
Modelling and Simulation in Physics

HAP708P, Faculté des Sciences de Montpellier
Felix Brümmer (felix.bruemmer@umontpellier.fr)

HAP708P, U Montpellier Modelling and Simulation in Physics 1 / 233

1 Introduction

2 Numerical error, stability, algorithmic complexity

3 Numerical integrals and derivatives

4 Ordinary di�erential equations

5 Partial di�erential equations

6 Monte-Carlo methods

HAP708P, U Montpellier Modelling and Simulation in Physics 2 / 233

Introduction

HAP708P, U Montpellier Modelling and Simulation in Physics 3 / 233

Computational physics

A common situation in physics: The equations describing a physical system are known
but cannot be solved analytically.

Exact solutions only exist for a few exceptional problems
(highly symmetric systems, few degrees of freedom, no dissipation. . .)

Controlled approximations sometimes possible for systems su�ciently close to an
exactly solvable one

Generic systems typically require numerical methods!

HAP708P, U Montpellier Modelling and Simulation in Physics 4 / 233

Computational physics

Example: celestial mechanics

Kepler problem: two point masses, potential V ∼ 1
r
:

exactly solvable (trajectories = conic sections).

Solar system: n-body problem (n > 2), but gravitational forces between planets
small compared to gravitational �eld of the sun
→ can obtain analytic results from perturbation theory

Generic n-body problem (n > 2), all masses of the same order
→ must solve equations of motion numerically

HAP708P, U Montpellier Modelling and Simulation in Physics 5 / 233

Computational physics

Example: quantum chemistry

Goal: Solve the Schrödinger equation for an entire molecule

One electron, one nucleus → hydrogen-like atom, exact solution in quantum
mechanics

Several electrons → numerical methods (Hartree-Fock, post-HF, DFT. . .)

HAP708P, U Montpellier Modelling and Simulation in Physics 6 / 233

Computational physics

Example: elementary particle physics

Elementary particles (excitations of quantum �elds) without interactions:
theory exactly solvable

Particles with weak interactions (quantum electrodynamics. . .):
perturbation theory

Particles charged under the strong nuclear force at low energies
→ numerical methods: lattice �eld theory

HAP708P, U Montpellier Modelling and Simulation in Physics 7 / 233

Computational physics: Some 21st century examples

Cosmic structure formation → Springel et al. 2005

Simulation of the dark matter distribution in the universe, starting from primordial
density �uctuations: 1010 �particles� interacting via Newtonian gravity, computing time
= 1 month on a supercomputer

HAP708P, U Montpellier Modelling and Simulation in Physics 8 / 233

Computational physics: Some 21st century examples

Computational general relativity → Ossokine/Buonanno/Dietrich/Haas, SXS project 2017

bh.mp4

Gravity wave emission from two colliding black holes, event GW170104 observed in 2017
by the LIGO experiment

HAP708P, U Montpellier Modelling and Simulation in Physics 9 / 233

Computational physics: Some 21st century examples

Lattice quantum �eld theory → Borsanyi et al. 2014

0

2

4

6

8

10

Δ
M

 [M
eV

]

ΔN

ΔΣ

ΔΞ

ΔD

ΔCG

ΔΞcc

experiment
QCD+QED
prediction

BMW 2014 HCH

First ab-initio calculation of the proton-neutron mass di�erence ∆N (60 TB of
simulation data)

HAP708P, U Montpellier Modelling and Simulation in Physics 10 / 233

Computational physics: Some 21st century examples

Heavy ion collisions → Models and Data Analysis Initiative, https://madai-public.cs.unc.edu/

himovie.mov

Simulation of two Au ions colliding at an energy of 200 GeV at the Relativistic Heavy Ion
Collider RHIC

HAP708P, U Montpellier Modelling and Simulation in Physics 11 / 233

Overview of this course

Contents: Algorithms for computational physics

Numerical error and algorithmic complexity

Numerical integration and di�erentiation

Ordinary di�erential equations

Partial di�erential equations (�nite-di�erence methods)

Monte-Carlo methods

Requirements:

Knowledge of physics and mathematics at the Physics Bachelor's level (�Licence de
Physique�)

Good programming skills

Previous experience with Python, even if Python is not your �native programming
language� → Hervé Wozniak's lectures and tutorials

Up to you to revise these subjects independently where necessary

HAP708P, U Montpellier Modelling and Simulation in Physics 12 / 233

Overview of this course

Course materials:

These slides, available on Moodle

Other lecture notes, e.g. by A. Palacios@UM (this course until 2015; in French)

Pedagogical textbook: �Computational physics� by M. Newman, CreateSpace 2013.

Comprehensive textbook: �Numerical recipes in C++ (3rd ed.)� by W. H. Press,
S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Cambridge Univ. Pr. 2007

Complementary material (the Python 3 language, root-�nding methods, numerical linear
algebra and applications. . .):

Lecture notes for HAP608P �Programmation pour la physique� (L3 level, in French)

To help you with the exercises, and to encourage you to modify and experiment with the
algorithms discussed here:

All example programs on these slides are also available for download on Moodle

HAP708P, U Montpellier Modelling and Simulation in Physics 13 / 233

Computational physics with Python

The Python 3 programming language:

easy to learn, straightforward to read

widespread, many possible areas of application

�batteries included�: comprehensive and versatile standard library

(essentially) an interpreted, not a compiled language ⇒ programs are high-level,
easily portable

supports various programming paradigms: procedural programming, object-oriented
programming, functional programming. . .

HAP708P, U Montpellier Modelling and Simulation in Physics 14 / 233

Computational physics with Python

Python's main weakness: programs are slow, not easy to optimize
⇒ not ideally suited for high-performance computations

For a research project in computational physics with intense demands on computing
resources, one would typically prefer a compiled language (C++, FORTRAN. . .)

Here we use Python for its pedagogical qualities. The goal of this course is to understand
how numerical algorithms work. You should then (hopefully) be able to implement them
in any language of your choice if needed.

HAP708P, U Montpellier Modelling and Simulation in Physics 15 / 233

Numerical error, stability, algorithmic complexity

HAP708P, U Montpellier Modelling and Simulation in Physics 16 / 233

In this chapter:

Representing numerical data in Python

Numerical error

Numerical stability

Algorithmic complexity

HAP708P, U Montpellier Modelling and Simulation in Physics 17 / 233

Python's representation of numerical data

A �nite computer cannot possibly provide in�nite computing resources:

Numbers represented with �nite precision
→ rounding error
→ numerical instabilities if errors accumulate

Computing time, memory and bandwith are limited:
→ approximate results, truncation error
→ limits on the maximal size of feasible tasks

HAP708P, U Montpellier Modelling and Simulation in Physics 18 / 233

Python's representation of numerical data

Python provides three basic numerical data types:

integer numbers (int)

real �oating-point numbers (float)

complex �oating-point numbers (complex)

Unlike most other programming languages, there is (theoretically) no limit to the size of
an int in Python: arbitrary-precision arithmetic.
In practice it is of course limited by the machine's memory.

A float is a �xed-precision data type of 8 bytes = 64 bits, as speci�ed in the �double
precision� norm IEEE754.

A complex corresponds to two float, one each for the real and imaginary parts.

HAP708P, U Montpellier Modelling and Simulation in Physics 19 / 233

Double-precision �oating-point numbers

The meaning of the 64 bits of a float:

sign: 1 bit

exponent: 11 bits
mantissa: 52 bits

The exponent E can represent 211 = 2048 di�erent numbers, chosen by convention
to be between −1022 and 1023. The two remaining values have a special meaning.

With the b0 . . . b51 bits of the mantissa and the sign bit s, the numerical value is

(−1)s
(

1 +
52∑
n=1

b52−n2−n
)
· 2E .

Absolute values between 2−1022 ≈ 10−308 and 21024 ≈ 10308 (and 0) with a
precision of 53 log10 2 ≈ 16 decimals.

When the absolute value of a variable becomes greater than 10308: over�ow, it is set
to the special value inf (in�nity).

When it becomes smaller than 10−308: under�ow, it is set to zero.

HAP708P, U Montpellier Modelling and Simulation in Physics 20 / 233

Exercise

Write two versions of a program which calculates the factorial x! of a given number x. In
the �rst version, all numerical data is represented by variables of the type int, and in the
second version, by variables of the type float. What do you obtain when trying to
calculate 200! with both programs? Explain what you observe.

HAP708P, U Montpellier Modelling and Simulation in Physics 21 / 233

Numerical error: Rounding error

Relative precision = 16 digits

Example

In Python:
√

2 = 1.4142135623730951
In reality:

√
2 = 1.4142135623730950488 . . .

Rounding error: 0.0000000000000000512 . . .

3.0 and 2.999999999999999 are �the same number� in double precision!

But Python doesn't know that ⇒ don't test equality of two floats like this:

x = 1.1 + 2.2 # x = 3.3000000000000003

if x == 3.3: # False!

do_something_with(x)

but rather test if they are equal to within the expected precision:

precision = 1.0E-15

if abs(x - 3.3) < precision: # better

do_something_with(x)

HAP708P, U Montpellier Modelling and Simulation in Physics 22 / 233

Numerical error: Information loss

Problem when adding or subtracting numbers of (vastly) di�erent order of
magnitude.

Example: x = 1, y = 1 + 10−14
√

2, therefore 1014(y − x) =
√

2.

In Python:
√

2 = 1.414213562373095 · · ·
x = 1.000000000000000 · · ·
y = 1.000000000000014 · · ·

y − x = 1.4 · · · · · · · · · · · · · · · · · 10−14

Explicitly: the program

x = 1.0

root2 = 2**0.5

y = 1.0 + 1.0E-14 * root2

print(root2)

print (1.0 E14 * (x - y))

will produce the output
1.4142135623730951

1.4210854715202004

⇒ rounding error already in the 3rd decimal!

HAP708P, U Montpellier Modelling and Simulation in Physics 23 / 233

Exercise

Write a program which calculates the solutions of the second-order equation
ax2 + bx+ c = 0 by the standard formula,

x =
−b±

√
∆

2a
, ∆ = b2 − 4ac .

What do you obtain for a = c = 0.001 and b = 1000?
Show that the two solutions can also be written

x =
2c

−b∓
√

∆
.

Modify your program to calculate the solutions also with the second formula, and
run it with a = c = 0.001 and b = 1000. What do you obtain? Explain your results.

HAP708P, U Montpellier Modelling and Simulation in Physics 24 / 233

Numerical error: Truncation error

Any quantity de�ned by a limit may not be represented exactly on the computer.

Example:

e = lim
N→∞

N∑
n=0

1

n!

Impossible to sum in�nitely many terms in practice, need to stop at some N

⇒ truncation error

In reality: e = 2.71828182845904 . . .
With N = 10: e ≈ 2.71828180114638
Truncation error: 0.00000002731266 . . .

HAP708P, U Montpellier Modelling and Simulation in Physics 25 / 233

Numerical error: Absolute and relative error

For any numerical approximation x̃ of some quantity x, we de�ne the absolute error
ε(x, x̃),

ε(x, x̃) = |x− x̃|

and the relative error εr(x, x̃)

εr(x, x̃) =
|x− x̃|
|x| = ε

(
1,
x̃

x

)
.

The exact values of ε, εr are generally unknown (or else there would be no need for
numerical approximations). In practice, one supposes that they are random variables
following a normal (Gaussian) probability distribution.

Denote by σ the standard deviation of ε and by C the standard deviation of εr,

σ = C|x| .

E.g. for the rounding error due to the limits of double-precision �oating point arithmetic,
C ≈ 10−16.

Error analysis aims to estimate C (or σ) in order to estimate the typical size of εr (or ε).

HAP708P, U Montpellier Modelling and Simulation in Physics 26 / 233

Numerical error: Error propagation

From standard probability theory (just as for experimental uncertainties):

For the sum y = x1 + x2 of two quantities x1 and x2 with uncorrelated uncertainties
σ1 and σ2, one has σ

2
y = σ2

1 + σ2
2 and therefore

σy =
√
σ2

1 + σ2
2 .

For a product y = x1x2, the squared relative uncertainties must be added, hence

Cy =
√
C2

1 + C2
2

General case: Let y = y(x1, . . . xn), then the uncertainty for y is

σy =

√√√√ n∑
i=1

(
∂y

∂xi
σi

)2

HAP708P, U Montpellier Modelling and Simulation in Physics 27 / 233

Numerical stability

An algorithm is called

unstable: small variations in the input data can produce large variations in the
output data
⇒ the numerical error is ampli�ed

stable: small variations in the input data will not lead to large variations in the
output data
⇒ the numerical error remains of the same order or is even diminished

The precise de�nition of stability depends on the algorithm under study.

It is obviously best to use stable methods when possible. But often they come at a price:
they may be more di�cult to implement and/or computationally more expensive.

HAP708P, U Montpellier Modelling and Simulation in Physics 28 / 233

Numerical stability
Most important for algorithms using a feedback loop: if the error is ampli�ed at each
iteration, it may eventually dominate the result.

Example: Numerical evaluation of spherical Bessel functions of the �rst kind (solutions of
the radial free Schrödinger equation in spherical coordinates)

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, jn(x) =

2n− 1

x
jn−1(x)− jn−2(x)

Plotting jn(10) as a function of n (numerical value found recursively, exact value):

HAP708P, U Montpellier Modelling and Simulation in Physics 29 / 233

Numerical stability

Explanations:

The recurrence relation has a second solution (the spherical Bessel functions of the
second kind kn(x)) which grows monotonically as a function of n for n > x

Numerical error ⇒ instead of just jn(x), the computer really calculates some linear
superposition of jn(x) and kn(x)

The kn(x) component is initially small (due to truncation/rounding errors when
computing j0 and j1). But it grows at each iteration.

Finally, for large n, the numerical solution is dominated by the growing kn(x)
component.

Possible solution:

Use the recurrence relation backwards (for decreasing n); normalize the result by j0.
Stable.

HAP708P, U Montpellier Modelling and Simulation in Physics 30 / 233

Analysis of algorithms

Some typical computational problems:

Evaluate a function with n-digit precision

Find the solution of an equation with a precision of 1/n

Solve a system of n equations at �xed precision

Diagonalize an n× n matrix

Sort a list of n elements

Find some given element within a list of n elements

. . .

Time complexity as a measure of an algorithm's e�ciency:
How does the run-time T (n) depend on the �characteristic problem size� n?

(Other measures could be: consumption of memory M(n) or network bandwith B(n). . .)

In particular: study the asymptotic behaviour of T (n) for large n.

HAP708P, U Montpellier Modelling and Simulation in Physics 31 / 233

Analysis of algorithms: Asymptotic growth, Landau symbols

Let f : R+ → R+ be a monotonically increasing reference function.

We say of some other function g : R+ → R+ that

g ∈ O(f)
⇔ g grows at most as fast as f asymptotically
⇔ there exists a constant C > 0 s.t. for su�ciently large x, g(x) ≤ C f(x).

g ∈ Ω(f)
⇔ g grows at least as fast as f asymptotically
⇔ ∃ c > 0, x0 > 0 ∀x > x0 : c f(x) ≤ g(x)

g ∈ Θ(f)
⇔ g grows as fast as f asymptotically
⇔ g ∈ O(f) and g ∈ Ω(f)
⇔ c f(x) ≤ g(x) ≤ C f(x) for suitable constants c and C and su�ciently large x

HAP708P, U Montpellier Modelling and Simulation in Physics 32 / 233

Analysis of algorithms: Asymptotic growth, Landau symbols

Example: Consider f(x) = x3.

The function g(x) = 2x3 − 3x2 + 1 is in Θ(x3)
(for large x, can neglect −3 x2 and 1 w.r.t. 2 x3; 2 x3 ∈ Θ(x3) since constant factors don't matter)

HAP708P, U Montpellier Modelling and Simulation in Physics 33 / 233

Asymptotic growth, Landau symbols

Exercise

Show that for any positive constants a, b, c, one has

Θ(log(xa)) = Θ(logb x) = Θ(log(cx)) = Θ(log(x)) .

HAP708P, U Montpellier Modelling and Simulation in Physics 34 / 233

Analysis of algorithms

Goal of the analysis of algorithms: Characterize the asymptotic growth of the function
T (n) = run-time as a function of problem size; how does T (n) behave at large n?

⇒ count the number of elementary steps necessary to carry out the algorithm

Elementary step = assignment, arithmetic operation on a float, comparison,
branching. . . any simple instruction that does not depend on n

Remark 1: In computer science, it is common to use O instead of Θ even though, strictly
speaking, their meaning is di�erent. E.g. if T (n) ∈ Θ(n logn), on frequently �nds the
statement that �T (n) ∈ O(n logn)� (or even, by abuse of notation,
�T (n) = O(n logn)�). Correct (since Θ ⊂ O) but imprecise.

Remark 2: For our discussion, we de�ned O in the limit where the argument of a
function tends to in�nity. By contrast, in calculus one often de�nes O in the limit where
it tends to zero (see next chapter on integrals and derivatives).

HAP708P, U Montpellier Modelling and Simulation in Physics 35 / 233

Analysis of algorithms, example: Linear search

Input data: a list L of length n which contains the element x

Desired output: the position of x in L

Algorithm: iterate over L, compare each element with x, terminate iteration upon
equality

def linear_search(L, x):

use enumerate(L) to obtain a sequence of pairs

(0, L[0]), (1, L[1]), (2, L[2]), etc.

for index , item in enumerate(L):

if item == x:

return index

Analysis: Count the number of elementary steps for some given n.

Best case: First element = x, hence T (n) = const., hence T (n) ∈ Θ(1).

Worst case: Last element = x, so need to iterate over the entire list to �nd x, hence
T (n) ∝ n, hence T (n) ∈ Θ(n).

Average case: Need to iterate over half of the list to �nd x, T (n) ∝ n
2
, hence still

T (n) ∈ Θ(n).

HAP708P, U Montpellier Modelling and Simulation in Physics 36 / 233

Analysis of algorithms, second example: Binary search

Input data: a sorted list L of length n which contains the element x

Desired output: the position of x in L

Algorithm: compare the element m at the center of L with x. If m > x, repeat with
the half of the list on the left of m. Otherwise, repeat with the half on the right of m.
Terminate when the remaining sublist contains only a single element.

def binary_search(L, x):

left , right = 0, len(L) # L[left:right] contains x

while right - left > 1: # does it contain >1 element?

mid = (right + left) // 2 # index of the center

if L[mid] > x: # is x in the left half ?

right = mid # -> repeat with L[left:mid]

else: # otherwise it is in the right half

left = mid # -> repeat with L[mid:right]

return left

Analysis:

log2 n loop iterations ⇒ T (n) ∝ log2 n, hence T (n) ∈ Θ(log(n)).

