale étaient 0 7
continue # alors rien & faire pour cette colonne
for k in range(i+l, n): # éliminer tout sous la diag.:
facteur = -M[k, i]/pivot # ajouter (facteur)
M[k, :] += facteur * M[i, :] # *(ligne du pivot)

# a la ligne k.
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L'algorithme de Gauss

def gauss(A, b): # trouver la solution x de Ax = b
n = A.shape[0] # le nombre de lignes
M = np.empty((n, n+1)) # la matrice M
M[:, :n] = np.copy(A) # copier A dans les léres n colonnes
M[:, n] = np.copy(b) # copier b dans la derniére colonne
triangulariser (M) # aprés, M est triangulaire supérieure
x = np.empty(n) # on mettra la solution ici
for i in range(m-1, -1, -1): # parcourir lignes en arriére
sigma = 0. # sigma = la somme des (x_k déja connus)*
for k in range(i+l, n): # *(M_ik correspondants)
sigma += M[i, k] * x[k]
if M[i, i] == 0: # Matrice singuliére?
if M[i, n] - sigma == 0: # faut résoudre Oxx[i] = 0 7
print ("Attention, solution pas unique!")
x[i] = 42
else: # faut résoudre O*x[i] = (non nul) 7
print ("Erreur, pas de solution")
return

else: # sinon on peut diviser par M[i, il
x[i] = (M[i, n] - sigma) / M[i, il
return x

v
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La décomposition LU

La décomposition LU d'une matrice n x n A est la décomposition

PA=LU

o U est une matrice n X n triangulaire supérieure

(zéro au-dessous de la diagonale principale)

@ L est une matrice n X n triangulaire inférieure

(zéro au-dessus de la diagonale principale)

@ P est une matrice de permutation n X n
(PM = M a une permutation de lignes pres)

La matrice U resulte de I'application de I'algorithme de Gauss a la matrice A. En prenant
note des transformations effectuées pendant le déroulement de I'algorithme, on peut
aussi déterminer L et P.
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La décomposition LU

Les opérations élémentaires sur une matrice carrée A peuvent étre réprésentées par des
multiplications matricielles.

échange de I'i-eme et la j-éme ligne :
P; ;5 = la matrice identité avec les lignes i et j échangées :

1

P = 1

Un produit de matrices du type F; ;)

= une matrice de permutation générale P

= 0 partout, sauf pour un seul élément = 1 dans chaque ligne et dans chaque colonne
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La décomposition LU

Les opérations élémentaires sur une matrice carrée A peuvent &tre réprésentées par des
multiplications matricielles.

Elimination de la j-éme colonne au-dessous du pivot : pouri=j+1,5+2,...,n,
ajouter r;-fois la ligne j du pivot a la ligne ¢ (ob r; = —aij/a;j)
A = F(j?"‘j+1v"‘j+2v~~;"'n)A
avec
1
1
1
F(j§7'j+1a7'j+2a~-77'n) = riv1 1
Tj+2
Tn 1
" . -1
On note que I'inverse de la matrice F{.r, ;,....r,) €st F(j;rj+1,...,rn) =FGiori iy —rn)-
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Calcul de la décomposition LU

On peut alors représenter les transformations de I'algorithme de Gauss schématiquement
comme suit :

Fino1;4) Pleyn—1) Fln—2) - Pla2) Fli0) Py A=U

@ A est la matrice a transformer
o U est le résultat de I'algorithme de Gauss, une matrice triangulaire supérieure

@ Les P(; ;) correspondent aux changements de pivot (P(; jy = 1 si pas de changement
nécessaire)

o Les F(jir;,y,...,r,) COrrespondent a I'élimination de la j-éme colonne

On inseére 1 dans I'équation ci-dessus, en utilisant P; jyP(; ;) = 1 :

Fin—130) Plxn—1) Fin—2i) - - - Pla,2) Fragw) Pre2) Plaz) - Plan—1)
X Prun—1) " Pus) Py PanyA=U

On peut montrer : La premiére ligne de cette expression,
L = Fin-13) Peen—1) Fan-2i0) - Ple,2) Ftn) Ple2) Pie) -+ Pl

est triangulaire inférieure.
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Calcul de la décomposition LU

On est arrivé a la représentation suivante de la triangularisation de la matrice A :

LPly 1) Pug) Pugy PuyA=U

L = Fin—t) Plein—1) Fin—2i0) - Ple2) Flaem) Pix,2) Pie) -+ Plein—1)

est une matrice triangulaire inférieure.
L'inverse d'une matrice triangulaire inférieure est également triangulaire inférieure. On
définit

L =01

P =Pan-1y P2y Pl
et on multiplie par L a la gauche aux deux cotés :

LLPA = LU

alors

HAP608P, U Montpellier Programmation pour la physique 157 / 231



Calcul de la décomposition LU

Pour calculer la décomposition LU, PA = LU :

o U = le résultat de I'algorithme de Gauss appliqué a A

o P = le produit de tous les P(; ;) (échanges de lignes effectués dans la procédure).
o Démarrer I'algorithme de Gauss avec P = 1.
o Quand on échange les lignes i et j, multiplier P a gauche par P; ;).

© L=L""=P P FilyPen) Foly Prem—) it

avec les F(;,,) correspondant aux éliminations de colonnes.

o Démarrer avec L = 1.
o Quand on échange les lignes i et j, multiplier L a droite par P; ;).
o Lors de I'élimination de la colonne j, multiplier L a droite par le F(;;*) correspondant.