HAP708P, U Montpellier Modelling and Simulation in Physics 37 / 233

Analysis of algorithms

Exercise

The following program tests if n is prime. Analyse its run-time complexity: what is the
worst-case growth of T (n)?

def is_prime(n):

k = 2

while k**2 <= n:

if n % k == 0:

return False

k += 1

return True

Exercise

Recall that the matrix product between two n× n matrices A and B is

(A ·B)ij =
n∑
k=1

AikBkj .

Analyse the run-time complexity of a routine which calculates the matrix product with
this formula as a function of n.

HAP708P, U Montpellier Modelling and Simulation in Physics 38 / 233

Analysis of algorithms

Hypothetical example: Suppose that some algorithm needs a run-time of T (10) = 10 µs
for some input data of size n = 10. Then, for n > 10, the run-time will be approximately:

n = 10 n = 20 n = 30 n = 100 n = 1000 n = 10 000

Θ(1) 10 µs 10 µs 10 µs 10 µs 10 µs 10 µs
Θ(logn) 10 µs 13 µs 15 µs 20 µs 30 µs 40 µs
Θ(
√
n) 10 µs 14 µs 17 µs 32 µs 100 µs 320 µs

Θ(n) 10 µs 20 µs 30 µs 100 µs 1 ms 10 ms
Θ(n2) 10 µs 40 µs 90 µs 1 ms 100 ms 10 s
Θ(n3) 10 µs 80 µs 270 µs 10 ms 10 s 3 h
Θ(en) 10 µs 220 ms 1.5 h 1026 yrs∗ 10417 yrs∗ 104326 yrs∗

(∗ age of the universe ≈ 1010 years)

Useful orders of magnitude: Python on an ordinary PC can do ∼ 109 elementary steps in
a �reasonable� time (∼ seconds).

Time needed for 106 elementary steps = �instantaneous� (� 1s)

Time needed for 1012 elementary steps = �in�nite� (& hours)

HAP708P, U Montpellier Modelling and Simulation in Physics 39 / 233

Numerical integrals and derivatives

HAP708P, U Montpellier Modelling and Simulation in Physics 40 / 233

In this chapter

The trapezoidal method

Simpson's method and other Newton-Cotes methods

Adaptive methods

Gaussian quadrature

Numerical �rst and second derivatives

HAP708P, U Montpellier Modelling and Simulation in Physics 41 / 233

Numerical integration

Goal: Compute
∫ b
a
f(x) dx for some given function f (which cannot be analytically

integrated)

Possible complications (→ later):

Improper integrals (f not de�ned at a or b, or a = −∞ or b =∞)

Singularities or discontinuities within the domain of integration

Multi-dimensional integrals → Monte-Carlo methods, chapter 6

De�nition of the integral by Riemann sum (here: �right rule�)∫ b

a

f(x) dx = lim
N→∞

N∑
k=1

h fk , h =
b− a
N

, fk = f(xk) , xk = a+ kh

Approximate the area between f(x) and the x-axis by N rectangles of area h fk.

x x x x xx0 1 2 3 4 5 6

f(x)

xa = x

HAP708P, U Montpellier Modelling and Simulation in Physics 42 / 233

Newton-Cotes methods: Trapezoid method

Better: instead of rectangles, use trapezoids

x

f(x)

x x x x xx0 1 2 3 4 5 6a = x

Trapezoidal rule: ∫ xk+1

xk

f(x) dx ≈ h

2
(fk+1 + fk)

and therefore∫ b

a

f(x) dx =

N−1∑
k=0

∫ xk+1

xk

f(x) dx ≈ h

(
f(a)

2
+
f(b)

2
+

N−1∑
k=1

fk

)
.

HAP708P, U Montpellier Modelling and Simulation in Physics 43 / 233

Newton-Cotes methods: Trapezoid method

Simple function for calculating integrals with the trapezoid method:

def int_trapez(f, a, b, N):

h = (b - a) / N

result = f(a)/2 + f(b)/2 # boundary points

for k in range(1, N): # interior points

result += f(a + k*h)

result *= h

return result

Test:

from math import sin , pi

print("I =", int_trapez(sin , 0, pi, 10000))

HAP708P, U Montpellier Modelling and Simulation in Physics 44 / 233

Error estimate for the trapezoidal rule
Taylor series expansion of f(x) around xk (notation reminder: fk ≡ f(xk))

f(x) = fk + (x− xk)f ′k +
1

2
(x− xk)2f ′′k + . . .

Integrate between xk and xk+1:∫ xk+1

xk

f(x) dx

= fk

∫ xk+1

xk

dx+ f ′k

∫ xk+1

xk

(x− xk) dx+
1

2
f ′′k

∫ xk+1

xk

(x− xk)2 dx+ . . .

= h fk +
1

2
h2 f ′k +

1

6
h3 f ′′k +O(h4)

Similarly, for an expansion of f(x) around xk+1,∫ xk+1

xk

f(x) dx = h fk+1 −
1

2
h2f ′k+1 +

1

6
h3 f ′′k+1 +O(h4) .

Adding and dividing by 2:∫ xk+1

xk

f(x) dx =
1

2
h (fk + fk+1) +

1

4
h2 (f ′k − f ′k+1

)
+

1

12
h3 (f ′′k + f ′′k+1

)
+O(h4)

HAP708P, U Montpellier Modelling and Simulation in Physics 45 / 233

Error estimate for the trapezoidal rule
Taking the sum over all the slices:∫ b

a

f(x) dx =

N−1∑
k=0

∫ xk+1

xk

f(x) dx

=
1

2
h

N−1∑
k=0

(fk + fk+1)︸ ︷︷ ︸
trapezoidal rule

+
1

4
h2 (f ′(a)− f ′(b)

)
+

1

12
h3

N−1∑
k=0

(
f ′′k + f ′′k+1

)
+O(Nh4)

All terms ∝ h2 cancel out, except 1
4
h2(f ′(a)− f ′(b)).

One can show: Terms ∝ h4 also cancel ⇒ the O(Nh4) terms are in fact O(h4).

The ∝ h3 terms correspond to the trapezoidal rule for the integrand h2

6
f ′′(x):

1

12
h3

N−1∑
k=0

(
f ′′k + f ′′k+1

)
=

∫ b

a

(
h2

6
f ′′(x)

)
dx+O(h4) =

h2

6

(
f ′(b)− f ′(a)

)
+O(h4) .

Summary:∫ b

a

f(x) dx =
1

2
h

N−1∑
k=0

(fk + fk+1)︸ ︷︷ ︸
trapezoidal rule

+
1

12
h2 (f ′(a)− f ′(b)

)
︸ ︷︷ ︸
leading-order error term

+O(h4) .

HAP708P, U Montpellier Modelling and Simulation in Physics 46 / 233

Error estimate for the trapezoidal rule
Euler-MacLaurin formula for truncation error:

ε ≈ 1

12
h2(f ′(a)− f ′(b)) .

Order-h method: The result is exact up to terms of order h2.

Comparing with rounding error: With a relative precision of C ∼ 10−16, the errors
are comparable when

1

12
h2(f ′(a)− f ′(b)) ' C

∫ b

a

f(x) dx

or, with h = (b− a)/N ,

N ∼ (b− a)

√
f ′(a)− f ′(b)
12
∫ b
a
f(x) dx

C−1/2 .

If the prefactor is O(1), then it takes N ' 108 subdivisions for the truncation error
to become negligible. For a reasonable number of subdivisions, the truncation error
is dominant.

Analysis: 1/n precision requires at least Θ(
√
n) elementary steps (provided that

evaluating f(x) takes Θ(1) time � the most optimistic case).
HAP708P, U Montpellier Modelling and Simulation in Physics 47 / 233

Error estimate for the trapezoidal rule

More practical way to estimate the error: vary the number of points.

Let

I be the integral's exact value, I =
∫ b
a
f(x) dx

N1 be the number of slices of witdh h1 = (b− a)/N1

I1 be the numerical approximation obtained with the trapezoidal method

ε1 be the numerical error to �rst approximation, I ≈ I1 + ε1

Knowing that the trapezoidal method is of order h:

I = I1 + ε1 +O(h4
1) = I1 + c h2

1 +O(h4
1) , c = const.

Doubling the number of points, N2 = 2N1 and h2 = h1/2, one �nds similarly

I = I2 + c h2
2 + . . .

and therefore
I2 − I1 = c (h2

1 − h2
2) ≈ 3c h2

2

⇒ ε2 ≈
1

3
(I2 − I1)

HAP708P, U Montpellier Modelling and Simulation in Physics 48 / 233

Newton-Cotes methods: Simpson's method

x

f(x)

x x x x xx1 2 3 4 5 6x x x x xx0 1 2 3 4 5 60a = x

Even better: approximate the integrand on every slice neither by a constant (Riemann
sum) nor by a straight line (trapezoidal rule) but by a parabola: Simpson's method.

HAP708P, U Montpellier Modelling and Simulation in Physics 49 / 233

Newton-Cotes methods: Simpson's method
Quadratic function de�ned on two consecutive slices, interpolating between the points
(xk−1, fk−1), (xk, fk), and (xk+1, fk+1):

αx2
k−1 + β xk−1 + γ = fk−1

αx2
k + β xk + γ = fk

αx2
k+1 + β xk+1 + γ = fk+1

 3 linear equations, 3 unknowns α, β, γ

For simplicity: xk−1 = −h, xk = 0, xk+1 = h:

αh2 − β h+ γ =f(−h)

γ =f(0)

αh2 + β h+ γ =f(h)

Solution:

γ = f(0) , β =
f(h)− f(−h)

2h
, α =

f(h) + f(−h)− 2 f(0)

2h2
.

The polynomial αx2 + βx+ γ is easily integrated analytically:∫ h

−h
αx2 + βx+ γ dx =

h

3
(f(−h) + 4 f(0) + f(h)) .

HAP708P, U Montpellier Modelling and Simulation in Physics 50 / 233

Newton-Cotes methods: Simpson's method

x

f(x)

x x x x xx1 2 3 4 5 6x x x x xx0 1 2 3 4 5 60a = x

We have found: ∫ xk+1

xk−1

f(x) dx ≈ h

3
(fk−1 + 4 fk + fk+1)

And we have ∫ b

a

f(x) dx =
∑

1≤k≤N−1
k odd

∫ xk+1

xk−1

f(x) dx

⇒
∫ b

a

f(x) dx ≈ h

3

f(a) + f(b) + 4
∑

1≤k≤N−1
k odd

fk + 2
∑

2≤k≤N−2
k even

fk

Simpson's rule.

HAP708P, U Montpellier Modelling and Simulation in Physics 51 / 233

Error estimate for Simpson's method

Similar calculation as for trapezoidal method: Euler-MacLaurin formula for Simpson's
method,

ε ≈ 1

90
h4 (f ′′′(a)− f ′′′(b)

)
Order-h3 method: Result is exact up to terms of order h4.

The truncation error becomes comparable to the double-precision rounding error for
N ' 10 000 points. Further increasing N will not increase the precision.

Converges much more quickly than the trapezoidal method for well-behaved
integrands (bounded derivatives. . .)

Algorithm analysis: for a target precision of 1/n,

1

n

!
= ε ∝ h4 ∝ 1

N4

need to evaluate f at N ∝ n1/4 points ⇒ at least ∝ n1/4 elementary steps
⇒ run-time complexity Θ(n1/4) in the best case.

HAP708P, U Montpellier Modelling and Simulation in Physics 52 / 233

Simpson's method

Exercises

Just as we did for the trapezoidal method (see p. 48), one may estimate the
dominant error term for Simpson's method by doubling the number of points. Show
that one obtains the estimate

ε2 ≈
1

15
(I2 − I1) .

Write a function int_simpson(f, a, b, N) similar to the function int_trapez,
but using Simpson's method.
Compute

I =

∫ π

0

x2 sinx dx

with the trapezoid method and with Simpson's method for N = 10, 100, 1000, 2000.
Compare with the exact result I = π2 − 4. For N = 2000, compare the actual
numerical error with the error estimate given by the above formula (or rather by the
formula of p. 48 for the trapezoid method).
Implement an adaptive version of Simpson's method (similar to the one presented
below for the trapezoid method).

HAP708P, U Montpellier Modelling and Simulation in Physics 53 / 233

Newton-Cotes methods of degree p

Generalization:

p consecutive slices between xk and xk+p de�ne a polynomial of degree p

One may therefore approximate∫ xk+p

xk

f(x) dx ≈
∫ xk+p

xk

(
cpx

p + cp−1x
p−1 + . . .+ c0

)
dx

where the coe�cients ci are determined by the p+ 1 linear equations

cpx
p
k + . . .+ c0 = fk

. . .

cpx
p
k+p + . . .+ c0 = fk+p

The polynomial can be integrated analytically.

Result: Newton-Cotes method of degree p.

HAP708P, U Montpellier Modelling and Simulation in Physics 54 / 233

Newton-Cotes methods of degree p
p = 1: Trapezoid rule,∫ b

a

f(x) dx ≈ h
(

1

2
f(a) + f1 + f2 + f3 + . . .+ fN−1 +

1

2
f(b)

)
.

p = 2: Simpson's rule,∫ b

a

f(x) dx ≈ h
(

1

3
f(a) +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4 + . . .+

4

3
fN−1 +

1

3
f(b)

)
.

p = 3: Simpson's 3/8 rule,∫ b

a

f(x) dx ≈ h
(

3

8
f(a) +

9

8
f1 +

9

8
f2 +

3

4
f3 +

9

8
f4 +

9

8
f5 +

3

4
f6 + . . .+

3

8
f(b)

)
.

p = 4: Boole's rule,∫ b

a

f(x) dx ≈ h

(
14

45
f(a) +

64

45
f1 +

8

15
f2 +

64

45
f3 +

28

45
f4

+
64

45
f5 +

8

15
f6 +

64

45
f7 + . . .+

64

45
fN−1 +

14

45
f(b)

)
.

HAP708P, U Montpellier Modelling and Simulation in Physics 55 / 233

Newton-Cotes methods

The p-th degree method gives the exact result if the integrand f is itself a
polynomial of degree ≤ p.
(Even better if p is even: exact method for degrees ≤ p + 1 ← more di�cult to show.)

In practice: Initially the speed of convergence grows with p if f is �well-behaved�,
i.e. if f is well approximated by a polynomial; no discontinuities and/or singularities.
In geneneral, there exists some optimal p beyond which the polynomial
approximation becomes worse (�Runge's phenomenon�).

For discontinuous, rapidly �uctuating or singular integrands: trapezoidal rule may
still be the best choice

HAP708P, U Montpellier Modelling and Simulation in Physics 56 / 233

Adaptive trapezoid method

Back to the trapezoid method; recall the notation of p. 48:

I =

∫ b

a

f(x) dx

= Ii + εi +O(h4
i) computed with Ni slices of width hi =

b− a
Ni

= hi

(
f(a)

2
+
f(b)

2
+

Ni−1∑
k=1

fk

)
+ εi +O(h4

i) ,

Recall also the error estimate: If Ni+1 = 2Ni, then

εi+1 ≈
1

3
(Ii+1 − Ii) .

Adaptive method to obtain a given precision δ:

Compute I1 with some initial choice for N1

Successively double the number of points, Ni+1 = 2Ni, and compute Ii+1.
(One may re-use the points calculated previously → save computing resources.)

Compute εi+1. When |εi+1| < δ, terminate.

HAP708P, U Montpellier Modelling and Simulation in Physics 57 / 233

Adaptive trapezoid method
To re-use the points calculated previously, note that

Ii = hi

(
f(a)

2
+
f(b)

2
+

Ni−1∑
k=1

f(a+ khi)

)

= hi

f(a)

2
+
f(b)

2
+

∑
1≤k≤Ni−1

k odd

f(a+ khi) +
∑

2≤k≤Ni−2
k even

f(a+ khi)

We have

∑
2≤k≤Ni−2
k even

f(a+ k hi) =

Ni/2−1∑
`=1

f(a+ 2`hi) =

Ni−1−1∑
`=1

f(a+ `hi−1)

where we have changed variables, k = 2`, and used that 2hi = hi−1 and Ni/2 = Ni−1.
One obtains a recurrence formula,

Ii =
1

2
hi−1

f(a)

2
+
f(b)

2
+

Ni−1−1∑
`=1

f(a+ `hi−1)

︸ ︷︷ ︸

Ii−1

+hi
∑

1≤k≤Ni−1
k odd

f(a+ khi) .

HAP708P, U Montpellier Modelling and Simulation in Physics 58 / 233

Adaptive trapezoid method

Ii =
1

2
Ii−1 + hi

∑
1≤k≤Ni−1

k odd

f(a+ khi)

Code:

def int_trapez_ad(f, a, b, delta =1.0E-5, N=10):

oldI = 1.0 E308 # "infinity"

h = (b - a) / N

newI = 0.5*f(a) + 0.5*f(b) # compute I_1

for k in range(1, N):

newI += f(a + h*k)

newI *= h # end of computation of I_1

while abs(oldI - newI)/3 > delta: # compute next I_i:

h /= 2 # decrease increment

N *= 2 # increase number of points

oldI = newI # memorize I_(i-1)

newI *= 0.5 # first term = I_(i-1) / 2

for k in range(1, N, 2): # add h f_k terms (k odd)

newI += h * f(a + k*h)

return newI

HAP708P, U Montpellier Modelling and Simulation in Physics 59 / 233

Gaussian quadrature

Recap:

Newton-Cotes methods are based on subdividing the integration interval into N
slices of the same width h.
(The p-th degree method requires that N is a multiple of p.)

Moreover, the p-th degree Newton-Cotes method is exact if the integrand is a
polynomial of degree ≤ p. In this case, N = p slices are su�cient.

The integrand f is evaluated at N + 1 points (nodes).

Gaussian quadrature:

A method with N nodes which is exact for polyomial integrands of even higher
degree, up to ≤ 2N − 1.

It is correspondingly more precise for general integrands (that are well approximated
by polynomials).

Essential idea: instead of evenly spaced nodes, optimize the spacing between them.

HAP708P, U Montpellier Modelling and Simulation in Physics 60 / 233

Gaussian quadrature

General integration rule: ∫ b

a

f(x) dx ≈
N∑
k=0

wkfk

fk = f(xk) with the nodes xk ∈ [a, b], not necessarily evenly spaced, not necessarily
x0 = a or xN = b

{wk} = weights

Example: Trapezoid rule, xk = a+ kh and weights w0 = wN = h
2
, w1≤k≤N−1 = h

Example: Simpson's rule, xk = a+ kh and w0 = wN = h
3
, others wk = 4h

3
or 2h

3

HAP708P, U Montpellier Modelling and Simulation in Physics 61 / 233

Gaussian quadrature
To �nd the weights wk, given a set of N nodes xk (1 ≤ k ≤ N), consider the
interpolating polynomials of degree N − 1:

φ(k)(x) =
∏

m=1...N
m 6=k

x− xm
xk − xm

=

(
x− x1

xk − x1

)
· · ·
(
x− xk−1

xk − xk−1

)
��

���(
x− xk
xk − xk

)(
x− xk+1

xk − xk+1

)
· · ·
(
x− xN
xk − xN

)
The essential property of the φ(k):

φ(k)(xn) = δnk ≡
{

1 , n = k
0 , n 6= k

De�ne

Φ(x) =
N∑
k=1

f(xk)φ(k)(x)

Properties of Φ:

Polynomial of degree ≤ N − 1 (linear combination of polynomials of degree N − 1)

Φ(xm) =

N∑
k=1

f(xk)φ(k)(xm) =
N∑
k=1

f(xk)δkm = f(xm)

Unique with theses two properties, since its N coe�cients are �xed by N constraints
HAP708P, U Montpellier Modelling and Simulation in Physics 62 / 233

Gaussian quadrature

Approximating f(x) ≈ Φ(x) on the domain of integration, we �nd∫ b

a

f(x) dx ≈
∫ b

a

Φ(x) dx =

∫ b

a

N∑
k=1

f(xk)φ(k)(x) dx =

N∑
k=1

f(xk)

∫ b

a

φ(k)(x) dx

and therefore

wk =

∫ b

a

φ(k)(x) dx .

This gives the weights {wk} for a given generic set of nodes {xk}, such that∫ b
a
f(x) dx =

∑
k wkfk holds exactly for polynomial f

Unfortunately, one cannot just compute them by integrating φ(k)(x) analytically
(polynomial � but de�ned by 2N−1 terms! Far too many for N & 30). Must
restrict to special cases where closed-form expressions exist. We will discuss an
important example shortly.

Fortunately, the wk need to be computed only once for a �xed choice of a and b.
Afterwards, one may easily adapt them to integrate any function f(x) on any
interval [a, b].

HAP708P, U Montpellier Modelling and Simulation in Physics 63 / 233

Gaussian quadrature

Adapting the nodes and weights to an arbitrary interval

Suppose we are given a set of nodes {xk} and corresponding weights {wk} on the
reference interval [−1, 1]

To adapt them to any other integration interval [a, b]: Rede�ne the nodes

x′k =
1

2
(b− a)xk︸ ︷︷ ︸

compress/stretch

+
1

2
(b+ a)︸ ︷︷ ︸
shift

(a�ne transformation)

and rescale the weights,

w′k =
1

2
(b− a)wk .

Now we may integrate any function f(x) on any interval [a, b]:∫ b

a

f(x) dx ≈
N∑
k=1

w′kf(x′k) .

HAP708P, U Montpellier Modelling and Simulation in Physics 64 / 233

Gaussian quadrature

How to choose the nodes xk on the reference interval [−1, 1] optimally?
What are the corresponding weights wk?

Optimal choice, giving the exact result if f(x) is a polynomial of degree ≤ 2N − 1:

xk = roots of the Nth Legendre polynomial PN (x)

wk =
2

(1− x2
k)P ′N (xk)2

(Proof for the interested: see following slides.) See also TD 1.3.

Gauss-Legendre quadrature.

Other choices of xk and wk give exact results for

f(x) = W (x)× polynonial

(⇒ optimized results if f is well approximated by such an expression)

where e.g. W (x) = 1√
1−x2

(Gauss-Chebyshev), W (x) = xαe−x (Gauss-Laguerre), W (x) = e−x
2

(Gauss-Hermite). . .

HAP708P, U Montpellier Modelling and Simulation in Physics 65 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, I � Nodes
To show that the nodes xk are the roots of the N -th Legendre polynomial, we need an
important property of the latter which we quote without proof:

Proposition: Let Q be a polynomial of degree < n. Then Q and the n-th Legendre
polynomial Pn are orthogonal on [−1, 1], i.e.∫ 1

−1

Pn(x)Q(x) dx = 0 .

(In fact, the usual de�nition of Pn starts from this property.)

Now let us prove the following
Theorem: Let

f be a polynomial of degree < 2N

{xk | k = 1 . . . N} the roots of PN

φ(k) the corresponding interpolating polynomials, i.e. the unique polynomials of
degree < N which satisfy φ(k)(x`) = δk`, see p. 62

wk =
∫ 1

−1
φ(k)(x) dx (we will prove the explicit formula for wk afterwards)

Then ∫ 1

−1

f(x) dx =

N∑
k=1

wk f(xk) .

HAP708P, U Montpellier Modelling and Simulation in Physics 66 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, I � Nodes
Proof: After polynomial division, f(x) = PN (x)Q(x) +R(x) where Q and R are
polynomials of degree < N . We have∫ 1

−1

f(x) dx =

∫ 1

−1

PN (x)Q(x) dx+

∫ 1

−1

R(x) dx

=

∫ 1

−1

R(x) dx since Q ⊥ PN

=

∫ 1

−1

N∑
k=1

R(xk)φ(k)(x) dx since
∑
k

R(xk)φ(k) is the unique polynomial

of degree < N whose values at xk are R(xk),

so it must be equal to R

=

N∑
k=1

R(xk)

∫ 1

−1

φ(k)(x) dx

=
N∑
k=1

(
PN (xk)︸ ︷︷ ︸

=0

Q(xk) +R(xk)
)
wk

=
N∑
k=1

f(xk)wk .

HAP708P, U Montpellier Modelling and Simulation in Physics 67 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Preliminary remarks on the derivation of the weight formula:

We will use the orthogonality property, as well as the recurrence relations of ex. 1.3

P ′n(x) = − nx

1− x2
Pn(x)+

n

1− x2
Pn−1(x), Pn(x) =

2n− 1

n
xPn−1(x)−n− 1

n
Pn−2(x)

Note that the Legendre polynomials are not normalized via the scalar product of
p. 66 but by the condition Pn(1) = 1. Indeed,∫ 1

−1

P 2
n(x) dx =

2

2n+ 1
.

Finally, we denote by an the leading coe�cient of Pn, i.e. the prefactor of the x
n

term. Thus, if {xm} are the roots of Pn, then

Pn(x) =
n∏

m=1

x− xm
1− xm

=
∏
m

(
1

1− xm

)
︸ ︷︷ ︸

=an

∏
m

(x−xm) = an x
n+ (terms of degree < n)

HAP708P, U Montpellier Modelling and Simulation in Physics 68 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Lemma 1: Using the notation of the theorem of p. 66, we can write the interpolating
polynomials φ(k) as

φ(k)(x) =
PN (x)

x− xk
1

P ′N (xk)
.

Proof:

PN (x) = aN

N∏
m=1

(x−xm) = aN (x−xk)
∏
m 6=k

(x−xm) = aN (x−xk)φ(k)(x)
∏
m 6=k

(xk−xm)

where we have used the de�nition of φ(k), see p. 62. Combining this with the de�nition
of the derivative P ′N (xk),

P ′N (xk) = lim
x→ xk

PN (x)−

=0︷ ︸︸ ︷
PN (xk)

x− xk
= aN φ(k)(xk)︸ ︷︷ ︸

=1

∏
m 6=k

(xk − xm)

and reinserting into the expression for PN (x) above gives the desired formula.

HAP708P, U Montpellier Modelling and Simulation in Physics 69 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

To obtain the weights wk =
∫ 1

−1
φ(k)(x) dx, we still need to calculate

∫ 1

−1

PN (x)
x−xk

dx.

Lemma 2: Any polynomial Q of degree ≤ N satis�es the identity

Q(xk)

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

Q(x)PN (x)

x− xk
dx .

Proof: It is su�cient to consider Q = some monomial xm with m ≤ N . We have

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

PN (x)

(
x
xk

)m
x− xk

+
1−

(
x
xk

)m
x− xk

 dx .

The term in blue is a polynomial of degree m− 1 < N . It is therefore orthogonal to PN ,
hence it does not contribute to the integral, and one obtains

xmk

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

xm PN (x)

x− xk
dx .

HAP708P, U Montpellier Modelling and Simulation in Physics 70 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Choosing Q(x) = PN−1(x) in Lemma 2, we can now �nally prove the following

Proposition: The weights wk are given by

wk =
2

1− x2
k

1

P ′N (xk)2
.

Proof: According to Lemma 2,

PN−1(xk)

∫ 1

−1

PN (x)

x− xk
dx =

∫ 1

−1

PN−1(x)
PN (x)

x− xk︸ ︷︷ ︸
=aNx

N−1+(terms ⊥PN−1)

dx

= aN

∫ 1

−1

xN−1PN−1(x) dx

= aN

∫ 1

−1

(
PN−1(x)

aN−1
+ (terms ⊥ PN−1)

)
PN−1(x) dx

=
aN
aN−1

∫ 1

−1

PN−1(x)2 dx

=
2

2N − 1

aN
aN−1

.

HAP708P, U Montpellier Modelling and Simulation in Physics 71 / 233

Parenthesis: Proof of the Gauss-Legendre formulas, II � Weights

Continuation of the proof:

Inserting this last expression into Lemma 1, one obtains

wk =

∫ 1

−1

φ(k)(x) dx =
1

P ′N (xk)

∫ 1

−1

PN (x)

x− xk
dx =

2

2N − 1

aN
aN−1

1

P ′N (xk)PN−1(xk)
.

Finally, use the recurrence relations to show that

aN
aN−1

=
2N − 1

N

and that

PN−1(xk) =
1− x2

N
P ′N (xk)

and insert into the above expression for wk, which concludes the proof.

HAP708P, U Montpellier Modelling and Simulation in Physics 72 / 233

Gaussian quadrature

Weights and nodes for Gauss-Legendre quadrature:

N = 10 N = 100

(Images taken from the book by M. Newman)

HAP708P, U Montpellier Modelling and Simulation in Physics 73 / 233

Gaussian quadrature

def int_gauss(f, nodes , weights):

result = 0.0

for x, w in zip(nodes , weights):

result += w * f(x)

return result

The �le gaussxw.py contains a function gaussxw(N) which computes the nodes and
weights for Gauss-Legendre quadrature on the interval [−1, 1] for any given N . Example:

from gaussxw import gaussxw

N = 100

x, w = gaussxw(N)

adapt x -> x' and w -> w' to the interval [a, b]:

a, b = 0, 1 # using [a, b] = [0, 1] as an example

xp = 0.5*(b - a)*x + 0.5*(b + a)

wp = 0.5*(b - a)*w

integrate some function (e.g. arctanh(x)) on [a, b]:

from math import atanh

print("Result:", int_gauss(atanh , xp, wp))

HAP708P, U Montpellier Modelling and Simulation in Physics 74 / 233

Gaussian quadrature

Advantages:

Excellent convergence for integrands which are well approximated by polynomials
(or by W (x)× polynomial for suitable W (x))

Very few function calls of f(x) are necessary ⇒ ideal if evaluating the integrand is
expensive

Open method: no need to evaluate the boundary points f(a) and f(b)

Drawbacks:

Poor convergence for irregular integrands

Computing nodes and weights may be expensive (but needs to be done only once)

Impossible to re-use previously calculated points after an increase of N
⇒ error estimation can be di�cult and costly

In practice:

Instead of gaussxw(N), one may use the NumPy function
numpy.polynomial.legendre.leggauss(N)

Nodes and weights for Gauss-Chebyshev, Gauss-Laguerre, Gauss-Hermite are also
found in NumPy

HAP708P, U Montpellier Modelling and Simulation in Physics 75 / 233

Gaussian quadrature

Exercises

In the Debye model, the heat capacity of a solid is given by

CV = 9nV kB

(
T

ΘD

)3 ∫ ΘD/T

0

x4 ex

(ex − 1)2
dx

where V is the volume, n is the number density, kB = 1.38 · 10−23 JK−1 is Boltzmann's
constant, T is the temperature, and ΘD is a constant.

Write a function CV(T) which calculates CV as a function of temperature, for a
cube of aluminium of (10× 10× 10)cm3 (n = 6.022 · 1028 m−3, ΘD = 428 K). Use
Gauss-Legendre quadrature with N = 50 nodes.
Plot CV (T) between T = 5 K and T = 500 K.

HAP708P, U Montpellier Modelling and Simulation in Physics 76 / 233

Comparison of numerical integration methods

Trapezoidal method:

Easy to implement

Slow convergence

Good for irregular integrands

Simpson's method:

Easy to implement

Rather fast convergence

Poor choice for irregular integrands

Gaussian quadrature:

Implementation requires computing nodes and weights

Very fast

Poor choice for irregular integrands

Other methods exist, notably Romberg integration which relies on Richardson
extrapolation to accelerate convergence.

HAP708P, U Montpellier Modelling and Simulation in Physics 77 / 233

Numerical integration: Improper integrals

To calculate an improper integral, ∫ ∞
0

f(x) dx

the standard procedure is to change variables:

y =
x

1 + x
, x =

y

1− y .

Thus

dx =
dy

(1− y)2
,

∫ ∞
0

f(x) dx =

∫ 1

0

1

(1− y)2
f

(
y

1− y

)
dy .

To calculate
∫∞
a
f(x) dx: calculate

∫∞
0
f(x) dx and subtract

∫ a
0
f(x) dx.

To calculate
∫∞
−∞ f(x) dx: calculate the sum of

∫∞
0
f(x) dx and

∫ 0

−∞ f(x) dx.

Depending on the integrand, other choices of variables may give better results, for
example

y =
xα

β + xα
with suitable constants α, β .

HAP708P, U Montpellier Modelling and Simulation in Physics 78 / 233

Numerical integration: Singularities

The integrand may exhibit singularities within the domain of integration, or at its
boundary.

If the behaviour near the singularities is known, convergence may be improved by
subtracting the singular terms and calculating them separately.

Example: Calculate

I =

∫ 1

−1

1√
| sin(x)|

dx

Integrand singular at x = 0, where sinx ∼ x.

Subtracting 1√
|x|

:

I =

∫ 1

−1

(
1√
| sin(x)|

− 1√
|x|

)
dx︸ ︷︷ ︸

regular

+

∫ 1

−1

1√
|x|

dx︸ ︷︷ ︸
=2

∫ 1
0

1√
x

dx=2[2
√
x]1

0
=4

Now the �rst term can be calculated reliably with our numerical integration methods.

HAP708P, U Montpellier Modelling and Simulation in Physics 79 / 233

Numerical derivatives

Goal: Given a di�erentiable function f(x) (which can be evaluated numerically),
compute f ′(x).

Preferred solution if possible: compute f ′ analytically and evaluate the result numerically.

If f is any combination of elementary functions, then f ′ can be easily computed
analytically

Simplest techniques for calculating numerical derivatives are rather imprecise.

But sometimes we don't have an explicit expression for f(x) (if the values of f are
themselves obtained by some numerical procedure). In this case, one may need to
compute f ′ purely numerically.

HAP708P, U Montpellier Modelling and Simulation in Physics 80 / 233

Numerical derivatives: Forward and backward di�erences

De�nition of the derivative:

f ′(x) = lim
h→ 0

f(x+ h)− f(x)

h
.

Approximation

f ′(x) ≈ f(x+ h)− f(x)

h

for h su�ciently small: forward di�erence.

Equivalent:

f ′(x) ≈ f(x)− f(x− h)

h
,

for h su�ciently small: backward di�erence.

x−h x x+h

backward
forward

HAP708P, U Montpellier Modelling and Simulation in Physics 81 / 233

Numerical derivatives: error estimate

Error on the derivative obtained by forward di�erencing:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + . . . (Taylor expansion)

⇒ f ′(x) =
f(x+ h)− f(x)

h
− 1

2
h f ′′(x) + . . .

Error O(h).

Problem: choosing h small, the truncation error shrinks, but the rounding error grows.

Reason: subtracting f(x) from f(x+ h), two numbers that are very close → see chapter
2 and exercise 1.3. Extreme example: f(x) = x2, derivative at x = 1 with h = 10−16:

h = 1.0E-16

print (((1.0+h)**2 - 1.0**2) / h)

This gives 0.0 although the result should be 2!

Optimal choice for this method if f(x) = O(1): h ≈ 10−8, not very precise. Similar for
backward di�erencing.

HAP708P, U Montpellier Modelling and Simulation in Physics 82 / 233

Central di�erence

Average of forward and backward di�erences with a step width h/2:

f ′(x) ≈
f
(
x+ h

2

)
− f

(
x− h

2

)
h

Taylor expansion:

f

(
x+

h

2

)
= f(x) +

1

2
hf ′(x) +

1

8
h2f ′′(x) +

1

48
h3f ′′′(x) + . . .

f

(
x− h

2

)
= f(x)− 1

2
hf ′(x) +

1

8
h2f ′′(x)− 1

48
h3f ′′′(x) + . . .

Subtracting these two equations gives

f ′(x) =
f
(
x+ h

2

)
− f

(
x− h

2

)
h

− 1

24
h2f ′′′(x) + . . .

Better than forward and backward di�erences: error O(h2).

Optimal choice for f(x) = O(1): h ≈ 10−5, error ε ≈ 10−10.

HAP708P, U Montpellier Modelling and Simulation in Physics 83 / 233

Second derivative

Central di�erence:

f ′′(x) ≈
f ′
(
x+ h

2

)
− f ′

(
x− h

2

)
h

With

f ′
(
x+

h

2

)
≈
f(x+ h

2
+ h

2
)− f

(
x+ h

2
− h

2

)
h

=
f(x+ h)− f(x)

h

and

f ′
(
x− h

2

)
≈ f(x)− f(x− h)

h

one �nds

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

Error:

ε = − 1

12
h2 f ′′′′(x) + . . . (→ exercices)

Optimal choice for f(x) = O(1): h ≈ 10−4, error ε ≈ 10−8.

HAP708P, U Montpellier Modelling and Simulation in Physics 84 / 233

Exercises

Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− 1

12
h2 f ′′′′(x) +O(h3) .

Let us study the numerical derivative of f(x) = 1 + 1
2

tanh(2x).
Write a corresponding Python function f(x) (use the pre-de�ned function
numpy.tanh). Plot its graph on the interval [−2, 2].
Compute f ′(x) analytically.
Plot the di�erence between your analytic expression for f ′(x) and the numerical
derivative of f(x) on the interval [−2, 2]. Compute the numerical derivative using
central di�erencing with h = 10−4, h = 10−5, and h = 10−6. Compare the three
graphs; which choice of the step width gives the best result?