1 —
Facile a calculer car F/; = F(J?_Tji»l7_7'j+21“-1_7"n—1a_rn)'

(J5m 541575425 Tn—1:Tn)

o Enfin multiplier L a gauche par P.
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La décomposition LU : exemple

On cherche la décomposition LU de la matrice

2 4 =21
1 2 3 4
A= -1 1 2 2
0 3 -2 0

@ Audébut : U =A, L=1,P=1
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La décomposition LU : exemple
@ Premiére colonne :
pas de changement de pivot, P; ;) = P11y =1, P+ P, L+ L
ajouter (—1/2)(premiére ligne) a (deuxieme ligne) :

1
1
L+—L| 2 L
1
1
ajouter (1/2)(premiere ligne) a (troisieme ligne) :
1
L+ L 1 1
-1 1
1
rien a faire pour quatrieme ligne : L < L.
Maintenant
1 1
1
5 1 1
— 2 —
L= -1 1 b= 1
1 1
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La décomposition LU : exemple

@ Deuxiéme colonne : Maintenant

2 4 -2 1
oo 4 %
U‘oslg
03 =2 0

Uz2 = 0 : il faut changer le pivot. On échange donc la deuxieme et la troisieme

ligne :
03 1 %
=10 o0 4 2
0 3 -2 0
1
Pujy = Pags = ? (1) , P+ PogsP, L+ LPyg.
1
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La décomposition LU : exemple

Maintenant
1 1
10 1 0 1
— 2 J—
L= -3 10  P= 1o
1 1
2 4 -2 1
03 1 3
U= 00 4 2
0

0 3 -2
Rien a faire pour la troisieme ligne : L < L.
Ajouter (—1) fois (deuxieme ligne) & (quatriéme ligne) :

1

1 0 0 O
1 L0 10
— 2
L+ L 1 donc L= _% 10 0
1 1 0 1 0 1
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La décomposition LU : exemple

@ Troisieme colonne : Maintenant

2 4 -2 1
03 1 3
U‘004§
0 0 -3 -2

pas de changement de pivot : P(; jy = Pz3 =1, P+ P, L+ L
ajouter (3/4)(troisiéme ligne) & (quatrieme ligne) :

1 1 0 0 0
1 | 2 o 1 o0

L+ L 1 donc L= _% 1 0 o
-3 1 0 1 -3 1

o Finalement : L + PL.
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La décomposition LU : exemple

Enfin :
2 4 -2 1
03 1 2
U_004§
00 0 <%
1 0 0 0
-+ 1 0 0
= 2
L‘%()lo
0o 1 -2 1
1 000
0010
P=1010 0
00 0 1
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La décomposition LU

Deux fonctions auxiliaires :

import numpy as np

# P_ij = 1’identité mais avec les lignes i et j échangées
def matriceP(m, i, j):
P = np.identity(n)

P[i, il = P[j, jl 0
P[i, j1 = P[j, i1 =1
return P
# F = 1’identité avec les éléments r_i au-dessous de F_jj

def matriceF(m, j, r):
F = np.identity(n)
Flj+1:, jl = r
return F
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La décomposition LU

def decomp_LU(A):
n = A.shape [0] # le nombre de lignes (et colonnes)
U = np.copy(A) # au début, U est A et P et L sont 1
P, L = np.identity(n), np.identity(n)
for i in range(n-1): # boucle sur les colonnes
for k in range(i, n): # trouver un pivot...
if U[k, i] != O: # ...cet élément peut 1’&tre 7
U[Lli, k1, :1 = ULl[lk, i], :]1 # échanger lignes...
P = matriceP(n, k, i) @ P # ...mettre a jour P
L = L @ matriceP(n, k, i) # ...et L...
pivot = U[i, i] # ...garder valeur du pivot...
break # ...fin de la boucle sur k
else: # toute la colonne est zéro 7
continue # alors rien a faire pour celle-ci
r = np.empty(n-i-1) # vecteur pour construire F~-1
for k in range(i+l, n): # éliminer sous la diagonale:
facteur = -U[k, il/pivot # ajouter f x (ligne i)
Ulk, :] += facteur * U[i, :] # ...a la ligne k...
r[k-i-1] = -facteur # ...et mémoriser f
L =L @ matriceF(n, i, r) # mettre & jour L
return P, P @ L, U

v
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La décomposition LU : applications
Une fois calculée la décomposition LU d’'une matrice carrée A, on peut facilement
resoudre tous systemes d'équations de la forme AT = b pour un b quelconque :

AF=0b & LUZ=Pb & Lj=1b avecj=UZ b =Pb

o Déterminer §/ 3 partir de Lij = b’ :
y1 =b1/Ln
y2 = (b — Laiy1)/ L2

Yn = (U — Y Lukyn)/L

k<n
o Calculer £ a partir de UZ = ¢ (voir derniere étape de la méthode de Gauss) :
In = yn/Unn
Tn—1 = (yn—l - Un—l,nxn)/Un—l,n—l

z1 = (y1 — Z Uikzr)/Un1

k>1
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La décomposition LU : applications

def resoudre(P, L, U, b): # trouve x dans LUx = Pb

n = U.shape[0] # les matrices sont n fois n
bprime = P @ b # le vecteur b’ = Pb
y = np.empty(n) # le vecteur y
for i in range(n): # initialiser y
sigma = 0

for k in range(i): # k entre 0 et i-1
sigma += L[i, k] * yl[k]
y[i]l = (bprime[i] - sigma) / L[i, il

x = np.empty(n) # le vecteur x

for i in range(n-1, -1, -1): # i entre 0 and n-1,
sigma = 0 # en arriére
for k in range(i+1l, n): # k entre i+l et n-1

sigma += U[i, k] * x[k]
x[i]l = (y[i]l - sigma)/U[i, il
return x
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La décomposition LU : applications

Calcul de I'inverse : La décomposition LU permet de calculer le vecteur & dans le
systeme d'équations AZ = b. En appliquant cette méthode n fois avec b = les n vecteurs
de colonne d'une matrice B, on obtient n vecteurs de solution : les vecteurs de colonne
d'une matrice X qui vérifient I'équation matricielle

AX =B.

Si B=1, alors X = A~! I'inverse de la matrice A.

def inverse(A): # trouve 1l’inverse de A
P, L, U = decomp_LU(A)
n = A.shape [0]
Ainv = np.empty((n, n)) # 1’inverse de A, vide au début
iden = np.identity(n) # 1’identité (i-éme ligne = e_i)
for i in range(n):
Ainv[:, i] = resoudre(P, L, U, iden[i])
return Ainv
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L'efficacité de la méthode de Gauss et la décomposition LU

o Le temps de calcul pour faire tourner la méthode de Gauss ou sa variante la
décomposition LU est proportionnel 3 n® pour une matrice n x n.

Si la taille de la matrice augmente par un facteur 10 = le programme prend 1000 x
plus de temps! Pour n = 100 cela prend une fraction d'une seconde, pour
n = 10000 c’est déja infaisable en pratique.

o Pareil pour calculer I'inverse et le déterminant avec la décomposition LU.

o D’autres algorithmes, souvent plus efficaces, existent pour les matrices de forme
spéciale (matrices creuses. . .).

Remarques concernant notre implémentation :

@ Pour minimiser le besoin de mémoire et du temps de calcul, il convient de ne pas
paramétrer les permutations par une matrice P mais avec un vecteur p qui contient
les mémes informations.

@ Pour minimiser le temps du calcul, on ne construira pas L par une séquence de
multiplications de matrices (qui coiitent cheres, ~ n® opérations) mais plus
directement.

o D’autres optimisations sont possibles pour les applications en pratique.
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Les valeurs propres et les vecteurs propres d'une matrice

Soit A une matrice réelle n x n qui est symétrique : AT = A.

Theoréme : |l existe une matrice orthogonale S telle que ST AS = D est une matrice
diagonale.

(Rappel : S orthogonale g sTs=1;D diagonale C'g D zéro hors la diagonale principale .)

Dans ce cas les coefficients de la diagonale principale de D sont les valeurs propres de A,
et les colonnes de S sont les vecteurs propres de A.

(Rappel : XA € R valeur propre de A % 35 € R™ non nul, le vecteur propre, tel que AT = \7.)

Probleme :

Soit A une matrice symétrique donnée. On cherche ses valeurs propres et ses vecteurs
propres correspondants. Equivalent : on cherche S et D. J
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L’algorithme QR

Un algorithme classique pour trouver les valeurs propres et les vecteurs propres d'une
matrice est I'algorithme QR. Ici on va discuter une version simple. Des algorithmes plus
modernes sont généralement plus efficaces et plus stables, mais aussi plus compliqués.

L'algorithme QR repose sur la décomposition QR d'une matrice carrée A,
A=QR

ol () est une matrice orthogonale et R est une matrice triangulaire supérieure. On définit
la suite Ay par
AO = A7 An+l = RnQn

avec A, = Qn R, la décomposition QR de A,,. On peut montrer que cette suite
converge, sous certains conditions, vers une matrice triangulaire dont les coefficients
diagonaux sont les valeurs propres de A. La matrice S est le produit de toutes les
matrices Q..
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L’algorithme QR

Algorithme :
@ Démarrer avec S = 1.

@ Si A est triangulaire supérieure, terminer. Valeurs propres = coefficients sur la
diagonale principale de A, vecteurs propres = colonnes de S.

@ Trouver la décomposition QR de A, A = QR.
© Répéter a partir de (2) avec A + RQ et S + SQ.

A vous de I'implémenter (— exercices) !

HAP608P, U Montpellier Programmation pour la physique 173 / 231



La décomposition QR

Pour implémenter I'algorithme QR, il faut savoir calculer la décomposition QR d'une
matrice A. Il y a plusieurs méthodes; un simple algorithme est la méthode modifiée de
Gram-Schmidt :

@ On construit Q par orthonormalisation des colonnes de A avec des transformations
representées par des matrices triangulaires supérieures. Si alors ¥; et ¥; sont deux
colonnes différentes, on souhaite que ¥; - U; = 0 et ¥; - ¥; = 1.

@ On définit la projection de @ sur ¥ :

@ Pour tout vecteur de colonne vj; :
o Normaliser, ¥; + ¥;/||T;]| (si ¥; n'est pas nul)

o Soustraire de chaque colonne derriére ¥; sa projection sur v; ,
U U5 —pry, 05 Vj>i

o Maintenant ¥j; est orthogonal a tous les ¥; avec j > i (et a toutes leurs combinaisons
linéaires)

o Ainsi on obtient les vecteurs de colonne de Q. Poser R = Q1A = QT A.
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La décomposition QR
Exemple (Méthode modifiée de Gram-Schmidt) :

2 0 1
A=Q= 2 4 -1
-1 2 3
Normaliser la premiére colonne : /22 4 22 4 (—1)2 = 3, alors
2
2 9 1
Q + 24 -1
1
-1 2 3

Le produit scalaire entre la 1ere et la 2éme colonne est 2 x 0+ 2 x 44 (—1) x 2=2. I
faut donc soustraire 2x (1ére colonne) de la 2&éme colonne.

Le produit scalaire entre la lére et la 3eme colonne est

2 %1+ 2 x(=1)+ (—3) x 3= —1, on soustrait alors (—1)x(1&re colonne) de la 3¢me.

Q +

Wl Wi Wi
wloo Wl wlut

w00 W|0o ol

Maintenant la premiere colonne est normalisée et orthogonale aux deux autres.
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La décomposition QR
Exemple (Méthode modifiée de Gram-Schmidt) :

Normaliser la deuxieme colonne : 1/(—4/3)2 + (8/3)2 + (8/3)2 = 4, alors

W] Wik wlwt

Q «~

Wl Wi Wi
W WiN ol

La produit scalaire entre la 2éme et la 3éme colonne est 1. Il faut donc soustraire la 2eme
de la 3éme colonne.

2 1
2 2
1 2 2

Maintenant les premieres deux colonnes sont normalisées, orthogonales I'une a |'autre et
orthogonales a la troisieme.

Il ne reste qu'a normaliser cette derniére :

W Wi ol

Wi Wl wiN

Q «~

Wl WiN Wi
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La décomposition QR

Exemple (calcul de R) :

On a
2 2 1
3 3 73
A =
2 _1 2
3 3 3
et alors
2 2 1
3 3 73 2 0 3 2 -1
-1 1 2 2
2 _1 2 -1 2 3 0 0 3
3 3 3
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La décomposition QR
Deux fonctions auxiliaires :

import numpy as np

# pour calculer la norme de V:
def norme(v):
return np.sqrt(np.sum(v**2))

# pour calculer la projection de w sur v:
def projeter(v, w, epsilon=1.0E-10):
vnorme = norme (v)
if vnorme < epsilon: # proj. sur vect. nul = vect. nul
return np.zeros (v.shape [0])
resultat = np.copy(v)
resultat *= v Q@ w
resultat /= vnorme**2
return resultat
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La décomposition QR
Orthogonalisation de Gram-Schmidt :

def gram_schmidt (A, epsilon=1.0E-10):
n = A.shape [0]

resultat = np.copy(A) # tableau ou sera mis le résultat
for i in range(n): # Gram-Schmidt modifiée:
v = resultat[:, il # pour tout vecteur de colonne v:
vnorme = norme (v)

if vnorme >= epsilon: # normaliser (sauf si nul)
v /= vnorme
for j in range(i+l, n): # de toute colonne derriére v:
# soustraire sa projection sur v
resultat[:, j] -= projeter(v, resultat[:, j], epsilon)
return resultat

Décomposition QR :

def decomp_QR(A, epsilon=1.0E-10):
Q = gram_schmidt (A, epsilon)
R=Q.T @ A
return Q, R
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Algebre linéaire avec SciPy

La bibliothéque SciPy contient des méthodes pour I'algorithme de Gauss, la
décomposition LU, la décomposition QR et de nombreuses autres : décomposition en
valeurs singulieres, décomposition de Cholesky, fonctions matricielles, méthodes
optimisées pour des matrices spéciales. . .