HAP708P, U Montpellier Modelling and Simulation in Physics 85 / 233

Ordinary di�erential equations

HAP708P, U Montpellier Modelling and Simulation in Physics 86 / 233

In this chapter

Euler's method

Runge-Kutta methods

Higher-order ODEs and systems of ODEs

Adaptive Runge-Kutta method

Boundary value problems

HAP708P, U Montpellier Modelling and Simulation in Physics 87 / 233

Ordinary di�erential equations

Reminder: ODE = di�erential equation whose unknown function(s) depend on a single
parameter t.

Example: harmonic oscillator,

d2

dt2
x(t) + ω2x(t) = 0 , solution: x(t) = A cosωt+B sinωt .

For now focus on ODEs of the �rst order with a single unknown function. Assume the
ODE can be brought into standard form:

d

dt
x(t) = f (x(t), t) .

Initial-value problem: Given an ODE and an initial condition

x(0) = x0 ,

what is the function x(t) which satis�es both?

HAP708P, U Montpellier Modelling and Simulation in Physics 88 / 233

Euler's method

To �nd a numerical solution of the initial-value problem

d

dt
x(t) = f(x, t) , x(0) = x0 ,

perform a Taylor expansion:

x(h) = x(0) + h
dx

dt
(0) +

1

2
h2 d2x

dt2
(0) +O(h3) = x(0) + h f(x, 0) +O(h2) .

For small h, neglect O(h2) terms:

x(h) ≈ x(0) + h f(x(0), 0) .

With the same approximation, calculate x(2h):

x(2h) ≈ x(h) + h f(x(h), h)

and then x(3h), x(4h) etc. Euler's method. Generally:

x(t+ h) ≈ x(t) + h f(x(t), t) .

HAP708P, U Montpellier Modelling and Simulation in Physics 89 / 233

Euler's method
Example: Given the ODE

dx

dt
= −x3 + sin t

with the initial condition x(0) = 0, �nd x(t) for 1001 points between t = 0 and t = 10:

import numpy as np

import matplotlib.pyplot as plt

def f(x, t):

return -x**3 + np.sin(t)

a, b, = 0.0, 10.0 # interval

N = 1000 # number of steps

h = (b - a) / N # step size

x = 0.0 # initial condition

tpoints , xpoints = np.linspace(a, b, N+1), []

for t in tpoints:

xpoints += [x]

x += h * f(x, t)

plt.plot(tpoints , xpoints)

plt.show()

HAP708P, U Montpellier Modelling and Simulation in Physics 90 / 233

Euler's method

Result:

HAP708P, U Montpellier Modelling and Simulation in Physics 91 / 233

Euler's method

Error estimate:

At each step, neglecting a O(h2) term 1
2
h2 d2x

dt2
(leading local error term).

There are N = (b− a)/h steps in total. Hence

N∑
k=0

1

2
h2 d2x

dt2
(tk) =

1

2
h

N∑
k=0

h
df

dt
(xk, tk) ≈ 1

2
h

∫ b

a

df

dt
dt

=
1

2
h (f(x(b), b)− f(x(a), a)) .

We have approximated the sum by an integral at small h. The accumulated (global)
error term is therefore O(h).

Euler's method is simple but not very precise.

It can also become unstable as we will see next.

HAP708P, U Montpellier Modelling and Simulation in Physics 92 / 233

Euler's method

Numerical stability

Example:
dx

dt
= −λx , x(0) = 1

with λ > 0. Analytic solution:
x(t) = e−λt

Numerical solution with Euler:

x(h) = x(0)− hλx(0) = x(0)(1− hλ) = 1− hλ

x(2h) = x(h)− hλx(h) = x(h)(1− hλ) = (1− hλ)2

. . .

x(nh) = (1− hλ)n cf. ey = lim
n→∞

(
1 +

y

n

)n
If 0 < h < 2

λ
, then |1− hλ| < 1, thus limn→∞(1− hλ)n = 0 as it should be

But if h > 2
λ
, then (1− hλ)n diverges as n → ∞.

Stability condition: h < 2
λ
.

HAP708P, U Montpellier Modelling and Simulation in Physics 93 / 233

Euler's method

Numerical stability

dx

dt
= −λx , λ > 0 , x(0) = 1 .

Solution with Euler for λ = 10 et h = 0.3, h = 0.15, h = 0.05: blue curve = e−λt, red
points = numerical approximation

h = 0.3 h = 0.15 h = 0.05

HAP708P, U Montpellier Modelling and Simulation in Physics 94 / 233

Implicit Euler's method

The version of Euler's method we used is explicit: knowing the state of the system at t,
one can directly calculate its state at t+ h,

x(t+ h) ≈ x(t) + h f(x(t), t)

More stable: Implicit (backward) Euler's method, where

x(t+ h) ≈ x(t) + h f(x(t+ h), t+ h)

Harder to implement: one must �rst solve this equation with respect to x(t+ h).

Example as before: f(x) = −λx, x(0) = 1:

x(h) = x(0)− hλx(h) = 1− hλx(h) ⇒ x(h) =
1

1 + hλ

. . .

x(nh) = x((n− 1)h)− hλx(nh) =
1

(1 + hλ)n−1
− hλ(nh) ⇒ x(nh) =

1

(1 + hλ)n

Tends towards 0 as n → ∞ for all h > 0 (as it should: limx→∞ e
−λx = 0). Stable.

HAP708P, U Montpellier Modelling and Simulation in Physics 95 / 233

Runge-Kutta methods: Second order

Euler's method = Runge-Kutta method of the �rst order.

Second-order Runge-Kutta method (�midpoint method�):

Extrapolate from x(t) to the next point x(t+ h) using the slope at t+ h/2, not at t:

t t+h

x(t) computed with the slope at
t+h/2

tcomputed with Euler’s method (slope at)

Better approximation.

HAP708P, U Montpellier Modelling and Simulation in Physics 96 / 233

Runge-Kutta methods: Second order

Taylor expansion around t+ h
2
:

x(t+ h) = x(t+ h/2) +
1

2
h

dx

dt
(t+ h/2) +

1

8
h2 d2x

dt2
(t+ h/2) +O(h3) .

Similarly:

x(t) = x(t+ h/2)− 1

2
h

dx

dt
(t+ h/2) +

1

8
h2 d2x

dt2
(t+ h/2) +O(h3) .

Subtracting:

x(t+ h) = x(t) + h
dx

dt
(t+ h/2) +O(h3) = x(t) + hf(x(t+ h/2), t+ h/2) +O(h3) .

The O(h2) terms have cancelled. The error is O(h3).

Problem: We need to know x(t+ h/2) to evaluate hf(x(t+ h/2), t+ h/2). But we
haven't yet computed x beyond t.

Solution: Approximate as in Euler's method, x(t+ h/2) ≈ x(t) + 1
2
hf(x, t). The error

remains of order h3 since (after Taylor expansion)

f
(
x(t) + 1

2
h f(x, t), t+ h/2

)
= f (x(t+ h/2), t+ h/2) +O(h2) .

HAP708P, U Montpellier Modelling and Simulation in Physics 97 / 233

Runge-Kutta methods: Second order

Algorithm for second-order Runge-Kutta:

Compute
k1 ≡ h f(x, t).

Use this to approximate x(t+ h/2) ≈ x(t) + 1
2
hf(x, t) = x(t) + 1

2
k1. Insert into f

to obtain
k2 ≡ hf(x+ k1/2, t+ h/2) .

Finally, compute
x(t+ h) = x(t) + k2 .

HAP708P, U Montpellier Modelling and Simulation in Physics 98 / 233

Exercises

Adapt the program on p. 90 to calculate the solution of the initial-vale problem

dx

dt
= −x3 + sin t , x(0) = 0

with the second-order Runge-Kutta method. Plot the solution for N = 10, N = 20,
N = 100. Compare with the result obtained in the lecture with Euler's method and
N = 1000.

HAP708P, U Montpellier Modelling and Simulation in Physics 99 / 233

Runge-Kutta methods: RK4

Fourth-order Runge-Kutta method

This scheme can be generalized (several Taylor expansions at suitable intermediate
points, taking linear combinations such that all terms up to some order hn cancel):
Runge-Kutta methods.

A good compromise which runs very e�ciently but is still easy to implement is the
famous fourth-order Runge-Kutta method. The equations are still quite simple:

k1 = hf(x, t) ,

k2 = hf(x+ k1/2, t+ h/2) ,

k3 = hf(x+ k2/2, t+ h/2) ,

k4 = hf(x+ k3, t+ h) ,

x(t+ h) = x(t) +
1

6
(k1 + 2 k2 + 2 k3 + k4) .

HAP708P, U Montpellier Modelling and Simulation in Physics 100 / 233

Runge-Kutta methods: RK4

Code:

import numpy as np

def rk4(f, a, b, x0 , N):

h = (b - a) / N # step size

x = x0 # at t=a, x=x0

tpoints = np.linspace(a, b, N+1)

xpoints = []

for t in tpoints:

xpoints += [x]

k1 = h * f(x, t)

k2 = h * f(x + k1/2, t + h/2)

k3 = h * f(x + k2/2, t + h/2)

k4 = h * f(x + k3, t + h)

x = x + (k1 + 2*k2 + 2*k3 + k4)/6

return arrays containing t and x(t)

return tpoints , np.array(xpoints)

HAP708P, U Montpellier Modelling and Simulation in Physics 101 / 233

Euler vs. RK4
Consider the initial-value problem

dx

dt
= x− x2

2
, x(0) = 1 .

Analytic solution:

x(t) =
2

1 + e−t

Numerical solution with N = 5000 steps between 0 and 10

Error with Euler:

smooth shape ⇐ truncation error dominates

Error with RK4:

noisy shape ⇐ rounding error
HAP708P, U Montpellier Modelling and Simulation in Physics 102 / 233

Higher-order ODEs

A second-order ODE can always be reduced to two �rst-order ODEs.
Example:

d2x

dt2
x− xdx

dt
− x2 − t = 0

De�ning v(t) = dx
dt
, one obtains the equivalent equations

dx

dt
= v ,

dv

dt
= v + x+

t

x
.

An ODE of the n-th order can always be reduced to n ODEs of the �rst order.
Same idea: de�ning v(t) = dx

dt
, a(t) = dv

dt
etc., �nd the solution of the system of

coupled �rst-order equations with unknown functions x, v, a, . . .

HAP708P, U Montpellier Modelling and Simulation in Physics 103 / 233

Systems of coupled ODEs

Now we are dealing with several unknown functions (which still depend on a single
parameter t).

Standard form for a �rst-order system with two unknown functions:

dx

dt
= fx(x, y, t) ,

dy

dt
= fy(x, y, t) .

With n unknown functions, in vector notation

dr

dt
= f(r, t)

where r = (x(t), y(t), . . .) and f(r, t) = (fx(r, t), fy(r, t), . . .)

The numerical methods to solve such systems are no more di�cult in principle than
those for a single ODE, they are simple generalizations

HAP708P, U Montpellier Modelling and Simulation in Physics 104 / 233

Systems of coupled ODEs

Fourth-order Runge-Kutta method for n coupled equations:

Let
dr

dt
= f(r, t)

with r(0) = r0.

At each step, compute

k1 = h f(r, t) ,

k2 = h f(r + k1/2, t+ h/2) ,

k3 = h f(r + k2/2, t+ h/2) ,

k4 = h f(r + k3, t+ h) ,

Finally, obtain the next point as

r(t+ h) = r(t) +
1

6
(k1 + 2k2 + 2k3 + k4) .

Same equations as before for a single unknown x(t). With Python and NumPy, can even
reuse the same code thanks to built-in vectorization.

HAP708P, U Montpellier Modelling and Simulation in Physics 105 / 233

Example: Simple gravity pendulum

θ

y

x

l

Lagrangian: L = T − V = 1
2
m
(
ẋ2 + ẏ2

)
−mgy = 1

2
m`2θ̇2 +mg` cos θ

Equations of motion: ∂L
∂θ
− d

dt
∂L

∂θ̇
= 0, hence

d2θ

dt2
= −g

`
sin θ

Second-order ODE for θ = θ(t). Anharmonic oscillator.

With ω = dθ
dt
, equivalent to two �rst-order ODEs:

dω

dt
= −g

`
sin θ ,

dθ

dt
= ω .

HAP708P, U Montpellier Modelling and Simulation in Physics 106 / 233

Example: Simple gravity pendulum

We want to solve
dω

dt
= −g

`
sin θ ,

dθ

dt
= ω .

with initial conditions θ(0) = θ0, ω(0) = ω0.

Start by implementing the function f which returns the right-hand side of the ODE:

import numpy as np

g = 9.81 # gravitational acceleration

L = 0.1 # pendulum length = 10 cm

def f(r, t):

theta , omega = r # r is the array [theta(t), omega(t)]

ftheta = omega

fomega = -g / L * np.sin(theta)

return np.array([ftheta , fomega])

HAP708P, U Montpellier Modelling and Simulation in Physics 107 / 233

Example: Simple gravity pendulum
Now for the setup of the initial-value problem:

theta0 = 1.5 # angle at t=0

omega0 = 0. # angular velocity at t=0

a, b = 0, 3 # time interval

N = 300 # number of steps

h = (b - a) / N # step size

tpoints = np.linspace(a, b, N+1) # intermediate times

thetapoints = [] # we'll put theta(t) in here

omegapoints = [] # we'll put omega(t) in here

r = np.array ([theta0 , omega0]) # initial conditions

Finally calculate the solution with RK4:

for t in tpoints:

thetapoints += [r[0]]

omegapoints += [r[1]]

k1 = h * f(r, t)

k2 = h * f(r + k1/2, t + h/2)

k3 = h * f(r + k2/2, t + h/2)

k4 = h * f(r + k3, t + h)

r = r + (k1 + 2*k2 + 2*k3 + k4)/6
HAP708P, U Montpellier Modelling and Simulation in Physics 108 / 233

Example: Simple gravity pendulum

Plotting x(t) = ` sin θ(t) (blue graph) and, for comparison, the sinusoidal function
obtained in the harmonic approximation (green line):

HAP708P, U Montpellier Modelling and Simulation in Physics 109 / 233

Example: Simple gravity pendulum

Plotting x(t) = ` sin θ(t) against ẋ(t) = `ω(t) cos θ(t): phase-space diagram

HAP708P, U Montpellier Modelling and Simulation in Physics 110 / 233

Adaptive methods: RK4 with variable step size
Idea: vary h such that the local error remains approximately constant at each step.

Motivation: In x, t regions where the right-hand side f(x, t) is varying slowly, a relatively
large h can already give a good precision. However, if the variation of f(x, t) is fast, h
must be chosen smaller.

Local error estimation: Compute two successive steps of size h. Then, from the same
starting point, a single step of size 2h.

t t+h

x(t)

t+2h

x =

x =

result from a single
2

1

2hstep of width

result from two
steps of width h

The RK4 method is exact up to order h4, hence

x(t+ 2h) = x1 + 2ch5 +O(h6) , c = const.

= x2 + c(2h)5 +O(h6)

Conclusion: the local error ε ≈ ch5 is given by

ε ≈ 1

30
(x1 − x2) .

HAP708P, U Montpellier Modelling and Simulation in Physics 111 / 233

Adaptive methods: RK4 with variable step size

De�ne the �optimal� step size h′ such that the error per unit t is given by some �xed
precision δ ⇒ the local error at each step is δh′.

If h < h′: the calculation is more precise than necessary ⇒ can save computing time
by increasing h

If h > h′: the calculation is not precise enough ⇒ need to reduce h

The optimal step size h′ satis�es the relation

δh′ = |ch′5| = |ch5|
(
h′

h

)5

=
1

30
|x1 − x2|

(
h′

h

)5

Rearranging gives

h′ = hρ1/4 , ρ =
30hδ

|x1 − x2|
.

HAP708P, U Montpellier Modelling and Simulation in Physics 112 / 233

Adaptive methods: RK4 with variable step size

Algorithm:

Given x(t), compute two approximations for x(t+ 2h): First x1 (with two steps of
size h) and then x2 (with a single step of size 2h).

Compute ρ from x1, x2 and h: ρ = 30hδ/|x1 − x2|

If ρ > 1, then h < h′, so we may increase h by a factor ρ1/4. Keep the approximation
x1 for x(t+ 2h), and for the following step, replace h ← hρ1/4.

If however ρ < 1, the target accuracy has not been reached. Hence recompute x1 after
replacing h← hρ1/4, and use this new x1 for x(t+ 2h).

To prevent h from growing too quickly, if accidentally ρ� 1, one should limit the
maximal rescaling factor in practice. E.g. increase h at most by a factor 3 at each
step, even if ρ1/4 > 3.

This method can also be used for entire systems of ODEs.

HAP708P, U Montpellier Modelling and Simulation in Physics 113 / 233

Example: Simple gravity pendulum with adaptive RK4
In the above example: replace the loop over t by

t = a # initial time

tpoints = [] # intermediate times (a priori unknown !)

delta = 1.0E-5 # desired precision

while t < b:

thetapoints += [r[0]]

omegapoints += [r[1]]

tpoints += [t]

r1 = rk4step(rk4step(r, t, h), t + h, h) # two RK4 steps

r2 = rk4step(r, t, 2*h) # one double -size RK4 step

rho = 30 * h * delta / abs(r2[0] - r1[0])

if rho < 1: # not precise enough: reduce h, recompute r1

h *= rho **(1/4)

r1 = rk4step(rk4step(r, t, h), t + h, h)

t += 2*h

else: # too precise: increase h for next iteration

t += 2*h

h *= min(rho **(1/4) , 3.0) # (by a factor 3 at most)

r = r1

HAP708P, U Montpellier Modelling and Simulation in Physics 114 / 233

Example: Simple gravity pendulum with adaptive RK4

Here the task of the function rk4step() is to compute a single RK4 step:

def rk4step(r, t, h):

k1 = h * f(r, t)

k2 = h * f(r + k1/2, t + h/2)

k3 = h * f(r + k2/2, t + h/2)

k4 = h * f(r + k3, t + h)

return r + (k1 + 2*k2 + 2*k3 + k4)/6

In this example, the error has been calculated using the discrepancy in θ only. Depending
on the problem to be solved, it may be necessary to take also the error in ω into account
(and, more generally, the error in all the unknown functions).

HAP708P, U Montpellier Modelling and Simulation in Physics 115 / 233

Example: Simple gravity pendulum with adaptive RK4

Setting δ = 10−7, and plotting one out of �ve points in t:

HAP708P, U Montpellier Modelling and Simulation in Physics 116 / 233

Example: Simple gravity pendulum with adaptive RK4

Exercises

Use the adaptive RK4 method to compute the trajectory of a comet. Neglect the force
exerted by the comet on the sun, as well as all other celestial bodies, and use a
coordinate system such that the sun is at the center and the movement is in the (x, y)
plane. Newton's gravitational constant is G = 6.67408× 10−11 m3 kg−1 s−2 and the
solar mass is M = 1.989 · 1030 kg.