Pour des vraies applications en physique numérique, il est préférable de se servir de ces
méthodes optimisées au lieu de nos implémentations du cours <« faites maison .

On les trouve dans la sous-bibliotheque scipy.linalg :

import numpy as np
import scipy.linalg as la
A = np.array([[5, 3, -11, [3, 2, -41, [-1, -4, 011)

Ainv = la.inv(A) inverse
d = la.det(A) déterminant
vals, vecs = la.eig(A) valeurs/vecteurs propres

déc. LU: Pinv~(-1) A =L U
décomposition QR

Pinv, L, U la.lu(A)
Q, R = la.qr(A)

HOH OH B

Le travail de calcul dans cette bibliothéque reste sur des routines en C, C++ et
FORTRAN optimisées qui sont beaucoup plus vite que des routines en Python.
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Ajustement
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Dans ce chapitre

Généralités

@ La méthode des moindres carrés
Algorithmes

o Régression linéaire

@ Régression nonlinéaire : Méthodes de Gauss-Newton et de Levenberg-Marquardt
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Ajustement

Description du probleme :

Soient
@ (t1, y1) ... (tn, yn) des données, p. ex. des données expérimentales,
o f(t; B1,...,0Bp) une fonction (un “modele”) qui dépend de certains paramétres
Bi, .-, Bp-

On cherche les valeurs des parametres telles que la fonction f correspondante décrit le
mieux les données :

-,

ftsB) =y Vi
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Ajustement

Exemple : La trajectoire d'un objet en chute libre est donnée par une fonction
quadratique f du temps t,

F(t; B, Ba, Bs) = B+ Bat + Bst® = y(1)
Ici
@ 31 = yo est la hauteur initiale a t = 0,
@ (2 = v est la vitesse initiale,
e 33 = —g/2 avec g I'accélération gravitationnelle.
Lors d'une expérience, on mesure

tfs] | y[m]
0 1
031 | 3
0.59 | 4
1.02 | 4
132 | 3
174 | 0

Comment en obtient-on les valeurs numériques de yo, vo et g7
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Méthode des moindres carrés
Méthode standard : Méthode des moindres carrés.
On définit le résidu r; du point de données (t;, y;) par
ri(B) = f(t:; B) — yi

et on cherche les valeurs des paramétres f; ... 83, telles que x?, défini par

n

@) =338

i=1

est minimisé. Ces valeurs donnent le meilleur ajustement des parameétres aux données.

y0 =1.00 m, v0 = 7.98 m/s, g = 9.82 m/s"2, chi~2 = 0.00160

4

y[m]

tls]
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Méthode des moindres carrés

Généralisation pour incertitudes variables
Si les données sont de la forme (t;,y; &+ 0;) avec des o; tous différents, alors il faut
minimiser

A= (") nd) = fe B -

o
i=1 K

Méthode des moindres carrés pondérés.

Ainsi, les points de données avec grandes incertitudes o; contribuent a I'ajustement avec
un poids moins important.

Généralisation pour des erreurs de mesure sur ¢

On a supposé que l'incertitude sur les t; est négligeable; sinon, il faut encore adapter la
méthode.
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Régression linéaire
Probléme numérique : Comment minimiser 2 ?

Dans I'exemple de la chute libre, la fonction f dépend des parametres (1, [2, 83
linéairement,

Ft; B) = B1+ Bat + Bat?.

Probleme de régression linéaire : on cherche 1, (B2, B3 tels que
yi = f(ts; B) & AP~

ol
1 :Ii’l(tl) xz(h)
xl(tg) :Eg(tg)

A=| 1 @ults) w2(ts) avec z1(t) =t, xa(t) =1¢°.

—_

i T (te) X2 (t6)

Le systeme linéaire AE = ¢ est surdéterminé (6 équations pour seulement 3 inconnues ;
x> > 0 génériquement). Le meilleur ajustement est donné par la solution d’un systéme

linéaire de seulement 3 équations :
ATAB = AT .
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Régression linéaire

Preuve :

On souhaite minimiser 72 = (Aﬁ— #)? par rapport a 5, alors on cherche le E ou le
gradient s'annulle :

0
0B

SN2
(Aﬂ - y) -0.
Explicitement :

0 S~ )\2 B
0B; (A'B o y) = B: ; (AajBj — Ya) (AakBr — Ya)

= Z AaiAakPr + Z AajBiAai — ZyaAui - Z AgiYa
ak aj a a

=2(ATAB)i — 2(A" )

ce qui s'annulle si ,5 vérifie
ATAG = A"y,
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Régression linéaire

import numpy as np
import numpy.linalg as 1la

# Les données:
t = np.array([O0., .31, .59, 1.02, 1.32, 1.74])
y = np.array([1., 3., 4., 4., 3., 0.1)

def x1(t): # les variables prédicteur
return t

def x2(t):
return t**2

A = np.ones((6, 3)) # la matrice de coefficients
Al:, 1] = x1(t) # (2é&éme colonne)
A[:, 2] = x2(t) # (3éme colonne)

# Résoudre le systéme linéaire pour trouver les paramétres:
beta = la.solve(A.T @ A, A.T @ y)
yO, vO, g = betal[0], betal[1], -2 * betal[2]
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Régression linéaire

Calculer x? et tracer le résultat :

def f(t):
return yO + v0 * t - g/2 * t*xx2

r = f(t) -y # les résidus
chi2 = np.sum(r**2)
print("chi~2 =", chi2)

import matplotlib.pyplot as plt

tpoints = np.linspace(0, 1.74, 100)

plt.plot(t, y, ’ro’) # tracer les données

plt.plot (tpoints, f(tpoints)) # tracer la courbe théorique
plt.xlabel("t [s]")

plt.ylabel("y [m]")

plt.show ()
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Régression linéaire : plusieurs variables indépendantes

Similaire pour plusieurs variables indépendantes

Exemple : on propose le modéle empirique

(Note d'examen) = ¢ + f1x1 + P22 + B33

x1 = pourcentage de TD manqués
r2 = pourcentage de CM manqués
x3 = heures de révision

Note 1 T2 €3
8 10 25 2
19.5 0 0 6
6 30 100 3
12.5 10 37.5 4
14.5 10 25 4
10 80 | 62.5 5
0 100 | 100 2
25 20 50 4
6.5 60 50 0
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Régression linéaire : plusieurs variables indépendantes

y = Bo + Biz1 + fax2 + Pazs

Matrice 9 x 4 (9 points de données, 4 paramétres a ajuster).

La solution de ATAS = AT donne By = 10.4, 81 = —0.05, B2 = —0.11, Bs = 1.24.

Prédiction de note.
3
.
.

00 25 50 75 100 125 150 17.5 200
Note
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Régression linéaire

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt("Regression_Notes")
datapoints = data.shape [0]

A = np.empty((datapoints, 4)) #

A[:, 0] = np.ones(datapoints) # premiére colonne = 1

A[:, 1:] = datal:, 1:1] # autres=variables prédicteur
y = datal:, 0] #

matrice de coefficients

variables réponse
beta = np.linalg.solve(A.T @ A, A.T @ y) # ajustement
print ("beta =", beta) # afficher résultat

def pred_y(x): # prédiction pour un prédicteur donné
return beta[0] + betal1:] @ x

predictions = [pred_y(A[i, 1:]) for i in range(datapoints)]
plt.plot(y, predictions, ’ro’)
plt.show ()

o
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Régression linéaire

Méthodes plus avancés :

Au lieu de directement résoudre les équations normales
ATAB = ATy
il peut étre préférable de calculer la décomposition en valeurs singulieres de la matrice A,
A=UDVT, U = orthogonale, D = diagonale, V = orthogonale
et de calculer E avec U, V, D et y.
Raison : stabilité numérique, problématique si AT A est (proche d'&tre) singuliere.

Ici on n’a pas traité des algorithmes pour la décomposition en valeurs singulieres, alors on
ne détaillera pas la procédure.
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Régression non linéaire

Dans les exemples avant, la fonction d'ajustement f(¢; 3) dépendait des paramétres

B ... Bp linéairement.

Si la dépendence est plus compliquée, la minimisation de x? devient plus difficile.

Exemple : Ajuster une fonction sinusoidale,

f(t; Br, B2, B3) = B1 sin (B2t + B3)

ol (1 est I'amplitude, 52 la fréquence, B3 la phase a t = 0.
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Régression non linéaire : L'algorithme de Gauss-Newton
On cherche un minimum de x2(5).
@ Méthode de Newton (rappel) : pour trouver un zéro de g(x), on itere
g(x)
g'(z)

T <— T —

@ Pour trouver un point critique (potentiellement un minimum) de g(z), on cherche

un zéro de g'(z) : on itére
9'(x)
9" (x)
@ Généralisation a plusieurs variables : soit g(g) une fonction de p variables 3 Pour

trouver un point critique, itérer
f B—H(B)Vy(B)

-

ou la matrice hesséenne H(f3) est

T < T —

g 9%g 229 . 229
B3 081082  0p10B3 0B108p
Py o ok ot
9B2061 B3 9B20p3 9B29Bp
H =
0%g 0%g o%g . 2%
9BpoB1 9Bp0B2 9BpIBs3 5512,
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Régression non linéaire : L'algorithme de Gauss-Newton

L'algorithme de Gauss-Newton évite le calcul de H en exploitant le fait que la fonction a
minimiser est une somme de carrés :

XE(Br-By) =r1(B) +r2(B) 4.+ ral(B) =77
avec les n résidus

ri(B) = f(ti: B) — i

Alors o 7‘1 Lo 67‘2 o Ora
1 8 25 .21, 381
. 21"16;1 +27"23T2 +. +2rn6’""
Vx: = =27J

21“18[31 —1—21“2‘%2 +. —|—2rnaT"

Ici J est la matrice jacobienne n X p

81"7;
Jij—aﬁj.
De plus,
=9 gy =2 9rgy =2 (J7 S 0T (T
Hy = 5o (Vx )j_aﬁi(2rJ)j_2(J J)ij+2r'aﬁiaﬁj”2<J J)ij

( = 927 Lol
en supposant que les termes 77 - 55,05, Sont négligeables).
9P
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Régression non linéaire : L'algorithme de Gauss-Newton
Résumé : On a trouvé
et
H~2 (17J)
ol 7 est le vecteur a n composantes des résidus (fonctions des paramétres 3;)
ri(8) = f(ti; B) — i
et J est la matrice jacobienne n X p de 7 par rapport a 5

S_or_of

98 98’

L'itération de la méthode de Newton pour trouver un point critique de x? = 7 7 devient

—

B BT T

Méthode de Gauss-Newton.
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Regression non linéaire : L'algorithme de Gauss-Newton

En pratique :

o Calculer analytiquement les dérivées Ba—g_.
J

o Commencer avec un ensemble de parameétres 5 au choix

(mais aussi proche que possible de I'optimum pour améliorer la convergence)

o Mettre a jour les r; = f(tz,ﬁ) —y; et les J;; = %(ti;g).
J

o Remplacer § < 3 — (JTJ)"'7J.

Equivalent, a préférer en pratique (car plus stable) : calculer le nouveau 8 avec la
solution d'un systéme linéaire, trouvée p.ex. par la méthode de Gauss :

Browveau = Bancien + 0 § = (solutionde J'J § = —7J).

o Itérer ces derniéres deux étapes jusqu'a la convergence.
S'arréter lorsque ||4]] < e.