Find the ODEs governing the comet's coordinates x(t) and y(t) as a function of
time.
Transform them into a system of four �rst-order ODEs.
Write a program which solves these ODEs for the initial conditions x(0) = 4 · 109

km, y(0) = 0, ẋ(0) = 0, ẏ(0) = 500 m s−1, using the �xed-step RK4 method. Plot
the trajectory x(y); choose h small enough such that the orbit does not visibly
change between two turns.
Write a program which repeats this computation with the adaptive RK4 method.
The precision is δ =1 km/year. Compare the run-time with that of your �rst
program.

HAP708P, U Montpellier Modelling and Simulation in Physics 117 / 233

Boundary-value problems

In general, for n �rst-order ODEs, one needs to specify n integration constants to have a
unique solution. But what if these are not all given at the same point t = 0?

E.g. two-point boundary value problem for second-order ODE: x(0) and x(T) given, but
ẋ(0) initially unknown

t=0 t=T

x

x

(0)=

T

x

x

0

T
()=

Two options:

Start with a trial solution satisfying the ODE but not (all) the boundary conditions.
Iteratively adjust to also satisfy the boundary conditions. Shooting method.

Start with a trial solution satisfying the boundary conditions but not the ODE.
Iteratively adjust to also satisfy the ODE. Relaxation method, will discuss this more
in the chapter on partial di�erential equations.

HAP708P, U Montpellier Modelling and Simulation in Physics 118 / 233

Boundary-value problems: Shooting method

Shooting method: x(0) ≡ x0 and x(T) ≡ xT given, but ẋ(0) initially unknown

Start at t = 0 with x0 and some trial ẋ(0)

Solve initial value problem to compute x(T)

Adjust ẋ(0) and repeat until x(T) = xT is obtained (using a root-�nding algorithm)

x (0)= x0

t=Tt=0

2nd attempt

true solution

x (0)= ?x (0)=

1st attempt

3rd attempt

HAP708P, U Montpellier Modelling and Simulation in Physics 119 / 233

Boundary-value problems
Example: Blasius boundary layer �ow

Consider an incompressible �uid �owing past a semi-in�nite rigid plate in the (x ≥ 0, z)
half-plane. For x < 0, the �uid velocity is u = U ex. What's u for x > 0?

x, y() = (0, 0)

x

yUex

It can be shown → (hydrodynamics lecture, F. Geniet) that the Navier-Stokes equations reduce to
an ODE for this system. More precisely: There exists a function f(η) such that

ux = U f ′(η) , uy =
1

2

√
Uν

x

(
ηf ′(η)− f(η)

)
where η =

√
U
ν

y√
x
and ν is the viscosity. This function solves the Blasius equation

2 f ′′′(η) + f ′′(η)f(η) = 0

subject to the boundary conditions

f(0) = 0 , f ′(0) = 0 , lim
η→∞

f ′(η) = 1 .

HAP708P, U Montpellier Modelling and Simulation in Physics 120 / 233

Boundary-value problems: Shooting method

Transform to a system of three �rst-order equations:

2h′ + hf = 0 , g′ = h , f ′ = g

with boundary conditions

f(0) = 0 , g(0) = 0 , g(∞) = 1 .

We expect the problem to be well-posed (3 ODEs, 3 boundary conditions) � but we
cannot simply integrate starting from η = 0 because h(0) is not given.

Strategy:

Solving the ODE with some arbitrary value h0 for h(0) gives a solution with
g(∞) = g∞ (in general, g∞ 6= 1).

This de�nes a function g∞(h0).

Find a zero of the function h0 7→ (g∞(h0)− 1) by a standard root-�nding method,
e.g. bisection. For this value of h0, one has g∞(h0) = 1, and therefore the
corresponding solution solves the boundary-value problem.

HAP708P, U Montpellier Modelling and Simulation in Physics 121 / 233

Boundary-value problems: Shooting method

import numpy as np

import matplotlib.pyplot as plt

import rk4 # for the function rk4()

import zeros # for the function bisection ()

max_eta = 100. # choose this sufficiently big (" infinity ")

g0 , f0 = 0., 0. # Boundary conditions at eta=0

N = 10000 # Number of steps

def rhs(r, eta): # the right -hand side of the ODE

f, g, h = r # r = array containing f(eta), g(eta), h(eta)

return np.array([g, h, -h*f/2]) # return [f', g', h ']

def ginf(h0): # compute g(max_eta) for some given h(0)

r0 = np.array([f0 , g0, h0]) # initial conditions at eta=0

etapoints , rpoints = rk4.rk4(rhs , 0, max_eta , r0 , N)

rinf = rpoints [-1] # this is [f, g, h] at eta=max_eta

return rinf [1] # return g(max_eta)

HAP708P, U Montpellier Modelling and Simulation in Physics 122 / 233

Boundary-value problems: Shooting method

find a zero of the function ginf(h0)-1 for 0 < h0 < 1

def ginf_minus_one(h0):

return ginf(h0) - 1

h0 = zeros.bisection(ginf_minus_one , 0, 1)

use this zero to construct the solution of the BVP

r0 = np.array([f0 , g0, h0]) # ICs leading to the right BCs

etapoints , rpoints = rk4.rk4(rhs , 0, max_eta , r0 , N)

fpoints = rpoints[:, 0] # 1st column = values of f

dfpoints = rpoints[:, 1] # 2nd column = values of g = f'

ddfpoints = rpoints[:, 2] # 3rd column = values of h = f''

plot the result

plt.plot(etapoints , fpoints)

plt.plot(etapoints , dfpoints)

plt.plot(etapoints , ddfpoints)

plt.show()

HAP708P, U Montpellier Modelling and Simulation in Physics 123 / 233

Boundary-value problems: Shooting method

HAP708P, U Montpellier Modelling and Simulation in Physics 124 / 233

Boundary-value problems: Shooting method

Fluid velocity above the plate in the (x, y) plane

HAP708P, U Montpellier Modelling and Simulation in Physics 125 / 233

Ordinary di�erential equations

Some subjects we did not treat:

advanced adaptive methods, e.g. the Bulirsch-Stoer method based on Richardson
extrapolation

predictor/corrector methods

specialized algorithms for conservative problems, such as the leapfrog method

specialized algorithms for sti� problems (involving several vastly di�erent scales)

and lots more. . .

HAP708P, U Montpellier Modelling and Simulation in Physics 126 / 233

Partial di�erential equations

HAP708P, U Montpellier Modelling and Simulation in Physics 127 / 233

In this chapter

Classifying PDEs

Finite-di�erence methods

Boundary value problems: Jacobi method, successive overrelaxation

Cauchy problems: FTCS method, Crank-Nicolson method, general stencils

HAP708P, U Montpellier Modelling and Simulation in Physics 128 / 233

Classifying PDEs

Consider a quasi-linear second-order PDE

Dφ(t, xi) = f(φ, t, xi)

where D is a second-order di�erential operator.

Mathematical classi�cation with respect to the second-derivative structure:

hyperbolic PDEs, e.g. the wave equation

D =
∂2

∂t2
− c2

∑
i

∂2

∂x2
i

, f = 0

parabolic PDEs, e.g. the heat (di�usion) equation

D =
∂

∂t
− a

∑
i

∂2

∂x2
i

, f = 0

elliptic PDEs, e.g. the Laplace equation

D =
∑
i

∂2

∂x2
i

, f = 0

HAP708P, U Montpellier Modelling and Simulation in Physics 129 / 233

Classifying PDEs

Classi�cation in numerical analysis according to the type of numerical problem:

Cauchy problem for hyperbolic and parabolic equations. To formulate a well-posed
problem, specify initial conditions at some given t, and boundary conditions at the
boundary of the spatial domain, then calculate the system's evolution with t.
Dynamical problem.

Boundary-value problem for elliptic equations. Specify boundary conditions at the
boundary of the spatial domain, then calculate the values in its interior. Static
problem.

Types of boundary conditions:

Dirichlet conditions: specify the values of the unknown function φ.

Neumann conditions: specify its derivatives.

Mixed boundary conditions also possible.

HAP708P, U Montpellier Modelling and Simulation in Physics 130 / 233

Finite-di�erence methods

Discretize the solution region by constructing a lattice, e.g. a regular rectangular lattice
in two dimensions:

(x , y)(x , y)
2

(x , y)
1

y

x

a

a x

y

(x , y)
31

21

1 2
(x , y)

3 1
(x , y)

1

2

Then approximate the derivatives at the nodes by di�erence quotients, see pp. 83, 84.
One obtains a system of algebraic equations for the values of φ at the lattice nodes.

Numerical solution of the PDE = solution of this system of equations (for su�ciently
small lattice spacing).

HAP708P, U Montpellier Modelling and Simulation in Physics 131 / 233

An exemplary boundary value problem: The 2D Laplace equation

We wish to solve the Laplace equation(
∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = 0

on a square of 1× 1 m, where the potential φ satis�es the boundary conditions
φ(x, y = 1 m) = 1 V and φ(x, y = 0) = φ(x = 0, y) = φ(x = 1 m, y) = 0.

φ = 0

φ = 1 V

x

y

HAP708P, U Montpellier Modelling and Simulation in Physics 132 / 233

An exemplary boundary value problem: The 2D Laplace equation

With a the lattice spacing for both dimensions, the discrete Laplacian is (see p.84)(
∂2

∂x2
+

∂2

∂y2

)
φ(x, y)

≈ φ(x+ a, y) + φ(x− a, y)− 2φ(x, y)

a2
+
φ(x, y + a) + φ(x, y − a)− 2φ(x, y)

a2

=
φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a)− 4φ(x, y)

a2

hence the Laplace equation becomes

φ(x, y) ≈ 1

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a)) (?)

For a = 1 cm, we have a 101× 101 lattice (x, y). At the 400 points at the boundary, φ is
given by the boundary conditions, φ(x, y) = 0 or φ(x, y) = 1 V. The other 9801 points
satisfy (?) ⇒ a system of 9801 coupled linear equations.

HAP708P, U Montpellier Modelling and Simulation in Physics 133 / 233

An exemplary boundary value problem: The 2D Laplace equation

To solve the 9801 equations

φ(x, y) ≈ 1

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a))

we can use the Jacobi method:

Start with some �rst guess for φ(x, y) at each node (not necessarily very precise)

Compute

φ′(x, y) =
1

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a))

at each interior node (x, y)

If ||φ− φ′|| < δ (where δ is the desired precision): terminate.
Otherwise repeat with φ← φ′.

HAP708P, U Montpellier Modelling and Simulation in Physics 134 / 233

An exemplary boundary value problem: The 2D Laplace equation

import numpy as np

N = 100 # lattice = (N+1) x (N+1) square grid

delta = 1.E-5 # desired precision

U = 1.0 # potential at upper boundary

phi = np.zeros((N+1, N+1)) # the lattice

phi[0, :] = U # boundary conditions

phiprime = np.copy(phi) # second lattice of the same size

eps = delta + 1. # error , arbitrary here but must be > delta

while eps > delta:

for i in range(1, N): # don't touch the boundary points

for j in range(1, N): # same here

phiprime[i, j] = (phi[i+1, j] + phi[i-1, j] \

+ phi[i, j+1] + phi[i, j-1]) / 4

eps = np.max(np.abs(phi - phiprime))

phiprime , phi = phi , phiprime

HAP708P, U Montpellier Modelling and Simulation in Physics 135 / 233

An exemplary boundary value problem: The 2D Laplace equation

Solution computed in ≈ 1 min. on a laptop.

HAP708P, U Montpellier Modelling and Simulation in Physics 136 / 233

The Jacobi (relaxation) method for boundary-value problems

Properties of the Jacobi method:

Relaxation method: search for a �xed point φ∗ of the operator
a2

4
∆d + 1, by

applying it repeatedly on the starting con�guration. Here ∆d is the discretized
Laplacian. If (

a2

4
∆d + 1

)
φ∗ = φ∗,

then ∆dφ∗ = 0.

This will converge for (practically) any initial con�guration ⇒ stable.

Two sources of numerical error:
1. limited precision of the iterative solution (δ > 0)
2. derivatives approximated by �nite di�erences (a > 0).

Main drawback: slow.

HAP708P, U Montpellier Modelling and Simulation in Physics 137 / 233

Successive overrelaxation

Same principle as for Jacobi method but two improvements:

For the Jacobi method, at each iteration we computed

φ′(x, y) =
1

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a))

New value of φ at (x, y) = average of old values at neighbouring points.
Idea (�Gauss-Seidel method�): Compute this average with the new values of φ (to
the extent that they are already known) ⇒ better approximation

still need to update

already updated

Overrelaxation: to accelerate convergence, choose some parameter ω > 0 and set

φ(x, y) ← 1 + ω

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a))−ωφ(x, y)

HAP708P, U Montpellier Modelling and Simulation in Physics 138 / 233

Successive overrelaxation

Algorithm for solving the 2D Laplace equation on a square grid:

Start with some �rst guess for φ(x, y) at each node (not necessarily very precise)

At each interior node, successively replace

φ(x, y)← 1 + ω

4
(φ(x+ a, y) + φ(x− a, y) + φ(x, y + a) + φ(x, y − a))− ωφ(x, y)

Memorize the maximal discrepancy εmax between the old and new values among all
lattice points.

If εmax < δ, terminate. Otherwise, repeat.

Remarks

Choice of ω: One can show that the method is stable for ω < 1. Larger values of ω
will speed up convergence. So choose ω < 1 but close to 1.

Gauss-Seidel: No need to allocate an extra lattice φ′ → algorithm more e�cient �in
space�, consumes less memory

Disadvantage of Gauss-Seidel: not parallelizable

HAP708P, U Montpellier Modelling and Simulation in Physics 139 / 233

Successive overrelaxation

Exercises

Write a program which recalculates the solution of the boundary-value problem of
p. 132, using successive overrelaxation. Experiment with several values of ω and
study the e�ect on the speed of convergence. Plot the solution.
Write a program which solves the Poisson equation in two dimensions,(

∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = −ρ(x, y)

ε0

where ρ is a charge density and ε0 is the permittivity. Use the successive
overrelaxation method.

HAP708P, U Montpellier Modelling and Simulation in Physics 140 / 233

The Jacobi method revisited

The Jacobi method is parallelizable: The computer can calculate several values of φ′

simultaneously (since they only depend on φ, which does not change while computing φ′).

Compare our old code for the Jacobi method

for i in range(1, N):

for j in range(1, N):

phiprime[i, j] = (phi[i+1, j] + phi[i-1, j]

+ phi[i, j+1] + phi[i, j-1]) / 4

with the following code which exploits Numpy's vectorization capabilities:

phiprime [1:N, 1:N] = (phi[:N-1, 1:N] + phi[2:, 1:N]

+ phi [1:N, :N-1] + phi [1:N, 2:]) / 4

With this modi�cation, the code will run even faster than with successive overrelaxation.

But: Overrelaxation with Jacobi (i.e. without Gauss-Seidel) ⇒ instability

HAP708P, U Montpellier Modelling and Simulation in Physics 141 / 233

Comparison

For the above problem in electrostatics, 101× 101 points, precision 10−5, on my laptop:

method running time

Jacobi, no vectorization 64 s
Jacobi with vectorization 0.75 s

successive overrelaxation ω = 0.95 4.4 s

Jacobi: stable, parallelizable, may be unstable with overrelaxation, needs two lattices
φ and φ′

Gauss-Seidel: stable, not parallelizable, stable with overrelaxation (= successive
overrelaxation), a single lattice φ is enough

HAP708P, U Montpellier Modelling and Simulation in Physics 142 / 233

Matrix representation of elliptic operators

The Laplace equation discretized on an (N + 1)× (N + 1) lattice can be written

φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi,j = 0 (i, j = 1 . . . N − 1)

Set of linear equations with unknowns φij . Rewrite by putting the φi, j into a vector
u = (un):

un = φij where n = i(N + 1) + j + 1 (n = 1, . . . , (N + 1)2)

The discretized Laplace equation (satis�ed at the interior points, 1 ≤ i ≤ N − 1 and
1 ≤ j ≤ N − 1) becomes

un+N+1 + un−N−1 + un+1 + un−1 − 4un = 0 ,

while at the boundary we have

un = bn (�xed by boundary conditions) , i = 0 or N , or j = 0 or N .

Now write these linear equations for the components of the vector u using matrix
notation.

HAP708P, U Montpellier Modelling and Simulation in Physics 143 / 233

Matrix representation of elliptic operators
Matrix equation:

Au = b

where b contains the boundary data, and A is given in block matrix form as

A =

1

1̃ T 1̃

1̃ T 1̃

. . .

1̃ T 1̃

1

1 = the (N + 1)× (N + 1) unit matrix, and T and 1̃ are (N + 1)× (N + 1) matrices:

T =

1
1 −4 1

1 −4 1
. . .

1 −4 1
1

, 1̃ =

0
1

1
. . .

1
0

To compute φ(x, y) at the interior points, one must solve this matrix equation.

HAP708P, U Montpellier Modelling and Simulation in Physics 144 / 233

Matrix representation of elliptic operators

A similar structure is obtained for any boundary-value problem in d dimensions,
when discretized on a rectangular N1 × . . .×Nd lattice

Possible strategies:

relaxation methods, such as Jacobi or Gauss-Seidel

direct methods from numerical linear algebra:
Gaussian elimination, or better methods optimized for sparse coe�cient matrices A

Fourier analysis (expanding in eigenfunctions of the di�erential operator)

HAP708P, U Montpellier Modelling and Simulation in Physics 145 / 233

Cauchy problems

Dynamical problem for parabolic and hyperbolic PDEs:

Specify initial conditions at t = 0, then compute the solution for 0 ≤ t ≤ T .

At the spatial boundary of the solution region, must also provide boundary
conditions.

This will (usually) determine the solution uniquely. In contrast to elliptic PDEs,
boundary conditions are not given at the entire boundary of the solution region: no
conditions at t = T .

Existence/unicity/regularity: �nding necessary/su�cient conditions can be a hard
mathematical problem (e.g. Navier-Stokes equations. . .)

HAP708P, U Montpellier Modelling and Simulation in Physics 146 / 233

FTCS method
Prime example of a parabolic PDE: heat equation in 1 + 1 dimensions

∂φ

∂t
−D∂2φ

∂x2
= 0

D = di�usion coe�cient.

Discretization in x: N evenly-spaced points (xn) in the solution interval (distance a).