HAP608P, U Montpellier 199 / 231



Régression non linéaire : L'algorithme de Gauss-Newton

Avec les fonctions % données dans une liste gradf :
J

import numpy as np
import gauss # pour la fonction gauss () du cours

def gauss_newton(t, y, f, gradf, betaO, epsilon=1.E-4):
beta = np.copy(betal) # les paramétres a ajuster

delta = np.ones(len(beta)) # diff. entre deux itérations

while np.sqrt(np.sum(delta**2)) > epsilon:

r = £f(t, beta) - y # les résidus
J = np.array([df(t, beta) for df in gradf]).T # matr. J
delta = gauss.gauss(J.T @ J, - r @ J) # sol. du systéme

beta += delta

chi2 = np.sum(r**2) # chi~2 aprés minimisation
return beta, chi2
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Algorithme de Gauss-Newton : Exemple d'application
Par exemple, pour la fonction sinusoidale ci-dessus :

f(t; B) = Br sin (Bat + B3)

et donc
aaﬂfl( t; ) = sin (Bat + Bs) a%;(t;g) = f31 cos (Bt + B3) t,
6f -

a5 (t;8) = B1 cos (B2t + B3) .

# la fonction modeéle
def f(t, beta):
return beta[0] * np.sin(betal[l1] * t + betal2])

# ses dérivées partielles par rapport aux paramétres

df = [lambda t, beta: np.sin(betal[1]l*t + betal[2]),
lambda t, beta: beta[0]l*np.cos(betal[l]l*t + betal[2])*t,
lambda t, beta: beta[O]l*np.cos(betal[1]l*t + betal[2])]

data = np.loadtxt(’noisysin.txt’) # les données
beta, chi2 = gauss_newton(datal:, 0], datal:, 1], £, df,
np.array([2., 1., 0.]1))

V.
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Algorithme de Gauss-Newton : Exemple d'application

HAP608P, U Montpellier

A = 2.06, omega = 1.29, phi = 0.71, chi2 = 4.09

—— iteration 1
—— iteration 3
—— iteration 5
— iteration 7
—— iteration 9
— final result

0 2 4 6 8 10
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Algorithme de Gauss-Newton : Exemple d'application

f(t; A,w, ¢) = A sin (wit + ¢)

A =214, omega = 1.30, phi = 0.68, chi2 = 2.89
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Régression non linéaire : Algorithme de Levenberg-Marquardt

Faiblesse de la méthode de Gauss-Newton : si on commence avec des valeurs de départ
pour 3 trop loin du minimum, alors I'itération ne le trouvera pas.

Ce probléeme est amélioré avec une modification de I'algorithme menant a la méthode de
Levenberg-Marquardt.

Gauss-Newton :
ﬂnouveau = Bancien + 6, JTJ6 = 77::]

Levenberg-Marquardt :
gnouveau = gancien + g, (JTJ-F)\]I) 5: —rJ
ol A > 0 est un parametre dit d’amortissement, a adapter a chaque itération.

@ Si A — 0, la méthode s'approche a celle de Gauss-Newton.

@ Pour des grands A, on s'approche a la méthode du gradient : la variation § suit la
direction de la plus forte pente —7.J oc —Vx 2.
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Régression non linéaire : Algorithme de Levenberg-Marquardt

Algorithme :
o Choisir une assez petite valeur initiale de A (disons 10™%).

o Faire tourner I'algorithme modifié de Gauss-Newton en remplagant
JUT — JTJ+ AL

A chaque itération, calculer X2-

o Si x2 a grandi par rapport a I'itération précédente, retourner a I'ancien ,5 et refaire
avec A < 10\,

o Si x2 a diminué, garder le nouveau ,E et continuer avec A <+ \/10.

o S'arréter deés que x? ne diminue quasiment plus entre deux itérations (p.ex. diminue
par moins que ~ 1072).
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Régression non linéaire : Algorithme de Levenberg-Marquardt

Propriétés de la méthode de Levenberg-Marquardt :

o Par rapport a Gauss-Newton, convergence légerement moins rapide mais plus stable.
@ Beaucoup de variations et d'optimisations existent, par exemple :
o d’autres préscriptions pour adapter le paramétre d’amortissement A

o utiliser la combinaison JT.J + X\ diag (JTJ) au lieu de JT.J + A1, otr diag (JTJ) a les
mémes valeurs que JTJ sur la diagonale et est 0 ailleurs
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Equations différentielles ordinaires

HAP608P, U Montpellier Programmation pour la physique



Dans ce chapitre

Algorithmes

o Méthode d’Euler

o Méthode de Runge-Kutta classique
Généralités

@ Application aux équations de mouvement des systemes en mécanique classique
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Equations différentielles ordinaires

Une équation différentielle ordinaire du premier ordre est une équation
@ dont l'inconnue est une fonction z(t) d'un seul paramétre ¢ (“ordinaire”)
e qui implique la dérivée de cette fonction inconnue, @(t) = 9% (“différentielle”)
@ mais qui n'implique pas les dérivées d'ordre supérieur (“premier ordre”).
On s'intéressera ici aux problemes de Cauchy (ou “problémes aux valeurs initiales”) ol

on donne une EDO et une condition initiale z(0) = xo.

Théoreme de Cauchy-Lipschitz : On donne 'EDO

avec f une fonction suffisamment réguliere (par exemple, dérivable par rapport a son
premier argument). Alors, pour tout zo € R, il existe un voisinage U de t = 0 et une
fonction unique x sur U qui vérifie 'EDO ainsi que la condition initiale (0) = xo.
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Equations différentielles ordinaires

Notre objectif sera de trouver une approximation numérique de la fonction inconnue z(t)
= un tableau de valeurs de fonction approximatives z(t1), z(t2), ..., z(tn).

Ces valeur seront successivement calculées a partir de la premiere valeur zo a t = 0, qui
est donnée par la condition initiale.

valeurs calculés numériquement

x(1)
donné
par
condition
initiale courbe de la
solution exacte
| | | | | | | | |
[ [ [ [ [ [ [ [ [
=0 f t 1y ty ts te t Iy
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Equations différentielles ordinaires

Motivation physique importante : Les équations de mouvement

—

F=mad

en mécanique peuvent s'écrire comme un systéme d'EDO du premier ordre. Les fonctions
inconnues sont les positions et les vitesses (ou plus généralement les coordonnées
généralisées et leurs moments conjugués).

Avec les positions et vitesses donnés a t = 0, on pourra les trouver pour tout ¢
numériquement.

A
.