1 2 3
(x , t) (x , t)

1
a

2 3

x

t

(x , t)

Finite-di�erence approximation in space:

∂2φ

∂x2
≈ φ(x+ a, t) + φ(x− a, t)− 2φ(x, t)

a2

→ need to solve N ordinary di�erential equations (φn ≡ φ(xn))

∂φn
∂t

(t) =
D

a2
(φn+1(t) + φn−1(t)− 2φn(t))

HAP708P, U Montpellier Modelling and Simulation in Physics 147 / 233

FTCS method

∂φn
∂t

(t) =
D

a2
(φn+1(t) + φn−1(t)− 2φn(t))

Solution with Euler's method. Imprecise, but the error is typically dominated by the
spatial discretization → no need for higher-order methods. (Otherwise: Crank-Nicolson
method, later.)

For a time increment h:

φn(t+ h) ≈ φn(t) + h
D

a2
(φn+1(t) + φn−1(t)− 2φn(t))

This is called the foward-time centered-space (FTCS) method.

HAP708P, U Montpellier Modelling and Simulation in Physics 148 / 233

Example of a Cauchy problem: Heat equation

After a boiler explosion, the �oor of the boiler room in a steamship is covered with water
of temperature 100◦ C. The ship's hull is constructed from steel plates of width 1 cm;
the temperature of the sea water on the other side is 10◦ C. We wish to �nd the
temperature pro�le within the steel plates as a function of time. Initially at t = 0, the
temperature was uniformly given by that of the sea water. The heat di�usion coe�cient
of steel is 4.25 · 10−6 m2 s−1.

steel

sea water

boiling water

1 cm
x

Subdivide x into 100 subintervals:

101 points x0 . . . x100

Boundary conditions: T (x0) = 10◦ C and T (x100) = 100◦ C independently of time

Initial conditions: The temperature at t = 0 is 10◦ C (except for x100)

HAP708P, U Montpellier Modelling and Simulation in Physics 149 / 233

Example of a Cauchy problem: Heat equation

import numpy as np

import matplotlib.pyplot as plt

D = 4.25E-6 # diffusion coefficient

w = .01 # width of spatial interval

T0 = 283 # T at x=0

T1 = 373 # T at x=w

N = 100 # spatial discretization

a = w/N # lattice constant

tmax = 10 # solution sought for 0 <= t <= tmax

h = 1.E-3 # time step

t = 0

c = h * D / a**2

initial temperature profile at t = 0

T = np.ones(N+1)

T *= T0

T[N] = T1

tplot = [.01, .1, 1, 10] # intermediate times for plotting

HAP708P, U Montpellier Modelling and Simulation in Physics 150 / 233

Example of a Cauchy problem: Heat equation

main loop

while t < tmax:

T[1:N] = T[1:N] + c * (T[:N-1] + T[2:] - 2 * T[1:N])

for tp in tplot: # t (close to) where we want to plot?

if abs(t - tp) < 0.1 * h:

plt.plot(T - 273., label = "t = " + str(tp) + " s")

t += h

plt.show()

Note that by the instruction
T[1:N] = T[1:N] + c * (T[:N-1] + T[2:] - 2 * T[1:N])

we add to all interior values T[n] the quantities c * (T[n-1] + T[n+1] - 2 * T[n])

simultaneously (vectorisation).

HAP708P, U Montpellier Modelling and Simulation in Physics 151 / 233

Example of a Cauchy problem: Heat equation

HAP708P, U Montpellier Modelling and Simulation in Physics 152 / 233

Instability of the FTCS method

The FTCS method works well for simple parabolic problems, but it may become unstable
for other Cauchy problems, e.g. hyperbolic ones. Try to apply it to the wave equation in
1+1 dimensions,

∂2

∂t2
φ(t, x) = c2

∂2

∂x2
φ(x, t) ,

using the same strategy as for the heat equation:

discretize in space, replace ∂2

∂x2 by N �nite di�erences

∂2

∂x2
φ ≈ φ(x+ a, t) + φ(x− a, t)− 2φ(x, t)

a2

obtain N coupled ODEs in time (now of second order)

φ̈n(t) =
c2

a2
(φn+1(t) + φn−1(t)− 2φn(t))

therefore, transform into 2N �rst-order ODEs:

ψn(t) = φ̇n(t) , ψ̇n(t) =
c2

a2
(φn+1(t) + φn−1(t)− 2φn(t))

HAP708P, U Montpellier Modelling and Simulation in Physics 153 / 233

Instability of the FTCS method
FTCS equations:

φn(t+ h) = φn(t) + hψn(t)

ψn(t+ h) = ψn(t) +
hc2

a2

(
φn+1(t) + φn−1(t)− 2φn(t)

)
Application: vibrating string of length L, both ends �xed (boundary conditions) and
some given elongation pro�le with zero velocity at t = 0 (initial conditions). Plotting the
solution at four di�erent times, ≤ 1 oscillation period:

Visibly unstable.
HAP708P, U Montpellier Modelling and Simulation in Physics 154 / 233

Von Neumann stability analysis
Expand φ(x, t) in Fourier modes,

φ(x, t) =
∑
k

ck(t)eikx .

For di�erential operators which are diagonal in Fourier space, no mixing between the
modes, and thus

ck(t+ h) = ξk(h, a)ck(t)

If the ampli�cation factors ξk satisfy |ξk| ≤ 1 ∀ k, the method is stable. This is the case

for the heat equation if h < a2

2D
. Proof:

a
∂

∂t

∑
k

cke
ikx = D

∂2

∂x2

∑
k

cke
ikx

⇒ ċke
ikx = D ck

(
eik(x+a) + eik(x−a) − 2eikx

a2

)
⇒ ċk =

D

a2
ck
(
eika + e−ika − 2

)
=

2D

a2
ck (cos(ka)− 1) =

4D

a2
sin2

(
ka

2

)
ck

and since ck(t+ h) ≈ ck(t) + hċk(t):

ck(t+ h) ≈
(

1− h4D

a2
sin2

(
ka

2

))
ck(t) ⇒ |ξk| =

∣∣∣∣1− h4D

a2
sin2

(
ka

2

)∣∣∣∣ .
HAP708P, U Montpellier Modelling and Simulation in Physics 155 / 233

Von Neumann stability analysis

Still with
φ(x, t) =

∑
k

ck(t)eikx , ck(t+ h) = ξk(h, a)ck(t) :

If |ξk| > 1 for at least one k, the method is unstable (exponentially growing mode).

For coupled systems, the ξk are matrices and the stability conditions apply to their
eigenvalues.

Example: Wave equation, the ξk are 2× 2 matrices acting on the Fourier modes of
(φ(x, t), ψ(x, t)).
Eigenvalues = 1± i 2hc

a
sin ka

2
⇒ unstable.

HAP708P, U Montpellier Modelling and Simulation in Physics 156 / 233

Implicit method

With the implicit (backward) Euler's method: �BTCS� (backward-time centered-space)
equations

φn(t+ h) = φn(t) + hψn(t+ h)

ψn(t+ h) = ψn(t) +
hc2

a2

(
φn+1(t+ h) + φn−1(t+ h)− 2φn(t+ h)

)
φn(t+ h) and ψn(t+ h) no longer explicitly given by the state of the system at time t,
but implicitly by a system of 2N linear equations which must be solved:

. . .

−α 0 2α 1 −α
1 −h

−α 0 2α 1 −α
1 −h

. . .

...
φn−1

ψn−1

φn
ψn
φn+1

ψn+1

...

t+h

=

...
φn−1

ψn−1

φn
ψn
φn+1

ψn+1

...

t

where α = hc2/a2. This can be solved e.g. by Gaussian elimination, or (better) by a
method optimized for sparse matrices.

HAP708P, U Montpellier Modelling and Simulation in Physics 157 / 233

Crank-Nicolson method

One may show: The BTCS method is always stable. Its promlems are its much slower
speed (since a linear system must be solved at each step) and, for the wave equation, the
damping of the Fourier modes (ampli�cation factors < 1 ⇒ exponentially decreasing
modes, still not the physical solution).

A more e�cient scheme (of order h2 in time) in which this latter problem is absent is the
Crank-Nicolson method: Take the average of the FTCS and BTCS formulas. For the
wave equation this reads

φn(t+ h) = φn(t) + h
1

2
(ψn(t+ h) + ψn(t))

ψn(t+ h) = ψn(t) +
hc2

a2

1

2

(
φn+1(t+ h) + φn−1(t+ h)− 2φn(t+ h)

+ φn+1(t) + φn−1(t)− 2φn(t)
)

This scheme is still implicit: at each step a system of equations must be solved for
φn(t+ h) and ψn(t+ h).

HAP708P, U Montpellier Modelling and Simulation in Physics 158 / 233

Crank-Nicolson method
Matrix equation for the Crank-Nicolson method applied to the wave equation: Set

u(t) =

φ0(t)
ψ0(t)
φ1(t)
ψ1(t)
...

φN (t)
ψN (t)

C-N equations:

Au(t+ h) = Bu(t)

where

A =

. . .

−α 0 2α 1 −α
1 −h/2

−α 0 2α 1 −α
1 −h/2

. . .

,

α = hc2/2a2, and B is obtained from A by substituting h → −h, α → −α.
HAP708P, U Montpellier Modelling and Simulation in Physics 159 / 233

Crank-Nicolson method

Matrix equation for the Crank-Nicolson method applied to the wave equation: Given
u(t), �nd u(t+ h) as a solution of

Au(t+ h) = Bu(t)

The A and B matrices have a sparse structure: Almost all elements are zero, except for
some near the diagonal. Specialized methods can therefore solve the C-N equations in
run-time Θ(N) (rather than the Θ(N3) of general methods, such as Gaussian
elimination).

We have not discussed numerical linear algebra in this course, therefore we will simply
use the function numpy.linalg.solve() provided by NumPy (although it is ine�cient for
sparse matrices) to solve the C-N equations.

Algorithm:

Initialize the vector u, construct the matrices A and B

At each t, solve the C-N equations to obtain u(t+ h). The quantities φ0, ψ0, φN ,
and ψN are always given by the boundary conditions.

HAP708P, U Montpellier Modelling and Simulation in Physics 160 / 233

Crank-Nicolson method

Initialization:

import numpy as np

import matplotlib.pyplot as plt

L = .3 # string length

c = 100. # phase velocity

N = 100 # number of discretization intervals

a = L/N # lattice constant

tmax = .1 # compute the solution for 0 <= t <= tmax

h = 1.E-4 # time increment

alpha = h * c**2 / 2 / a**2

some initial profile

u = np.zeros (2*N + 2)

for k in range(1, N+1):

u[2*k] = np.sin(k / N * np.pi) * k / N / 100

tplot = [0, .01, .02, .03] # plot at these times

HAP708P, U Montpellier Modelling and Simulation in Physics 161 / 233

Crank-Nicolson method
Constructing the matrices A and B:

A = np.zeros ([2*N + 2, 2*N + 2])

B = np.zeros ([2*N + 2, 2*N + 2])

2x2 blocks on top left and bottom right: unit matrices

(at both ends , sol. always given by boundary conditions)

A[0, 0] = A[1, 1] = A[2*N, 2*N] = A[2*N + 1, 2*N + 1] = 1.0

B[0, 0] = B[1, 1] = B[2*N, 2*N] = B[2*N + 1, 2*N + 1] = 1.0

Other elements:

for i in range(2, 2*N):

A[i, i] = 1.0

B[i, i] = 1.0

if i % 2 == 0: # lines of even i: phi_n

A[i, i+1] = -h/2

B[i, i+1] = h/2

else: # lines of odd i: psi_n

A[i, i+1] = -alpha

B[i, i+1] = alpha

A[i, i-1] = 2*alpha

B[i, i-1] = -2*alpha

A[i, i-3] = -alpha

B[i, i-3] = alpha

HAP708P, U Montpellier Modelling and Simulation in Physics 162 / 233

Crank-Nicolson method
Main loop:

t = 0.0

while t < tmax:

in absence of an efficient solver for sparse systems:

use numpy.linalg.solve() for demonstration

u = np.linalg.solve(A, B @ u)

t += h

Result: no more instability (but the numerical error is visible after just 5 periods!)

HAP708P, U Montpellier Modelling and Simulation in Physics 163 / 233

Stencil graphs
The di�erent �nite-di�erence methods can be represented graphically with the help of
stencil diagrams:

FTCS

n, tn− , t n+ , t

n, t+h

1 1

BTCS

n, t+h n+ , t+hn− , t+h1 1

n, t

Crank-Nicolson

n, tn− , t n+ , t1 1

n, t+h n+ , t+hn− , t+h1 1

Explanation: To compute the value at , one needs the values at (known) and at
(initially unknown ⇒ implicit method). Horizontal/vertical line = discretized derivative
in space/time

HAP708P, U Montpellier Modelling and Simulation in Physics 164 / 233

Stencil graphs

Other methods use two time steps:

Richardson (unstable!)
n− , t n+ , t

n, t+h

1 1n, t

n, t−h

Dufort-Frankel (stable)
n− , t n+ , t

n, t+h

1 1

n, t−h

HAP708P, U Montpellier Modelling and Simulation in Physics 165 / 233

Neumann boundary conditions

Up to now, we have only regarded boundary conditions giving the value of the unknown
function at the boundary of the solution region: Dirichlet boundary conditions.
Examples:

electrostatic potential Φ on a conductive surface

temperature on a surface separating two media

zero amplitude on both ends of a string

It may also happen that, instead, its derivative is given: Neumann boundary conditions.
Examples:

a �xed surface charge determines the electric �eld ~E = −~∇Φ in electrostatics

standing sound wave in an organ pipe with a closed end
⇒ pressure maximum, ∂p = 0

HAP708P, U Montpellier Modelling and Simulation in Physics 166 / 233

Neumann boundary conditions
Simplest case:

∂φ

∂x

∣∣∣∣
boundary

= 0

i.e. the function φ(x, y) is approximately constant along the x direction at the boundary.

Numerical treatment with ghost lattice cells

(x , y)(x , y)
2

y

x

a

a x

y

(x , y)
31

21

1 2
(x , y)

3 1
(x , y)

1

2

(x , y)
10

0

0

(x , y)

(x , y)

(x , y)

1

2

3

Set φ(x0, y) = φ(x1, y) (backward di�erence at x1) or φ(x0, y) = φ(x2, y) (central
di�erence at x1). The value of φ at x0 is unphysical (outside the solution region), it only
serves to enforce ∂φ

∂x

∣∣
x1

= 0.

HAP708P, U Montpellier Modelling and Simulation in Physics 167 / 233

Example: Cooling of a homogeneous ball

A homogeneous ball of radius R and initial temperature Ti is submerged in water of
temperature Tw.

We would like to compute T (r, θ, φ, t) = T (r, t) (spherical symmetry) in the interior. The
3 + 1-dimensional heat equation in spherical coordinates reads

∂T

∂t
−D∆T = 0 ⇔ ∂T

∂t
−D

(
∂2T

∂r2
+

2

r

∂T

∂r

)
= 0

where we have used that the angular derivatives are zero by spherical symmetry.

HAP708P, U Montpellier Modelling and Simulation in Physics 168 / 233

Example: Cooling of a homogeneous ball

The initial condition is
T (r, 0) = Ti.

Neumann boundary conditions:

At r = 0:
∂T

∂r

∣∣∣∣
r=0

= 0 (symmetry/continuity)

At r = R:
∂T

∂r

∣∣∣∣
r=R

= c (Tw − T (R, t))

where c = cooling constant. Unlike the previous example, here the heat exchange
with the environment is no longer instantaneous ((T (R, t) = Tw)) but the thermal
transport coe�cient across the surface is �nite.

HAP708P, U Montpellier Modelling and Simulation in Physics 169 / 233

Example: Cooling of a homogeneous ball
Spatial discretization:

a

T0 T T T
N−1

(=)r R

−1T T1 2T N N+1

(ghost)(= 0)r(ghost)

Discrete Laplacian in spherical coordinates:

At r = na 6= 0:

∂2T

∂r2
+

2

r

∂T

∂r
→ Tn+1 + Tn−1 − 2Tn

a2
+
Tn+1 − Tn−1

na2

At r = 0:

lim
r→ 0

(
∂2T

∂r2
+

2

r

∂T

∂r

)
L'Hôpital

= 3
∂2T

∂r2

∣∣∣∣
r=0

→ 3
T1 + T−1 − 2T0

a2

Discretized boundary conditions:

At r = 0:

∂T

∂r

∣∣∣∣
r=0

= 0 ⇒ T−1 = T1 (central derivative for n = 0 vanishes)

At r = R:

∂T

∂r

∣∣∣∣
r=R

= c (Tw − T (R)) ⇒ TN+1 = TN−1 + 2 ac(Tw − TN)

HAP708P, U Montpellier Modelling and Simulation in Physics 170 / 233

Example: Cooling of a homogeneous ball
Use the Crank-Nicolson method.

For n = −1 (ghost node):

T−1(t+ h) = T1(t+ h) (boundary condition)

For n = 0:

T0(t+ h) = T0(t) +
Dh

2a2

(
3T1(t) + 3T−1(t)− 6T0(t)

+ 3T1(t+ h) + 3T−1(t+ h)− 6T0(t+ h)
)

⇒
(
−3αT−1 + (1 + 6α)T0 − 3αT1

)∣∣∣
t+h

=
(

3αT−1 + (1− 6α)T0 + 3αT1

)∣∣∣
t

with α = Dh
2a2 .

For 1 ≤ n ≤ N :(
−α

(
1− 1

n

)
Tn−1 + (1 + 2α)Tn − α

(
1 +

1

n

)
Tn+1

)∣∣∣∣
t+h

=

(
α

(
1− 1

n

)
Tn−1 + (1− 2α)Tn + α

(
1 +

1

n

)
Tn+1

)∣∣∣∣
t

For n = N + 1 (ghost node):

TN+1(t+ h) = TN−1(t+ h)− 2ac TN (1 + h) + 2ac Tw (boundary condition)

HAP708P, U Montpellier Modelling and Simulation in Physics 171 / 233

Example: Cooling of a homogeneous ball

Matrix form of C-N equations:

AT (t+ h) = BT (t) + C

A =

1 0 −1
−3α 1 + 6α −3α

−α(1− 1
1
) 1 + 2α −α(1 + 1

1
)

−α(1− 1
2
) 1 + 2α −α(1 + 1

2
)

. . .
. . .

−α(1− 1
N

) 1 + 2α −α(1 + 1
N

)
−1 2ac 1

B =

0
3α 1− 6α 3α

α(1− 1
1
) 1− 2α α(1 + 1

1
)

α(1− 1
2
) 1− 2α α(1 + 1

2
)

. . .
. . .