-6

N

A
/

- —€
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Méthode d'Euler

Pour I'EDO (t) = f(x(t),t) avec la condition initiale 2(0) = xo, on cherche la solution
sur 'intervalle [0, T]. Notre objectif sera alors de créer un tableau de N valeurs de
fonction z1 = z(h), z2 = x(2h), x5 = ©(3h),...,zny = ©(Nh) avec Nh =T.

X, x(1)
X3
X >
4
N t
Xo
\‘XN
t=0 t=h t=2h }T{ t=Nh=T

Méthode d’Euler : Développement limité pour h suffisamment petit,

1., . .9 1.
w(h) = x(0) + &(0) b+ S 2(0) b7+ 2 (0) 17 4
& J.
On néglige les termes O(h?) et supérieurs; on substitue I'EDO £(0) = f(z(0),0) et la
condition initiale z(0) = zo :

1 = xo + hf(xo,O) .
De méme : Une fois x,, connu, on obtient x,+1 par développement limité et substitution,

Tpt1l = Tn + En h = Tn + h f(Tn,nh).
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Méthode d'Euler

On obtient ainsi successivement les z1, z2, z3,...2ny = z(T) :

Tnt+1 = Tn + h f(zn,nh) |

# Résoudre 1’EDO dx/dt = f(x(t), t) avec la méthode d’Euler
#
# Arguments:
# f = fonction & deux arguments = membre de droite de 1’EDO
# x0 = x(0) condition initiale
# h = pas d’incrément en t
# N = nombre de points a calculer
#
# Renvoie une liste de N+1 valeurs [x(0),...,x(Nh)]
def euler(f, x0, h, N):
x = [x0] # une liste qui au début contient seulement xO0
xn = x0

for n in range(N):

xn += h * f(xn, hx*n)

x += [xn] # ajouter xn & la liste des x
return x
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Méthode d'Euler : Un simple exemple
Pour p.ex. f(z(t),t) =x(t)+tetzo=0:
z(t) =x(t) + t, z(0)=0.
Solution analytique :
zt)=¢ —t—1.
Solution numérique sur [0, 1] avec incrément h = 1072 :

from euler import euler # la fct. euler du fichier euler.py

def f(x, t):
return x + t

solution = euler(f, 0.0, 1.E-2, 100)

Affichage :

import matplotlib.pyplot as plt

plt.plot(np.linspace(0, 1, 101), solution)
plt.show ()
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Méthode d'Euler : Un simple exemple

0.6 0.012
= 0.4 0.008
E :
4 0.006
0.2 0.004
0.0 0.000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0. 04 0.6 0. 10
, ,
Solution numérique x(t) Az(t) = |Tnumérique(t) — Tanalytique (t)]

o L'erreur numérique Az at =T =1 est ~ 0.014 et alors du méme ordre que
h = 0.01. Explication : a chaque pas on néglige des termes O(hQ) dans le
développement limité; il y a N = 1/h pas pour arriver a t = 1.

@ La méthode d'Euler est une méthode du premier ordre : I'erreur numérique globale
est de |'ordre h.

@ Pour améliorer la précision numérique par un facteur 2, il faudrait calculer ~ 2x plus
de points.
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Exemple physique

On regarde un objet qui se déplace dans un milieu fluide et qui est ralenti par une force
de trainée dépendant de la vitesse, F'(v),

F(v) = fiv+ fa0?, fi = ctes.

L'équation de mouvement est alors F' = ma = mo = f1 v + f2 v, ou

f2

a=——, 3= - positives (trainée opposée au mouvement).
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Exemple physique

o Petites vitesses, écoulement laminaire : v = —a v (loi de Stokes) avec solution
v(t) = voe @t
o Grandes vitesses, écoulement turbulent : trainée  v2, ¥ = —Bv? donc
— vo
u(t) = T

o Cas général : exemple d'une équation différentielle de Bernoulli,

v(t) =

Qvo
e“t(a+ Bvo) — Buo

Calculons une solution numérique pour comparer avec la solution exacte.
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Exemple physique

# Constantes physiques:

alpha = 1.
beta = .5
vOo = 2.
Constantes numériques:

= B # intervalle de temps
=T / N # pas d’incrément

def f(v, t):
return -alpha * v - beta * v*x2

from euler import euler
solution = euler(f, vO, h, N)

import numpy as np
import matplotlib.pyplot as plt

plt.plot(np.linspace(0, T, N+1), solution)

plt.show ()

#
T
N = 1000 # nombre de pas & calculer
h

v
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Exemple physique

Solution numérique pour a = 1, 8 = 2, vo = 3 calculée avec N = 1000 points :

05

0.0+

solution numérique
approximation de grande vitesse

approx. de petite vitesse a partir de t=1
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Exemple physique

Différence entre la solution numérique pour a =1, =2, vo = 3 avec N = 1000 points

et la solution exacte v(t) = m

Erreur absolue Erreur relative
0.000

— 004
oo =
=

= 000 o0
= =
| oms s

= | o002
s g

S

0.00

0 1 2 3 4 6 7 8 0 1 2 3 4 5 G T 8
t t
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Systemes d'EDO

Un systeme de n équations différentielles du premier ordre avec n fonctions inconnues :

:E(t) = fz(l'(t), y(t)7 Z(t)v ) t)
y(t) = fy(x(t)7 y(t)v Z(t)a [ERE) t)
£(t) = fo(z(t), y(@), 2(t),..., 1)

Il faut n conditions initiales £(0) = o, y(0) = yo, 2(0) = zo, ... pour un probléme de
Cauchy bien posé.

Pour le résoudre, on se sert de la méme méthode qu'avant, en regroupant les n fonctions
inconnues z, y, z,... et les n fonctions des membres de droite f;, fy, fz,... dans des
fonctions vectorielles @ et f :

—

i(t) = flit), t)

Aprés développement limité et substitution :

—

@t + h) = a(t) + h f(@(t), t) + O(h?)