α(1− 1
N

) 1− 2α α(1 + 1
N

)
0

C = (0, . . . 0, 2 ac Tw)T

HAP708P, U Montpellier Modelling and Simulation in Physics 172 / 233

Example: Cooling of a homogeneous ball

Code:

Load libraries , define constants

import numpy as np

import matplotlib.pyplot as plt

import scipy.linalg as la

D = 4.E-6 # diffusion coefficient

c = 20. # cooling constant

R = 5.E-2 # ball radius

Ti = 373. # temperature at t=0

Tw = 290. # temperature of surrounding medium

N = 50 # spatial discretization

a = R / N # lattice constant

t, tmax = 0., 301. # time interval

h = .1 # time increment

Construct an array to store the solution

T = Ti * np.ones(N + 3) # N+1 points + 2 ghost points

HAP708P, U Montpellier Modelling and Simulation in Physics 173 / 233

Example: Cooling of a homogeneous ball

Construct the matrix A

alpha = D * h / (2 * a**2)

A = (1 + 2 * alpha) * np.identity(N + 3)

for n in range(1, N+1):

A[n+1, n] = -alpha * (1 - 1/n)

A[n+1, n+2] = -alpha * (1 + 1/n)

A[0, 0] = 1. # 1st line: boundary conds. at r=0

A[0, 2] = -1.

A[1, 0] = -3 * alpha # 2nd line: Laplacian at r=0

A[1, 1] = 1 + 6 * alpha

A[1, 2] = -3 * alpha

A[-1, -1] = 1. # last line: boundary conds. at r=R

A[-1, -2] = 2 * a * c

A[-1, -3] = -1.

Similarly for the matrix B and the vector C (not shown here)

HAP708P, U Montpellier Modelling and Simulation in Physics 174 / 233

Example: Cooling of a homogeneous ball

solve the PDE and plot the result

nextplot , dtplot = 0., 30. # plot every 30 secondes

r = np.linspace(0, R, N+1) # spatial solution region

while t < tmax:

if t >= nextplot:

plt.plot(r, T[1:-1] - 273.) # T[0], T[-1] = ghosts

nextplot += dtplot

t += h

T = la.solve(A, B @ T + C)

plt.show()

HAP708P, U Montpellier Modelling and Simulation in Physics 175 / 233

Example: Cooling of a homogeneous ball

HAP708P, U Montpellier Modelling and Simulation in Physics 176 / 233

Partial di�erential equations

Subjects for which there was no time to mention:

Pretty much everything � the literature about PDEs �lls many library shelves.

Other �nite-di�erencing methods, in particular for �rst-order problems with �ux
conservation, problems in > 2 dimensions, multigrid methods. . .

Other classes of methods: Finite elements, spectral methods . . .

Applications to �uid dynamics, electrodynamics, general relativity . . .

HAP708P, U Montpellier Modelling and Simulation in Physics 177 / 233

Monte-Carlo methods

HAP708P, U Montpellier Modelling and Simulation in Physics 178 / 233

In this chapter

Monte-Carlo integration

Monte-Carlo sampling (Markov chain Monte Carlo)

Simulated annealing

Kinetic Monte Carlo

HAP708P, U Montpellier Modelling and Simulation in Physics 179 / 233

Monte-Carlo methods

Monte-Carlo (MC) methods are non-deterministic methods using random numbers to
obtain numerical approximations. For certain problems, they are much more e�cient
than their deterministic counterparts. For example:

Integration: Compute multi-dimensional integrals, integrate over nontrivial domains,
deal with highly singular integrands

Sampling: Generate samples of complicated multivariate probability density functions

Optimization: Find an approximate global maximum of a complicated function with
many local maxima

They are among the most important tools of modern computational physics. (Other
applications in engineering, biology, �nance, mathematics. . .)

HAP708P, U Montpellier Modelling and Simulation in Physics 180 / 233

Pseudo-random numbers

MC methods need large quantities of random numbers.

Problem:

It is fundamentally impossible to obtain truly random numbers from a deterministic
algorithm.

Solutions:

either use a physical random number generator based on quantum mechanics (true
random numbers; may be slow and/or di�cult)

or use a deterministic algorithm to produce a sequence of numbers with
approximately the same stochastic properties as a true random sequence:
pseudo-random numbers

HAP708P, U Montpellier Modelling and Simulation in Physics 181 / 233

Pseudo-random numbers in Python

We will use pseudo-random numbers provided by the NumPy library:

numpy.random.random() returns a pseudo-random number in the interval [0.0, 1.0)
(uniformly distributed)

numpy.random.random(n) returns n pseudo-random numbers in the interval
[0.0, 1.0) (uniformly distributed)

numpy.random.choice(a) returns a pseudo-randomly chosen element of the array a

numpy.random.randint(n) returns a pseudo-random integer between 0 and n− 1
(uniformly distributed)

We will treat these functions as �black boxes� without studying the algorithms behind
them.

HAP708P, U Montpellier Modelling and Simulation in Physics 182 / 233

The law of large numbers

Let {Xi}i=1...n be a set of n independent random variables drawn from some probability
distribution of expectation value 〈X〉.

The law of large numbers states that the average of the Xi (sample mean) tends towards
〈X〉 (expectation value of the distribution) as n → ∞ �almost certainly�, i.e. with
probability 1:

Pr

(
lim
n→∞

X1 + . . .+Xn
n

= 〈X〉
)

= 1 .

In practice: To compute 〈X〉, randomly draw a large number of Xi and take their
average.

Error estimate: The di�erence X1+...+Xn
n

− 〈X〉 tends to zero as 1√
n
on average

(central limit theorem; additive variances for independent random variables).

HAP708P, U Montpellier Modelling and Simulation in Physics 183 / 233

MC integration: Invitation

How to calculate the numerical value of π by Monte Carlo integration

You need:

a dartboard of known radius

a rectangular shield of known area

a very bad darts player (= random number generator)

After a large number of darts have been thrown:

number of darts on dartboard Nd
number of darts on shield Ns

→ area of dartboard

area of shield
=
πR2

L2
⇒ π ≈ L2Nd

R2Ns

HAP708P, U Montpellier Modelling and Simulation in Physics 184 / 233

MC integration: di�cult integrands
Consider the integral

I =

∫ 1

0

sin2

(
1

x(1− x)

)
dx .

Integrand bounded and continuous ⇒ I exists (I = 0.61515 . . .). Results for δ . 10−3:

trapezoid Simpson Gauss-Legendre

0.6158 0.7207 0.615 (?)
±0.0001 ±0.0002 ±0.001 (?)

Better result obtained by a Monte-Carlo method.
HAP708P, U Montpellier Modelling and Simulation in Physics 185 / 233

MC integration

Compute I =
∫ 1

0
f(x) dx by a stochastic method.

Naïve method:

Generate N pairs (xi, yi) of random numbers, uniformly distributed over
(0, 1)× (0, 1).

Count the number K of points with f(xi) ≥ yi.

If N is large, the fraction of points which fall below the graph of f corresponds to
the fraction of the area below the graph of f .

Hence I ≈ K/N .

N = 1000000

K = 0

for i in range(N):

if f(np.random.random ()) > np.random.random ():

K += 1

I = K/N

HAP708P, U Montpellier Modelling and Simulation in Physics 186 / 233

MC integration
Improved method:

De�nition of the mean value of f between a and b:

〈f〉 =
1

b− a

∫ b

a

f(x) dx

Estimate 〈f〉 by

〈f〉 ≈ 1

N

N∑
i=1

f(xi)

where the xi are uniformly distributed random numbers in [a, b]. Thus

I ≈ b− a
N

N∑
i=1

f(xi) .

N = 10000000

favg = 0.0

for i in range(N):

favg += f(np.random.random ())

I = favg/N

Result I = 0.6151± 0.0002.
HAP708P, U Montpellier Modelling and Simulation in Physics 187 / 233

MC integration

The relative error for both methods is ∼ 1/
√
N , but the coe�cient is smaller for the

improved method (⇒ cheaper in terms of computing time).

More sophisticated MC integration methods exist for very unevenly distributed
integrands (�importance sampling�). Error always O(1/

√
N).

Comparison: the error e.g. for the trapezoid method is ∼ 1/N2, for Simpson's
method ∼ 1/N4

One should prefer deterministic methods if possible (e.g. for regular integrands,
simple integration domains in . 3 dimensions).

But in d� 1 dimensions, or for ill-behaved integrands, or complicated domains of
integration, MC methods may well be the only feasible ones despite their slow
convergence in low dimensions.

HAP708P, U Montpellier Modelling and Simulation in Physics 188 / 233

MC integration: d � 1 dimensions
The curse of dimensionality:

Numerical integration in d dimensions of a function f : D → R de�ned on D ⊂ Rd,

I =

∫
D

f(x) ddx .

Deterministic methods are extremely ine�cient if d is large.

This is because the number of nodes grows exponentially with d:

d= , N=

d= , N= d= , N=

1 5

2 5 53
2 3

E.g. in d = 20 with only 5 nodes/dimension: N = 520 ≈ 1014 nodes!

In physics: dimension of phase space = number of degrees of freedom, easily � 1

Solution: stochastic MC algorithms whose speed of convergence does not directly
depend on d but which follow the 1√

N
law.

HAP708P, U Montpellier Modelling and Simulation in Physics 189 / 233

MC integration

Exercises

Write a program which calculates the volume of the unit ball in d dimensions by MC

integration. Compare with the exact values 4π
3
, 8π2

15
, and π5

120
for d = 3, 5, 10.

HAP708P, U Montpellier Modelling and Simulation in Physics 190 / 233

Sampling

Reminder:

A probability distribution P (x) on a measurable space M is a map P : M → [0, ∞[
such that

∑∫
MP (x) = 1 (+ technical conditions).

The probability for a random variable X following the distribution P to take a value
in E ⊆M is

Pr (X ∈ E) =
∑∫

E

P (x) .

The expectation value or mean 〈f〉 of a function f(x) on M according to P is

〈f〉 =
∑∫

M

f(x)P (x) .

HAP708P, U Montpellier Modelling and Simulation in Physics 191 / 233

Sampling

Examples for probability distributions in physics:

The probability density function

P (x) = |ψ(x)|2

where ψ(x) is a wave function in quantum mechanics.

The Boltzmann distribution

P (x) =
1

Z
e
−E(x)
kBT

of statistical physics, which describes a canonical ensemble in thermal equilibrium.
T = temperature, kB = Boltzmann's constant, Z = normalization (partition
function), P (x) = probability that the microstate x with energy E(x) is realized.

P (x|d) = Bayesian posterior probability that a theoretical model with certain
parameter values x describes some experimental data d.

P (x|d) ∼ P (d|x)P (x)

P (d|x): goodness of �t, P (x): �prior� (a priori probability) = theoretical bias.

HAP708P, U Montpellier Modelling and Simulation in Physics 192 / 233

Sampling

Goal: Obtain a sample of some probability distribution P (x) on M

= a �nite set of N random variables distributed according to P (x)

Motivations:

With a sample of size N for N su�ciently large, one can study the properties of P
numerically. E.g.

compute expectation values ↔ physical observables

compute correlations

marginalization (integrate/sum over a subspace of x)

HAP708P, U Montpellier Modelling and Simulation in Physics 193 / 233

Sampling: Inverse transform sampling

Given a random number generator for the uniform distribution on [0, 1]:

How can we use it to sample some other PDF P (x)?

Analytic method: Inverse transform sampling in one dimension.

Let y be a random variable which is uniformly distributed on [0, 1]. Then x = F−1(y) is
distributed according to P , where F (x) =

∫ x
P (x′) dx′ is the cumulative distribution

function and F−1 is its inverse.

Proof:

Pr (x ∈ [a, b]) = Pr
(
F−1(y) ∈ [a, b]

)
= Pr (y ∈ [F (a), F (b)]) = F (b)− F (a)

=

∫ b

a

P (x′) dx′ .

In the next-to-last step we have used that y is uniformly distributed on [0, 1], and thus
Pr (y ∈ [A,B]) = B −A.

Conclusion: To �nd x(y), we need to calculate the integral

y = F (x(y)) =

∫ x(y)

x(0)

P (x′) dx′

and to solve for x(y).

HAP708P, U Montpellier Modelling and Simulation in Physics 194 / 233

Sampling: Inverse transform sampling

Example: P (x) = 1
2

sin(x) on [0, π).

y =

∫ x

0

1

2
sin(x′) dx′ =

1

2
(1− cos(x)) ⇒ x = arccos(1− 2y)

Second example: P (t) = Re−Rt on [0,∞), with R > 0 a constant.

y = R

∫ t

0

e−Rt
′
dt′ = −

[
e−Rt

′]t′=t
t=0

= 1− e−Rt ⇒ t = − log(1− y)

R
= − log u

R

(where u = 1− y is also uniformly distributed on [0, 1]).

The inverse transform sampling method works only for those P (x) whose cumulative
distribution function is known and can be inverted: limited scope. Other analytic methods
exist for some special P (x) (e.g. Box-Muller transform for the normal distribution).

HAP708P, U Montpellier Modelling and Simulation in Physics 195 / 233

Monte-Carlo sampling: Rejection sampling

1. Generate random variables xi • • •
uniformly distributed on the support of P .

3. The accepted points form a sample of P .

2. For each xi, accept with probability
∝ P (xi), reject the others

HAP708P, U Montpellier Modelling and Simulation in Physics 196 / 233

Monte-Carlo sampling: Rejection sampling

Draw random variable x from the uniform distribution on [a, b] (which should include the
support of P). Keep it with probability P (x)/C (where C ≥ maxP is a constant), reject
it otherwise.

import numpy as np

def rejection_sampling(P, C, a, b):

while True:

generate x uniformly distributed on [a, b):

x = (b - a) * np.random.random () + a

accept with probability P(x) / C; reject otherwise

if P(x) / C > np.random.random ():

return x

To create a sample of N points:

sample = [rejection_sampling(P, c, a, b) for _ in range(N)]

HAP708P, U Montpellier Modelling and Simulation in Physics 197 / 233

Monte-Carlo sampling: Rejection sampling

Rejection sampling is ine�cient if P (x) is narrowly peaked (need to generate many
points, only to reject almost all of them).

This is often the case for multivariate distributions depending on many variables.

Possible improvement: Importance sampling, draw the xi not from a uniform distribution
but from a distribution with a similar shape as P (x).

HAP708P, U Montpellier Modelling and Simulation in Physics 198 / 233

Monte-Carlo sampling: MCMC

Markov Chain Monte Carlo (MCMC)

Idea: Once we have found the region of M where the distribution P is localized, stay
close to this region and explore it by a random walk. Construct a Markov Chain = a
sequence of random steps.

Metropolis-Hastings algorithm:

Start from x1 ∈M chosen randomly.

Given xn, choose a random point y ∈M close by.

If P (y) ≥ P (xn), accept y as the next point in the chain.

If P (y) < P (xn), accept y with probability P (y)/P (xn).

If y has been accepted, repeat with xn+1 = y. Otherwise repeat with xn+1 = xn.

It can be shown: The {xn}1≤n≤N sample P (x) if N is su�ciently large.

HAP708P, U Montpellier Modelling and Simulation in Physics 199 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

HAP708P, U Montpellier Modelling and Simulation in Physics 200 / 233

Monte-Carlo sampling: MCMC

Remarks:

The procedure only depends on ratios of probabilities
⇒ usable even if the overall normalization of P (x) is unknown (often the case).

Detailed balance property: Let P (x) be the probability to be in the state x and
W (x;x′) the transition probability to pass from x to x′, then

P (x)W (x;x′) = P (x′)W (x′;x) .

This property guarantees (together with some more technical conditions) that the
distribution of the {xn} converges towards P (x).

A randomly chosen starting point may be in a region of very small P (x). The �rst
few iterations, before �nding a more interesting region where P (x) is localized, will
therefore not be representative of P as a whole, and the �rst part of the chain is
commonly discarded. �Burn-in� of the Markov chain.

If P (x) exhibits multiple �islands� of large P separated by an �ocean� of low P , it
may be di�cult to transition between the islands. One may run several chains with
random starting points to obtain a representative sample.

HAP708P, U Montpellier Modelling and Simulation in Physics 201 / 233

A simple one-dimensional example

import numpy as np

n_chain = 20000 # number of points in the chain

n_burnin = 200 # number of points to discard at first

d = 0.5 # step size

def P(x): # an unnormalized PDF

[...] # (precise form is unimportant)

Starting from x, propose x +/- d as a new point.

Accept or reject according to Metropolis -Hastings.

Return the new point (if accepted) or x again (if not).

def mcmcstep(x):

xnew = x + d * np.random.choice([-1, 1])

if P(xnew) > P(x):

return xnew

elif np.random.random () < P(xnew) / P(x):

return xnew

else:

return x

HAP708P, U Montpellier Modelling and Simulation in Physics 202 / 233

A simple one-dimensional example

To run the algorithm:

x = 20 * np.random.random () # starting value (arbitrary)

chain = np.empty(n_chain) # array for the Markov chain

for i in range(n_burnin): # run without memorizing results

x = mcmcstep(x) # (burn -in)

for i in range(n_chain): # then run building up the chain

chain[i] = x

x = mcmcstep(x)

HAP708P, U Montpellier Modelling and Simulation in Physics 203 / 233

Ising model

The Ising model is of central importance in statistical physics. It is de�ned by a
rectangular lattice of N spins with nearest-neighbour interactions, and can be used to
model e.g. a ferromagnet.

Each spin is in one of the states |+〉 or |−〉: 2N possible con�gurations.

The energy of the system depends on the spins' orientation w.r.t. their nearest
neighbours. The Hamiltonian is

H = −J
∑
〈ij〉

SiSj

where Si = ±1 for spin i in the state |±〉, the sum includes all pairs 〈ij〉 of
neighbouring spins in the lattice, and J > 0 is the exchange energy.

The probability for a con�guration φ to be realized is given by the Boltzmann
distribution:

P (φ) =
1

Z
e
−H(φ)
kBT

where T is the temperature, kB is Boltzmann's constant, and the normalization Z is
the partition function

Z =
∑
φ

e
−H(φ)
kBT .

HAP708P, U Montpellier Modelling and Simulation in Physics 204 / 233

Ising model

Magnetization in some spin con�guration φ:

M = µ
∑
i

Si (µ = magnetic moment per spin, constant)

Mean magnetisation:

〈M〉 =
∑
φ

M(φ)P (φ) =
1

Z

∑
φ

M(φ)e
−H(φ)
kBT

Magnetic susceptibility ↔ �uctuations of M :

χ =
N

kBT

(
〈M2〉 − 〈M〉2

)
Heat capacity ↔ �uctuations of the energy:

CV =
1

NkBT 2

(
〈H2〉 − 〈H〉2

)
We want to �nd 〈M〉, 〈H〉, χ, and CV as functions of temperature. We will study the
2-dimensional case.

HAP708P, U Montpellier Modelling and Simulation in Physics 205 / 233

2D Ising model

2d spin lattice.

with respect to its

spin’s
depends on its orientation

nearest neighbours.

Each energy

On a 2D L× L square lattice:

H = −J
L∑
i=1

L∑
j=1

(SijSi+1,j + SijSi,j+1)

De�ne SL+1,j ≡ S1,j and Si,L+1 ≡ Si,1 (periodic boundary conditions).

Problem: The number of possible con�guration grows exponentially with the system's
size. For N = L× L = 10× 10 spins, one already has 2N = 2100 ≈ 1030 con�gurations
⇒ impossible to directly calculate Z, 〈M〉, 〈H〉, 〈M2〉, or 〈H2〉 by direct summation.

Solution: Compute these observables approximately using a sample of the Boltzmann
distribution obtained with the MCMC method.

HAP708P, U Montpellier Modelling and Simulation in Physics 206 / 233

MCMC for the 2d Ising model

Metropolis-Hastings algorithm applied to the Ising model:

Start with either a random or ordered con�guration (�warm/cold start�).

Randomly choose a spin. Compute ∆E = E′ −E: energy di�erence if the spin were
�ipped.

If ∆E < 0, �ip the spin. If ∆E > 0, �ip it with probability

1
Z
e
− E′
kBT

1
Z
e
− E
kBT

= e
− ∆E
kBT

Repeat until a con�guration typical for thermal equilibrium is reached (�burn-in�).

Then, repeat again as often as needed to obtain a sample of the desired size,
memorizing the values of E, E2, M and M2 at each step.

Finally, calculate the mean values 〈E〉, 〈E2〉, 〈M〉, and 〈M2〉 on the sample.

We will measure temperatures in units of T0 ≡ J
kB

, energies in units of J , and

magnetizations in units of µ. Also, we will use speci�c energies E/N rather than E.

HAP708P, U Montpellier Modelling and Simulation in Physics 207 / 233

MCMC for the 2d Ising model

To create an L× L spin lattice, all spins in the state 1, with J = 1 and L = 16:

import numpy as np

L = 16 # L x L spins

norm = 1 / L**2 # normalization

lat = np.ones((L, L), dtype=int) # the lattice

coupling = 1.0 # coupling constant J

Initialize some constants:

burnin_steps = 10000 # number of burn -in steps

mcmc_steps = 100000 # Markov chain size

min_T = 0.1 # minimal temperature

max_T = 3 # maximal temperature

T_steps = 30 # different temperatures to scan over

filename = "ising.dat" # file for saving the data

HAP708P, U Montpellier Modelling and Simulation in Physics 208 / 233

MCMC for the 2d Ising model

Some functions to �ip a single spin. It will be �ipped with certainty if ∆E < 0.
Otherwise, it will be �ipped with probability e−∆E/kBT .

Flip the spin (i, j)

def flip(i, j):

lat[i, j] *= -1

Flip the spin (i, j) if energetically favoured or

by thermal fluctuation; return energy difference

def flip_maybe(T, i, j):

DeltaE = deltaE(i, j)

if DeltaE < 0: # energy gained? then flip

flip(i, j)

return DeltaE

elif np.random.random () < np.exp(-DeltaE/T): # en. lost?

flip(i, j) # possibly flip anyway (fluctuation)

return DeltaE

else: # change nothing , energy remains same

return 0.0

HAP708P, U Montpellier Modelling and Simulation in Physics 209 / 233

MCMC for the 2d Ising model

To compute ∆E upon �ipping the spin Sij :

E = − J (Si−1,j + Si+1,j + Si,j−1 + Si,j+1)Sij + (terms independent of Sij)

E′ = − J (Si−1,j + Si+1,j + Si,j−1 + Si,j+1) (−Sij) + (terms independent of Sij)

∆E = E′ − E = 2 J (Si−1,j + Si+1,j + Si,j−1 + Si,j+1)Sij

energy difference if spin (i, j) were flipped

def deltaE(i, j):

prev_i , next_i = (i - 1) % L, (i + 1) % L

prev_j , next_j = (j - 1) % L, (j + 1) % L

DeltaE = 2 * coupling * lat[i, j] * \

(lat[prev_i , j] + lat[next_i , j]

+ lat[i, prev_j] + lat[i, next_j])

return DeltaE

Note the �% L� to account for the periodic boundary conditions.

HAP708P, U Montpellier Modelling and Simulation in Physics 210 / 233

MCMC for the 2d Ising model

Total energy and magnetization: Recall

H = −J
L∑
i=1

L∑
j=1

(SijSi+1,j + SijSi,j+1) , M = µ
∑
i

Si

total energy

def energy ():

E = 0.0

for i in range(L):

next_i = (i + 1) % L # =0 if i=L-1, periodic BCs

for j in range(L):

next_j = (j + 1) % L # periodic BCs

E -= coupling * lat[i, j] * lat[next_i , j]

E -= coupling * lat[i, j] * lat[i, next_j]

return E

total magnetization

def magnetisation ():

return np.sum(lat)

HAP708P, U Montpellier Modelling and Simulation in Physics 211 / 233

MCMC for the 2d Ising model

Some auxiliary functions:

T -> infinity: all spins random

def heat():

for i in range(L):

for j in range(L):

lat[i, j] = np.random.choice([-1, 1])

T -> 0: all spins aligned , ground state

def freeze ():

spin = np.random.choice([-1, 1])

for i in range(L):

for j in range(L):

lat[i, j] = spin

generate a random index

def random_index ():

return np.random.randint(L)

HAP708P, U Montpellier Modelling and Simulation in Physics 212 / 233

MCMC for the 2d Ising model

�Burn-in� routine for attaining thermal equilibrium

def burnin(T, burnin_steps):

for n in range(burnin_steps):

i, j = random_index (), random_index ()

flip_maybe(T, i, j)

Main program:

Epoints = np.zeros(T_steps) # <E> as a function of T

Mpoints = np.zeros(T_steps) # <M>

E2points = np.zeros(T_steps) # <E^2>

M2points = np.zeros(T_steps) # <M^2>

T = min_T

dT = (max_T - min_T) / T_steps

Tpoints = np.arange(min_T , max_T , dT) # temperatures

HAP708P, U Montpellier Modelling and Simulation in Physics 213 / 233

MCMC for the 2d Ising model

Main loop:

for step in range(T_steps):

freeze () # start in the ground state

burnin(T, burnin_steps) # burn -in , memorize nothing yet

en = energy () # compute energy after burn -in

magn = magnetisation () # also compute magnetization

E = M = E2 = M2 = 0.0 # <E>, <M>, <E^2>, <M^2>

for n in range(mcmc_steps): # loop to build up the chain

i, j = random_index (), random_index () # choose a spin

oldspin = lat[i, j] # memorize its state

en += flip_maybe(T, i, j) # flip it (or not), update E

E += en # add E to <E>

E2 += en**2 # add E^2 to <E^2>

magn += lat[i, j] - oldspin # update M

M += magn # add M to <M>

M2 += magn **2 # add M^2 to <M^2>

finished constructing chain , must now normalize results

HAP708P, U Montpellier Modelling and Simulation in Physics 214 / 233

MCMC for the 2d Ising model
Normalize the results and save the data in a �le

Main loop continues

E *= norm # computing <E> per spin

M *= norm

M2 *= norm **2

E2 *= norm **2

E /= mcmc_steps # <E> = sum(E) / (sample size)

M /= mcmc_steps

E2 /= mcmc_steps

M2 /= mcmc_steps

Epoints[n] = E # add <E>(T) to the list

E2points[n] = E2

Mpoints[n] = M

M2points[n] = M2

T += dT # end of main loop

np.savetxt(filename , np.transpose ([Epoints , E2points ,

Mpoints , M2points , Tpoints]))

HAP708P, U Montpellier Modelling and Simulation in Physics 215 / 233

MCMC for the 2d Ising model
The separate program plot_ising.py will plot the data:

import numpy as np

import matplotlib.pyplot as plt

filename = "ising.dat"

data = np.transpose(np.loadtxt(filename))

Epoints = data [0]

E2points = data [1]

Mpoints = data [2]

M2points = data [3]

Tpoints = data [4]

Compute the susceptibility and the heat capacity

chipoints = 256 * (M2points - Mpoints **2) / Tpoints

CVpoints = 256 * (E2points - Epoints **2) / Tpoints **2

plt.plot(Tpoints , CVpoints , 'm*') # plot CV(T)

plt.xlabel('T/T0')

plt.ylabel('Specific heat')

plt.show()

HAP708P, U Montpellier Modelling and Simulation in Physics 216 / 233

Results for 100 temperatures, 3M MCMC iterations per temperature (∼2h on a standard
laptop):

HAP708P, U Montpellier Modelling and Simulation in Physics 217 / 233

MCMC for the 2d Ising model, results

At low temperatures: spontaneous magnetization

At high temperatures: mean magnetization is zero

Second-order phase transition at the Curie temperature Tc = 2.27 T0

At T > Tc: Curie-Weiss law, χ ∼ 1
T−Tc (approximately)

Simulation less accurate close to Tc

HAP708P, U Montpellier Modelling and Simulation in Physics 218 / 233

MCMC

Exercises

Create a MC simulation of an ideal quantum gas in a box. The gas consists of 1000
atoms, each characterized by three quantum numbers nx, ny, nz = 1, 2, 3 . . .∞. The
kinetic energy per atom is

E =
π2~2

2mL2

(
n2
x + n2

y + n2
z

)
where L is the box size and m the mass. The atoms don't interact, hence their total
energy is the sum of their kinetic energies.

Show that, when passing from nx to nx ± 1, the energy changes by

∆E =
π2~2

2mL2
(±2nx + 1) .

Use the Metropolis-Hastings method to simulate this system. The probability
distribution is the Boltzmann distribution,

P (φ) =
1

Z
e−E(φ)/kBT .

Plot the energy per particle for a sample of N = 200 000 points at �xed T .
Plot the mean energy as a function of T .

HAP708P, U Montpellier Modelling and Simulation in Physics 219 / 233

MC optimization: Simulated annealing

Simulated annealing is a numerical optimization method inspired by a physical process,
namely the progressive cooling of a heated crystal lattice of a solid.

If the cooling proceeds su�ciently slowly, the solid will relax to a state of minimal
energy (perfect lattice).

If the process is too rapid, it will end up in a local minimum with crystallographic
defects.

In a more general context, the goal of the method is to �nd an approximate global
minimum of some complicated function. If there are many local minima, deterministic
optimization methods tend to be ine�cient, while a MC method may be able to �nd a
good approximation of the global minimum.

HAP708P, U Montpellier Modelling and Simulation in Physics 220 / 233

Simulated annealing

To �nd the minimum-energy state of a system by simulated annealing:

Explore the con�guration space with a random walk following the
Metropolis-Hastings algorithm for the Boltzmann distribution.

Progressively lower the temperature.

As T → 0, thermal �uctuations become less and less likely. Ultimately the system
will settle to a state of low energy (not always the true global minimum, but often a
good approximation).

In practical applications, the function to be minimized need not correspond to the energy
of a physical system; it can be any function depending on the system's parameters.

HAP708P, U Montpellier Modelling and Simulation in Physics 221 / 233

Simulated annealing
Example: The travelling salesman

A travelling salesman plans to visit N towns, whose coordinates in the plane are given.
He would like to take the shortest possible path which passes by every town exactly once.
In which order should he visit them?

Let (xi, yi) (i = 1 . . . N) be the towns' Cartesian coordinates. The salesman should end
up at his starting point at the end of his trip. We therefore need to minimize the overall
path length given by

d =
∑
i

√
(xi − xi+1)2 + (yi − yi+1)2

where (xN+1, yN+1) ' (x1, y1) and we are looking for the minimum on the set of all
possible paths = all possible permutations of towns modulo overcounting.

(,)x y

(,)x y

(,)x y

(,)x y

(,)x y

1 1

2 2

33

4 4

5 5

1
2
(N − 1)! inequivalent paths ⇒ cannot test them all if N is large. Better deterministic

algorithms to compute the exact solution still have exponential time complexity.
HAP708P, U Montpellier Modelling and Simulation in Physics 222 / 233

Simulated annealing

Simulated annealing for the travelling salesman problem:

Start with an arbitrary path = an arbitrary order.

At each iteration, propose a new path with two randomly chosen towns exchanged.
Compute the �energy� = the length of the proposed new path.

Accept or reject the new path according to the Metropolis-Hastings algorithm for a
Boltzmann weight with �temperature� T .

Progressively lower the �temperature� to gradually suppress �thermal� �uctuations.

HAP708P, U Montpellier Modelling and Simulation in Physics 223 / 233

Simulated annealing

Represent a path between N towns by a NumPy array p containing the 2N coordinates
(xi, yi), in the order that the salesman visits them

import numpy as np

N = 20 # number of towns

Tstart = 10.0 # starting temperature

Tend = 1.E-2 # minimal temperature

delta = 1.E-4 # cooling rate

def length(p): # compute the length of a path p

L = 0.0

x = p[:, 0] # x coordinates

y = p[:, 1] # y coordinates

for n in range(-1, N-1): # (index -1 = last point)

dx = x[n] - x[n + 1]

dy = y[n] - y[n + 1]

L += np.sqrt(dx**2 + dy**2)

return L

HAP708P, U Montpellier Modelling and Simulation in Physics 224 / 233

Simulated annealing

path = np.random.random ([N, 2]) # N random coordinate pairs

d = length(path) # path length

T = Tstart # initialize temperature

while T > Tend: # main loop

town1 , town2 = np.random.randint(N), np.random.randint(N)

path[[town1 , town2],:] = path[[town2 , town1],:]

newd = length(path) # length of proposed new path

if np.exp(-(newd - d)/T) > np.random.random ():

d = newd

else: # undo the change

path[[town1 , town2],:] = path[[town2 , town1],:]

T *= (1 - delta) # exponential cooling

Here the cooling schedule is de�ned by T → (1− δ)T at each step. Depending on the
problem, other choices may be more e�cient.

HAP708P, U Montpellier Modelling and Simulation in Physics 225 / 233

Simulated annealing

Example for N = 20 towns:

HAP708P, U Montpellier Modelling and Simulation in Physics 226 / 233

Simulated annealing

Exercises

Write a program which computes the maximal number of dimers that can be placed on a
square N ×N tiling. Each dimer will occupy two adjacent tiles. (The result is of course
N2/2 or (N2 − 1)/2 depending on the parity of N , but let's pretend we didn't know
that.) Use the simulated annealing method.

HAP708P, U Montpellier Modelling and Simulation in Physics 227 / 233

Kinetic Monte Carlo

MC methods can also be used to simulate the time evolution of a system out of
equilibrium. For example, actual annealing of a real crystal lattice.

Consider a system of atoms or molecules with many local potential energy minima. At
low temperatures the system will �uctuate around one of the local minima for most of
the time. Occasionally a thermal �uctuation will be large enough to cross the energy
barrier into a di�erent state.

To simulate the long-term evolution of this system, we only need to know the transition
rates between the di�erent minima: rij = rate to jump between state i and state j.

HAP708P, U Montpellier Modelling and Simulation in Physics 228 / 233

Kinetic Monte Carlo

To simulate the time evolution on large scales:

No interest in simulating small �uctuations around any given state

Transition rates rij must be inferred from experiment and/or small-scale simulations
(e.g. molecular dynamics) and/or theory

Algorithm: Kinetic Monte Carlo

At some given time the system is in state i

Determine transition rates rij to other states j, compute total rate R =
∑
j rij

Randomly select a transition to state k by weighting with rates rij :

Draw random number x uniformly distributed between 0 and R

Find k such that
∑k−1
j=1 rij < x <

∑k
j=1 rij

r + r + r + r
i i1 2 3i

r r r r r r
i i i i3 4 5 6i 21i

x

i 4

Change state i ← k. Increase time by ∆t = − log(u)/R where u is randomly drawn
from [0, 1] (inverse transform sampling for the PDF P (τ) = 1

R
e−Rτ). Iterate.

HAP708P, U Montpellier Modelling and Simulation in Physics 229 / 233

Kinetic Monte Carlo
Example: Defect migration in a crystal

An impurity in an otherwise perfect crystal undergoes radiactive decay, which leads to
two kinds of lattice defects:

interstitial atoms at sites where there should be no extra atom in a perfect lattice,

vacancies, i.e. empty lattice sites where the atom has been knocked out.

vacancy interstitial atom

At �nite temperature, three kinds of processes can change the system's con�guration:

migration of interstitials to an adjacent site,

migration of vacancies to an adjacent site,

recombination if an interstitial and a vacancy become neighbours → both disappear.

HAP708P, U Montpellier Modelling and Simulation in Physics 230 / 233

Kinetic Monte Carlo

Crude model for defect migration:

3D primitive cubic lattice: a defect can migrate to 6 adjacent sites, will recombine if
a defect of the other type is on one of the 26 closest sites

Migration rates:

r = w exp

(
− E

kBT

)
where w is a prefactor, E is the activation energy and T is the temperature.

We take wi = 1, Ei/kBT = 10 (interstitials), wv = 10−3 and Ev/kBT = 1
(vacancies). (These are realistic orders of magnitude in units of fs−1 for a Si crystal
at T = 1000 K.) Vacancies are more mobile.

Recombination happens on much shorter time scales ⇒ instantaneous if an
interstitial gets close to a vacancy.

Starting con�guration:

N = 100 defects of either type

Gaussian distribution with width σi = 20 and σv = 10 (interstitials are more widely
scattered initially).

HAP708P, U Montpellier Modelling and Simulation in Physics 231 / 233

Kinetic Monte Carlo
Number of defect pairs as a function of time:

Defects after 1M simulation steps (∼ few minutes computing time, t ≈ 108):

Vacancies have mostly annihilated or moved outward from interstitials due to their
greater mobility ⇒ annihilation proceeds much slower at late times.

HAP708P, U Montpellier Modelling and Simulation in Physics 232 / 233

Kinetic MC

Exercises

Write a program to simulate this system.

Hints:
To sample from the Gaussian normal distribution with mean x0 and standard
deviation sigma, use numpy.random.normal(x0, sigma).
Represent the position of a defect in the lattice by a triple of integers (x, y, z). In
each simulation step, one of the defects changes one of its coordinates by ±1. An
interstitial recombines with a vacancy if |xi − xv| ≤ 1 and |yi − yv| ≤ 1 and
|zi − zv| ≤ 1.
To create a linear-log plot, such as the one on the previous slide, use
matplotlib.pyplot.semilogx(x, y).

HAP708P, U Montpellier Modelling and Simulation in Physics 233 / 233

	Introduction
	Numerical error, stability, algorithmic complexity
	Numerical integrals and derivatives
	Ordinary differential equations
	Partial differential equations
	Monte-Carlo methods