Méthode d’'Euler n-dimensionnelle.
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EDO du second ordre

Application importante : équations du second ordre qui peuvent toujours se transformer
en deux équations du premier ordre. Par exemple :

.1 .
= RF(:E, z, t)
Introduire une fonction inconnue auxiliaire v(t) par
V=1
On obtient un systéeme de deux EDO du premier ordre :
T =
b= L P, v, )
= — Z, U,
m

Plus généralement : en d dimensions,
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Exemple

Une bille de masse m se déplace sans friction sur I'intérieur d'un étonnoir conique, dont
la surface est décrite, en coordonnées cartésiennes, par

z* + 9 = tan®(a) 2°

avec 2a. = I'angle d'ouverture du cone. La gravité agit en direction négative des z. On
souhaite résoudre les équations de mouvement.

z
Lo
X

On utilise des coordonnées cylindriques (r, ¢, z). Avec la vitesse radiale v, = 7 et le
moment cinétique £ = mr2¢ (conservé ici) on obtient

=
. Psin?a 1 .
Ur = ———— —gsinacosa
m r
(;5— l
mr?
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Exemple

Importer la bibliotheque numpy, initialiser les constantes :

import numpy as np

# Constantes physiques:

g = 9.81 # accélération gravitationnelle en m/s”2
alpha = np.pi/4 # 1/2 * angle d’ouverture

m = 1.E-3 # masse de la bille en kg

# Constantes numériques:

h = 1.E-4 # pas d’incrément
N = 50000 # nombre de pas a calculer

# Conditions initiales:

r0 = .1 # rayon

vo = .2 # vitesse radiale

phi0 = 0.0 # angle

omegaO = 4. # vitesse angulaire

# Constantes dépendantes:

L =m * rOx*x2 *x omegaO # moment cinétique
sa, ca = np.sin(alpha), np.cos(alpha)
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Exemple
Résoudre les équations de mouvement par la méthode d'Euler :

def euler(f, u0, h, N):
u = np.empty([N+1, 3]) # variables dynamiques
ul[0] = uo # ul[i]l = ligne i du tableau u
for n in range(N):
uln+1] = uln]l + b * £(ulnl)
return u

# La fonction vectorielle des membres de droite des e.d.m.

# u = un vecteur & 3 composantes (r, v et phi au temps t)
def f(u):

r, v, phi = u

fr = v

fv = L*x2 x sax*2 / (m**2 * r*xx3) - g * sa * ca

fphi = L / (m * T*%*2)
return np.array([fr, fv, fphil)

u0 = np.array([r0, vO, phiO])
solution = euler(f, u0, h, N)

v,
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Exemple

Trajectoire pendant 5 s r(t)

Visiblement I'amplitude de la solution numérique pour r est croissante (voir fléche)
malgré la conservation d’énergie : artéfact numérique. Pour I'éviter on peut soit réduire h
et augmenter N soit utiliser une méthode numérique plus puissante.
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Méthode de Runge-Kutta classique
Probléme : Résoudre le probléeme de Cauchy z = f(z(¢),t), x(0)==xo¢.

Euler : Etant donné x(t), pour obtenir z(t + h) : développement limité autour de z(t),
ne retenir que le premier terme,

z(t 4 h) = z(t) + hi(t) + O(h®) = z(t) + h f(x(t), t) + O(h?).

Runge-Kutta : Etant donné z(t), pour obtenir z(t + h) : combinaisons linéaires de
plusieurs développements limités autour des valeurs intermédiaires = (t + 7;) avec
0 < 7 < h. Pour p;, &, 7 bien choisis, I'erreur local devient (’)(hN) avec N > 1:

a(t+h)=z(t)+hY piki+OMLY), ki=flr+& t+m), 0<p <Ll

i=1

Variante la plus importante : Méthode de R-K du 4éme ordre, "RK4", “RK classique”

1 1 1 1
2(t+h) =z(t) +h (gkl + gha + ks + 6k4> +O(h%)

ki = f(z(t), 1), ko= f <:c(t)-i—gkl7 t+g) ,
’“Ff(w(tHSk% t+%) ; ko= [f(x(t)+hks, t+h).
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Méthode de Runge-Kutta classique
@ La méthode RK4 est beaucoup plus précise que celle d'Euler.

Elle nécessite plus d'évaluations de la fonction £ (4 par pas — une seule par pas
pour Euler), mais en pratique cela est plus que compensée par le fait qu'il faut
beaucoup moins de pas pour atteindre la méme précision.

Elle est presque aussi facile a implémenter que la méthode d’Euler (4 lignes de plus).
o Elle aussi peut étre appliquée aux systemes de plusieurs EDO.

Exemple : Pour I'exemple de la bille dans I'étonnoir, remplacer la fonction euler par une
fonction rk4 :

def rk4(f, u0, h, N):
u = np.empty([N+1, 3]) # variables dynamiques
ul0] = u0 # ul[i] = ligne i du tableau u
for n in range(N):
k1 = f(ulnl)
k2 = f(uln] + h/2 * k1)
k3 = f(uln] + h/2 * k2)
k4 = f(uln] + h * k3)
uln+1] = uln] + h * (k1/6 + k2/3 + k3/3 + k4/6)
return u

v,
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Méthode de Runge-Kutta classique

Plus de croissance artificielle visible de I'amplitude grace a une meilleure précision de
I"algorithme.
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Précision numérique, Euler vs. RK4

o Avec la méthode d'Euler on néglige des termes O(h?) a chaque pas. Apres
N = O(1/h) pas, 'erreur accumulée est alors O(h).

@ Redoubler le nombre de pas = I'erreur est réduite par la moitié

o Avec la méthode RK4 les termes négligés sont O(h®), I'erreur accumulée est O(h?)
(“methode du 4&me ordre”)

o Redoubler le nombre de pas = I'erreur est réduite par un facteur 2* = 16.

0.0075

01004 —— N = 10000
—— N =20000
—— N = 40000

0.075 0.0050

0.050 0.0025

0.025 0.0000

Ar(t)
o

0.000 0.0025

0.025 —0.0050
—0.0075

—0.0100

Erreur en fonction de N : Euler RK4
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Résumé : EDO, problemes de Cauchy

Pour numériquement résoudre un probléme un probléeme aux valeurs initiales en
mécanique :

@ Choisir un systéme de coordonnées (en prenant en compte la symétrie du systeme,
les contraintes éventuelles. . .)

Trouver les équations de mouvement, par exemple avec F' = ma.

@ Les transformer en systeme d'équations du premier ordre.

@ Résoudre les e.d.m. avec IaMméthode RK4 (plus puissante).

Résultat : un tableau de coordonnées et vitesses/quantités de mouvement a
différents ¢.
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